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Two vaginal phylotypes of the genus Megasphaera (phylotype 1 and phylotype 2) were 

recently associated with bacterial vaginosis (BV), an infection characterized by vaginal 

dysbiosis. Through an analysis of 16S rRNA profiles of 3,986 women enrolled in the Vaginal 

Human Microbiome Project, we confirmed that while both phylotypes were associated with BV, 

Megaspheara phylotype 1 had higher specificity for the condition. Megasphaera phylotype 2 

was strongly associated with trichomoniasis. Previous studies have reported that BV-associated 

organisms are excluded in pregnancy. We observed that Megasphaera phylotype 1, which has 

been associated with adverse pregnancy outcomes, exhibited a trend of increased prevalence in 

the pregnant cohort. We sequenced the genomes of isolates of the two phylotypes and performed 

comparative analyses. We demonstrate that these two phylotypes have distinct genomic features 

and unique potential for metabolic processes that reveal niche specialization. These findings may 

provide insight into their differential associations with vaginal infections.  
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INTRODUCTION 

 

 

The vaginal microbiome and women’s health 

 Our bodies are home to trillions of bacteria, collectively known as the human 

microbiome. The bacterial cells that inhabit our bodies outnumber our human cells ten to one and 

thus play an important role in our health and well-being (Boleij & Tjalsma, 2012). Although 

research involving host-related bacteria, both commensal and pathogenic, has been ongoing for 

centuries, the characterization of entire bacterial communities in and on the body is a developing 

field, which holds great promise for furthering the understanding of bacterial contributions to 

human health and host-microbe interactions. The vaginal microbiome is of particular interest 

given its associations with the transmission and acquisition of sexually transmitted diseases, role 

in women’s reproductive health and fertility, and implications in pregnancy and neonatal health. 

Over the past several years, many groups have performed studies to characterize the bacterial 

composition and structure of vaginal microbiome (Brown et al., 2007; Fettweis, Serrano, Girerd, 

Jefferson, & Buck, 2012a; Kiss et al., 2007; Ravel et al., 2011).  

 The functionality of the human microbiome has been found to differ by body site, and the 

model of optimal health in the vaginal microbiome is different from the paradigm for the gut 
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microbiome (Human Microbiome Project Consortium, 2012). Gut microbiome research is 

rapidly developing and has already yielded new therapeutic strategies (Barbut, Collignon, Butel, 

& Bourlioux, 2015; Gibson, McCartney, & Rastall, 2005; Rao & Samak, 2013). Thousands of 

different bacterial species inhabit the gut and many likely play a role in keeping the human gut 

operating as a functional habitat. Loss of bacterial species often causes a loss of function in the 

gut and loss of diversity can result in dire health consequences such as the development of 

inflammatory bowel diseases and even death in some severe cases, such as infections with the 

opportunistic pathogen Clostridium difficile (Jeffery, Lynch, & O'Toole, 2015; Ohkusa & Koido, 

2015; Pérez-Cobas et al., 2014; Segata, 2015). The vaginal microbiome structure is strikingly 

different. An individual’s vaginal microbiome is composed of tens of different species, instead of 

hundreds, and is often completely dominated by a single bacterial species. Dominant vaginal 

bacterial species are often members of the genus Lactobacillus, a lactic-acid producing taxon that 

has frequently been associated with reproductive and vaginal health (Ravel et al., 2011).  

Albert Döderlein, a German gynecologist, published a monograph in 1892, detailing a 

study of the vaginal secretions of 200 pregnant women. He discovered the presence of a vaginal 

bacillus that was capable of acidifying the vaginal environment and preventing the colonization 

of pathogenic bacteria. Döderlein’s bacillus was later classified as Lactobacillus acidophilus in 

1928, and has since been found to represent many different vaginal Lactobacillus species 

including Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and 

Lactobacillus iners (Cruickshank, 1931). Given these findings and several further publications 

supporting them, Lactobacillus species are thought to serve a protective function in the vaginal 

microbiome, preventing the colonization of anaerobic bacteria, pathogens and sexually 

transmitted organisms through a number of mechanisms including lactic acid production, 
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hydrogen peroxide production, secretion of bacteriocins and adhesion to the vaginal epithelium 

(Balkus et al., 2012; Kaewsrichan, Peeyananjarassri, & Kongprasertkit, 2006; O'Hanlon, 

Moench, & Cone, 2013; Ortiz, Ruiz, Pascual, & Barberis, 2014; Wilks et al., 2004).  

It is thought that the optimal vaginal microbiome is one dominated by Lactobacillus 

species with few other bacterial species present. Vaginal pH is often used as a measure of 

vaginal community health due to the fact that presence of Lactobacillus species results in a 

decrease in pH caused by the production of D- and L- isomers of lactic acid and hydrogen 

peroxide (Balkus et al., 2012; O'Hanlon et al., 2013; Wilks et al., 2004; Witkin et al., 2013). A 

“healthy” vaginal pH is characterized as being less than or equal to 4.5. However, this standard is 

based on previous literature, which has largely characterized women of European ancestry. 

Recent work characterizing the vaginal communities of women of different ethnic backgrounds 

has revealed that this estimate may be too low (Fettweis, Brooks, et al., 2014a). Clinically 

healthy women of African ancestry have higher vaginal pH on average than women of European 

ancestry. All species of Lactobacillus are not equivalent in their ability to protect against 

colonization of other organisms. L. crispatus, L. gasseri, L. jensenii and others are often the most 

dominant organisms in vaginal samples. L. iners is a common constituent in the vaginal 

microbiome that sometimes dominates the vaginal microbiome and can coexist with anaerobic 

bacteria and bacterial vaginosis-associated organisms (Ravel et al., 2011; Verstraelen et al., 

2009). A mechanism clarifying why L. iners is less protective than other Lactobacillus species 

has yet to be elucidated.  

Traditionally, the presence of anaerobic bacteria in the vaginal microbiome such as 

Gardnerella vaginalis has been thought of as a marker of vaginal dysbiosis and poor vaginal 

health (Africa, Nel, & Stemmet, 2014; Brotman, 2011; Donders et al., 2009). Anaerobic species 
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are not able to flourish in the presence of protective Lactobacillus species and thus their presence 

also signals the lack of these protective species. Anaerobic species are also associated with 

increased vaginal pH, a common marker of bacterial vaginosis. Many of these taxa such as 

Sneathia, Atopobium, Mobiluncus, BVAB1, BVAB2, BVAB3 and Megasphaera have been 

strongly associated with clinical diagnosis of bacterial vaginosis, the most common vaginal 

infection across the world (Allsworth & Peipert, 2007; Fethers et al., 2012; Harwich et al., 2012; 

Malaguti, Bahls, Uchimura, Gimenes, & Consolaro, 2015; Zozaya-Hinchliffe, Martin, & Ferris, 

2008). Bacterial vaginosis is characterized by a shift from a Lactobacillus-dominated community 

to one characterized by the presence of anaerobic species, a strong amine odor, vaginal discharge 

and vaginal itching. Bacterial vaginosis (BV) often goes undiagnosed as it is not an 

inflammatory condition and can be asymptomatic (Allsworth & Peipert, 2007). BV also has a 

high recurrence rate due to the standard of care treatment with metronidazole that rarely causes a 

permanent shift to a Lactobacillus-dominated state (Bradshaw et al., 2006). That said, BV is 

important to treat because it has been associated with increased risk of sexually transmitted 

infections including HIV, pelvic inflammatory disease, and reproductive and obstetric disorders 

including preterm birth (Cohen et al., 2012; Gallo et al., 2012; Leitich et al., 2003; Purwar, 

Ughade, Bhagat, Agarwal, & Kulkarni, 2001).  

The cause of bacterial vaginosis has not been clarified due to its inability to fit Koch’s 

postulates. In the mid-20th century the organism G. vaginalis was thought to serve as the 

causative agent, but it has since been shown that G. vaginalis can exist in the vaginal 

communities of healthy women (Fettweis, Brooks, et al., 2014a; Leppäluoto, 2011). It seems that 

BV is associated with a loss of the protective functionality of the vaginal microbiome, via a shift 

in the taxa present in the community. Further vaginal microbiome research has revealed many 
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more bacterial associations with diseases, which are not causative, but may potentially increase 

risk for transmission or acquisition of the disease. Examples of these findings include the 

association of Mycoplasma hominis and “Ca. Mycoplasma girerdii” with trichomoniasis, and the 

association of various anaerobic genera including Atopobium, Mobiluncus, and Megasphaera 

with bacterial vaginosis (Fethers et al., 2012; Fettweis, Serrano, et al., 2014b; Rappelli et al., 

2001; Zozaya-Hinchliffe et al., 2008). From these association studies, we can see how 

understanding the underlying structure of the vaginal microbiome and the role that each 

organism plays in the community may hold valuable information about which organisms 

determine overall reproductive health, which organisms increase the risk of acquiring or 

transmitting which diseases and which organisms confer a lessened or heightened risk of 

complications during pregnancy.  

 

 

Megasphaera 

Megasphaera was first described in 1959 by Gutierrez et al., who classified isolates from 

the bovine and ovine rumen as members of the genus Peptostreptococcus (GUTIERREZ, 

DAVIS, LINDAHL, & WARWICK, 1959). In 1971, Rogosa et al. published an article renaming 

the organisms Megasphaera elsdenii and creating the new genus name Megasphaera due to the 

morphology of the cells observed while viewing them under the microscope (Fig.1). 

Megasphaera are Gram-negative cocci, which often associate as diplococci. They occasionally 

form longer chains in stationary phase. These cocci are larger in size (2-10µm) than the average 

coccus, which measures roughly 0.5-1.0µm, hence the prefix “Mega-” in the genus name 

(Rogosa, 1971). They are non-spore forming, non-motile and obligately anaerobic, as expected 

given their isolation from rumen samples. Since their discovery, Megasphaera have been 
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isolated from disparate environments including spoiled beer and the human gastrointestinal and 

reproductive tracts (Juvonen & Suihko, 2006; Lanjekar, Marathe, Ramana, Shouche, & Ranade, 

2014; Padmanabhan et al., 2013; Zozaya-Hinchliffe et al., 2008).  

Two vaginal phylotypes, termed Megasphaera phylotype 1 and Megasphaera phylotype 

2, were first identified in 2008 by Zozaya-Hinchliffe et al. through cultivation-independent 

techniques examining the 16S rRNA gene (Zozaya-Hinchliffe et al., 2008). They reported the 

two phylotypes to be more prevalent among women with a current diagnosis of bacterial 

vaginosis. Megasphaera sp. (not sub-classified) have also been identified in male urethral and 

coronal sulcus samples, although it is still unclear whether the organisms can be sexually 

transmitted (Manhart et al., 2013; D. E. Nelson et al., 2012). Megasphaera phylotype 1, the more 

prevalent phylotype, has been associated with increased number of sexual partners, elevated 

viremia in HIV-positive patients and women who have sex with women (Dang et al., 2012; 

Fethers, 2001; Fethers et al., 2012). Due to its high specificity and sensitivity for the condition, 

detection of Megasphaera phylotype 1 has been used in combination with other BV-associated 

organisms for molecular diagnosis of bacterial vaginosis (Datcu et al., 2014).  

It has also been shown to be capable of invading the upper genital tract in a recent study 

characterizing the UGT microbiome of women undergoing hysterectomies (Mitchell et al., 

2015). Nelson et al. followed a cohort of pregnant women with a history of spontaneous preterm 

birth, collecting vaginal swabs at multiple time points throughout the pregnancy (D. B. Nelson et 

al., 2014). Megasphaera phylotype 1 was found to be associated with increased risk for 

spontaneous preterm delivery in this cohort, especially if the relative proportion of the organism 

increased during pregnancy. In a recent publication characterizing the metabolomics profiles of 

bacterial vaginosis, Megasphaera phylotype 1 was strongly correlated with 12-HETE,  
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Figure 1. Megasphaera elsdenii 

Electron micrograph of a section of Megasphaera elsdenii (ATCC 25940) at 46,000X 

magnification published by Rogosa et al. Note the coccal shape and diplococcus structure. Coccal 

structures shown range from 1.2-1.9µm. License ID: 3761521157733. 
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Figure 1.  
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an inflammatory metabolite observed at high levels in actively laboring women (Srinivasan et 

al., 2015). One suggested cause of spontaneous preterm delivery is the ascension of vaginal 

bacteria into the upper genital tract, which triggers an inflammatory response in the host 

resulting in early onset of labor. Given its association with negative health outcomes and 

correlation with spontaneous preterm delivery, Megasphaera phylotype 1 is a worthy of 

investigation as a potential biomarker for vaginal dysbiosis and high-risk pregnancies. 

