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Lubricants are used in numerous applications to control friction and protect moving parts 

from fatigue. These fluids consist of a variety of surface active chemistries competing for the 

surface to provide performance. In order to develop fluids that meet the ever-increasing 

requirements (from legislation and manufacturers), techniques that can provide insight into 

surface adsorption, in real time, and relate it back to performance are critical. 

The objective of this work is to determine if Quartz Crystal Microbalance with 

Dissipation (QCM-D) is an effective technique to investigate surfactant adsorption in regimes 

that are common to the transportation lubricant industry. QCM-D is employed to quantify the 



x 
 

mass, characterize the morphology, and quantify the kinetics of adsorption of common friction 

modifiers.  The adsorption information is then compared to macroscopic properties (friction and 

corrosion prevention) to determine if this technique can aid in formulating future lubricants.



1 
  

CHAPTER 1: Introduction 
 

1.1 Overview of Lubricants: A wide variety of applications mandate the need for fluids to 

protect moving parts and control friction. Examples include (but are not limited to) aerospace, 

over-the-road and off-road transportation, food machinery, shipping and boating, wind turbines, 

metal shaping, and oil exploration and recovery. Many of these applications require high 

temperatures and minimal rust, making petroleum-based lubricants an obvious choice.  Due to 

the numerous applications, and nuisances associated with each of them, this thesis will focus on 

factors important to the transportation industry, but the application of this work extends to 

numerous other industries.  

Transportation lubricants consist of two parts: a base oil and the additive system. The 

base oil provides a heat sink, some lubricity, and transport for the additive. The additive system 

consists of the other components added into the base oil to protect the moving parts and extend 

the life of the machine. A multitude of chemicals of different functionality are used to provide 

bulk fluid performance (reduce oxidation, foam, etc.) as well as condition the surface to provide 

proper friction, protect from fatigue and minimize corrosion.  A delicate balance of chemicals is 

required to optimize the performance characteristics, because many of the additives compete for 

the surface. Figure 1 is a simplified illustration of the composition of common additives.  

Detergents, dispersants and anti-oxidants prevent oxidation, formation of sludge deposits 

and maintain soot in suspension. Detergents are typically oil soluble acids neutralized with metal 

oxides that are capable of neutralizing acidic products formed while vehicles are in operation. 

Dispersants consist of polar functional groups, typically oxygen or nitrogen based, and large 
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nonpolar hydrocarbon groups. The polar group associates with the polar degradation products 

and the nonpolar regions keeps the particles suspended in solution. Hindered phenols are typical 

antioxidants that serve as free radical traps to prevent oxidation of the oil. 

 

 
Figure 1: Classification of components contained in common additive packages 

Components are also added to control the presence of water and air in lubricant systems. If not 

properly controlled, water can generate corrosion and entrained air can generate foam (which is a 

poor lubricant). Polydimethylsiloxane (PDMS) is a common foam inhibitor that lowers surface 

tension, collapsing air bubbles formed during aeration.  Surfactants are added to manage water 

introduced during operation of the equipment/vehicles. Depending on the application water may 
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need to be emulsified or demulsified, so there is not a characteristic structure.  Rheological 

properties are controlled by long chain polymers that serve to maintain consistent viscosity over 

a wide temperature range. In order for vehicles to operate efficiently, at very cold temperatures 

the lubricant needs to be pumpable.  At high temperatures the lubricant needs to be viscous 

enough to separate the moving parts and operate pumps.  

 The surface active components are the chemicals added to protect the surface from wear 

(or other fatigue), control friction and prevent corrosion.  Zinc dialkyldithiophosphates (ZDDPs) 

are one of the most established anti-wear additives in the industry and are present within 

virtually all engine oils. The ZDDP decomposes and forms polyphosphate glass on the steel 

surface, reducing wear.  Transmission, hydraulic and gear applications in transportation vehicles 

may use other anti-wear additives but the majority of them contain sulfur and phosphorus. 

Surface active short chain oligomers are commonly used as friction modifiers and corrosion 

inhibitors.  These oligomers adsorb to steel to protect the surface from corrosion and separate the 

two surfaces in order to reduce friction, but can also out-compete the anti-wear components 

leading to increased fatigue of parts.  Understanding the nature of adsorption of these surface 

active chemicals (and relating them back to performance) is advantageous in attaining a strong, 

well balanced lubricant needed for the next generation of transportation vehicles.  As mentioned 

previously, friction and corrosion performance strongly depends on the interactions that occur at 

surfaces and will be the focus of this work. 

1.2 Friction: In the broadest sense, friction is the resistance to sliding and motion. This 

resistance is typically quantified by the unitless coefficient (CoF). In real systems, friction is 

dependent on viscosity, sliding speed and normal force. The magnitude of these parameters 

defines the regime: boundary, hydrodynamic or mixed. Hydrodynamic friction is defined by 
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higher sliding speed and lower loads, allowing enough fluid in the interface such that asperities 

on the surface are not in direct contact with one another. Under higher loads or slower speeds 

minimal fluid is present in the interface and the two surfaces are close enough that asperities are 

in contact, leading to higher friction. In this regime additives are needed to reduce friction and 

wear to prevent seizure of the moving parts. The transition between boundary and hydrodynamic 

is described as mixed. The Stribeck curve in Figure 2 illustrates how friction is influenced over 

these three regimes.1 Dry friction, located on the left side of the graph, is the point where two 

surfaces are in direct contact with one another and friction is at its highest. As the viscosity of the 

lubricant increases the two surfaces are pushed apart; consequently, lowering friction. In 

addition, increasing the sliding speed or decreasing the force pushing the surfaces together has 

the same effect. At some point, the fluid between the surfaces becomes so large that internal 

friction is generated from the viscosity of the lubricant and the friction begins to increase. In 

general, these trends are consistent throughout systems, although the magnitudes may vary.   

Engine oils aim to minimize friction to increase fuel economy. As much as 3-8% of fuel 

consumption can be attributed to internal friction.2  Improving fuel economy is becoming more 

and more critical as legislation continues to introduce more stringent fuel economy requirements. 

Transmissions have more complex friction needs.  In these applications, it is not ideal to simply 

lower friction overall since high static friction is necessary to prevent clutch slippage. Instead, it 

is critical to control and maintain friction to eliminate shudder in the transmission. This is done 

by ensuring friction (µ) decreases as velocity (υ) decreases (dµ/dυ>0).3  Without modification, 

low speed friction is typically higher than high speed friction, so molecules such as surfactants 

are added to in an effort to lower the coefficient of friction in the low speed region. 
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Figure 2: Stribeck curve: Illustrates the different tribological regimes and how friction is a 
function of viscosity, sliding speed and normal force. 

1.3 Surfactants: Boundary friction can be reduced by surface active molecules that are 

classified as friction modifiers.  These components need to be oil soluble as well as surface 

active. As a result, many of the common friction modifiers are surfactants. Surfactants are 

characterized by their distinct polar and nonpolar regions, the latter being commonly a 

hydrocarbon chain.  More specifically, oleyl-based surfactants are often used since they are 

naturally occurring, economical, and efficient in lowering friction. The polar head group varies 
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but some common functional groups are sulfonates, amides, glycerols, amines, and acids. These 

surface active oligomers are commonly used to improve corrosion and lower boundary friction; 

however, they can also increase wear, scuffing or other surface fatigue phenomena. 

 

Figure 3: General diagram of common oleyl friction modifier/surfactant 

1.3.1  Micelles: In polar environments and low concentrations, surfactants arrange at interfaces 

with their nonpolar hydrocarbon tails towards oil or air and polar head group oriented towards 

the solvent; thus, lowering the surface tension. At higher concentrations, the surfactants begin to 

form aggregates with their hydrophobic tails oriented towards the center and polar head group 

toward the solvent.  This orientation, known as micelles, serves to shield the nonpolar region 

from the polar solvent. In this configuration, hydrocarbon tails are slightly more restricted 

compared to in the bulk solution, but still mobile. Often micelles are pictured as spherical, but in 

reality are often times elongated or odd in shape.    

The minimum concentration at which micelles begin to form is known as the critical 

micelle concentration (CMC).  The average number of monomers that make up a micelle and the 

CMC values are dependent on a number of factors, such as hydrocarbon chain length, polar head 

group, solvent and temperature. Compared to nonionic surfactants, ionic surfactants tend to form 

smaller micelles due to the electrostatic repulsion from their head group.4  CMCs can be 

determined experimentally by surface tension, conductivity, and light scattering methods.5 
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1.3.2  Reverse Micelles: In nonpolar solvents, surfactants aggregate in the opposite direction 

with their polar head group oriented towards the interior and hydrophobic tail outward. These 

aggregates are labeled inverted or reverse micelles. The CMC decreases with increasing chain 

length, due to the increase in tendency of monomers to aggregate with increasing chain length.6 

The driving force for inverted micelles is different than normal micelles and CMCs are often 

more difficult to experimentally measure.  Water present in these non-polar systems can be 

shielded from the non-polar solvent by sequestering in the interior of the inverted micelle.  As 

with normal micelles, they are depicted as static structures but in reality the surfactant molecules 

are dynamic.  
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Figure 4: (a) Illustration of normal micelle in polar solvent and (b) reverse micelle in oil 

1.3.3. Self Assembled Monolayers (SAMs): In addition to aggregating in the bulk, surfactants 

also adsorb to surfaces. SAMs are formed when surfactants spontaneously adsorb from solutions 

into a monomolecular layer on surfaces. In these monolayers, van der Waals interactions exist 

between the hydrocarbon chains because they are in registry. Adsorption can be chemical or 

physical. Differentiating between the two adsorption methods is defined by the enthalpy of 
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adsorption and/or residence time. Chemisorption is defined by the higher binding energy 

(typically more negative than -40kJ/mol) or long residence time. The residence time is long, so 

the molecules are considered to not depart from the surface after adsorption. The weaker 

adsorption, physisorption, is defined by a very small residence time and lower binding energy.7 

Comparing the enthalpy of bonding to kT (k is the Boltzmann constant and T the absolute 

temperature) provides an indication of molecular motion. If the binding energy is an order of 

magnitude greater than kT, the SAM is very stable over a long period of time and a wider 

temperature range. Alkanethiol SAMs on Au(111) are one such example. These SAMs have 

been heavily studied and form very stable monolayers due to their high bonding energies 

(ΔHabs=-83.7±4.2 kJ/mol).8 

1. 4 Surface Analysis:  The amount of friction and corrosion observed in applications 

can be controlled by the SAMs that are formed on solid surfaces. Due to its strong mechanical 

properties and cost-effectiveness, steel is typically the substrate in transportation applications. 

Surfactant molecules, with an affinity for steel, form friction reducing layers increasing the 

lifetime of mechanical devices.  Iron oxide surfaces are not atomically flat nor chemically 

uniform making highly ordered monolayers unlikely.  Also, relative to thiol on gold, many of the 

typical friction modifiers and corrosion inhibitors used in the industry have lower binding 

energies.  In these systems it is likely the surfactants exchange between the surface and bulk 

fluid on very fast timescales. Molecular dynamic simulations conducted by Greenfield of weakly 

adsorbed surfactants desorbed from the surface on the timeframe of 200 picoseconds.9 For 

engines, steel-on-steel friction is the only friction of concern but in transmissions multiple 

materials are in contact with the steel (i.e.,  paper, sintered bronze and elastomers). 
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Understanding interactions with these surfaces is also important, but since steel is the most 

copious material it will be the focus of this thesis.   