 Fewer studies have focused on associations of Megasphaera phylotype 2, likely due to 

its lower overall prevalence. Most reported associations have either focused on Megasphaera 

phylotype 1 or not discriminate between the two phylotypes.  One study noted an associated 

between Megasphaera phylotype 2 and trichomoniasis, the most common non-viral STI 

worldwide (Zozaya-Hinchliffe et al., 2008). Trichomoniasis is a major public health concern, 

affecting roughly 3.7 million women in the United States. However, it has largely been ignored 

and was recently named by the Centers for Disease Control and Prevention as a disease worthy 

of more scientific study (Meites et al., 2015). Trichomoniasis infection is characterized by 

itching, inflammation, dysuria, dyspareunia and malodorous discharge. However, roughly 30% 

of infections are asymptomatic, increasing the risk of transmission.  

Trichomoniasis is also associated with increased risk of STI acquisition and pregnancy 

complications such as spontaneous preterm delivery and low birth weight (Cotch et al., 1997; 

Edwards, Burke, Smalley, & Hobbs, 2014; Silver, Guy, Kaldor, Jamil, & Rumbold, 2014). 

Intriguingly, trichomoniasis has previously been strongly associated with the presence of specific 

vaginal bacteria such as Mycoplasma hominis and “Ca. Mycoplasma girerdii” (Fettweis, Serrano, 

et al., 2014b; D. H. Martin et al., 2013; Rappelli et al., 2001; Rappelli, Addis, Carta, & Fiori, 

1998) . This suggests that trichomoniasis may contribute to shifts in vaginal microbiome 
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composition to favor presence of these organisms or vice versa.  

 The two Megasphaera phylotypes have frequently been grouped together in microbiome 

analyses at the genus level. Based on their distinct clinical associations in the literature, we 

hypothesized that while these two phylotypes apparently occupy the same niche and are often 

present together in vaginal communities, they likely contribute to the vaginal microbiome 

uniquely and exhibit niche specialization. In characterizing the differences between associations 

of the phylotypes with clinical infections and demographic data and analyzing their phylogeny 

and predicted function using comparative genomics, we aimed to develop an understanding of 

how each phylotype contributes to the microbiome and influences health outcomes. 

  



  11 

11  

Research Objectives 

 Two vaginal Megasphaera phylotypes (phylotype 1 and phylotype 2) have recently been 

identified in vaginal samples. Since their description in the literature by Martin et al in 2008, 

they have been associated with negative health outcomes in a number of vaginal microbiome 

studies, including bacterial vaginosis and trichomoniasis (see above). Although these two 

phylotypes are related and are sometimes grouped together in vaginal microbiome association 

analyses, they exhibit different clinical associations in the published literature. We sought to 

investigate the differential roles that these two phylotypes play in the vaginal community using a 

dataset of 16S rDNA and associated health and lifestyle information from 3,986 women 

generated by the Vaginal Human Microbiome Project (VaHMP) at Virginia Commonwealth 

University (VCU) (Fettweis, Serrano, Girerd, Jefferson, & Buck, 2012a).  

Megasphaera phylotype 1 and Megasphaera phylotype 2 were grouped together in the 

initial species-level analysis of this dataset. Thus, we set out to develop a method to successfully 

distinguish between the two phylotypes using the existing 16S rDNA dataset. Our goal was to 

analyze the 16S rDNA dataset and the associated health history data to examine associations 

between the Megasphaera phylotypes and clinical diagnoses, demographics and lifestyle factors. 

We also sought to examine the correlation of these two phylotypes with other vaginal organisms 

present in the community.  

 While 16S rDNA association studies are useful for identifying biomarkers and targeting 

species worthy of further investigation, we must move towards understanding the mechanism of 

how these organisms interact in the vaginal environment and contribute to adverse health 

outcomes. We sought to cultivate and isolate Megasphaera phylotype 1 and Megasphaera 

phylotype 2 and perform whole genome sequencing. Since we began this project, additional 
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Megasphaera phylotype 1 and Megasphaera phylotype 2 genomes were sequenced by other 

groups and made available at NCBI. Thus, we used the publicly available genomes in 

conjunction with those sequenced in-house to conduct comparative genomic analyses. Our goal 

was to gain insight into why differences exist between the phylotypes at the level of clinical 

associations and vaginal microbiome composition. We sought to determine if the observed 

differences in clinical presentation and genomic composition could signal niche specialization 

within the vaginal community between these two closely related species.  
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MATERIALS AND METHODS 

 

 

16S rDNA vaginal microbiome data 

 As a part of the Vaginal Human Microbiome Project (VaHMP) at Virginia 

Commonwealth University, mid-vaginal wall swab samples were obtained from 3,986 

participants (Fettweis, Serrano, Girerd, Jefferson, & Buck, 2012a). DNA was isolated from the 

swabs using the MoBio Powersoil DNA Isolation Kit. DNA samples were randomized in an 

effort to avoid batch effects and the V1-V3 region of the 16S rRNA gene was amplified using 

polymerase chain reaction (PCR). The amplified 16S rDNA fragments were then sequenced on 

the Roche 454 GS FLX Titanium platform. Sequences were classified using both the Ribosomal 

Database Project (RDP) classifier and the in-house STIRRUPS (Species-level Taxon 

Identification of rDNA Reads using a USEARCH Pipeline Strategy) classifier to achieve 

species-level classification (Fettweis, Serrano, Sheth, Mayer, Glascock, Brooks, et al., 2012b). 

AbundantOTU analysis was also performed to detect prevalent OTUs (operational taxonomic 

units) for which no reference was present in the Vaginal 16S rDNA Reference Database 

(Fettweis, Serrano, Sheth, Mayer, Glascock, Brooks, et al., 2012b; Ye, 2011).  The Institutional 

Review Boards for Human Subjects at Virginia Commonwealth University and The Virginia 
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Department of Health approved the VaHMP study and consent was obtained from all 

participants, under IRB protocol HM12169.  

 

Subclassification 

 Reads terminally classified as Megasphaera cluster52 by STIRRUPS were aligned using 

MUSCLE, and visually inspected for single nucleotide polymorphisms (SNPs) using Jalview 

(Edgar, 2004; A. M. Waterhouse, Procter, Martin, Clamp, & Barton, 2009). To analyze intratype 

differences, sequences assigned to Megasphaera cluster52 that were closest to Megasphaera 

phylotype 1 were selected, aligned using MUSCLE and visualized using Jalview. For further 

resolution, that alignment was trimmed for informative regions using Gblocks, and used to create 

a phylogenetic tree using PhyML and TreeDyn (Castresana, 2000; Chevenet, Brun, Bañuls, Jacq, 

& Christen, 2006; Guindon et al., 2010). This process was repeated for Megasphaera phylotype 

2. USEARCH v4.0 was used with a 97% cutoff to separate reads assigned to Megasphaera 

cluster52 into Megasphaera phylotype 1 and Megasphaera phylotype 2 (Edgar, 2010).  

 

OTU analysis of Megasphaera and related reads 

 AbundantOTU clustering analysis was used to group reads terminally assigned to the 

genus Megasphaera by the RDP classifier into clusters based on sequence similarity using 

default parameters. Consensus sequences from each cluster were identified using BLAST and the 

non-redundant nucleotide database at NCBI (Wang, Garrity, Tiedje, & Cole, 2007; Ye, 2011). 
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Reclassification of Megasphaera in VaHMP dataset 

 All reads terminally classified at the genus level Megasphaera, family level 

Veillonellaceae, order level Clostridiales, class level Clostridia, phylum level Firmicutes or 

kingdom level Bacteria by the Ribosomal Database Project (RDP) classifier were reclassified 

using USEARCH v4.0 and an updated and comprehensive Megasphaera 16S rDNA V1-V3 

region database. In-house scripts were utilized to integrate this updated classification data into an 

existing dataset containing 16S rDNA microbiome profile data, health history data and 

demographic data (Edgar, 2010; Wang et al., 2007).  

 

Demographic and Clinical Associations 

 Megasphaera phylotypes were determined to be “present” if they comprised at least 0.1% 

of the microbiome of a given sample. Samples from participants enrolled in outpatient clinics 

were included; samples were excluded from the analysis if the participant was pregnant, was 

recruited in Labor & Delivery, was recruited in the twin cohort, if the samples were processed 

with a Qiagen DNA extraction kit instead of the MoBio DNA extraction kit or if the vaginal 

swab sample yielded less than 5,000 reads during 16S rDNA sequencing. Demographic and 

health history data was extracted from an extensive questionnaire, which was completed by the 

participants. Basic health statistics including height, weight, blood pressure, pulse, vaginal pH 

and diagnosis data on the date of visit were gathered by clinical coordinators under advisement 

of a physician. Associations were calculated based on the presence or absence of a taxon of 

interest in combination with given demographic or clinical data. Statistical significance was 

calculated using a two-tailed Student’s T-test with an alpha level of 0.05.  
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Relative Risk 

 Relative risk values and their corresponding 95% confidence interval values were 

calculated based on the standard relative risk formula used in epidemiological studies. Relative 

Risk = (A/A+B) / (C/C+D) where A represents the number of samples where the taxon is present 

and the participant is diagnosed with the disease, B represents the number of samples where the 

taxon is present but the participant is not diagnosed with the disease, C represents the number of 

samples where the taxon is absent but the participant is diagnosed with the disease and D 

represents the number of samples where the taxon is not present and the participant is not 

diagnosed with the disease. Bacterial taxa were determined to be present if at least 0.1% of the 

reads from the sample were assigned to that taxon. The outpatient cohort used for this analysis 

(n=2633) was comprised of non-twin, non-pregnant participants (by diagnosis, self-report or 

clinic-ID). Samples met the threshold of at least 5,000 reads during sequencing and were 

processed using the MoBio Power Soil DNA extraction kit. Vaginal infection status was 

determined based on clinician diagnosis at time of visit.  

 

Case Matching 

 An in-house perl script was developed to case match the participants in the pregnant 

cohort with non-pregnant controls. For each pregnant participant, a non-pregnant participant was 

identified as a case match if they were the same age, same ethnicity and fell into the same 

socioeconomic bracket. If a match was not found, the restrictions were loosened to be the same 

age plus or minus one year, the same race and the same socioeconomic status plus or minus one 
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bracket. This case-matching methodology yielded 421 pregnant and 421 non-pregnant case 

matched pairs.  

 

Pregnancy Analysis 

 The case-matched cohort was used for this analysis. Bacterial taxa were determined to be 

present if at least 0.1% of the reads from the sample were assigned to that taxon. For a number of 

BV-associated taxa, the proportion of the cohort containing that taxon was calculated for both 

pregnant and non-pregnant women. The difference in the prevalence of bacterial taxa between 

the pregnant and non-pregnant cohorts was analyzed for statistical significance using a two-tailed 

Student’s T-test. To test if Megasphaera phylotype 1 was significantly higher in pregnant 

women than in non-pregnant women, a non-parametric Mann-Whitney U Test was performed 

(Whitney, 1997).  

 

Microbial Co-occurrence 

 Prevalence of each taxon in the cohort as a whole was calculated as a proportion. The 

expected proportion of the cohort in which any two species would appear together simply by 

chance was also calculated for each pairwise combination of taxa by multiplying together their 

respective prevalence. The actual proportion of the cohort containing any two taxa was also 

calculated for each pairwise combination of taxa. The actual proportion to expected proportion 

ratio was calculated as a representative metric of how likely the actual co-occurrence proportion 

was based on a stochastic model.  
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Cultivation of Megasphaera 

 At the time of visit, a second mid-vaginal swab sample was collected from participants. 

This duplicate swab was used to inoculate 1.0mL of culture media with an added cryo-protectant, 

sBHI + 20% glycerol (Table 1). Vaginal samples were targeted for cultivation based on the 

presence of bacterial targets of interest in the 16S rDNA survey. A scraping of the frozen vaginal 

culture media from the selected targets was used to inoculate media plates for bacterial clone 

culture. Scrapings were plated on both ThermoScientific Remel Chocolate agar (lysed blood 

agar) and ThermoScientific Remel Brucella Blood agar (containing 5% sheep’s blood) at four 

dilutions: 1:10, 1:100, 1:1000 and 1:10000. Plates were stored at 37°C for 24-48 hours. The 

plates were enclosed in three nested Ziploc bags along with a Mitsubishi Anaeropack-Anaero, 

which served to both absorb oxygen and release anaerobic gas, creating a mostly anaerobic 

environment, similar to the vagina, for the growth of fastidious anaerobic and microaerophilic 

organisms. Individual colonies were selected for growth and purification from the dilution plates 

based on colony morphology and differential growth characteristics. Isolates were re-streaked 

repeatedly until visibly pure. They were then re-streaked three more times to ensure purity. A 

single colony was used to inoculate 5mL of sBHI in a 15mL falcon tube. Tubes were loosely 

capped to allow gas exchange and stored in a rack at 37°C for 24-48 hours in three nested Ziploc 

bags containing an Anaeropack. The DNA was then harvested using the Qiagen Spin Miniprep 

Kit and quantified using the Nanodrop 2000 spectrophotometer.    
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Table 1. Supplemented Brain-Heart Infusion Recipe  

Ingredient          Quantity 

Brain-Heart Infusion Powder (Oxoid)      9.25g 

Yeast Extract          2.50g 

Gelatin           2.50g 

Dextrose          0.25g 

Sucrose          0.25g 

Deionized Water         250mL 
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Identification of Isolates 

 Bacterial clone isolates were identified by colony PCR amplification of the full 16S 

rRNA gene using universal 16S primers (Table 2). Amplicons were purified using the Qiagen 

QIAquick PCR Purification Kit and sequenced using Sanger sequencing technology on the 

Applied Biosystems 3730 DNA Analyzer. Sequences were trimmed for quality and 

chromatograms were analyzed for purity. Sequences were classified based on the combined 

results of a blastn comparison against the in-house Vaginal 16S rDNA Reference Database and a 

BLAST search against the non-redundant nucleotide database at NCBI.  

 

Sequencing and Assembly of Genomic DNA 

 Purified genomic DNA from the Megasphaera phylotype 1 isolate OTU70 was 

sequenced using the Roche 454 GS FLX Titanium platform. The OTU70 reads were assembled 

using Newbler v2.8. Purified genomic DNA from the two Megasphaera phylotype 2 isolates 

M2-4 and M2-8 were sequenced using the Illumina MiSeq platform and reads were assembled 

using Velvet. Quality trimming, low complexity filtering, and Poly-A, Poly-T and N filtering 

were implemented. All sequencing and assembly was performed at the Nucleic Acids Research 

Facilities at Virginia Commonwealth University.  

 

Synteny Analysis 

 Analysis of genomic synteny both within phylotype and between phylotypes was 

performed at the protein and nucleic acid level using PROmer and NUCmer respectively. Both 
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Table 2. Universal 16S rRNA primers 

Primer Name  Sequence (5’ to 3’)a 

16SF-YM  AGAGTTTGATYMTGGCTCAG  

16SF-Bif  AGGGTTCGATTCTGGCTCAG 

16SF-Bor  AGAGTTTGATCCTGGCTTAG 

16SF-Chl  AGAATTTGATCTTGGCTTAG 

1492R   TACCTTGTTACGACTT 

a Degenerate bases are underlined. Forward primers were combined in a 4:1:1:1 ratio (16SF-YM 

: 16SF-Bif : 16SF-Bor : 16SF-Chl). 
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of these tools are part of the MUMmer 3.0 package. Synteny plots were created using gnuplot 

from the gnuplot 4.2 package and MUMmerplot, which is also a part of the MUMmer 3.0 

package (Kurtz et al., 2004; Williams & Kelley, 2011).  

 

Genome Annotation 

 Genomes were annotated using the in-house Genome Annotation Pipeline developed by 

Dr. Vishal N. Koparde of the VCU Nucleic Acids Research Facilities. This pipeline annotates 

genes using both Glimmer3 and GeneMarkS, identifies rRNA genes with rnammer, identifies 

tRNA genes using tRNAScan, calls orthologous genes with using rpsblast in conjunction with 

Pfam and COG databases, and assigns annotated genes a predicted function using blastx. 

Genome annotation was also performed using RAST, a web-based annotation tool provided by 

NMPDR (Bateman et al., 2002; Borodovsky & Lomsadze, 2011; Delcher, Harmon, Kasif, 

White, & Salzberg, 1999; Lagesen et al., 2007; Lowe & Eddy, 1997; Meyer et al., 2008; 

Tatusov, Galperin, Natale, & Koonin, 2000).  

 

GC Composition Analysis 

 Protein-encoding genes were identified in all genomes using Glimmer3 and GC 

composition was calculated for each protein-encoding gene using in-house scripts. Average GC 

percentage of protein-encoding genes as well as whole genome GC composition were analyzed.  
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Codon Usage Analysis 

 Codon usage within the genomes was calculated using cusp, a program in the EMBOSS 

Tools package available through EMBL-EBI (Rice, Longden, & Bleasby, 2000).  

 

Metabolic Reconstruction 

 Metabolic reconstruction was performed using ASGARD. Visual representations of 

phylotype differences within metabolic pathways were generated using color-maps (Alves & 

Buck, 2007). Metabolic reconstruction was also performed using RAST, which is available 

online through NMPDR.  

 

Strain Resurrection 

 Scrapings from Megasphaera phylotype 1 and phylotype 2 isolates frozen in 1.0mL of 

sBHI media + 20% glycerol were used to inoculate ThermoScientifc Remel Chocolate agar 

plates,  ThermoScientific Remel 5% Sheep Blood Brucella Blood agar plates and 5mL tubes of 

sBHI+s containing 10% human serum. Plates were cultivated anaerobically at 37°C for 24-96 

hours in three nested Ziploc bags containing an Anaeropack. Tubes were loosely capped to allow 

gas exchange and stored in an anaerobic incubator at 37°C with 5% CO2 for 24-96 hours.  

 

Phylogenetic Analysis 

 OrthoDB, an online database for orthologous groups was used to determine which 

orthologous genes were conserved at the family level (Veillonellaceae) (R. M. Waterhouse, 
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Tegenfeldt, Li, Zdobnov, & Kriventseva, 2013). These genes were verified using reciprocal blast 

and isolated from each of the six Megasphaera genomes used for our phylotype analysis as well 

as from all publicly available Megasphaera genomes and the single Anaeroglobus genome at 

NCBI. Different outgroup genomes were chosen from NCBI based on the analysis. Each gene 

was separately aligned using MUSCLE, a program within the EMBOSS Tools package available 

through EMBL-EBI (Edgar, 2004; Rice et al., 2000). Alignments were visually examined and 

those with large gaps or likely errors were discarded. For each genome, the remaining 321 

orthologous genes were then concatenated together to create one large representative sequence. 

These sequences were then pruned using Gblocks to remove any uninformative stretches of 

sequence (Castresana, 2000). The resulting sequences were then converted from pir to phylip 

format using the online service, ALTER (Glez-Peña, Gómez-Blanco, Reboiro-Jato, Fdez-

Riverola, & Posada, 2010). RAxML-HPC was used to perform a rapid bootstrap analysis using 

100 bootstraps and search for the best scoring maximum likelihood tree using optimization of 

substitution rates, the gamma model of heterogeneity and the WAG amino acid substitution 

matrix. RAxML-HPC was also used to draw the bootstrap values on the best scoring maximum 

likelihood tree (Stamatakis, 2014). Aesthetic changes to the tree were made using TreeDyn 

(Chevenet et al., 2006).  
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RESULTS 

 

Subclassification of Megasphaera reads into distinct phylotypes 

 The previous approach to classification utilized by the VaHMP project was the 

STIRRUPS (Species-level Taxon Identification using a USEARCH Pipeline Strategy) classifier, 

a pipeline developed to achieve high-quality species-level identification. For some analyses, the 

RDP classifier, which allows genus-level classification, was utilized (Fettweis, Serrano, Sheth, 

Mayer, Glascock, Brooks, et al., 2012b; Wang et al., 2007). The RDP methodology uses a large, 

carefully curated database of bacterial 16S ribosomal RNA sequences as a reference library. The 

classifier is a naïve Bayesian classifier meaning that it uses no “a priori” knowledge to classify 

reads and it calls classifications based on measures of likelihood. It calculates the probability that 

a given sequence was derived from a specific genus based on the presence of similar sequence 

portions in the read and reference sequences attributed to members of the genus in the reference 

library. Instead of using an alignment approach, it looks at smaller portions of the read by 

breaking it down into what it describes as “words”, small portions of the sequence eight base 

pairs in length. It then uses a sliding window approach to calculate likelihood measures for each 

word in the read. Combining information from all words across the read yields the genus with 

the highest likelihood score. The RDP classifier is used to classify reads from the domain to the 

genus level in its native form (Wang et al., 2007).  

Although the RDP classifier is useful for determining genus-level classifications, the 

original version cannot attain species-level resolution. This is pertinent for our study of the 
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vaginal microbiome because members of the same genus may play very different roles in the 

vaginal community. For example, L. crisptaus is a vaginal taxon that has often been associated 

with low pH, a marker of vaginal health. It was been negatively associated with bacterial 

vaginosis as well. L. iners, a member of the same genus, is associated with higher pH and is 

often found in vaginal samples containing bacterial vaginosis associated bacteria such as G. 

vaginalis (Ravel et al., 2011). When trying to characterize a vaginal microbiome, knowing which 

vaginal Lactobacillus species are present is of great importance as it signals how protective that 

species is. For this reason, we developed the STIRRUPS classifier (Fettweis, Serrano, Sheth, 

Mayer, Glascock, Brooks, et al., 2012b). It utilizes an in-house reference library populated with 

the V1-V3 variable region of the 16S rRNA gene from vaginally relevant taxa. The top twenty-

five most prevalent genera detected by RDP were selected and all species of those genera were 

added to the reference library if sequences were available. Other vaginally relevant bacteria were 

added as well including common pathogens such Neisseria gonorrhoeae. The STIRRUPS 

classifier uses the USEARCH v4.0 global alignment method to assign the read to the taxon to 

which it is most similar. The species-level taxon with the highest alignment score is selected as 

the best hit (Edgar, 2010).  

However, in some cases, the V1-V3 region of the 16S rRNA gene is not enough to 

confidently distinguish between two species. A common example of this is Escherichia coli and 

Shigella sp. Although they are separate species, they are nearly identical (99% similar) in the 

V1-V3 region of the 16S rRNA gene, and because of this they are grouped together to form a 

cluster in our analyses. Sequencing error can yield illegitimate single nucleotide polymorphisms, 

thus it is difficult to distinguish between closely related species, particularly when the true 

underlying references are unknown. Thus, we implemented a conservative approach to 
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classification of different species in STIRRUPS, and clustered together closely related species. 

Read length is also an important factor to consider in the process of read assignment due to the 

nature of the V1-V3 region of the 16S rRNA gene. The VaHMP 16S rDNA dataset was 

generated using 454 GS FLX Titanium pyrosequencing, sequencing from the V1 side. Some 

closely related taxa may be nearly identical in the V1 region, but be differentiated in the V3 

region. Thus, it would be impossible to discriminate with a short read of 200bp, but a longer read 

spanning the entire V1-V3 region would permit classification.  

To address this issue, a collection of subsequences was created, in all possible one base 

incremented read lengths from 200bp (the minimum allowable read length) to the full length of 

the sequence for each sequence in the reference database. Each subsequence was then aligned to 

the Vaginal 16S rDNA Reference Database (our in-house database) using the USEARCH v4.0 

global alignment algorithm. If any subsequence matched another taxon at ≥ 97% identity, those 

two taxa were clustered together. This was the case for the two Megasphaera phylotypes 

identified in the vaginal samples. Although they only share 96% similarity at the nucleotide level 

of the full length 16S rRNA gene, somewhere in the clustering analysis the subsequences of one 

phylotype aligned to the other phylotype at  ≥ 97% identity causing these two taxa to be 

clustered together. This cluster is called “Megasphaera cluster52” in the VaHMP dataset. In 

order to be able to address the differences between these two phylotypes in terms of both 

microbiome composition and association with clinical and demographic data, it was necessary to 

be able to sub-classify the reads assigned to “Megasphaera cluster52” into either Megasphaera 

phylotype 1 or Megasphaera phylotype 2 (Fig.2).  
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Figure 2. Megasphaera cluster52 prevalence 

A cohort of 4148 participants from the VaHMP study at VCU was included in this analysis. 