Understanding the chemical and physical interactions that occur at surfaces is essential, 

but is often difficult to follow in-situ.  There are a variety of techniques to measure surface 

phenomena (mechanical, optical, and electrical) each with their own advantages and 

disadvantages (Table 1). The majority of the techniques are ex-situ (i.e., ellipsometry, Atomic 

Force Microscopy, etc.); thus, incapable of providing kinetic information. Surface plasma 

resonance (SPR) and Quartz Crystal Microbalance (QCM) are the principal techniques for 

measuring in-situ adsorption of SAMs.   SPR is an optical technique that utilizes light to resonate 

electrons (within the sensor chip) that are sensitive to their surrounding environment. These 

electrons are referred to as surface plasmons. Dynamic processes are measured through the 

decrease in intensity of reflected light observed upon adsorption to the surface. The disadvantage 

with this technique is the substrate must be capable of generating surface plasmons in the 

detectable region (typically gold or silver).  In contrast, Quartz Crystal Microbalances (QCM) 

are capable of measuring dynamic processes on steel substrates at high sensitivities (ng/cm2). 
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Table 1: Summary of some common surface analysis techniques. High sensivity, in-situ 
measuremnents, and ability to measure adsorption on steel substrates were requirements for this 
application. 
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Spectroscopic 
Ellipsometry10 Optical     

• Surface roughness of sample needs 
to be quite small 

• Data analysis complicated 

Quartz Crystal 
Microbalance 

with dissipation 
(QCM-D)11 

Gravimetric/ 
Mechanical     

• Non-specific (responds to all 
analytes) 

• Complex modeling necessary for 
highly dissipative films 

• Provides conformational information 

Attenuated Total 
Reflectance 
(ATR-IR)12  

Optical     

• Lacks sensitivity (scattering makes 
difficult to quantify) 

• Evanescent effect works if the 
crystal is made of an optical material 
with a higher refractive index than 
sample 

• Provides conformational changes 

Surface Plasmon 
Resonance 

(SPR)13 
Optical 

    
• Substrate must be capable of 

generating surface plasmons in 
detectable region 

Atomic Force 
Microscopy 

(AFM)14 

Electrostatic/ 
Mechanical     

• Provides topography of surface 
• Assumes substrate is smooth 
• Also capable of measuring friction 
• Measures small surface area (~5µm) 

Polarization-
Modulation 

Infrared 
Reflection 
Absorption 

Spectroscopy 
(PM-IRRAS)15 

Optical     

• Provides information on bonding 
occurring at surfaces and molecular 
orientation 

• Eliminates need for separate 
background spectrum  

 

1.4.1 Quartz Crystal Microbalance (QCM): QCMs have been applied to various applications 

over the last few decades: gas phase detection, immunosensors, DNA biosensors and drug 

analysis to name a few.16  Quartz is a piezoelectric material; therefore, an accumulation of 
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electrical charge occurs when mechanical stresses are applied along a defined axis. The converse 

is true as well. A piece of quartz is plated with two electrodes (typically gold) on each surface 

and an electrical potential applied that results in an internal mechanical stress, leading to the 

oscillation of the crystal at its natural or resonant frequency (Figure 5). 

 

Figure 5: (a) Piezoelectric quartz crystal (b) piezoelectric quartz crystal after applying electrical 
potential. 

Another way to define resonance is the frequency (or frequencies) at which the amplitude 

of a wave is the largest. Multiple resonant frequencies for a single system are depicted in Figure 

6.  Resonance is achieved in all three of the waves depicted, but the frequency of each wave is 

different. The left wave is the lowest frequency at which resonance is attained, known as the 

fundamental frequency. Overtone is the term used to describe any resonant frequency above the 

fundamental frequency. Frequency is inversely proportional to wavelength; therefore, the 

frequency of overtones increases incrementally by the fundamental frequency. Because of this, 

frequency of higher harmonics can be reduced to the fundamental frequency simply by dividing 

by the overtone. In QCM-D this is often done to normalize all frequency data to the same scale.17   

Quartz 

 
 

 
 

 
Gold electrode 

a) b) 
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Figure 6: Illustration of multiple resonant frequencies (harmonics). The boundary conditons of 
the system are defined by the thick black lines.  The wave on the left represents the lowest 
frequency at which resonance is achieved. Nodes are present in the higher frequency overtones, 
but the maximun amplitude is still reached.  The wavelength of the fundamental frequency is 
twice the thickness of the quartz crystal. In order for the QCM to be able to excite oscillating 
waves at resonance, a node must be present at one surface and an anti-node at the other surface. 
As a result, only odd harmonics are measured.  

The wavelength of the fundamental frequency is twice the thickness of the crystal. In order for 

the quartz crystal to excite a standing wave at resonance, a node (points on the wave with no 

displacement) must be present on one surface and an anti-node (points on the wave with 

maximum displacement) on the other. As the Figure 6 illustrates, this is only true in the case of 

odd harmonics. Nodes are located on both surfaces for even harmonics, so they cannot be 

measured using this technique.  

        𝒏=1               𝒏=2                  𝒏=3 

Anti-node 

Node 

Representation of 
Quartz Crystal  



13 
 

The fundamental frequency of the crystal is dependent on the thickness, density, 

temperature and shear modulus of the quartz as well as the density or viscosity of the 

surrounding air or liquid.  Since the properties of the quartz are constant for a given 

crystal/experiment, if variation in temperature is minimized any change in frequency can be 

related to changes in the surrounding air or liquid, as proven by Sauerbrey in 1959 (Equation 

1)18.  

 ∆ƒ = −
2ƒ0

2𝑛
𝐴�𝜌𝑞µ𝑞

 Δ𝑚 
 (1) 

ƒ0 = fundamental resonant frequency (Hz) 
∆ƒ = frequency change (Hz) 

Δ𝑚 = mass change (g) 
A = piezoelectrically active crystal area (area between electrodes, cm2) 

𝜌𝑞 = density of quartz (2.648 g/cm3) 
µ𝑞 = shear modulus of AT cut quartz (2.947 x1011 gcm-1s-2) 

n = overtone 
 
 

This equation regards the deposited mass as an extension of the thickness of the 

underlying quartz. It assumes the deposited mass is rigid, evenly distributed, and small relative to 

the mass of the crystal. This equation can be used for measurements in vacuum, but in a liquid 

the solvent can couple with the resonator, dampening the crystal and leading to an 

underestimation of the mass.19 In the 1980s, QCMs become more widely applicable when 

Kanazawa modified the Sauerbrey equation to account for liquid environments (Equation 2).20  

 

 ∆𝑓𝑙𝑙𝑞𝑙𝑙𝑙𝑙 = −𝑓0
3
2 �

𝑛𝐿𝜌𝐿
𝜋𝜇𝑄𝜌𝑄

�
1/2

  (2) 

𝑛𝐿= absolute viscosity 
𝜌𝐿= density of liquid 
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Since the frequency of the crystal can be dampened by the liquid environment, it is also vital to 

measure the dissipation. The dissipation (D) is defined by Equation 3, where Ed is the energy 

dissipated and Es is the energy stored during a period of oscillation. In addition to dampening 

from the liquid environment, any adsorbed film that is not rigid and contains viscoelastic 

character may contribute to the dampening of the crystal. Dissipation is sometimes referred to as 

the inverse of the quality factor (Q). Q is a dimensionless parameter widely used in circuits to 

quantify the ratio of energy stored in a resonator to the energy supplied by it. 

 

 𝐷 =
1
𝑄 =

𝐸𝑙
2𝜋𝐸𝑠

 
 (3) 

The QCM with Dissipation (QCM-D) shuts off the driving frequency for an infinitesimal time 

after the oscillation stabilizes and records the decay curve (Figure 8). This process occurs 

multiple times in a second. 

 

Figure 7: Depiction of typical decay curve 
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The dissipation is then calculated by fitting the decay curve to an exponentially damped, 

sinusoidal equation.  

 

 𝐴 = 𝐴0𝑘
−𝑡 𝜏�  sin (𝜔𝜔 + 𝜑)   (4) 

 𝐷𝑡𝑙𝑡 =
2
𝜔𝜔   (5) 

 

The dissipation due to the dampening of the bulk liquid can be estimated from the density and 

viscosity of the liquid.21 

 ∆𝐷 =
2𝑓0

1
2

√𝑛𝜋
�𝜌𝑙  𝑛𝑙
𝜇𝑄𝜌𝑄

    (6) 

 

A typical frequency and dissipation plot for the formation of a rigid monolayer is 

illustrated in Figure 7. Upon addition of the sample, the frequency (blue) decreases to a steady 

value and there is no measurable change in dissipation (red). Starting around 43 minutes, the 

initial solvent is pumped across the crystal to remove any loosely adsorbed material (physical 

adsorption). At this point, labeled rinse, the frequency increases then quickly plateaus. Since 

there is no change in dissipation, the Sauerbrey equation is valid and the mass (green) is directly 

proportional to the change in frequency.  
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Figure 8: Example frequency and dissipation shift for rigid monolayer and calculated mass 

Equations 2 and 6 can also be utilized to estimate correction factors, if there is significant 

change in viscosity and density of solutions compared to the solvent.22  At low concentration of 

solute, the viscosity and density of solution is not much different from the baseline measurement, 

which is the pure solvent.  However, at the higher concentrations of solute corrections are 

necessary. For example, viscosity and density values for various solutions of oleylamine in 

isooctane (at 25°C) are listed in Table 2. These values can be plugged into equation 2 and 6 as 

the density and viscosity of the liquid (𝜌𝑙  𝑛𝑙). The difference between calculated frequency and 

dissipation for the pure solvent and the oleylamine solutions provides the correction factors.  
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Table 2: Viscosity and density values for various concentrations of olelylamine in isooctane used 
to calculate frequency and dissipation changes due to differences in bulk properties. The 
frequency correction values have been divided by the overtone, 9, to normalize the data. 

Concentration, 
mM 

Viscosity, 
kg/ms 

Density, 
kg/m3 

Correction Factors for 9th overtone 

Frequency, Hz  Dissipation, 10-6 

0 0.0004730 692.00 --- --- 

0.25 0.0004731 692.00 0.01 0.00 

2.00 0.0004734 692.04 0.07 0.03 

100 0.0004949 693.91 3.25 1.31 

 

At the lowest concentration (0.25 mM) minimal corrections are required, but at the 

highest concentration (100 mM) very large corrections are required. Looking at the raw data 

measured at this concentration and overtone using the QCM (Figure 9), odd behavior in the 

frequency measurement is observed upon addition of the solution. The first inflection at about 

~3.2Hz corresponds to the calculated frequency correction of 3.25Hz, providing a reasonable 

explanation for the odd behavior. The corrected frequency and dissipation values are depicted as 

dotted lines in Figure 9 as well.  Neglecting these corrections will lead to a large overestimation 

of deposited mass. All data reported hereafter will be corrected if required.  
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Figure 9: Frequency and dissipation measurements at the 9th overtone in real time for 100mM 
oleylamine in isooctane. Due to the large change in density and viscosity, corrections are 
required for frequency and dissipation at this concentration. 

1.4.1.1 Viscoelastic Adsorption: If the adsorbed layer exhibits any viscoelastic character, 

(measured dissipation) the Sauerbrey equation is no longer valid and using it will underestimate 

the true mass adsorbed to the surface. In practice, if the dissipation is minimal, the Sauerbrey 

equation is recognized as an acceptable estimation. In cases where a high dissipation is measured 

viscoelastic models can be used to determine the mass. In order to most effectively use this 

model, data is recorded at multiple overtones. If the magnitude of the frequency shift at each 

harmonic is not proportional to the overtone number, it is another indication that the adsorbed 

layer is viscoelastic.23 Figure 10 illustrates typical frequency and dissipation shifts observed for 

viscoelastic systems at multiple overtones.  The first overtone is typically not utilized due to the 

small signal-to-noise ratio.  For simplicity, the frequency values were normalized by dividing the 

measured frequency value by the overtone number. Upon addition of sample, the frequency 

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

0 200 400 600 800 1000
Time, sec 

Δf, Hz Δf, Hz (corrected) Δd, 10-6 Δd, 10-6 (corrected) 

Solvent 
Addition of Sample 

ΔD, 10-6 ΔD, 10-6 (corrected) 



19 
 

decreases and the overtones begin to separate. The dissipation increases, relative to the 

frequency, indicating a soft, viscoelastic film. In these systems, the adsorbed layer behaves like a 

viscoelastic solid leading to dampening of the measured frequency. In order to accurately 

determine the mass, complicated viscoelastic models (i.e., Voigt) must be employed. In these 

models, the data is fitted to solve for multiple unknowns (density, viscosity, shear, and thickness 

of adsorbed mass).24  Due to the large number of unknowns, this can be problematic and can lead 

to serious misinterpretation of data without a corroborating experimental method for at least one 

of the unknowns.  