Representative 16S rDNA profiles for these participants were generated using RDP and 

STIRRUPS classifiers. Megasphaera cluster52 is defined as present if it comprises at least 0.1% 

of the microbiome profile.  
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Figure 2.  
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 The full-length 16S rDNA sequences of the two phylotypes were 96% similar at the 

nucleotide level and 93% similar in the V1-V3 region of the gene.  The two phylotypes were 

approaching the previous threshold for distinguishing separate species, so we determined 

whether it may be possible to separate the two phylotypes and sub-classify them from vaginal 

samples even using a basic strategy. The first step was examining the V1-V3 region of the 16S 

rRNA gene of both phylotypes visually to determine if there were specific sites in the sequence 

where they were different. These sites are referred to as SNPs.  We also wanted to know if there 

were any apparent subtypes within the phylotypes that could be distinguished based on SNPs. 

The number of SNPs present and ability to distinguish between the phylotypes is largely 

contingent on the sequence length. In order to answer the above question, we created a dataset of 

100 randomly selected vaginal reads assigned to Megasphaera by the RDP & STIRRUPS 

pipeline that could be of any length and could be closest to either phylotype based on the 

STIRRUPS alignment data. These reads were aligned using MUSCLE and visualized using 

Jalview (Edgar, 2004; A. M. Waterhouse et al., 2009). The alignments clearly clustered into two 

distinct groups, representing those most closely related to each phylotype. There were conserved 

SNPs that were segregated by phylotype, supporting our hypothesis that there might be enough 

differences between the two phylotypes to distinguish between them with our data (Fig.3).  

We also performed this analysis using only long reads (>500bp) and only short reads 

(trimmed to 200bp) to determine if there were important SNPs only contained in long reads near 

the end of the sequence and if there was still separation between the phylotypes using short 

reads, which contained a smaller number of informative SNPs. We performed the analysis for 

each read length type (200bp, any read length and >500bp) using 250 randomly selected reads 

and 500  
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Figure 3. Visualization of alignment containing sequences of both phylotypes 

Full-length 16S rDNA reads either most similar to Megasphaera phylotype 1 or Megasphaera 

phylotype 2 were combined. These reads were aligned using MUSCLE and visualized using 

Jalview. This figure shows a small portion of the alignment using 21 sequences. The portion 

shown is the 157bp-214bp region of the V1-V3 region. Single nucleotide polymorphisms and 

areas of incongruence in the alignment can be visualized using the solid black bar chart below 

the alignment.  Megasphaera phylotype 1 reads are labeled as “Type 1” and Megasphaera 

phylotype 2 reads are labeled as “Type 2.” 
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Figure 3.  
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randomly selected reads to determine if adding more sequences had any effect on the clustering 

of the alignments, introduced any subgroups to the analysis, or introduced new informative 

SNPs. It was also important to determine if the SNPs we found in the smaller datasets were 

conserved across the larger datasets, which would determine if they would be useful in sub-

classifying the Megasphaera reads (Table 3).   

 We also wanted to know if there were any obvious subtypes within the phylotypes that 

could be distinguished based on SNPs. We performed the same alignment and visual inspection 

analysis described above using only reads most similar to Megasphaera phylotype 1 by 

STIRRUPS analysis. At all read lengths and at all dataset sizes there were no obvious subgroups 

within the phylotype. There were smaller groups that clustered together but the SNPs were often 

seemingly random substitutions and did not seem to be conserved across a large number of reads 

(Fig.4). The same conclusion was drawn when performing the analysis using only reads most 

similar to Megasphaera phylotype 2 by STIRRUPS analysis (Fettweis, Serrano, Sheth, Mayer, 

Glascock, Brooks, et al., 2012b). Again, there were no obvious subtypes and SNPs were not 

conserved across large datasets (Fig.5). To further assess if there were any intratype differences, 

datasets with long reads which contained only reads most similar to Megasphaera phylotype 1 

by STIRRUPS analysis were aligned using MUSCLE, trimmed to contain only informative 

portions using Gblocks and used to create a phylogenetic tree using PhyML and TreeDyn 

(Castresana, 2000; Chevenet et al., 2006; Edgar, 2004; Guindon et al., 2010). The trees were then 

analyzed for the presence of specific groupings or branching patterns in an effort to find 

subtypes. The same process was also performed for the datasets containing long reads most 

similar to Megasphaera phylotype 2.  There were no obvious groupings in the trees. Although  
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Table 3 A. Informative SNPs to distinguish between Megasphaera phylotypes in the V1-V3 

region 

 

SNP Location  Megasphaera phylotype 1   Megasphaera phylotype 2 

48   C     T    

53   G     A 

64   C     T 

69   G     A 

75   G     T  

126   T     C  

133   C     T 

160   A     T 

168   G     A 

176   A     G      

177   C     T 

179   G     A 

180   A     G 

193   T     C 

202   T     C 

210   T     G 

211   A     G 

244   G     A 

274   T     C 

409   A     C  

427   G     A 

445-449  AAAAA    AAC 

453   -     A 

454   -     A 

457   A     G/T 

461   C     T 
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Table 3 B. Informative SNPs to distinguish between Megasphaera phylotypes in the V1-V3 

region (cont’d) 

SNP Location  Megasphaera phylotype 1   Megasphaera phylotype 2 

462   C     A 

465   C     T 

468   T     C 

469   -     C 

472   C     - 

474   G     A 

476   C     G 

477   C     A 
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Figure 4. Intratype alignment analysis of Megasphaera phylotype 1 

16S rDNA reads in the V1-V3 region that were most closely related to Megasphaera phylotype 1 

were combined, aligned using MUSCLE and visualized using Jalview. There were no obvious 

SNPs in the sequence that would suggest any subtypes might exist within the phylotype. The 

100bp-200bp region is shown.  
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Figure 4.  
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Figure 5. Intratype alignment analysis of Megasphaera phylotype 2 

16S rDNA reads in the V1-V3 region that were most closely related to Megasphaera phylotype 2 

were combined, aligned using MUSCLE and visualized using Jalview. Like Megasphaera 

phylotype 1, the visual analysis yielded no obvious SNPs in the sequence that would suggest any 

subtypes might exist within the phylotype. The 100bp-200bp region is shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  39 

39  

Figure 5.  
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Figure 6. Intratype phylogenetic analysis of Megasphaera phylotype 1 

A total of 25016S rDNA reads in the V1-V3 region that were most closely related to 

Megasphaera phylotype 1 were combined, aligned using MUSCLE and pruned for informative 

regions using Gblocks. A phylogenetic tree was created using PhyML. Although there were 

some distinct clades, they were not different enough based on sequence and SNPs to investigate 

the presence of any subtypes.  
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Figure 6.  
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Figure 7. Intratype phylogenetic analysis of Megasphaera phylotype 2 

A total of 25016S rDNA reads in the V1-V3 region that were most closely related to 

Megasphaera phylotype 2 were combined, aligned using MUSCLE and pruned for informative 

regions using Gblocks. A phylogenetic tree was created using PhyML. There were no distinct 

clades or groupings. These sequences were all remarkably similar, and as such no subtypes were 

discovered.  
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Figure 7.  
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Megasphaera phylotype 1 seemed to have some smaller groups, with very few informative SNP 

differences, Megasphaera phylotype 2 was nearly completely uniform (Fig.6, Fig.7). 

Finally, in order to determine experimentally if the USEARCH algorithm alone could 

distinguish correctly between the two phylotypes two large datasets were curated. The first 

contained all of the reads classified to “Megasphaera cluster52” generated through the VaHMP 

project totaling 439,530 reads at their full length. A second dataset was curated containing all 

reads classified to “Megasphaera cluster52” trimmed to the minimum allowable read length of 

200 bp, in order to assess if short length reads could be accurately distinguished between the two 

phylotypes as well, The USEARCHv4.0 global alignment algorithm was used on both the 

trimmed dataset (200bp) as well as full length dataset, aligning reads to the Vaginal 16S rDNA 

Reference Database (Edgar, 2010; Fettweis, Serrano, Sheth, Mayer, Glascock, Brooks, et al., 

2012b). A cutoff of 97% was used. Regardless of read length, the USEARCH analysis yielded 

similar results. The USEARCH method alone was capable of subclassifying Megasphaera 

cluster52 reads into Megasphaera phylotype 1 and Megasphaera phylotype 2 reads even using 

the minimum allowable read length of 200bp. There was some very minimal cross-classification 

between the two phylotypes between the full-length and short read analyses, likely attributable to 

lack of informative SNPs or sequencing error. After accounting for these reads, USEARCH was 

determined to call short reads (200bp) and full-length reads at the phylotype level concordantly 

99.4% of the time. We decided to use this approach for sub-classification of the reads in further 

analyses (Table 4).  
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Table 4.  USEARCH correctly classifies Megasphaera with concordance of 99.4% 

Megasphaera sp.    Full Length Reads Trimmed Reads Net Change 

Megasphaera phylotype 1  285,300  292,930  +7,630 

Megasphaera phylotype 2   137,212  139,181  +1,969 

Megasphaera BV3-C16  2,862   3,022   +160 

Megasphaera elsdenii   17   18   +1  

Megasphaera micronuciformis          1,170   1,330   +160 

Megasphaera massiliensis  614   759   +145 

Megasphaera sueciensis  0   0   0 

Megasphaera paucivorans  0   0   0  

All     427,175  437,240  +10,065 
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Read clustering analysis reveals a third vaginal Megasphaera taxon 

After determining that we could sub-classify our Megasphaera cluster52 reads into the 

two vaginal phylotypes using the approach initially employed by the STIRRUPS classifier, we 

updated the Megasphaera reference library. We included all of the Megasphaera species for 

which the V1-V3 region of the 16S rRNA gene was available at NCBI: M. elsdenii, M. 

cerevisiae, M. indica, M. massiliensis, M. micronuciformis, M. paucivorans, M. sueciensis, 

Megasphaera phylotype 1 and Megasphaera phylotype 2. We also examined the raw reads that 

were classified as Megasphaera for the presence of other vaginal Megasphaera species. We 

performed an AbundantOTU clustering analysis on all of our reads that were assigned to 

Megasphaera by the RDP classification (Ye, 2011). We discovered three new clusters. One 

matched 100% to Anaeroglobus geminatus, a taxon originally isolated from a human oral 

sample, which likely represents a misclassified Megasphaera species based on its phylogenetic 

placement in 16S rRNA and multi-gene trees (see Figure 24). The second cluster matched 96% 

to the species Megasphaera massiliensis, an organism isolated from human fecal samples 

(Padmanabhan et al., 2013). Given that the identity is 96% it may represent a new species of 

bacteria. However, prevalence and proportion were both low, and it did not meet the criteria 

outlined for inclusion in the reference database for STIRRUPS classification.  

 Finally the third cluster mapped to an organism isolated from a human vaginal swab, 

whose genome has been sequenced. This organism was named BV3C16-1 (GCA_000478965.1), 

suggesting to us that it may have been a bacterial vaginosis isolate, although this is not 

mentioned in the online documentation of the two biosamples cited (SAMN00829149, 

SAMN02436562). Interestingly, when we added this new sequence to the reference library and 

re-classified our Megasphaera reads we found that it was present at low abundance in four 
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women. We examined the health history data from the women who showed vaginal carriage of 

BV3C16-1, and found that they all had a current diagnosis of BV. Given the low prevalence of 

carriage, we did not pursue additional association studies with this organism.   

 

Reclassification of all Megasphaera reads 

 Sometimes, the RDP classifier is unable to call a genus level classification with a 

bootstrap score of 0.8 or greater and may only be able to classify to the family, order, class, 

phylum or even kingdom level with confidence. To accurately reclassify Megasphaera phylotype 

1 and Megasphaera phylotype 2 reads, we reexamined all reads terminally classified (e.g., with a 

bootstrap score of 0.8 or greater) at any taxonomic level above the genus level of Megasphaera. 

Thus, we retrieved all reads with terminal classification of Veillonellaceae, Clostridiales, 

Clostridia, Firmicutes and Bacteria. Megasphaera was recently moved from the Clostridia class 

to the class Negativicutes and from the order Clostridiales to the order Selenomonadales. 

However, recent publications suggest that they should be placed back into the Clostidia class 

(Campbell, Adeolu, & Gupta, 2015; Yutin & Galperin, 2013). Here we used the earlier 

taxonomy for our work, as it was that used in the initial VaHMP analysis. Notably, a number of 

reads that had only been accurately classified Bacteria were assigned to both phylotypes using 

the STIRRUPS approach with the updated Megasphaera library (Table 5). 

 After completing this analysis, we developed a suite of scripts, which calculated the 

Megasphaera read profile for each sample in the dataset. This calculated the total number of 

reads assigned to each Megasphaera species or phylotype for a given sample. Another script 

extracted the previous Megasphaera columns from a large data file containing the sample ID,  
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Table 5. Megasphaera reads classified to higher taxonomic levels by RDPa 

           Megasphaera   Veillonella   Clostridiales   Clostridia   Firmicutes   Bacteria        

M. phylotype 1  287,054          458,182          10,411             254               154            122   

M. phylotype 2      155,077             54,162           554                  27                  17              66 

M. BV3-C16                    13                     0                  0                      0                   0                 0 

M. elsdenii                       91                     0                  0                      0                   0                 0 

M. cerevisiae                     0                     0                  0                      0                   0                 0 

M. indica                         20                     0                  0                      0                   0                 0 

M. massiliensis             2,291                   0                  0                      0                   0                 0 

M. micronuciformis      2,269                   0                  0                      0                   0                 0 

M. paucivorans                  0                    0                  0                      0                   0                 0 

M. sueciensis                     0                     0                  0                      0                   0                 0 

a Columns indicate the RDP classification results of the reads in question. Rows indicate the new 

USEARCH and updated reference database methodology results for those reads. Most reads are 

appropriately assigned to the genus Megasphaera by the RDP classifier but many of the 

Megasphaera phylotype 1 and Megasphaera phylotype 2 reads were classified at higher 

taxonomic levels.  

 

 

 

 

 

 

 

 

 

 

 

 



  49 

49  

16S rDNA data and health history data. It then added ten columns in the same space containing 

the updated Megasphaera 16S rDNA read numbers by matching up read IDs with sample IDs 

and finding the sample ID row in the data file. After this process was complete, we had sub-

classified all of the Megasphaera reads terminal at any branch above the species level by RDP 

for every read in the 2013 Data Drop and replaced the old Megasphaera classification data with 

an updated, more informative and comprehensive Megasphaera dataset. The dataset was 

integrated with other 16S rDNA data and participant health history and demographic data to 

permit phylotype-specific association studies. 

 

Megasphaera co-occur with other BV-associated bacteria 

 We wanted to identify bacterial species that co-occur with one or both of the two vaginal 

Megasphaera phyotypes. Given that both phylotypes are obligately anaerobic organisms and 

associated with a clinical diagnosis of bacterial vaginosis, we hypothesized that the two 

phylotypes would often co-occur with other anaerobic organisms and be associated with BV 

(Zozaya-Hinchliffe et al., 2008). We also hypothesized that they would not often co-exist in 

samples with high levels of Lactobacillus species. In order to examine microbial co-occurrence, 

we developed a script that would calculate prevalence of each organism across the entire cohort. 

The script then performed a pairwise calculation to determine the proportion of the cohort in 

which two given species would co-exist simply by chance. This can be calculated by simply 

multiplying together the proportions at which each taxon is found in the total cohort. The script 

then calculated the actual prevalence of each pairwise co-occurrence and compared the two 

measures. The script generated a ratio value, which describes the relationship between the actual 

prevalence and the prevalence expected by chance of pairwise co-occurrence.  
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Based on this measure, if the value is high, the two organisms co-occur more likely than 

simply by chance. If the value is one, the two organisms co-occur as often as one would expect 

by chance, and if the value is below one then the two organisms occur less often than expected 

by chance suggesting a possible antagonistic relationship. The highest values calculated for each 

phylotype were with species of the genus Prevotella, a relatively common vaginal and oral 

taxon. Prevotella species have been associated with bacterial vaginosis but also exist in 

“healthy” vaginal communities (Datcu et al., 2014; Vitali et al., 2015). As expected, 

Megasphaera phylotype 1 often co-occurred with other BV-associated organisms such as 

Parvimonas, BVAB2, BVAB3, Fusobacterium and Megasphaera phylotype 2. Megasphaera 

phylotype 2 often co-occurred with other BV-associated organisms including Sneathia, 

Peptoniphilus, Mobiluncus, BVAB1, BVAB2, BVAB3, Gemella, Anaerococcus, Dialister and 

Megasphaera phylotype 1. Megasphaera phylotype 2 also co-occured with Fusobacterium, an 

uncultivated Sneathia species and other organisms associated with disease states including 

Neisseria gonorrhoeae, the causative agent of gonorrhea and Mycoplasma hominis and Ca. 

Mycoplasma girerdii, both previously strongly associated with trichomoniasis (Table 6) 

(Fettweis, Serrano, et al., 2014b; Rappelli et al., 1998).  

 Although these two organisms were both associated with BV-associated taxa and shared 

a few common co-associations including to each other, they seem to have somewhat unique co-

occurrence profiles. We hypothesize that there may be different community types associated 

with BV, a disorder that is largely characterized by the presence of diverse anaerobic organisms 

instead of the presence of certain specific organisms, and that these subtypes may be unique. 

While these two Megasphaera phylotypes can co-occur in samples, they may represent members 

of two different community subtypes of BV. Further research using more statistically rigorous  
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Table 6. Microbial actual:expected co-occurrence ratio reveals synergistic relationships 

                  Megasphaera phylotype 1        Megasphaera phylotype 2 

Megasphaera phylotype 1            N/A    3.20 

Megasphaera phylotype 2             3.20    N/A 

Lachnospiraceae BVAB1            2.02    2.56 

Clostridiales BVAB2                                    2.72    2.93                                

Clostridiales BVAB3                                    2.85                                           4.31 

Prevotella cluster2                                        1.95                                           2.35 

Parvimonas OTU142                                    2.58    3.17   

Fusobacterium gonidiaformans/equinum     1.06    4.38 

Sneathia OTU65             1.14    6.40 

Peptoniphilus lacrimalis                               2.72    4.71 

Mobiluncus mulieris             2.31    4.61 

Gemella OTU86                3.62    3.51    

Anaerococcus tetradius            1.66        2.93 

Dialister cluster51                                        2.92    3.45 

Mycoplasma hominis                                    2.08    3.78 

Ca. Mycoplasma girerdii                              1.32     3.07 

Neisseria gonorrhoeae                                  1.90    5.74 
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methodology would be necessary to confirm these associations and additional studies are needed 

to begin to understand how these organisms interact in the context of their host-microbiome 

communities. 

Interestingly, when examining the strongest co-occurrence results between Megasphaera 

phyotopes and Prevotella sp., we found that most samples with either vaginal phylotype or both 

also have Prevotella in the sample. Using 0.1% as a definition of presence, we found that  99.5% 

of Megasphaera phylotype 2 positive samples also have Prevotella and 95.6% of Megasphaera 

phylotype 1 positive samples also have Prevotella (Fig.8). The most common taxon of 

Prevotella in these samples from the VaHMP STIRRUPS analysis is Prevotella cluster2, made 

up of the four species Prevotella timonensis, Prevotella buccalis, Prevotella OTU46 and 

Prevotella OTU47. Prevotella timonensis is the most prevalent among these four organisms. 

Determining which species within the cluster is actually present would require developing a sub-

classification method for those species, which is beyond the scope of this work. Due to the strong 

correlation between Prevotella and the two Megasphaera phylotypes and the stringent growth 

requirements of vaginal Megasphaera, we hypothesize that the two vaginal phylotypes may 

possibly have a dependence on Prevotella species, or one of their metabolites or other products, 

for growth or survival. Alternatively, the Prevotella species may be earlier colonizers in vaginal 

biofilm formation that is associated with BV, and Megasphaera phylotypes may directly or 

indirectly require Prevotella species for co-aggregation. Additional studies are required to 

understand the relationship between these species in the vaginal microbiome community.  
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Figure 8. Megasphaera phylotypes largely co-occur with Prevotella species 

Bacterial taxa were considered present if they comprised at least 0.1% of the microbiome. Venn 

diagram was created using the ‘venneuler’ package for R. Megasphaera phylotype 1 co-occurs 

with Prevotella in the microbiome 95.6% of the time, while Megasphaera  phylotype 2 co-

occurs with Prevotella in the microbiome 99.5% of the time. 
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Figure 8.  

 

  

 

 

 

 

Prevotella sp. 

N=1045 

N=330 

Megasphaera 

phylotype 1 

Megasphaera 

phylotype 2 

N=81 N=109 N=1 

N=20 



  55 

55  

Vaginal Megasphaera demographic associations 

 After integrating the updated Megasphaera columns into the VaHMP 2013 Data Drop 

dataset including all health history data, demographic and clinical associations with each 

phylotype were analyzed by comparing the prevalence of each phylotype between different 

demographic measures, diagnoses, behavioral measures, etc. The cohort for this analysis was 

made up of 2,633 participants. The size of this cohort is smaller than the previous cohort used for 

the sub-classification validation because these samples had not yet been fully bioinformatically 

processed and connected with their medical and health history data at the outset of this study. 

Twins, pregnant women (by self-report, diagnosis, or clinic ID), samples processed using the 

Qiagen DNA extraction kit instead of the MoBio DNA extraction kit and those whose samples 

did not pass the threshold of 5,000 reads during 16S rDNA sequencing were excluded. Twins 

were excluded to avoid genetic factors skewing the results of the analysis. Pregnant women were 

excluded because pregnancy has been shown to have an effect on the vaginal microbiome 

composition. The Qiagen-processed samples were excluded to avoid introducing DNA 

extraction-related bias in a small number of samples. Samples with less than 5,000 reads were 

excluded to avoid low sequencing quality. The overall prevalence of Megasphaera phylotype 1 

was 17.4% and the overall prevalence of Megasphaera phylotype 2 was 7.3%. 4.1% of profiles 

contained both Megasphaera phylotype 1 and Megasphaera phylotype 2.  

Both phylotypes were significantly associated with African ancestry and negatively 

associated with European ancestry.  Megasphaera phylotype 1 was also negatively associated 

with Asian ancestry (Fig.9). Both phylotypes were also strongly associated with lower 

socioeconomic status with the highest prevalence of each phylotype existing in the “Under $1 

5,000/year” income bracket. Both phylotypes were also significantly negatively associated with  
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Figure 9. Megasphaera phylotypes strongly associated with ethnicity 

This analysis was performed on a cohort of 2,633 women passing the following inclusion 

criteria: non-pregnant (by clinic ID, self-report or diagnosis), non-twin, sample yielded at least 

5,000 reads, process using MoBio Power Soil DNA extraction kit. Presence of a bacterial taxon 

is defined as comprising at least 0.1% of the microbiome. Statistical significance was assessed 

using a two-tailed Student’s T-test with an alpha level of 0.05. Significant associations between 

ethnicity and taxa are denoted with an asterisk.   
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Figure 9. 
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the higher income brackets of “$40-59,000/year”, “$60-79,000/year” and “$80,000+/year” 

(Fig.10). Both phylotypes were also strongly associated with lower levels of education. 

Although only 65 women in the cohort reported having a current female sexual partner, 

we found a significant association between women who have sex with women and Megasphaera 

phylotype 1 (p=0.006). This finding was previously reported in another publication (Fethers, 

Marks, Mindel, & Estcourt, 2000). An immediate cause for this correlation is not clear. We also 

found a strong association between douching and Megasphaera phylotype 1 (p=0.004). It has 

been previously described in the literature that douching is a risk factor for developing bacterial 

vaginosis as it removes the normal flora from the vagina (Cottrell, 2010). Both phylotypes were 

also associated with increased vaginal pH, a marker of vaginal dysbiosis and bacterial vaginosis 

and an increased number of lifetime sexual partners. In those who have had more than 20 

partners, the prevalence of both phylotypes is nearly double the total prevalence in the cohort. A 

few of the positive associations with these phylotypes are often comorbid with poverty including 

the strong association with lower levels of education. This makes it difficult to determine what is 

a true association and what is a covariate considering that many of these parameters are not 

independent.  