 
Figure 10: Example of frequency (f) and dissipation (D) shift measured  for viscoelastic system 
at multiple overtones (3, 5, 7, 9, 11 and 13).  

 

1.4.1.2  Penetration Depth of Overtones: As mentioned previously, the fundamental frequency 

is not often used due to the high signal to noise ratio. Figure 11 illustrates the varying penetration 

depth of each overtones. The fundamental frequency measures ~250nm from the quartz crystal. 
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This is an order of magnitude larger than most molecular interactions occurring at the surface, so 

its signal is largely dictated by the viscous medium and not as sensitive to adsorption 

characteristics. As the overtone increases, the shear wave’s penetration into the medium 

decreases, so while the overall signal decreases, the signal-to-noise ratio increases. Thus, 

typically the higher overtones are reported due to the lower noise. It is important to note this is 

not infinite, if the frequency is too high spurious vibrations other than shear mode may be 

excited. This may lead to misinterpretation of the data since all models assume in-plane shear 

motion only. 

 
Figure 11: Nomalized probabiltiy distribution (provided by Qsense)  illustrating the penetration 
depth for each overtone. 25 

1.4.1.3 Character of Adsorbed Layer: Plotting frequency and dissipation provides information 

on the adsorption process, irrespective of time. The frequency and dissipation values (from 

example datasets illustrated in Figures 6 and 8) are plotted in Figure 9. Type I illustrates the rigid 
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monolayer, where a change in frequency occurs but no change in dissipation. A greater slope is 

observed for the dissipative monolayer illustrated by Type II. A larger slope is indicative of a  

more viscoelastic film. This qualitative analysis provides notable insight into the adsorption 

process. Some curves may change slope over the course of adsorption, suggesting a multi-step 

adsorption processes are occurring, as in the case of thiols on gold.26  

  

 

 

 

Figure 12: Representative frequency and dissipation plots for rigid monolayer (Type I) and 
dissipative films (Type II).  

1.5 Statement of Thesis Research Objective: In the transportation industry, much of the 

testing (especially engine testing) can be very expensive and quite time-consuming. Gaining a 

good understanding of the interactions occurring on steel surfaces and relating it to performance 

could reduce the timeline and expense of evaluating new additives. Due to environmental 

concerns, legislation on improving fuel economy continues to become more stringent requiring 

the industry to move to lower viscosity lubricants. As viscosity of base oils continues to 

decrease, the demand for high performance additives capable of protecting moving parts under 

boundary conditions and controlling friction will become more critical. In addition to the fuel 
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economy legislation, more environmental regulations on metals and degradation products present 

in additives are being introduced globally. As a result, reducing the amount of metals, sulfur and 

phosphorous has become another area of interest. These requirements enforce the need for more 

complex lubricant formulations.  

Additives based largely on carbon, hydrogen, and oxygen (with no environmental 

regulations) are the focus of this thesis (specifically fatty acids, glycerol oleates, amides, and 

amines). Using QCM-D the adsorption of these surfactants, from solution, will be measured in 

situ. The effectiveness of an additive depends on its affinity toward the material surface as well 

as the bulk solution. The data obtained on the nature and kinetics of the adsorbed films are then 

compared to friction and corrosion bench tests to determine if QCM-D is a useful technique in 

understanding difference observed in performance.  
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CHAPTER 2: Methods and Materials 
 

2.1 Reagents: 1-monopalmitoleoyl-rac-glycerol (≥99%), 1-Stearoyl-rac-glycerol (≥99%), 1-

Oleoyl-rac-glycerol (≥99%), Oleamide (≥99%), Oleic acid (≥99.0%), Octanoic acid(≥99.0%),  

and 2,2,4-Trimethylpentane (≥99.5%) were obtained from Sigma Aldrich. Oleyl amine was 

purchased from Akzo Nobel under the trade name Armeen OL. Glycerol dioleate (GDO) was 

purchased from Lambert Technologies and glycerol monooleate (GMO) from PMC Biogenix. 

All chemicals were used as received. GDO and GMO are often made from the natural fatty acids 

and sold as mixtures so the samples were further characterized by IR and 13C NMR to determine 

the distribution (Table 3, Spectra shown in Appendix).  Water can be measured as part of the 

mass using QCM-D, so Karl Fischer titrations (coulometric method) were utilized to quantify the 

amount of water in the GMO and GDO samples. Water in the GMO sample, 2128 ppm, was 

almost double the amount present in the GDO sample, 1194 ppm. These surfactants were chosen 

due to their common use as friction modifiers and/or steel corrosion inhibitors. 

Table 3: Mole fraction of glycerol monooleate, diolate, trioleate in GMO and GDO determined 
by 13C NMR and IR 

 

Glycerol 

Glycerol Monooleate Glycerol Dioleate 
Glycerol 
Trioleate 1-monolein 2-monolein 1,2-

diolein 
1,3-

diolein 

GMO 0.08 0.57 0.06 0.09 0.18 0.02 

GDO 0.03 0.22 0.02 0.14 0.29 0.29 
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2.2 QCM: The QCM-D is employed to quantify the mass and structure of various 

surfactants, in real time, as they adsorb to steel surfaces. The Qsense E4 model, QCM-D was 

purchased from Qsense, Gothenburg, Sweden. This model is comprised of four flow modules 

made of an aluminum shell and titanium (liquid contacting surfaces) mounted in a parallel 

configuration (Figure 13). Temperature stabilization loops are located within each module to 

control temperature within ± 0.02°C.   

 

 
Figure 13: E4 Model QCM-D with four flow modules 
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(a) 

 

b) 

 

Figure 14: (a) QCM chamber and (b) diagram depicting the stabilization loop located within the 
chamber 

AT cut quartz sensors (also purchased from Qsense) with a fundamental frequency of 5 

MHz, are mounted within the modules. The sensors were 14 mm in diameter, and the active side 

was coated with Swedish standard steel 2343, which is comparable to US standard 316. The 

volume above the sensor was 40 µL. Based on the properties of the purchased crystal, the 

equation for the calculation of mass could be reduced to the following equation:  

 
𝛥𝑚 = (−17.7ngcm-2Hz-1) 1

𝑛
∆𝑓 

 
 

 (7) 

 
(a) 

 

(b) 

 

 

Figure 15: (a) Front and (b) back of stainless steel quartz sensor 
14 mm 
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The E4 model measures frequency and dissipation at 7 different overtones that probe 

various penetration depths and radial distributions. The first overtone has the greater penetration 

(~250 nm) and radial distribution and as a result suffers with a high amount of noise due the 

sensitivity. Often the higher overtones are reported because they exhibit a cleaner signal. 

2.2.1 Cleaning the Sensors: The manufacturer’s recommended procedure was 

followed for cleaning the crystals prior to use. The sensors were submerged in a solution of 1% 

Hellmanex® II (alkaline liquid concentrate) and ultrapure water (Type I). After 30 minutes, the 

sensors were rinsed with water, dried with nitrogen gas, and sonicated in 99 % ethanol for 10 

minutes. The sensors were then rinsed with water and dried with nitrogen gas for a second time 

and finally treated with UV/ozone to oxidize the surface. Once the crystals were cleaned, they 

were immediately placed in the chamber of the flow module with the active side facing the flow 

chamber. Great care was taken to place the crystals evenly on the O-ring with the electrode 

facing the correct direction. The module was reassembled and placed on the QCM-D platform. 

The modules were taken apart after every experiment and the portion that was exposed to the 

sample (including the seals) were rinsed with heptane, sonicated in heptane and then dried with 

nitrogen gas. In order to verify the cleaning procedure was working effectively, at the end of 

testing, crystals were cleaned using the above procedure and compared to the theoretical 

frequency and dissipation values. The frequency and dissipation values were within 0.9% and 

0.4%, respectively (Figure 48 in Appendix). 

2.2.2 Adsorption Measurements: QCM-D was employed to measure the adsorption of a 

variety of surfactants, from solution (2,2,4-trimethylpentane) onto iron oxide surfaces. Solutions 

were made at various concentrations and sonicated for 30 minutes. First the frequency and 
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dissipation for each crystal and overtone was found in air, to ensure the quality of the crystal and 

that it was properly mounted within the module.  Next solvent was added to the QCM-D at a 

pump speed of 90 µl/min and temperature of 25.00 ± 0.02°C until the frequency and dissipation 

leveled off.  Multiple solvents and pump speeds were initially evaluated, but many of the higher 

viscosity solvents (i.e., squalane and low viscosity base oils) produced a high amount of noise 

that appeared to correlate with the pump speed. In order to best simulate the application, the 

minimum pump speed to maintain consistent temperature was selected.   

 After a stable base line was obtained surfactant solutions were added (maintaining the 

same pump speed and temperature) and the frequency and dissipation change measured in real 

time. (The GDO solutions were also measured at 50.00 ± 0.02°C to characterize the kinetics.) 

Each experiment was repeated a minimum of two times. After the frequency plateaued, the 

sensors were rinsed with solvent to differentiate the chemisorbed mass to the mass loosely 

physisorbed. In experiments that did not reach a plateau, the rinse was initiated after 2 to 3 hours. 

Friction and dissipation measurements were taken at the 3rd, 5th, 7th, 9th, 11th and 13th harmonic, 

but the 9th and 11th will be the primary data reported here due to their higher quality. 

2.3 High Frequency Reciprocating Rig (HFRR): Steel on steel CoF values were measured 

using the High Frequency Reciprocating Rig (HFRR) to determine the relationship between the 

adsorbed layers to the friction of the system. The HFRR, purchased from PCS Instruments, 

measures boundary friction by sliding a 6 mm steel ball against a steel stationary disk. The set-up 

is illustrated in Figure 16 below.  
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Figure 16: Illustration of HFRR Set-up 

Both specimens were purchased from PCS Instruments and the specifications are listed in 

Table 4. 

Table 4: Specifications for HFRR specimens 

 Steel Hardness Surface Roughness, Ra 

Ball Grade 28 58-66 
HRC <0.05 µm 

Disc AISI E-5210 steel machined from 
annealed rod 

190-210 
HV30 <0.02 µm 

 

2.3.1 Friction Measurements:  Due to the low flash point of 2, 2, 4-trimethylpentane 

(10.4°F), low viscosity poly-α-olefin (PAO) base oil was used as the solvent for the HFRR 

friction measurements. The surfactant solution was added to the reservoir housing the stationary 

steel disk, ensuring the disk was completely submerged. The steel ball was attached above the 

steel disk and a thermocouple was inserted into the steel reservoir to measure the temperature of 
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the specimen during the experiment. Lastly, weight is added to the fixture housing the steel ball 

to place the ball and disk into contact and generate pressure. The conditions can be varied, but 

for our purposes the conditions were 4 Newtons (N) of pressure, a reciprocating frequency of 20 

Hz, and 1 mm path length. After the reservoir temperature stabilized at 25 °C for 90 seconds, the 

rig began to reciprocate and friction measurements were taken every 5 seconds for 3 minutes. 

The fluid temperature was then raised to 50 °C and the procedure and measurements repeated. 

2.4 Steel Corrosion:  The ability of a surfactant to inhibit corrosion was measured by 

exposing steel coupons to 100% humidity environment and measuring the amount of corrosion 

present after a specific time. The steel coupons, purchased from Q-lab (Westlake, Ohio), were 

150 mm in length, 75 mm in width and 0.8 mm thick.  In the top of the coupon is a hole in the 

shape of a ‘Q’. We define the right and left side by the direction the Q is pointing (Figure 17).  