 

Vaginal Megasphaera exhibit differential clinical associations 

 Many previous publications had noted that Megasphaera phylotype 1 was associated 

with bacterial vaginosis (Datcu et al., 2014; Fethers et al., 2012; Zozaya-Hinchliffe et al., 

2008).It has also been suggested to be used a diagnostic marker in first void urine samples due to  
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Figure 10. Megasphaera phylotypes associated with lower socioeconomic status 

This analysis was performed on a cohort of 2,633 women passing the following inclusion 

criteria: non-pregnant (by clinic ID, self-report or diagnosis), non-twin, sample yielded at least 

5,000 reads, processed using MoBio Power Soil DNA extraction kit. Presence of a bacterial 

taxon is defined as comprising at least 0.1% of the microbiome. Statistical significance was 

assessed using a two-tailed Student’s T-test with an alpha level of 0.05. Significant associations 

between socioeconomic status and taxa are denoted with an asterisk.   
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Figure 10.  
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its strong associations with the infection (Datcu et al., 2014). Megasphaera phylotype 2 has also 

been associated with BV, but to a lesser degree. One paper suggested that Megasphaera 

phylotype 1 was associated with elevated HIV viremia in the lingual microbiome (Dang et al., 

2012). Megasphaera phylotype 2 was described as potentially correlated to trichomoniasis in a 

single publication (Zozaya-Hinchliffe et al., 2008). We wanted to see if we could confirm and 

extend these observations of differential associations with vaginal infection in the VaHMP 

cohort.  

Vaginal itching, discharge and odor can be a symptom of common vaginal infections or 

sexually transmitted disease. We found that Megasphaera phylotype 2 was significantly 

correlated with self-report of vaginal itching, odor and discharge while Megasphaera phylotype 

1 was significantly correlated with vaginal odor and discharge. We then analyzed the prevalence 

of vaginal infections and sexually transmitted diseases among those who had either one or both 

of the two phylotypes.  Both phylotypes had a positive association with all of the following 

vaginal infections and diseases: genital herpes, chlamydia, gonorrhea, syphilis, trichomoniasis, 

and bacterial vaginosis. However, they were not positively correlated with viral diseases, urinary 

tract infections or yeast infections. We performed a relative risk analysis, a common 

epidemiological tool for analyzing the risk of disease associated with a given taxa. We analyzed 

three common vaginal infections of interest: bacterial vaginosis, yeast infections and 

trichomoniasis. Yeast infections are caused by an overgrowth of the eukaryotic Candida albicans 

and not typically correlated with anaerobic organisms common among women with bacterial 

vaginosis and trichomoniasis (Svobodová, Lysková, & Hamal, 2015). We selected a panel of 

taxa for comparison that were strongly associated with either BV or trichomoniasis. The relative 

risk analysis revealed that while both organisms conferred an increased risk of bacterial 
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vaginosis, the risk conferred by Megasphaera phylotype 1was much greater than Megasphaera 

phylotype 2 (Table 7). In fact the risk associated with Megasphaera phylotype 1 for bacterial 

vaginosis was higher than that of Gardnerella vaginalis, on organism previously thought of as a 

marker of BV (Leppäluoto, 2011). Intriguingly, we also observed a strong association between 

Megasphaera phylotype 2 and trichomoniasis. This association, while not as strong as the near 

100% association of “Ca. Mycoplasma girerdii”, a likely symbiont, was stronger than the 

association of trichomoniasis with Mycoplasma hominis. M. hominis has repeatedly been 

associated with trichomoniasis infections and has been shown to  live out part of its life inside of 

the trichomonad (Rappelli et al., 1998; 2001). These findings support the previous report that 

that Megasphaera phylotype 2 was associated with trichomoniasis. These findings also support 

the hypothesis that these two organisms play distinct roles in the vaginal microbiome.  

 

Megasphaera phylotype 1 not excluded in pregnancy 

 Recent studies in the field of vaginal microbiome research have shown that pregnant 

women typically have a higher prevalence of protective Lactobacillus species than non-pregnant 

women (MacIntyre et al., 2015; Romero et al., 2014). Coincidentally, it has also been 

demonstrated that many bacterial vaginosis associated organisms such as Gardnerella vaginalis 

are less prevalent in pregnant women (MacIntyre et al., 2015). We case-matched a cohort of 421 

pregnant women based on age, race and socioeconomic status. All matches had to be within plus 

or minus one year of age and plus or minus one socioeconomic bracket. The ethnicity match was 

exact. For each one of these samples, the relative proportions of a number of bacterial vaginosis 

associated organisms and other disease-associated organisms were calculated. Student’s two-

tailed T-tests were performed at an alpha level of 0.05 to determine if there was a statistically  



  63 

63  

Table 7. Relative Risk Analysis  

Relative risk values and 95% confidence interval values are shown.  Bacterial taxa were 

determined to be present if at least 0.1% of the reads from the sample were assigned to that 

taxon. The outpatient cohort used for this analysis (n=2633) is comprised of non-twin, non-

pregnant participants (by diagnosis, self-report or clinic-ID). Samples met the threshold of at 

least 5,000 reads and were processed using the MoBio Power Soil DNA extraction kit. Vaginal 

infection status was determined based on clinician diagnosis at time of visit.  
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Table 7.  

 

               Bacterial Vaginosis        Trichomoniasis              Yeast Infection        

Megasphaera phylotype 1    6.01 (5.15-7.02)             1.87 (1.11-3.16)             1.01 (0.71-1.43) 

Megasphaera phylotype 2     3.55 (3.00-4.19)             4.70 (2.79-7.90)             1.31 (0.83-2.05) 

Gardnerella vaginalis               5.45 (3.68-8.07)              2.33 (1.12-4.85)             0.60 (0.45-0.78) 

Prevotella cluster2                    4.13 (3.34-5.12)              1.69 (1.04-2.75)             0.40 (0.30-0.54) 

BVAB2                                     3.41 (2.89-4.03)              1.00 (0.60-1.68)             0.43 (0.30-0.63) 

Sneathia amnii                          3.00 (2.51-3.60)              2.07 (1.28-3.36)             0.53 (0.39-0.71) 

Mycoplasma hominis                2.36 (2.01-2.78)              3.66 (2.29-5.86)             0.94 (0.68-1.30) 

“Ca. Mycoplasma girerdii”      0.93 (0.58-1.49)          18.44 (11.85-28.69)           0.68 (0.29-1.62) 
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significant difference in the prevalence of any of these organisms between the pregnant and non-

pregnant cohorts. The major trend, which has been observed by other groups, was that BV and 

disease associated organisms tend to be lower in prevalence in the pregnant cohort. The 

decreased prevalence of the following organisms was found to be significant: Gardnerella 

vaginalis, Atopobium vaginae, Prevotella cluster2, Sneathia amnii, Dialister cluster51, Dialister 

micraerophilus, Sneathia sanguinegens, Mobiluncus mulieris and Clostridiales BVAB3. Other 

organisms where the trend was less prevalence in pregnancy but the results were not significant 

included Ureaplasma urealyticum/parvum, Prevotella amnii, Mycoplasma hominis, 

Megasphaera phylotype 2 and Mobiluncus curtisii (Fig.11).  

 Surprisingly, some other BV and disease associated organisms were actually more 

prevalent in the pregnant cohort. None of these findings were significant at a 0.05 alpha level. 

The following organisms followed the trend of being more prevalent in pregnancy: 

Lachnospiraceae BVAB1, “Ca. Mycoplasma girerdii”, Phylum TM7 bacterium and 

Megasphaera phylotype 1.  The p-value for the Megasphaera phylotype 1 prevalence was 0.12. 

Because we expected that due to its bacterial vaginosis-associated status that Megasphaera 

phylotype 1 would be less prevalent in pregnancy and it is not, we decided to perform a 

statistical test to determine if it can be stated with confidence that it is not less prevalent in 

pregnant women. In order to test this, we performed a non-parametric Mann-Whitney U Test. 

We accepted the null hypothesis and found that the measurements came from the same 

population (p=0.06). 

 Megasphaera phylotype 1 is of special importance because it has also recently been 

shown to be capable of invading the upper genital tract in one publication examining the 

microbiota present in the UGT of women having hysterectomies (Mitchell et al., 2015). It has  
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Figure 11. BV and disease associated organisms in pregnancy 

This analysis was performed on a case-matched group of 421 pregnant and 421 non-pregnant 

women recruited through the VaHMP project at VCU. Individuals were case-matched based on 

age, socioeconomic status and ethnicity. Presence was defined as comprising at least 0.1% of the 

microbiome. Statistical analysis was performed using a two-tailed Student’s T-test with an alpha 

level of 0.05.  Organisms were selected for study based on their association with bacterial 

vaginosis or another reproductive disease state, such as trichomoniasis.  
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Figure 11.  
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also been associated with the pro-inflammatory and labor-related lipid 12-HETE in a single paper 

addressing the metabolomics of BV (Srinivasan et al., 2015). These associations by no means 

solidify its role as an antagonistic agent in pregnancy but it does highlight this organism as a 

potential target for future study in pregnant cohorts, especially in women at high risk for preterm 

labor and/or delivery. 

 

Identification, cultivation, isolation and sequencing of vaginal Megasphaera 

 To better understand what underlying genomic features may contribute to the differential 

associations with vaginal infections exhibited by the two Megasphaera phylotypes, we attempted 

to culture and sequence their genomes. No genomes representative of these two phylotypes were 

publicly available at the beginning of this study. Vaginal samples were targeted for cultivation 

based on the 16S rRNA profiles and presence of previously uncultivated taxa including the two 

vaginal Megasphaera phylotypes. The 16S rRNA gene of colonies was used to identify 

Megasphaera isolates by PCR amplification using a PCR protocol developed specifically for this 

screening project and universal 16S primers (Table 8). We were able to successfully cultivate 

and isolate one Megasphaera phylotype 1 clone on ThermoScientific Remel Brucella blood agar 

medium and two Megaspahera phylotype 2 clones both on ThermoScientific Remel chocolate 

agar medium. The genomic DNA prepared for the single Megasphaera phylotype 1 clone was 

sequenced using the Roche 454 GS FLX Titanium Pyrosequencing platform according to 

standard protocols as described by the manufacturer (F.Hoffman-La Roche AG). The raw reads 

were assembled using Newbler v2.8. Genomic DNA from the two Megaspahera phylotype 2 

clones was sequenced on the Illumnia MiSeq platform according to standard protocols as 

described by the manufacturer (Illumina, Inc.). Reads were assembled using Velvet. Quality  
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Table 8. PCR protocol for 16S gene amplification 

Step      Temperature     Time (min) 

1     94°C       0:30 

2     94°C       0:30 

3     48°C       0:30 

4     72°C       1:30  

5     Repeat Steps 1-4 29 times 

6     72°C                10:00 

7     4°C       ∞ 

Each PCR reaction tube contained 45μl of Invitrogen Platinum SuperMix, 2μl of deionized 

sterile water, 1μl of 16S forward primer mix and 1μl of reverse primer thoroughly homogenized 

on ice.  
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trimming, low complexity filtering, and Poly-A, Poly-T and N filtering were also implemented to 

increase the quality of the assemblies.  

The single Megaspahera phylotype 1 genome, OTU70, was assembled into 129 contigs 

and had an estimated genome size of 1.8Mb. The largest contig was 281,917bp in length and the 

assembly coverage was 244X. The average read lengths for the two Megaspahera phylotype 2 

clones, identified as strains M2-4 and M2-8, were 107bp and 106bp respectively. The M2-4 

genome was assembled into 311 contigs with the largest contig being 214,182bp in size. The 

M2-4 genome was estimated to be 1.74Mb in size and the assembly had a coverage level of 

675X. The M2-8 genome was assembled into 328 contigs, comparable to M2-4, and its largest 

contig was 283,583bp in length. The projected size of the M2-8 genome was 1.71Mb and the 

coverage level of the assembly was 2203X.  