The surface preparation for this testing is crucial, so a consistent procedure was followed. The 

left and right side of each panel was polished with a cotton ball soaked in iso-octane and then 

dried in air for 15 minutes. The plates were then soaked in the surfactant/base oil solutions for 10 

minutes. After ten minutes the panels were placed in a dust free environment to hang for 24 

hours. After this time period, the plates were hung 14 cm apart in a humidity cabinet maintained 

at 48.0 ±1.5°C. Ten millimeters of deionized water is contained in the bottom of the humidity 

cabinet to maintain 100% relative humidity.  After 48 hours in this environment, the plates were 

removed and rated for corrosion. After every run, the humidity cabinet was drained and cleaned 

out completely to avoid contamination between runs.  
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 (a) 

 

(b) 

 

 

Figure 17: Photograph of steel coupon (a) before test (b) end of test with only base oil. The 
dotted line boxes highlighted the ‘Q’ shaped hole at the top of the coupon. The direction of the 
tail of the coupon helps to differentiate the right (a) and left (b) side of the coupon.   

2.5 Software:   All linear and non-linear regression modeling was performed using 

GraphPad Prism version 6.07 for Windows, GraphPad Software, La Jolla California USA, 

www.graphpad.com.  

 

2.6 Summary of Reagents and Testing:   For clarity, Table 5 summarizes the testing 

completed on each reagent. Limited testing was completed on the first three reagents due to 

limited quantity. Oleylamine, 1-Oleoyl-rac-glycerol, and oleic acid all contain the same alky 

chain but the polar head varies: amine, glycerol ester and carboxylic acid respectively. 

Comparison of oleic acid and octanoic acid were constrasted to investigate the effect of varying 

http://www.graphpad.com/
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the alkyl chain in steel corrosion. It is well documented in literature that shorter alkyl (<10 

carbons) chains are not effective at lowering friction, so friction testing was not completed on 

octanoic acid. 1-Oleoyl-rac-glycerol (≥99%), GMO and GDO were compared to investigate the 

effect of increasing the esterification on adsorption. 
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Table 5: Reagents and Test 

Reagent Structure 

Testing (Solvent) 

QCM-D 
(isooctane) 

Steel 
Corrosion 
(Yubase 6) 

Friction 
(2cst 
PAO) 

1-
monopalmitoleoyl-

rac-glycerol 
(≥99%) 

O

OH

OH

O

(CH2)5CH3

(CH2)7

 

   

1-Stearoyl-rac-
glycerol (≥99%) O

OH

OH

O

H3C(H2C)16

 

Insoluble 

1-Oleoyl-rac-
glycerol (≥99%) O

OH

OH

O

(CH2)7CH3

(CH2)7

 

   

GDO Mixture See Table 3 
   

GMO Mixture See Table 3 
   

Oleylamide NH2

O

(CH2)7CH3

(CH2)7

 

Insoluble 

Oleylamine 
(≥99%) 

NH2

(CH2)7CH3

(CH2)7

 
   

Oleic acid 
(≥99.0%) OH

O

(CH2)7CH3

(CH2)7

 

   

Octanoic 
acid(≥99.0%) 

OH

O

H3C(H2C)6  
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CHAPTER 3: Results and Discussion 
 

The focus of this work is to determine if QCM-D is an effective technique to investigate 

surfactant adsorption in concentration regimes that are common to the transportation lubricant 

industry.  In order for this technique to be useful, it is essential the QCM provide better insight 

into differences we see in macroscopic properties. The first section summarizes the adsorption 

data obtained using QCM-D. The adsorption data is utilized to characterize the structure of the 

adsorbed film and determine kinetic information of the surfactants. Since many of the additive 

chemistries compete for the surface, understanding kinetics can aid in understanding interactions 

occurring in these systems that may lead to positive or negative behavior in the field. The second 

section explores the potential links between macroscopic behavior (corrosion/friction) and the 

characteristics of the adsorbed layer measured via QCM-D. While the QCM experimental set-up 

does not replicate the exact test conditions in these cases, it is hoped that understanding of film 

coverage, kinetics, and rigidity can be factors in understanding macroscopic performance of 

these additives. If the QCM-D can predict results observed in rig testing (or the field) the 

expense and time required for the development of new lubricants could be reduced.  

3.1  Adsorption Measurements using Quartz Crystal Microbalance with Dissipation 

(QCM-D): In the lubricant industry, surfactants with alkyl chains containing 18 carbons are 

typically used as friction modifiers and/or corrosion inhibitors. Some of the most widely used 

surfactants in the industry contain polar head group with carboxylic acid, amine, amide, or 

glycerol functionality; therefore, these were the focus for this work. Adsorption of 2 mM 

solutions of oleic acid, oleylamine, 1-oleoyl-glycerol (≥99%), 1-monopalmitoleoyl-glycerol 
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(≥99%), GMO and GDO mixtures (described previously) on iron oxide were measured at 25°C. 

The goal was to also consider oleamide and 1-stearoyl-glycerol, but neither was soluble in iso-

octane at 2 mM.  

3.1.1 Fatty Acids in the Literature: Fatty acids, particularly saturated fatty acids, have been 

heavily studied in literature and are known to adsorb to iron oxide through physical and chemical 

interactions, depending on the activation energy. Due to exposure of air and moisture, steel 

surfaces are partly covered with oxides and hydroxide providing a variety of adsorption schemes 

for carboxylic acids (mono-dentate, bi-dentate and bridging). In literature, the measured enthalpy 

of adsorption values for carboxylic acids on steel are greater than 70 times kT at 25°C, indicating 

a very stable monolayer.27 Recent molecular simulations of stearic acid at 50 °C found the 

orientation of the fatty acid impacted the adsorption behavior. Chemisorption through the acid 

group was favored by molecules oriented parallel to the surfaces, but when the surfactant was 

oriented upward in solution, chemisorption through the carboxyl group was stronger. This work 

also found the presence of friction favors the formation of iron carboxylates.28 Much of the 

molecular modeling work was completed on stearic acid, but due to poor solubility of stearic 

acid in base oil its unsaturated analogue, oleic acid, is more commonly used in real systems.  In 

addition, the QCM-D is looking at real surfaces that are neither atomically flat nor orient 

molecules in perfect registry. Despite these differences, it is instructive to see similarities in 

qualitative behavior to provide a framework for understanding the QCM-D data. 

Of the molecules tested in the QCM-D adsorption experiments, only oleic acid and 

oleylamine exhibited typical rigid monolayer behavior at this temperature and concentration. 

Upon addition of the surfactant solutions, a small change in mass was measured, with minimal to 

no change in dissipation. The systems reached equilibrium within 5 minutes and upon rinse with 
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solvent, a small loss in mass was measured. Varying the concentration of oleic acid did not have 

a significant impact on the adsorption behavior. A rigid monolayer was formed regardless of 

concentration. Representative plots of frequency versus dissipation are pictured in Figure 18. 

These further illustrate the one stage adsorption process resulting in a rigid monolayer for both 

oleylamine and oleic acid.  

In contrast, the frequency and dissipation measured for the glycerol oleate compounds 

never plateaued over the length of the experiment, suggesting the formation of additional layers 

(at this concentration and temperature). In the frequency and dissipation plots, the change in 

slope indicates the glycerol esters chemistries exhibit at least two stages of self-assembly under 

these conditions.  The first stage is rigid with minimal dissipation, making the Sauerbrey 

equation a valid estimation for this stage.  The maximum frequency value for this stage was used 

to calculate the physisorbed and chemisorbed mass associated with the surface. Using the 

molecular weight of the surfactant and Avogodro’s number mass could be converted to area per 

molecule. Figure 19 compares these values for all six surfactants. 
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Figure 18: Representative frequency and dissipation plots for 2mM solutions of surfactants on 
iron oxide at 25°C. Changes in slope indicate multiple stages of adsorption. Arrows represent 
first stage where the Sauerbrey equation is still valid.  Hysteresis in curves highlighted in purple. 
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Figure 19: Mass and area per molecule calculated for rigid monolayer adsorption of surfactants 
after corrections for viscosity and density of solutions. If adsorption occurred through a two 
stage process, the maximum frequency change for the first stage was used to calculate mass and 
molecule per area. The error bars represent +/- 1σ. 

Glycerol monoleate formed a more compact (46.4±0.7 Å2/molecule) monolayer in the 

first stage of adsorption compared to glycerol dioleate (60±10 Å2/molecule). This increase in 

area corresponds with the additional oleyl group in GDO. Molecular dynamic simulations 

conducted by Davidson at the University of Edinburgh, demonstrated that 1-monolein and 1,3-

diolein interact with steel through hydrogen bonding.29 Hydroxyl group present on the steel 

surface acted as a donor to the ester. Due to multiple hydroxyl groups, 1-monolein was capable 

of forming multiple hydrogen bonds with neighboring groups resulting in a stable, organized 

monolayer. Less hydrogen bonding was present in 1,3-diolein and due to the single hydroxyl 

group intermolecular hydrogen bonding resulted in the formation of dimers. Figure 20 illustrates 

the difference in intermolecular hydrogen bonding between GMO and GDO. 
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Figure 20: Snapshot from Davidson’s simulation illustrating the hydrogen bonding interactions 
with neighboring ester moelcules (in blue)  (A) GMO (B) GDO (Reprinted from Journal of 
Molecular Graphics and Modeling with permission from Elsevier.)29 

 

The average area per molecule calculated in these simulations was 22.5 Å2 for 1-

monolein and 46.13 Å2 for 1,3-diolein.  These values are about half the value determined 

experimentally using the QCM-D.  In Davidson’s work he mentioned the simulation was 

extensive enough to provide confidence in the relative surface area per molecule but not 

necessarily the absolute numbers. Another possible explanation for the difference seen in the 

QCM-D results versus Davidson’s simulations is that the QCM-D calculated values were based 

solely on the first step of adsorption (rigid monolayer). This would exclude any adlayer of  

molecules not tightly bound to the surface, so the mass may be underestimated.29 Even without 

clarity on the absolute number, both the QCM-D and molecular simulations suggest that GMO 

forms more stable, compact monolayers compared to GDO. 



39 
 

Various concentrations were also tested for the glycerol oleates to determine if their more 

complicated adsorption behavior could be impacted by varying the concentration. Adsorption of 

pure 1-oleoyl-rac-glycerol was tested at three different concentrations over three orders of 

magnitude. At 0.01 and 0.1 wt%, adsorption occurred through a multi-step process; conversely, 

at the highest concentration adsorption occurred through a single process and formed a rigid 

monolayer. Upon rinse, there is no sign of hysteresis. Minimal loss of mass or dissipation occurs 

at the highest concentration and the other two desorption curves follow the slope of the 

adsorption curve. Testing was repeated for the GMO and GDO mixtures and similar trends were 

seen. At higher concentration only a rigid monolayer is formed and lower concentration result in 

multi-step adsorption processes.  

 

Figure 21: Frequency and dissipation curves for 1-Oleoyl-rac-glycerol at three different 
concentrations. Black arrows indicate point of rinse. The green arrow indicates change in 
dissipation and frequency that is occurring during rinse. 
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The first stage of adsorption proved to be quite repeatable (+/-2 Hz); however, the frequency and 

dissipation measured for the second stage was much more variable. This more dissipative mass 

could be due to the incorporation of solvent, formation of more complex adlayers of glycerol 

oleates or both.  Ascertaining which mechanism is correct is impossible without a secondary 

technique capable of visualizing the surface.  

In a few of the higher concentration GMO and GDO mixture experiments, odd behavior 

was observed upon addition of solutions. Large, sudden shifts in frequency and dissipation 

(relative to the solvent) were observed. Just as quickly as the shift occurred, the change 

decreased and plateaued immediately (Figure 22).  

 

Figure 22: Frequency and dissipation measured upon addition of 0.3 wt% glycerol dioleate 
mixture at multiple overtones. (Image taken from  instrument. Legend at the right is the 
frequency and dissipation at multiple overtones. The 3 indicates the 3rd chamber of the QCM-D). 
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Similar behavior has been noted in QCM literature and explained by the adsorption of 

intact vesicles followed by their rupture to form a rigid bilayer.30  The adsorption of the vesicle 

created a rapid variation in frequency as well as dissipation. When the vesicle ruptures, a rigid 

bilayer is formed reducing the dissipation. The reduction is mass is attributed to the release of 

water previously contained in the interior of the vesicle.  This explanation is reasonable in water 

systems where vesicles or normal micelles are present (polar head groups facing outward). In oil 

systems reverse micelles are formed, so the surface active polar head groups are located in the 

interior of micelle obstructing them from interacting with iron oxide making this explanation 

seem less logical. In the literature, Shrestha et al. used small-angle X-ray scattering (SAXS) to 

demonstrate the ability of glycerol monoleate to form spontaneous reverse micelles in the shape 

of elongated spheres. These reversed micelles tended to increase in size as the amount of water 

or chain length of oil increased.31  Values in literature indicate 1-monolein begins to aggregate in 

heptane at concentrations of 0.05 wt% at 25 °C and 0.14 wt% at 50 °C, so at the concentrations 

tested, it is likely reverse micelles are present.32 Also, as mentioned earlier, water is present in 

the GMO and GDO mixtures, making the presence of reverse micelles at these higher 

concentrations more probable. The odd behavior observed for the GMO and GDO mixtures was 

not observed with the pure reagent (1-Oleyl-rac-glycerol). One possible explanation is the 

absence of water in the pure system making the formation of reverse micelles less probable. 

Explaining how these reverse micelles diffuse and preferentially interact with the iron oxide is 

unknown but QCM literature suggests the macroscopic behavior of aggregates in solution may 

contribute to the odd shift in frequency and dissipation behavior observed.33 
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3.2 Kinetic Measurements: The ability to measure kinetic information is one of the biggest 

advantages of QCM-D over other techniques. The adsorption of a ligand onto a solid surface, 

such as in the QCM experiments, can be described by the equation:  

 𝑟𝑘𝜔𝑘 = 𝑘[𝑘𝑠𝑟𝑓𝑘𝑠𝜔𝑘𝑛𝜔][𝑘𝑠𝑟𝑓𝑘𝑠𝑘 𝑘𝑠𝜔𝑘𝑘]      (8) 

In this set of experiments the concentration of surfactant remains constant throughout a 

given measurement owing to the flow through set-up of the QCM apparatus.  As more and more 

surfactant adsorbs to iron oxide, the concentration of surface sites decreases. Due to the size 

limitations of the quartz crystal, the initial concentration of surface sites cannot be varied. In 

order to probe the rate constant, a series of concentrations was made for each surfactant in 

isooctane.   

3.2.1  Oleic Acid: Due to its simplicity, the Langmuir isotherm model is commonly used to 

describe the adsorption of surfactants on solid surfaces. Adsorption is treated as equilibrium 

between the concentration of surfactant, (in this case oleic acid) [OA], free sites on the surface 

[S*] and adsorbed surfactant [𝑆 − 𝑂𝐴𝑙𝑙𝑠].  The Langmuir model assumes adsorption is limited 

to a monolayer, all surface sites are equivalent, and no interactions occur between surfactant 

molecules on adjacent sites. Overall, the Langmuir assumptions largely hold for the oleic acid 

data over the concentrations studied. 

[𝑆∗][𝑂𝐴] [𝑆 − 𝑂𝐴𝑙𝑙𝑠]   

 
𝐾 =

[𝑆 − 𝑂𝐴𝑙𝑙𝑠]
[𝑆∗][𝑂𝐴]  

 (9) 
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The concentration of adsorbed surfactants is expressed as the surface coverage, θ, and is 

always between 0 (no coverage) and 1 (complete monolayer). At equilibrium the rate of 

adsorption and desorption become equivalent. The change in surface coverage over time is 

described in terms of kinetics in the equation below where 𝑘𝑙𝑙𝑠 is the rate constant for 

adsorption and 𝑘𝑙𝑑𝑠 is the rate constant for desorption 

𝑙θ
𝑙𝑡

= 𝑘𝑙𝑙𝑠(1− θ)C - 𝑘𝑙𝑑𝑠θ    (10) 

This equation can be integrated to provide the time dependence. 

θ(t) =
𝐶

𝐶 + (𝑘𝑙𝑑𝑠/𝑘𝑙𝑙𝑠)
[1− 𝑘(−𝑘𝑎𝑎𝑎𝐶+𝑘𝑎𝑑𝑎)𝑡] 

The objective is not to quantify mass, so the equation can be further simplified by substituting k’ 

for 𝐶/(𝐶 + (𝑘𝑙𝑑𝑠/𝑘𝑙𝑙𝑠))) and replacing θ(t) with 𝛥𝑓(t).  Also, a single observed rate 

constant,𝑘𝑙𝑜𝑠, is substituted for 𝑘𝑙𝑙𝑠𝐶 + 𝑘𝑙𝑑𝑠  to further simply the equation.  

𝛥𝑓(t) = k′[1− 𝑘(−𝑘𝑜𝑜𝑎)𝑡] 

This reduced equation was input into GraphPad Prism and fit to raw frequency versus 

time QCM-D data to determine the observed rate constant (Figure 23).  Before the raw data was 

fit into the model, corrections needed to be made for changes in bulk properties and poor mixing 

due to laminar flow using equations 2 and 6. 8a, 34 Experimentally determined rates for oleic acid 

and corresponding 95% confidence intervals are listed in Table 6.  
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Figure 23: Change in frequency versus time for 3 mM oleic acid at 25°C.  Frequency data 
measured at 9th overtone and normalized (divided by 9).  Two parameter fit data displayed as 
dotted line. 

Table 6: Observed rate constants at 25°C as a function of oleic acid concentration 

oleic acid 
concentration, mM kobs ± 95% C.I., s-1 

0.25 0.00051 
 
± 0.00002 

1.22 0.0033 
 
± 0.0002 

2.45 0.0074 
 
± 0.0003 

3.00 0.0067 
 
± 0.0001 

7.35 0.019 
 
± 0.001 

 

It is also important to note oleic acid is known to form dimeric hydrogen bonded 

structures similar to other carboxylic acids in hydrocarbon solvents, as shown in Figure 24.  
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Figure 24: Depiction of hydrogen bonded oleic acid 

Benzoic acid and lauric acid are reported to have dimerization constants, Kdimer,  at 25°C 

of 2340 M-1  and 1950 M-1, respectively.35  If we approximate a dimerization constant of 2000 

M-1 for oleic acid in isooctane, then we can calculate the concentration of monomeric oleic acid 

present in each of the individual QCM experiments. This is important to consider in the event 

that the monomeric form of oleic acid is directly responsible for adsorption in the QCM 

experiments as in equations 11 and 12. If this is the case, than the proper graphical representation 

of the initial rate data is to plot it as a function of [monomeric oleic acid]. 
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(11) 

 [monomeric oleic acid] 
𝑘′
→ (oleic acid)𝑙𝑙𝑠𝑙𝑠𝑜𝑑𝑙 (12) 

 

 

The concentration of oleic acid existing in a monomeric form can be calculated directly using 

equations 13-17. 
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𝐾𝑙𝑙𝑑𝑑𝑠 =

[𝑘𝑠𝑚𝑘𝑟]
[𝑚𝑚𝑛𝑚𝑚𝑘𝑟]2 

 (13) 

 [𝜔𝑚𝜔𝑘𝑡 𝑚𝑡𝑘𝑠𝑠 𝑘𝑠𝑠𝑘] = [𝑚𝑚𝑛𝑚𝑚𝑘𝑟] + [𝑘𝑠𝑚𝑘𝑟]  (14) 

Solving for [dimer] in equation 13 and substituting into equation 14 provides: 

 [𝜔𝑚𝜔𝑘𝑡 𝑚𝑡𝑘𝑠𝑠 𝑘𝑠𝑠𝑘] = [𝑚𝑚𝑛𝑚𝑚𝑘𝑟] + 𝐾𝑙𝑙𝑑𝑑𝑠[𝑚𝑚𝑛𝑚𝑚𝑘𝑟]2  (15) 

Equation 15 can be rearranged into the more familiar form of a quadratic equation as in equation 

16 and the [monomer] solved for at each [oleic acid] using equation 17. 

 0 = 𝐾𝑙𝑙𝑑𝑑𝑠[𝑚𝑚𝑛𝑚𝑚𝑘𝑟]2  + [𝑚𝑚𝑛𝑚𝑚𝑘𝑟] − [𝑚𝑡𝑘𝑠𝑠 𝑘𝑠𝑠𝑘]  (16) 

 
[𝑚𝑚𝑛𝑚𝑚𝑘𝑟] =

−1 ± �12 + 4𝐾𝑙𝑙𝑑𝑑𝑠[𝑚𝑡𝑘𝑠𝑠 𝑘𝑠𝑠𝑘]
2𝐾𝑙𝑙𝑑𝑑𝑠  

 (17) 

Using equation 17 the [monomer] was calculated for each treat rate of the QCM experiments.  

Table 7: Observed rates and monomer concentrations for oleic acid adsorption 

Total oleic acid, mM 

Monomeric 
oleic acid, 

mM kobs ± 95% C.I., s-1 
0.25 0.18 0.00051 ± 0.00002 
1.22 0.570 0.0033 ± 0.0002 
2.45 0.884 0.0074 ± 0.0003 
3.00 1.00 0.0067 ± 0.0001 
7.35 1.68 0.019 ± 0.001 

 

Since kobs=𝑘𝑙𝑙𝑠𝐶 + 𝑘𝑙𝑑𝑠, graphing concentration versus observed rate constant provides 

the adsorption (slope) and desorption (y-intercept) rate constants. The linear regression fit and 

95% confidence interval is shown in Figure 25. Across the concentrations tested, there was no 
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deviation from linearity suggesting a second order process dependent on total oleic acid 

concentration not just monomer concentration.  There are three possible explanations: 1. 

Dimerization is not occurring. (This is unlikely due to the multiple accounts in literature of oleic 

acid forming dimers in petroleum based solvents.)  2. Oleic acid can adsorb as a monomer or 

dimer. 3. The square root dependence of the reaction rate is aliased by a second order process.  

Regardless of the explanation, it was possible to experimentally determine the rate constants of 

oleic acid using the Langmuir model. 

 

Figure 25: Observed rate constants at 25°C for the adsorption of oleic acid (from isooctane) to 
iron oxide versus concentration. The slope of the best fit line equals 𝑘𝑙𝑙𝑠=2.5±0.2 M-1s-1 and y-
intercept is 𝑘𝑙𝑑𝑠=0.0001±0.0006 s-1. Error bars depict 95% confidence interval. 95% confidence 
band for linear regression line represented by dashed lines. At the highest concentration, some of 
the adsorption curves begin to deviate from typical Langmuir behavior leading to much larger 
confidence intervals.  

 

 The rate constant of adsorption (𝑘𝑙𝑙𝑠 = 2.5±0.5 M-1s-1) was much greater than that of 

desorption (𝑘𝑙𝑑𝑠  = 0.0001±.0006 s-1). From the rate constants, the equilibrium constant (𝐾𝑑𝑞) 
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can be determined. The very small rate constant of desorption and large equilibrium constant 

confirms the strong adsorption of oleic acid to iron oxide and indicates minimal desorption of 

oleic acid.  

 
𝐾𝑑𝑞 =

𝑘𝑙𝑙𝑠
𝑘𝑙𝑑𝑠

 
 (18) 

The equilibrium constant can be utilized to determine the fraction coverage at equilibrium (θeq) 

by substituting surface coverage into equation 9 and rearranging the equation. 