Single colonies from each isolate were used to inoculate 1.0mL of sBHI + 20% glycerol 

for future culture work. However, after multiple attempts at resurrecting the clones for 

confirmatory biochemical analyses of genomic observations, they were unable to be recovered.  

Scrapings from the single Megasphaera phylotype 1 and both Megasphaera phylotype 2 isolates 

were used to inoculate ThermoScientific Remel chocolate agar plates pre-heated to 37°C, 

ThermoScientific Remel 5% Sheep Blood Brucella blood agar plates pre-heated to 37°C and 

5mL tubes of sBHI+s containing 10% human serum. Plates were stored anaerobically at 37°C for 

24-96 hours in three nested Ziploc bags containing an Anaeropack. Tubes were loosely capped to 

allow gas exchange and stored in an anaerobic incubator at 37°C with 5% CO2 for 24-96 hours. 

Multiple rounds of this approach were attempted with scrapings. Finally, the frozen cultures 

were thawed and resuspended in 5mL of sBHI+s. This yielded no growth. A second duplicate 
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tube created when storing frozen cultures was also used for scrapings with the same resurrection 

methodology. Unfortunately, none of these efforts yielded growth of either phylotype. 

 

Genome analysis and annotation of six vaginal Megasphaera 

 Six genomes were selected for comparative genomic analyses including three cultivated 

at VCU and three genomes publicly available at NCBI including two Megasphaera phylotype 1 

genomes: strains 28L and UPII 199-6 (GCA_000177555.1, GCA_000214495.2) and one 

Megasphaera phylotype 2 genome: strain UPII 135-E (GCA_000221545.2). The three genomes 

sequenced at VCU included one Megasphaera phylotype 1 genome: strain OTU70 and two 

Megasphaera phylotype 2 genomes: strains M2-4 and M2-8. Thus, the comparative genomic 

analysis contained an equal number of Megasphaera phylotype 1 and Megasphaera phylotype 2 

genomes. 

 Basic genome comparisons were performed including calculation of genome size, 

number of protein coding genes and syntenic conservation (Table 9). Megasphaera phylotype 1 

genomes were slightly larger and encoded more genes on average than the Megasphaera 

phylotype 2 genomes. The average genome size of the three Megasphaera phylotype 1 genomes 

was 1.72Mb while the average genome size of the Megasphaera phylotype 2 genomes was 

1.70Mb. The average number of protein-coding genes in the Megasphaera phylotype 1 genomes 

was 1606 while the average number of protein-coding genes in the Megasphaera phylotype 2 

was 1536. Later metabolic and functional analyses would reveal that these small differences 

could have been attributed to a loss of protein-coding genes involved in amino acid biosynthesis 

and nucleotide salvage. Discrepancies in genome size could also be attributed to various sizes of  
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Table 9. Genomic characteristics of six vaginal Megasphaera genomes 

 

            Megasphaera phylotype 1          Megasphaera phylotype 2 

                   OTU70      28L      UPII 199-6         M2-4            M2-8       UPII 135-E 

Genome Size (Mb)        1.78           1.73           1.64              1.74              1.71            1.65         

GC Percentage                   46.33         46.05        46.37             38.94            39.09         38.88 

No. of Contigs                   129             34             45                 311               328             49   

N50 Length                       179993       156177     100595         102411         131070       64000 

No. Contigs @ N50           4                  5              7                   6                   5                8 

Transcriptome Size (Mb)  1.55           1.55          1.46               1.46              1.41           1.44 

No. Predicted Genes          1647          1715         1457             1591             1508          1510  

 

 

 

 

 

 

 

 

 

 

 

 



  73 

73  

phage genetic material, existing embedded in the genomes.  

Syntenic analysis was also performed at both the protein and nucleotide level to examine 

if the synteny was conserved both between genomes of the same phylotype and between 

genomes of different phylotypes. Synteny describes the arrangement of the genes and other 

genetic information in the genome. You would expect two very closely related organisms to have 

more conserved synteny than distantly related organisms. We first analyzed the syntenic 

conservation among Megasphaera phylotype 1 genomes (Fig.12). The synteny was strongly 

conserved among all of the genomes and the sequence similarity at the protein level was nearly 

identical across the entire length of the genome. We then examined Megasphaera phylotype 2 

genomic synteny, which likewise was highly conserved. Finally we examined the conservation 

of synteny between the two distinct phylotypes. There was massive genome rearrangement with 

no large stretches of sequence being conserved. Even at the protein level, the sequence similarity 

was found to average approximately 80 percent. We compared syntenic conservation between 

Megasphaera phylotype 1 and another Megasphaera species, Megasphaera massiliensis. The 

level of syntenic conservation was similar to that found between Megasphaera phylotype 1 and 

Megasphaera phylotype 2 genomes, suggesting that although these two organisms are closely 

related at the 16S rDNA level, they likely represent distinct species.  

Protein-encoding genes were identified in all genomes and GC composition was 

calculated for each protein-encoding gene. We analyzed average GC percentage of protein-

encoding genes as well as whole genome GC composition. The average GC composition of 

genes was conserved among the phylotypes but was starkly different between the two groups. 

The average GC percentage of a gene in a Megasphaera phylotype 1 genome was 46.25 percent  
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Figure 12. Syntenic conservation between phylotypes resembles that of different species 

Panel of protein level syntenic analyses created using PROmer, gnuplot and MUMmerplot. Panel 

A shows strong syntenic conservation and sequence similarity between genomes of 

Megasphaera phylotype 1. Panel B shows a similarly string syntenic conservation and sequence 

similarity between Megasphaera phylotype 2 genomes. Panel C shows the complete loss of 

synteny between the two phylotypes and decreased sequence similarity. Panel D is used for 

comparison of syentenic conservation between two distinct species within the same genus. This 

panel shows the syntenic conservation between a Megasphaera phylotype 1 genome and a 

Megasphaera massiliensis genome.  
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Figure 12. 
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while the average GC percentage of a gene in a Megasphaera phylotype 2 genome was 38.9 

percent. It has yet to be fully elucidated what causes divergent GC evolution, but the current 

belief is that effects of extreme temperatures, extreme acidic or basic environments, loss of DNA 

repair genes and genome size can impact the GC composition (Nishida, 2012). Host-associated 

bacteria often have smaller genomes and lower GC content (Bohlin, Skjerve, & Ussery, 2008). 

This may hold true for Megasphaera phylotype 2 given that it has lost a few essential metabolic 

genes, seems to have a potentially dependent relationship on other bacteria and has been 

associated with other small host-related organisms including Mycoplasma hominis, Neisseria 

gonorrhoeae, and “Ca. Mycoplasma girerdii”. Another hypothesis is the effect of horizontally 

transferred genes. The literature suggests that bacteria cannot take up DNA from the 

environment with a GC content higher than their own chromosome although it may take up more 

AT-rich DNA. This may cause the genome to become more and more GC-poor over time 

(Nishida, 2012). It is less likely that any environmental factors such as temperature or pH play a 

role in the divergent GC composition between these two phylotypes given that they inhabit the 

same niche (Fig. 13).  

Given the divergent GC composition between the two phylotypes, we decided to analyze 

codon usage as well to see if this was also different between phylotypes (Fig.14). Across all six 

genomes, the first letter of the codon is often GC rich, even more so than the genome as a whole 

with most first letter GC percentage hovering above 50%. At the second letter of the codon, both 

phylotypes experience a sharp dip in GC percentage, which ranges between about 37-40% GC 

depending on the phylotype. The position of interest is the third letter in the codon because it can 

often be changed and not result in any functional effect on the protein due to codon degeneracy. 

The Megasphaera phylotype 1 genomes exhibit a GC percentage of approximately 47%, similar  
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Figure 13. GC composition of protein coding genes across phylotypes 

Protein-encoding genes were identified in all genomes using Glimmer3. GC composition was 

calculated for each gene and plotted accordingly. All blue-colored dots represent genes from 

Megasphaera phylotype 1 genomes. All green-colored dots represent genes from Megasphaera 

phylotype 2 genomes. The average GC percentage of protein-coding genes for each phylotype is 

represented by a black bold line. The average GC percentage of a protein-coding gene in a 

Megasphaera phylotype 1 genome was 46.25 percent while the average GC percentage of a 

protein-coding gene in a Megasphaera phylotype 2 genome was 38.9 percent. The gene number 

is random and not indicative of placement in the genome.  
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Figure 13. 
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Figure 14.  Phylotypes show distinct codon preference 

Codon usage was calculated using cusp, a tool in the EMBOSS Tools package. GC percentages 

at each letter position in the codon for all six genomes are shown. Megasphaera phylotype 1 

genomes are on the top panel and Megasphaera phylotype 2 genomes are on the bottom panel.  
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Figure 14.  
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to their overall genome GC content. In contrast, the Megasphaera phylotype 2 genomes also 

exhibit an AT-rich trend with GC percentages at the third letter position between 30-31%. The 

mechanism for this selection causing the third letter shift and distinction in codon preference 

between the phylotypes has yet to be determined. We hypothesize Megasphaera phylotype 2 

organisms may have a stronger dependence on the host, which may be related to this selection. 

Functional analysis was also performed using RAST and the GAP pipeline, which uses 

COG and PFAM databases in coordination with rpsblast (Table 10) (Bateman et al., 2002; 

Marchler-Bauer et al., 2015; Meyer et al., 2008; Tatusov et al., 2000). The largest differences 

observed were in protein metabolism, DNA metabolism and carbohydrate metabolism. We 

observed phylotype-specific differences in entire amino acid biosynthetic pathways and 

nucleotide salvage pathways missing important components. The carbohydrate differences were 

largely related to the use of glucose as a carbon source. Megasphaera phylotype 2 was predicted 

to lack the enzyme hexokinase, which functions to convert glucose into glucose 6-phosphate.   

 

Megasphaera phylotypes display unique metabolic strategies 

 The two vaginal phylotypes exhibited distinct metabolic pathways in a number of 

functional categories as evidenced above. Firstly, they were unique in their carbohydrate 

utilization. While both phylotypes had the majority of the genes required for glycolysis encoded 

in the genome, Megasphaera phylotype 2 genomes lacked hexokinase, an essential gene required 

for catalyzing the reaction converting glucose to glucose-6-phosphate. Because of this loss of an 

essential gene, Megasphaera phylotype 2 organisms likely cannot use glucose as a carbon 

source. All of the genomes were lacking phosphoglucomutase, another enzyme in the pathway  
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Table 10. Functional group analysis of Megasphaera phylotypes using RAST 
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involved in the isomerization reaction of glucose-6-phosphate to fructose-6-phosphate. This 

switching between glucose and fructose has a relatively low activation energy requirement and 

may occur spontaneously in the cell. Based on the lack of this intermediate gene in both 

genomes, it is unlikely that either of them utilize glucose as their many energy source. 

Megasphaera phylotype 1 genomes contain a gene that catalyzes the breakdown of glycogen, 

often present on the vaginal epithelium. However, this pathway is also incomplete and thus it is 

unclear whether or not Megasphaera phylotype 1 organisms are able to use glycogen as an 

energy source.  

 Another observed metabolic divergence between the two phylotypes was in the process 

of nucleotide salvage.  Nucleotide salvage is pertinent to the survival of bacteria because they are 

constantly replicating their genetic material. This must be done efficiently and swiftly as those 

organisms that replicate faster will likely evolve faster and could gain a competitive advantage. 

This explains the push for more compact and utilitarian genomes as well as the use of nucleotide 

salvage pathways. Nucleotide salvage pathways utilize fragments of degraded DNA to rebuild 

nucleotides for new DNA strands. This saves the organism energy and replication time (Fasullo 

& Endres, 2015). Megasphaera phylotype 1 genomes are lacking both adenine 

phosphoribosyltransferase (APRT) and adenosine deaminase (ADA), both enzymes involved in 

the adenine salvage pathway (Fig. 15). Because multiple genes are knocked down, it seems as 

though these organisms have completely lost their ability to salvage adenine bases. They retain 

the other genes involved in the nucleotide salvage pathways.  