 
𝜃𝑑𝑞 =

[𝑂𝐴]
[𝑂𝐴] + (1/𝐾𝑘𝐾) 

 (19) 

The calculated surface coverage for oleic acid at different concentrations is shown in 

Table 8. At very low concentrations 100% surface coverage is attained. Considering the 

confidence interval, it is statistically probable that 𝑘𝑙𝑑𝑠=0 and there is no equilibrium because the 

adsorption of oleic acid to iron oxide is irreversible under these conditions. The kinetic data 

determined experimentally using QCM-D mirrors accounts in literature describing oleic acid’s 

strong binding to steel. 
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Table 8: Estimated surface coverage at equilbrium determined using Equation 19.  

oleic acid 
concentration, M 𝜃𝑑𝑞± 95% C.I., s-1 

2.50 x 10-4 0.86 ± 0.04 

1.22 x 10-3 0.97 ± 0.01 

2.45 x 10-3 0.984 ± 0.005 

3.00 x 10-3 0.987 ± 0.004 

7.35 x 10-3 0.995 ± 0.002 

 

3.2.2  Glycerol Dioleate: One of the assumptions of the Langmuir model is the adsorbate forms 

a single monolayer and not multiple adlayers. The high dissipation measured for glycerol 

dioleates suggests adsorption occurs in two stages. First a rigid monolayer forms, followed by 

formation of additional dissipative layers (possibly due to the incorporation of solvent). The 

Langmuir model falls short of explaining multilayer formation, so only the initial part of the 

adsorption curve (that corresponds to a single monolayer) was modeled. Also, as mentioned 

previously, glycerol oleates form intermolecular hydrogen bonds which violate another 

requirement of the Langmuir model.  The concentration of GDO mixture above 0.1 wt% did not 

display typical Langmuir behavior (Figure 26) which could be attributed to these intermolecular 

interactions.  At concentrations below 0.1 wt%, the adsorption curve followed more typical 

Langmuir behavior. At these lower concentrations, the intermolecular interactions may be 

minimal making the Langmuir model a valid approximation. Rate constants were determined for 
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GDO by fitting the first phase of adsorption (negligible or no dissipation) at low concentrations 

(0.1 to 0.5mM). These values are listed in Table 9.  

(a) 

 
(b) 

 
 
Figure 26: Change in frequency measurement over the intial 700 seconds of adsorption of (a) 
0.01 wt% GDO and (b) 0.3 wt% GDO. The dotted line displays the fited data. At the lower 
concentrations(0.1 to 0.5mM) the data adheres to the typical Langmuir behavior. At 
concentration above 0.5mM, the intial 200 seconds does not dissplay typical Langmuir behavior 
possibly due to intermolecular interactions (i.e. hydrogen bonding) or  reverse micelle formation.  
As a result, kinetics at this concentration could not be determined using this model. 
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Table 9: Experimentally determined rate constants and 95% C.I. for GDO. Rate constants were 
experimentally determined at low concentraitons (0.1 to 0.5mM) for the first stage of adsorption 
(rigid monolayer). 

 25°C 50°C 

𝑘𝑙𝑙𝑠 2.4±0.2 M -1s-1 1.5±0.4 M -1s-1 

kdes 0.00540±0.00007 s-1 0.006±0.002 s-1 

 

 

3.2.3  Summary of Kinetic:  QCM-D experiments for oleylamine suggested it forms a rigid 

monolayer, signifying that the Langmuir model is appropriate. The calculations detailed 

previously for oleic acid were repeated for oleylamine.  Calculated rate and equilibrium 

constants for oleylamine and other surfactants are listed in Table 10. The rate constant for 

adsorption is almost an order of magnitude smaller than that of desorption suggesting oleylamine 

is very weakly bound to the iron oxide. It is important to note, the confidence intervals for the 

rate and equilibrium constants are very large due to the very minimal dependence of 

concentration on observed rate.  

 Comparing the rate and equilibrium constants, the rate of adsorption for oleylamine is 

three orders of magnitude smaller than oleic acid, GDO and 1-oleoyl-rac-glycerol suggesting it 

may deliver inferior friction reduction and protection from steel corrosion. The equilibrium 

constants communicate a similar narrative.  The relative numbers suggest oleic acid would 

provide superior performance, followed by 1-oleoyl-rac-glycerol and GDO.  

 



52 
 

Table 10: Summary of experimentally determined rate constants and 95% confidence interval for 
surfactants at 25°C 

Surfactant 𝑘𝑙𝑙𝑠, M -1s-1 𝑘𝑙𝑑𝑠, s-1 𝐾𝑑𝑞. M -1 

Oleic Acid 2.5±0.6 0.0001±0.0006 25000±6000 

GDO Mixture 2.4±0.2 0.00540±0.00007 450±50 

1-Oleoyl-rac-
glycerol 5.5±0.3 0.0022±0.0005 2500±700 

Oleylamine 0.004±0.008 0.03±0.01 0.2±0.6 

 

3.3 Competitive Adsorption: Up to this point, all experiments measured adsorption of a 

single surfactant. Transportation lubricant systems contain upwards of 10 components, so for the 

QCM-D to be effective for these applications it will need to provide insight into multi-

component interactions. Data analysis for QCM-D is complicated, so it is important to analyze 

simple systems (single component) first before adding the complexity of additional components. 

Previously, oleic acid and GDO were characterized at various concentrations individually. In the 

competitive adsorption experiments, adsorption of GDO and oleic acid was investigated 

sequentially and simultaneously using QCM-D (Figure 27). Solutions of 0.01 and 0.3 wt% GDO 

were added to the QCM-D and after 60 minutes switched to 0.3 wt% oleic acid. The low 

concentration did not reach equilibrium during the adsorption of GDO, but quickly reach 

equilibrium when 0.3 wt% oleic acid was added. In both experiments, the dissipation values 

stayed low suggesting only a rigid monolayer was formed. Upon rinse, a small amount of mass 

was lost and equilibrium was quickly reached. Next, the experiment was completed in reverse. 

Oleic acid was added at 0.3 wt% for 60 minutes, followed by the addition of 0.3 wt% GDO. This 

experiment did not produce significantly different frequency and dissipation changes from the 
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previous sequential experiments. After rinse, the adsorbed mass was relatively the same for all 

experiments. Frequency versus dissipation curves also show similar behavior (Figure 28). Next, 

0.3 wt% oleic acid and 0.3 wt% GDO were added into one mixture and adsorption measured. 

This binary system produced very different curves. The adsorbed mass and the dissipation were 

much larger compared to the sequential experiments. Also, the frequency versus dissipation 

curve indicates adsorption is a two-step process that after rinse reduces to a more rigid 

monolayer, greater in mass than the other systems. The differences in these experiments suggest 

cooperative binding may be present in the binary system, but QCM-D is not specific to a single 

analyte. Due to this disadvantage, it is impossible to elucidate the QCM-D response without a 

secondary technique capable of visualizing the surface of the crystal.   These experiments 

suggest QCM-D may be helpful in understanding complex competitive adsorption in 

combination with a secondary technique or by comparing kinetic and thermodynamic data of 

single systems. 
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Figure 27: Representative frequency and dissipation measurements for binary GDO and oleic 
acid mixtures in real time. A) The red curve is the addition of 0.3 wt% GDO for one hour. Next 
the solution is switched to 0.3 wt% oleic acid, followed by rinse with isooctane. The blue curve 
illustrates the reverse. (B)  Addition of 0.1 wt% GDO followed by 0.3 wt% oleic acid and finally 
rinse.   All experiments were the surfactants were added sequentially produced rigid monolayer 
with relatively the same mass. (C) In the binary mixture of both oleic acid and GDO the mass 
and dissipation were much greater suggesting adsorption may be occurring through a different 
two step mechanism.  
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Figure 28: Frequency and dissipation curves for binary surfactant system of GDO and oleic acid. 
In the sequential systems (A, B, and C), the first surfactant flowed through the QCM cell for 60 
minutes then the solution was switched to the second surfactant. After an additional 60 minutes, 
the sensor was rinsed with solvent. All produced similar rigid monolayers. When the surfactants 
were added in combination (D) a soft, dissipative film formed and upon rinse returned to a rigid 
monolayer.  

3.4 Adsorption and Steel Corrosion: The ability of oleylamine, oleic acid, octanoic acid, 

GMO and GDO mixtures to protect iron oxide surfaces from steel corrosion was evaluated using 

the steel corrosion testing described previously. Photographs of the steel coupons after the two 

day test are shown in Figure 29. Oleic acid, GMO and oleylamine inhibited corrosion if present 

in high enough concentration, but octanoic acid proved to be a poor corrosion inhibitor 
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regardless of concentration. Oleic acid improves steel corrosion at lower concentrations relative 

to oleylamine and GMO, 0.1 and 1.0 wt% respectively. Octanoic acid was tested at 5 times a 

reasonable concentration (5.0 wt%) and large amounts of rust were still present at the end of 48 

hours. In addition to the difference observed between surfactants, there also appeared to be a 

difference in performance between the two sides of the steel coupon. The steel is pressed into 

coupons producing slight differences in the two sides.  Six surface roughness measurements were 

taken of each side of two different steel coupons. The average surface roughness (Ra) is then 

calculated by taking the average of the absolute values of these measurements. The right side had 

a slightly higher Ra when compared to the left side. The average Ra of the left was 0.81 µm 

compared to 1.02 µm for the right side. This greater surface roughness may contribute to the 

reduction in corrosion protection. The left (smoother) side may allow for the formation of more 

ordered monolayer leading to improved protection from the water and oxygen necessary to form 

rust.  

In an effort to understand the variation seen in steel corrosion performance of oleic acid, 

oleylamine and octanoic acid, we measured the adsorption of the surfactants at 25°C in real time 

using QCM-D. For this testing, 0.1 wt% solutions were made of each surfactant. It is important 

to test at equivalent weight percent, since many applications are sensitive to increased costs due 

to higher treat rates.  Due to the lower molecular weight of octanoic acid, the solution was twice 

as concentrated from a molar perspective. 
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Figure 29: Left (smooth) and right (rough) side of steel corrosion coupons at end of test for (a) 
oleic acid (b) oleylamine (c) GMO mixture (d) GDO mixture and (e) octanoic acid at six 
different concentrations. (Concentrations tested for oleic acid, GMO and GDO and oleyl amine: 
0.01, 0.1, 0.3, 0.5, 1.0, 1.5 wt% and octanoic acid: 0.01, 0.05, 0.25, 0.5, 1.0, 5.0 wt%). 
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As mentioned previously, oleylamine and oleic acid exhibited very straightforward 

adsorption behavior. Upon addition of the sample, frequency decreased (due to added mass) and 

dissipation increased slightly. The frequency values plateaued fairly quickly indicating there was 

no additional net change in mass. After two hours of pumping the solution over the sensor, 

solvent was added to remove any loosely physisorbed surfactant. Addition of solvent, increased 

frequency and decreased dissipation suggest the removal of loosely adsorbed surfactants from 

the steel for both surfactants (Figure 30).   

 
Figure 30: Ninth harmonic frequency and dissipation measurements over time upon addition of 
oleic acid, oleylamine, or octanoic acid. After two hours the sensors were rinsed with solvent.  

The dissipation measured for oleic acid and oleylamine was minimal (< 2% of the 

frequency), so the Sauerbrey equation is a valid estimation to calculate the adsorbed mass. 

Frequency and dissipation values were corrected for the viscosity and density difference between 

the solvent and solution. The adsorbed mass before rinse for oleylamine and oleic acid was 57±7 
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and 61±4 ng/cm2, respectively.  The measured mass closely corresponds to previously reported 

values for oleic acid (50 ng/cm2).36 At this concentration and under these flow through 

conditions, the adsorbed masses of oleic acid and oleylamine were not significantly different. 

With regard to oleic acid’s orientation on the surface, previous work using molecular 

dynamic simulation predicts the conformation on iron oxide surface would be a mixture of 

molecules lying flat and upright in oil. As the surface coverage increases, the molecules should 

become more upright. Also, this modeling did not find a large difference in the structure of the 

surfactant film when shear was introduced, suggesting the shear introduced from the pump will 

not have a large impact on results.37 The measured mass, molecular weight and Avogadro’s 

number was used to calculate the average area per surfactant molecule in the QCM-D 

experiments (~80 Å2/molecule).  This value falls between the values for perpendicular (25 

Å2/molecule) and parallel (130 Å2/molecule) orientation to the iron oxide surface.27 Upon rinse, 

the data were less repeatable but 37±5 ng/cm2 of oleic acid remained and 44±8 ng/cm2 of 

oleylamine. Once again the values between the surfactants are not significantly different. If the 

mass is averaged across the entire surface, it would correspond to almost every surfactant 

molecule being almost parallel to the surface (120±20 Å2/molecule).  

Over the two hours octanoic acid was added, the frequency and dissipation curves for 

octanoic acid did not plateau. In addition to not reaching equilibrium, upon rinse the change in 

frequency and dissipation increased further. This increase upon rinse suggests incorporation of 

solvent due to a decrease in the rigidity of the film and an increase in the mass. The similar chain 

length of the octanoic acid and iso-octane may contribute to this phenomenon. Higher heats of 

adsorption have been noted when surfactants are absorbed from solvents of similar chain lengths 

which have been interpreted as the formation of a mixed surfactant solvent film.38  The QCM-D 
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data also supports this interpretation. Due to the high dissipation, the Sauerbrey equation would 

lead to an underestimation of the mass. The frequency versus dissipation plot in Figure 31 

provides insight into the adsorption of octanoic acid.  

 

Figure 31: Frequency and dissipation plot of oleic and octanoic acid. A change in slope is 
indicative of a change in film phase. 

The first phase has a very low dissipation and is likely due to the formation of a rigid 

octanoic carboxylic acid monolayer. Since the dissipation of this phase is minimal, the Sauerbrey 

equation is once again valid. After correction for changes in bulk properties (viscosity and 

density), the adsorbed mass was 79 ng/cm2 (~30 Å2/molecule).  Based on calculations in 

literature, octanoic acid formed a closely packed, upright monolayer (perpendicular = ~20 

Å2/molecule and parallel = ~60 Å2/molecule).27 The second phase could be explained by a mixed 

solvent/surfactant film, multilayers of octanoic acid, or both. Models comparing stearic and oleic 

acid have noted that stearic acid forms a more diffuse film that allows the solvent to penetrate 
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further into the monolayer when compared to oleic acid. Stearic and oleic acid differ only in the 

cis double bond located between the 9th and 10th carbon. The lack of a double bond and similar 

alkyl chain length could contribute to octanoic acid’s inclination for incorporating solvent 

compared to oleic acid.   

The concentration of octanoic acid was increased by an order of magnitude and retested 

and these results are shown in Figure 32.  

 

Figure 32: Frequency and dissipation measurements of octanoic acid at two different 
concentrations over 200 minutes. 

This solution exhibited a very different behavior. The mass deposited quickly and as the 

surfactant/solvent solution continued to flow through the QCM-D the frequency steadily 

increased. Upon rinse, the frequency returned to around zero and in some cases slightly above 

zero, suggesting a loss of mass. (A loss of mass has been noted  previously in adsorption studies 

of octanoic acid to steel but no explanation was provided.)39 A loss of mass has also been noted 

for thiol SAMs in the presence of oxygen, depending on the solvent.  In these experiments in 
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addition to the loss of mass, dissolved gold was present in the solutions and STM images provide 

corroboration of these ‘holes’ that are believed to formed  by etching resulting from the strong 

adsorption of thiols on gold. This explanation has not been completely accepted in literature. 40 

The difference in the results for the two concentrations could be due to the preference for 

formation of aggregates at the higher concentration, especially since the solvent has a similar 

chain length.  Although it is unclear why the adsorption behavior varied with a change in 

concentration, the data suggests at both concentrations octanoic acid failed to form a monolayer 

that could prevent the incorporation of solvent or protect the steel surface from corrosion.  

 Relating the QCM-D data to the steel corrosion results (at 0.1 wt%) suggests a tightly 

packed, upright monolayer may not necessarily prevent corrosion. In fact, the less perpendicular 

conformation of oleic acid and oleylamine may be preferable for corrosion resistance. Based on 

the measured mass, octanoic acid formed a more packed upright film compared to the oleyl 

surfactants, but this film was more diffuse and permitted the incorporation of solvent and likely 

water as well. The ability of water to penetrate closely packed hydrocarbon chains of fatty acids 

monolayers has been  noted in previous literature and may explain the differences seen in oleic 

and octanoic acid in preventing steel corrosion.41 It is important to note, saturation of the 

hydrocarbon chains do result in other chemical differences (i.e., pKa) outside of physical packing 

on the surface.42  Corrosion occurs through an electrochemical process initiated by water and air. 

The degree of unsaturation may contribute to difference in the electrochemical process resulting 

in difference in steel corrosion protection as well, but that is outside the scope of this work. 

In order to understand the differences seen in corrosion prevention for oleylamine and 

oleic acid, a few adsorption measurements were made at additional concentrations. Adsorption of 

oleic acid, at six different concentrations ranging from 0.01 to 0.3 wt%, was measured at 25°C.  
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This concentration range covers typical treat rates for these surfactants in lubricants.  The 

concentrations ranging from 0.10 to 0.3 wt% exhibited similar adsorption behavior. The 

measured mass plateaued within 10 minutes, which is the time steel coupons are exposed to 

solution in steel corrosion testing, and upon rinse a small loss in mass was observed. The 

solution at 0.05 wt% took thirty minutes to reach equilibrium. The lowest concentration never 

reached equilibrium and created a more dissipative film that incorporated solvent upon rinse 

(Figure 49 in Appendix). 

 

Figure 33: Representative initial frequency and dissipation measurement for oleic acid solutions 
ranging from 0.01 to 0.30wt%. The dotted line represents the length of time steel coupons are 
exposed to the solution before corrosion is tested. 
 
 
 

The adsorbed mass of oleic acid at equilibrium and after rinse was calculated for the each 

concentration of oleic acid. If no equilibrium was reached after an hour, the frequency change at 

one hour was used for the calculation. Results are summarized in Figure 34. Corrections for bulk 

viscosity were necessary at concentrations at or above 0.10 wt%. The adsorbed mass for the 
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solvent incorporation. At the concentrations that exhibited more repeatable behavior (≥ 0.08 wt 

%), improvement in packing was seen as the concentration of oleic acid increased. The increase 

in packing density indicates the orientation of the oleic acid begins to become more upright.  

Minimal increase in mass is observed between 0.15 and 0.30 wt% suggesting increasing the 

concentration past 0.15 wt% has a minor impact on the density of the monolayer. The mass at 0.3 

wt% corresponds to 45 ± 13 Å2/molecule at equilibrium and 62 ± 12 Å2/molecule after rinse. At 

this concentration, a monolayer of oleic acid would be oriented between 55 to 75 degrees from 

the steel surface, if the surfactant was uniform across the surface.  

 
Figure 34: Mass of oleic acid at equilibrium and after rinse at six difference concentrations (0.01, 
0.05, 0.08, 0.1, 0.12, and 0.3 wt %). Corrections for bulk viscosity and density changes were 
made for the data at equilibrium. Error bars represent 95% confidence intervals. 

In the steel corrosion testing, at concentration of 0.1 wt%, corrosion resistance begins to 

improve and at 0.3 wt% minimal or no rust is observed. As mentioned in the kinetics discussion, 

the experimentally determined desorption rate for oleic acid is so low it appears oleic acid is 

virtually irreversibly bound under these conditions. The theoretical surface coverage calculated 

from the equilibrium constant is compared to the percentage of the rust free surface at the 

termination of the humidity cabinet test. As illustrated in Figure 35, a strong trend appears 

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

M
as

s, 
ng

/c
m

2 

Concentration,  wt% 

equilibrium
after rinse



67 
 

between the two values. In order to measure the correlation of these two values, the theoretical 

surface coverage was plotted against the percentage of the steel coupon that was rust free after 

test. Regardless of surfactant (GDO or oleic acid) and concentration there as a strong correlation 

(R2 = 0.95) suggesting this may be a good way to predict steel corrosion performance (assuming 

the alkyl chain is capable of preventing/reducing diffusion of solvent or water to surface). 

 

 
Figure 35: Theoretically calculated surface coverage for oleic acid and GDO at multiple 
concentrations compared to the percentage of steel surface with no rust upon termination of steel 
corrosion testing 
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Figure 36: Scatter plot comparing surface coverage calculated from the experimentally 
determined equilibrium constant and the percentage of surface rust free after corrosion test. 
Regardless of surfactant (GDO and oleic acid) and concentration there is a strong correlation (R2 
= 0.95). 

Oleylamine was tested at three different concentrations: 0.01, 0.10 and 4.07 wt% (Figure 36). 

There were minimal differences seen between the two lowest concentrations in the ability to 

prevent corrosion (Figure 29) and adsorption measured on the QCM-D (Figure 36).  At 0.01 and 

0.10 wt% of oleylamine, there was almost 100% rust on the steel coupons at the end of the 

corrosion test and only a small shift in frequency (~2.5Hz) and dissipation (~0.1x 10-6) as 

measured by QCM-D. The highest concentration, 4.07%, is ten times a typical treat rate but was 

tested in an effort to maximize the density of the monolayer. Greater deposition was measured at 
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used for the conversion to mass. The kinetics of oleylamine adsorption was vastly different than 

the kinetics of oleic acid adsorption and could explain the differences seen in preventing 

corrosion. The observed rate constant of oleylamine varied minimally with concentration making 

an accurate calculation of the rate of adsorption and desorption less precise. Considering solely 

the order of magnitudes for the rate constants, the rate of adsorption for oleylamine was four 

orders of magnitude smaller than oleic acid. Also, the rate constant of desorption  for oleylamine 

was an order of magnitude greater than adsorption for oleylamine. These differences in kinetics 

could explain the inferior steel corrosion protection of oleylamine.  

  

 
Figure 37: Representative initial frequency and dissipation measurement for oleylamine solutions 
ranging from 0.01 to 4 wt%. The dotted line represents the length of time steel coupons are 
exposed to the solution before corrosion is tested. The highest concentration (4.07 %) required 
very large corrections for changes in bulk properties. 

In the flow through system of the QCM-D, there is an abundance of surfactant over the 

length of the experiment. This may explain why the concentration differences observed in the 

steel corrosion testing are not apparent when looking at the mass at a single concentration (0.1 

%). Also, comparing the mass and packing of the surfactants doesn’t provide a complete 

explanation. The weak adsorption of oleylamine and strong adsorption of oleic acid to iron oxide 
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suggested by the kinetics correlates with oleylamine’s inability to protect iron oxide surface from 

corrosion at low concentrations.  If a better correlation to the steel corrosion test is required, it 

may be best to duplicate the QCM-D experiments under more similar conditions. After the 

solution is pumped into the chamber, the pump could be turned off for ten minutes followed by a 

rinse with a solvent. 

 Comparing the QCM-D to the steel corrosion results, there appears to be a few insights 

into the ability of a surfactant to prevent corrosion of steel. First, the surfactants need to form 

sufficient coverage before exposure to a warm, humid environment (10 minutes in this bench 

test). Based on the QCM results, this depends on the polar group and concentration of surfactant. 

Second, the surfactant needs to align in a direction that prevents the incorporation of water which 

is largely controlled by the alkyl chain. If the alkyl chain is too short (octanoic acid) or the 

concentration too low, solvent (and likely water) intermix with the surfactant leading to 

corrosion of the steel. Third, strong adsorption with minimal desorption (as demonstrated by the 

kinetics) is required to protect the steel surface from corrosion. As demonstrated by oleylamine, 

this later point can also be overcome if enough surfactant is present.  

3.5 Adsorption and Friction of Surfactants on Iron Oxide Surface: In an effort to 

understand the correlation between surfactant structure and friction performance, we compared 

the QCM-D results to HFRR measurements. It is well known that the adsorption of surfactants 

on to steel results in the formation of a monolayer capable of reducing friction.43 Consistently 

seen throughout literature, saturated surfactants are more effective at reducing friction when 

compared to their unsaturated analogues.44 One example of the effect of chain unsaturation on 

friction was reported by Lundgren.45  He compared the friction of stearic, oleic and linoleic acid 

using a surface force apparatus to measure frictional forces. Linoleic acid generated the highest 
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CoF and stearic acid the lowest. One predominant theory is that this is directly related to the 

ability of the surfactants to form a compact monolayer. Oleic acid contains a cis double bond in 

the center of the tail capable of disrupting the packing. If two cis double bonds are present, 

linoleic acid, the packing is further disrupting and the friction is at its highest.45 
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OH
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Figure 38: Saturation of the alky chain of surfactants directly affects their ability to lower friction    

As discussed previously, the glycerol monoester surfactants produced a more compact 

monolayer (at 2mM) compared to the other surfactants tested (Figure 19). As discussed 

previously, this result is somewhat surprising due to the bulkier structure of glycerol esters 

compared to oleylamine and oleic acid.  One possible explanation is the ability of glycerol 

monoleate to form intermolecular hydrogen bonds. The intermolecular interactions that occur in 

oleic acid and oleylamine monolayer are largely van der Waal interactions between the alkyl 

tails. The stronger intermolecular interactions of hydrogen bonding versus van der Waal 

interactions may contribute to the denser more organized packing.  
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 As mentioned, the glycerol esters produced larger more dissipative films. If these 

adlayers can be maintained under boundary conditions, in theory, it could increase the distance 

between the surface and thus lower friction relative to the surfactants that form a single 

monolayer. Boundary friction was measured of each solution at 25 °C and 50 °C to determine if 

the difference observed in adsorption would have an impact on friction (Figure 38).  

 

 
Figure 39: Boundary CoF measured in HFRR experiments of 2 mM solutions of surfactant and 2 
cst PAO base oil at 25 and 50 °C. Error bars represent the 95% confidence interval. 

The measured friction values at 25 °C for oleic acid, 1-oleoyl-rac-glycerol, and the GMO 
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greater than the 2cst PAO alone. In addition to higher friction values, the repeatability of the 

measurements was relatively poor, producing confidence intervals 4 to 10 times larger.  

Reflecting on the Stribeck curve discussed previously, as the viscosity of the base oil decreases 

(due to higher temperature) the two surfaces will come closer in contact and friction will 

increase. Due to this closer proximity of the surfaces, greater differentiation in friction is 

measured between the surfactants at the higher temperature. The ability of a surfactant to lower 

friction is often attributed to its ability to form a tightly packed monolayer.45 In order to 

determine if the packing measured using QCM-D correlated with the HFRR  friction results, a 

scatterplot comparing the CoF to the average area per molecule is illustrated in Figure 39.  

 
Figure 40: Scatterplot of the boundary friction at 25°C to the average molecular area per 
molecule.  
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monooleate produces a more compact monolayer and is essentially the same at reducing friction 

at this concentration.   Friction was measured under dynamic sliding conditions, so the strength 

of the bond holding the surfactant to steel may explain the difference in friction. Oleic acid is 

capable of forming strong covalent bonds with steel, so under sliding conditions the monolayer 

may be maintained. GMO forms hydrogen bonds with the surface which are not as strong, but 

intermolecular hydrogen bonds stabilize the monolayer and may enable it to remain intact under 

pressure and sliding. GDO also hydrogen bonds with steel, but only forms dimers so not as 

resilient under dynamic conditions.  The variation in the friction measurements for GDO and 

oleylamine was also quite a bit larger relative to the other surfactants, suggesting the amount of 

surfactant removed for the weaker bound monolayer is highly variable. Examining friction over 

time (instead of the average) is further support that the initial adsorbed layer cannot be 

maintained under these conditions (Figure 40). GDO and oleylamine are able to effectively 

reduce friction initially at 25°C, but after 60 seconds of sliding friction begins to increase. 
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(a) 

 

(b) 

 

 

Figure 41: CoF measured using HFRR over time at 25°C (a) and 50°C (b) for 0.1 wt% solutions. 
As stated previously, the reservoir temperature stabilized at 25 °C for 90 seconds, than the rig 
reciprocates under 4 N of pressure, 1 mm path length, and 20 Hz. Friction measurements were 
taken every 5 seconds for 3 minutes. The fluid temperature was then raised to 50 °C and the 
same procedure and measurements repeated.  
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In an effort to further investigate friction, CoF was measured for each surfactant across a 

wide concentration range at 25 and 50 °C (Figure 41). For all measured surfactants the CoF 

reached a minimum and plateaued. The raw friction data was fit to a first order decay equation to 

mathematically calculate the minimum frictional values with confidence.  

 𝐶𝑚𝐶 = (𝑌0 − 𝑃𝑡𝑘𝜔𝑘𝑘𝑠)𝑘−𝑘𝑘 + 𝑃𝑡𝑘𝜔𝑘𝑘𝑠 

x = concentration (wt %) 
Y0 = y-intercept (unitless) 

Plateau = minimum CoF (unitless) 
k = rate constant (1/wt %) 

 (20) 

The concentration each surfactants reached a minimum varied, but did occur at lower 

concentrations at higher temperatures, for the majority of the surfactants. The minimum CoF for 

each surfactant and 95% confidence intervals are depicted in Figure 42. 

Considering the confidence interval, all surfactants reduce friction equivalently if a large 

enough concentration is present at 25 °C.  At the higher temperature, the base oil contributes less 

to the overall friction and further differentiation is observed. The concentration at which each 

surfactant reaches maximum reduction in friction was determined by the fit of Equation 20 and is 

listed in Table 11. GMO (pure and mixture) and oleic acid reduced friction by 50 % at 

concentrations below 0.02 wt%.  The concentration that these surfactants reached maximum 

reduction in friction was half the concentration of GDO and oleylamine. As mentioned 

previously, these differences could be due to the degree of stability of the monolayer when 

pressure and sliding are applied and the reduced time required for the surfactant to readsorb 

(kinetics). 
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Figure 42: Boundary friction measured for surfactants across multiple concentrations. Error bars 
represent 95% confidence intervals. Line represent the fit to first order decay (Equation 20). 
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Figure 43: Minimum CoF and 95% confidence intervals for surfactants 

Table 11: Minimum concentration required to reach 99.9% reduction in friction. Due to the large 
variation in oleylamine CoF there is not enough data to determine value for oleylamine at 50°C. 

Surfactant 25°C 50°C 

GDO Mixture 0.30 wt% 0.20 wt% 

GMO Mixture 0.15 wt% 0.10 wt% 

1-Oleoyl-rac-glycerol 0.15 wt% 0.10 wt% 

Oleic Acid 0.12 wt% 0.08 wt% 

Oleylamine 0.40 wt% --- 
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At higher concentrations, if the less stable SAMs are removed there is an abundance of 

more surfactant ready to reabsorb. Figure 43 compares the experimentally determined 

equilibrium constants to the concentration of surfactant required to reach minimum friction. The 

higher equilibrium constants require lower concentration suggesting correlation, but more data 

(ideally at higher temperatures) is needed to make strong conclusions on the relationship of these 

parameters.   

   

Figure 44: Equilibrium constants of surfactants plotted against the minimum concentration 
required for maximum reduction in friction.
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CHAPTER 4: Summary and Future Work 

The objective of this work was to understand if the QCM-D technique could be applied to 

transportation lubricant systems. In order for this technique to be useful, it needs to provide 

insight into the adsorption occurring at steel surfaces that can be related to the macroscopic 

performance.  Using QCM-D, the adsorption of multiple common friction modifiers (from iso-

octane) was monitored in real time.  The adsorption of surfactants was investigated qualitatively 

by characterizing the morphology of the adsorbed layer and determining if adsorption occurred 

through a single or multi-step process. Utilizing the Sauerbrey equation, the mass of adsorption 

and packing of the surfactant was calculated. Finally, the Langmuir isotherm model was applied 

to quantify the kinetics of adsorption across the concentration regimes of interest. After thorough 

investigation of simple (single) systems, the adsorption of binary systems (sequentially and 

simultaneously) was investigated. QCM-D provided some qualitative insight suggesting mixed 

systems provide very different adsorption, but since the sensor is not specific to a single analyte 

it can provide limited insight without a second technique to visualize the surface. Lastly, the 

QCM-D results were compared to the ability of the surfactant to prevent steel corrosion and 

reduce friction (HFRR). Packing information and film morphology provided limited insight into 

performance, but kinetics was strongly correlated to both corrosion prevention and friction 

reduction. Considering lubricants systems function in environments of constant sliding, surfaces 

often do not have time to reach equilibrium so understanding the kinetics will continue to be 

critical. 
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Future work: Due to the complexity of lubricant systems, it will critical to continue to work 

towards a better understanding of the chemical interactions occurring on the steel surfaces. First, 

much of this work was done at 25°C due to the temperature limitations of the module available. 

High temperature cells exist that are capable of maintaining temperatures as high as 150°C. High 

temperatures are often seen in the actual applications, so understanding its effect on adsorption 

and quantifying thermodynamic parameters would augment our current understanding of these 

interactions. Second, as described previously, at higher concentrations, the mechanism for 

adsorption of the glycerol oleates differed from the lower concentration solutions. Also, in the 

GMO and GDO mixtures odd frequency and dissipation shifts occurred initially at higher 

concentrations of GMO. Characterizing the aggregation that occurs in these solutions and its 

effect on adsorption could resolve much of the questions and complete our understanding of 

these systems. Lastly, identifying and setting up a secondary technique that is capable of 

visualizing the interactions and bonding occurring at the surfaces would help to support the 

QCM-D. A reflective IR technique, Polarization Modulation-Infrared Reflection-Adsorption 

Spectroscopy (PM-IRRAS), can be utilized on steel surfaces and is capable of characterizing the 

binding on surfaces as well as the orientation of SAMs adsorbed to the surface. Combing the 

QCM-D in combination with this technique would provide a more complete picture of bonding 

occurring on steel surfaces under static environments.  Also in addition to these techniques, AFM 

can be utilized to probe the tribofilm under dynamic (sliding) conditions.  Combing the QCM-D 

with these techniques will only further our understanding.  
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Figure 45: IR of glycerol oleate mixtures 

GMO 
GDO 
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Figure 46: 13C NMR spectrum of glycerol dioleate mixture 
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Figure 47: 13C NMR spectrum of glycerol monoleate mixture 
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Figure 48: DEPT-135 spectrum of glycerol monoleate mixture 
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Figure 49: Initial frequency and dissipation shift measured from air to iso-octane by two different 
crystals (s3 and s4). These values were then compared to the same crystals after the adsorption of 
fatty acids and cleaning (End of Test, EOT). The frequency returned to within 0.9% and 
dissipation within 0.4%. 
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Figure 50: Frequency and dissipation curve of oleic acid at three different concentrations. Initial 
adsorption occurs through same mechanism, but at the lower concentration the film begins to 
become dissipative. Upon rinse two different mechanisms occur. The higher concentration (red) 
removes phyisorbed oleic acid illustrated by the decrease in frequency and dissipation upon 
rinse. The lowest concentration incorporates solvent into film illustrated by the increasing the 
dissipation and frequency. Physisorbed oleic acid may be removed at the same time but the two 
phenomena cannot be distinguished in this data.  
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