 Megasphaera phylotype 2 genomes encode all of the genes necessary for adenine 

nucleotide salvage as well as other nitrogenous bases. However, they have lost the gene cytidine 

deaminase, which functions in the breakdown of cytosine to uridine a precursor molecule to both  
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Figure 15. Adenine base nucleotide salvage pathways lost in Megasphaera phylotype 1 

This representation shows a visualization of the various nucleotide salvage pathways of adenine 

nitrogenous bases. All three genomes of Megasphaera phylotype 1 have lost the genes adenine 

phosphoribosyltransferase (APRT) and adenosine deaminase (ADA), marked by large red Xs in 

the diagram.  
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Figure 15.  
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cytosine and uracil. This loss of cytidine deaminase inhibits the organism’s ability to efficiently 

recycle cytosine nitrogenous bases. This pattern is intriguing because the phylotype with the high 

GC composition has lost the ability to salvage adenine and the phylotype with the exceptionally 

low GC composition has lost the ability to salvage cytosine bases. This begs the question of 

whether these organisms lost the genes at some point in the past and have since had a strain on 

their replication speed leading to strong selection towards extreme GC divergence, or if, perhaps 

more likely, they have less of those bases to replicate in the genome and thus the salvage genes 

were lost over time due to weak selection and pressure for an ever smaller genome. This question 

is intriguing but could not be examined experimentally during the time course of this study.  

 The phylotypes also differ in their ability to synthesize amino acids. Megasphaera 

phylotype 2 genomes differ from Megasphaera phylotype 1 genomes in their ability to 

biosynthesize three important amino acids: leucine, tryptophan and cysteine. Megasphaera 

phylotype 2 organisms are capable of converting between serine and cysteine using a pathway of 

four conserved enzymes. Megasphaera phylotype 1 genomes have lost this pathway and must 

make cysteine bases the more time and energy consuming way. Megasphaera phylotype 2 

genomes save energy by interconverting between amino acids based on what is freely available 

in the environment. Megasphaera phylotype 2 genomes have also lost a couple of very important 

pathways. They are incapable of making leucine due to the loss of five genes catalyzing the 

conversion of pyruvate to leucine. Megasphaera phylotype 1 genomes have retained this 

functionality. Leucine is one of three branched chain amino acids and is essential to the 

development of proper protein structure. Megasphaera phylotype 2 must be obtaining leucine 

from its environment or host.  
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Finally, Megasphaera phylotype 2 has lost the ability to biosynthesize the amino acid 

tryptophan after losing a six-gene enzymatic pathway converting chorismate to tryptophan 

(Fig.16, Fig. 17). Tryptophan is an interesting amino acid because it has been recently studied in 

terms of bacterial pathogenesis. It plays a role in chlamydial persistence as well as tissue 

tropism, an intriguing relationship to our study model. It is hypothesized that tryptophan may 

help bacteria evade IFN- related killing (Akers & Tan, 2006; Bhutia, Babu, & Ganapathy, 2015; 

Bonner, Byrne, & Jensen, 2014). This mode of bacterial killing usually acts by depleting the 

tryptophan and causes the cells to die off. If the organism is capable of biosynthesizing its own 

tryptophan, it may persist for longer periods of time.   

 

Phylogenetic analyses reveal vaginal Megasphaera species to be an outgroup 

 In order to determine the placement of the vaginal Megasphaera phylotypes within the 

tree of life and within the family Veillonellaceae, we first performed a phylogenetic analysis of 

the full-length 16S rRNA gene. This gene is often used for phylogenetic analyses because it is 

very highly conserved across all bacterial species. It is important functionally for the translation 

of messenger RNA into proteins. Because a loss of function in this gene would be lethal, there is 

strong stabilizing pressure on the gene, preventing the fixing of substitutions along the length of 

the gene. Importantly, the gene contains interspersed conserved regions and nine variable 

regions. Because of the strength of conservation, it is easy to create universal primers to amplify  

 

 

 



  88 

88  

Figure 16. Tryptophan biosynthesis in Megasphaera phylotype 1 

This metabolic map highlights which genes are present in the Megasphaera phylotype 1 

genomes. Each color (red, yellow, blue) represents a different genome. Note the intact 

tryptophan biosynthesis pathway.  
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Figure 16.  
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Figure 17.  Tryptophan biosynthesis in Megasphaera phylotype 2 

This metabolic map highlights which genes are present in the Megasphaera phylotype 2 

genomes. Each color (red, yellow, blue) represents a different genome. Note the lost six-gene 

pathway converting chorismate to tryptophan via the tryptophan biosynthesis pathway.  
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Figure 17.  
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the 16S rRNA gene from the genome. Due to the presence of the variable regions, we are able to 

determine the relatedness of species within the tree of life. 

 The 16S rRNA gene is a good option for a convenient preliminary phylogeny placement, 

but it is not a perfect model. Due to the high level of conservation in the gene, elucidation of the 

tree structure out at the branches of a tree can be difficult. To permit accurate prediction of the 

true phylogeny, we would ideally utilize all genetic material that has been passed down directly 

from a common ancestor, known as orthologous genes. Inclusion of paralogs, which may have 

unique phylogenetic history, and any laterally transferred genes have the potential to convolute 

the tree. We utilized single copy orthologs conserved at the family level for this analysis. We 

used the online database OrthoDB to find 351 orthologs conserved across the family 

Veillonellaceae (R. M. Waterhouse et al., 2013). We used reciprocal BLAST to find and validate 

the orthologs within our genomes. We developed many in-house perl, python and bash scripts to 

automate the alignment, formatting and extraction of orthologs. Those orthologs that had 

multiple hits across the genome were excluded for clarity.  

 Once the orthologs were extracted, each gene was individually aligned using MUSCLE 

and visually examined for any large gaps or misalignments (Edgar, 2004). Genes with poor 

alignments were also removed yielding a total of 321 orthologs to be used in the analysis. For 

each genome, all orthologous genes were concatenated together to form one large sequence. A 

100-bootsrap maximum-likelihood tree was created using these concatenated sequences 

(Stamatakis, 2014).  The phylogenetic analysis grouped the oral Megasphaera together with a 

vaginal isolate and the lone Anaeroglobus species; the gut Megasphaera were grouped together 

as would be expected. Surprisingly, the Dialister species that was assumed to be an outgroup 

was placed inside of the two vaginal Megasphaera phylotypes, which grouped closely to each 
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other and grouped cleanly into the two phylotypes (Fig.18). The bootstrap score was 100 on the 

branch placing Dialister inside the two vaginal Megasphaera clades. In order to determine if this 

was an error caused by not declaring the outgroup, we ran the analysis again, this time 

deliberately naming the Dialister as the outgroup in the RAxML-HPC arguments. This analysis 

returned a tree in which the groupings remained largely the same, with the oral and gut isolates 

internal. However it placed the two vaginal Megasphaera clades together and just inside the 

Dialister. The bootstrap score for the branch placing the vaginal clades inside of our forced 

outgroup was zero (Fig.19)  

To rule out the possibility of artifacts that would cause such an error, we manually 

examined the alignments for each ortholog and created phylogenetic trees for each individual 

ortholog. We observed that the trees varied widely for each gene and no taxon was placed as an 

outgroup more often than the others. While variability is expected when examining gene trees 

even for organisms with a clearly defined phylogeny, we observed especially high variability. 

This result may be expected given the ambiguity of the phylogeny of these organisms. We added 

another genome to the full 321 ortholog analysis, by selecting Veillonella parvula, from the 

closely related genus Veillonella, an organism that is farther out in the Veillonellaceae family 

tree. We repeated the analysis and again it placed the two vaginal Megasphaera phylotype clades 

outside of all of the other taxa, grouping the Veillonella parvula and Dialister micraerophilus 

together, with the remainder of the species internal. Again, there was strong bootstrap support for 

these branch placements (Fig.20). We forced Veillonella to be the outgroup and the maximum 

likelihood tree placed Dialister just inside the Veillonella supporting previous research assigning 

these as closely related genera. It placed the two vaginal phylotypes inside of the Dialister and 

the other species internal. Support for the outgroup branching was zero (Fig. 21).   
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Figure 18. Phylogenetic analysis of 321 orthologs with Dialister as an outgroup 

This maximum likelihood tree was created using RAxML-HPC with 100 bootstrap replications. 

We employed the gamma model of heterogeneity, optimization of substitution rates and the 

WAG model of amino acid substitution. Dialister micraerophilus was selected as an outgroup. 

Here we see both Megasphaera phylotypes grouping outside of Dialister and the other 

Megasphaera genomes. Accession numbers of genomes used for this analysis are: 

GCA_000177555.1, GCA_000214495.2, GCA_000221545.2, GCA_000763195.1, 

GCA_000621885.1, GCA_000283495.1, GCA_000165735.1, GCA_000455225.1, 

GCA_000417505.1, GCA_000417525.1, GCA_000478965.1, GC_000239275.1, and 

GCA_000183445.2.  
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Figure 18.  
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Figure 19. Phylogenetic analysis of 321 orthologs with Dialister forced to be an outgroup 

This maximum likelihood tree was created using RAxML-HPC with 100 bootstrap replications. 

We employed the gamma model of heterogeneity, optimization of substitution rates and the 

WAG model of amino acid substitution. Dialister micraerophilus was selected as an outgroup 

and explicitly stated as an outgroup when running the analysis. Note the bootstrap score of zero 

placing the Dialister at the root. Accession numbers of genomes used for this analysis are: 

GCA_000177555.1, GCA_000214495.2, GCA_000221545.2, GCA_000763195.1, 

GCA_000621885.1, GCA_000283495.1, GCA_000165735.1, GCA_000455225.1, 

GCA_000417505.1, GCA_000417525.1, GCA_000478965.1, GC_000239275.1, and 

GCA_000183445.2. 
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Figure 19.  
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Figure 20. Phylogenetic analysis of 321 orthologs with Veillonella as an outgroup 

This maximum likelihood tree was created using RAxML-HPC with 100 bootstrap replications. 

We employed the gamma model of heterogeneity, optimization of substitution rates and the 

WAG model of amino acid substitution. Veillonella parvula was selected as an outgroup. Note 

the consistent outgrouping of the two vaginal Megasphaera species and the close relationship 

between Veillonella and Dialister. Accession numbers of genomes used for this analysis are: 

GCA_000177555.1, GCA_000214495.2, GCA_000221545.2, GCA_000763195.1, 

GCA_000621885.1, GCA_000283495.1, GCA_000165735.1, GCA_000455225.1, 

GCA_000417505.1, GCA_000417525.1, GCA_000478965.1, GC_000239275.1, 

GCA_000183445.2 and GCA_000024945.1. 
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Figure 20.  
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Figure 21. Phylogenetic analysis of 321 orthologs with Veillonella forced to be an outgroup 

This maximum likelihood tree was created using RAxML-HPC with 100 bootstrap replications. 

We employed the gamma model of heterogeneity, optimization of substitution rates and the 

WAG model of amino acid substitution. Veillonella parvula was selected as an outgroup and 

explicitly stated as an outgroup when running the analysis. Note the bootstrap score of zero 

placing the Veillonella at the root. Accession numbers of genomes used for this analysis are: 

GCA_000177555.1, GCA_000214495.2, GCA_000221545.2, GCA_000763195.1, 

GCA_000621885.1, GCA_000283495.1, GCA_000165735.1, GCA_000455225.1, 

GCA_000417505.1, GCA_000417525.1, GCA_000478965.1, GC_000239275.1, 

GCA_000183445.2 and GCA_000024945.1. 
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Figure 21.  

 

 

 

 

 

 

 



  102 

102  

We hypothesized that our vaginal Megasphaera may possibly represent a new clade 

entirely outside of the Megasphaeara, Veillonella and the Dialister. We looked to the literature 

for a more comprehensive representation of the phylogeny of the family Veillonellaceae. We 

found that based on a 16S rRNA gene analysis the family groups into two clades. The first clade 

contains the genera Megasphaera, Dialister, Veillonella, and Anaeroglobus while the second 

clade was represented by a three way polytomy (Shetty, Marathe, Lanjekar, Ranade, & Shouche, 

2013). We selected an organism from each branch of the polytomy, hypothesizing that the 

vaginal phylotypes would sit outside of the first clade but still inside of the second clade. We 

selected Sporomusa ovata (NZ_AUIL00000000.1), Anaeromusa acidaminophila 

(NZ_ARGA00000000.1) and Selenomonas ruminantium (GCA_000284095.1) and regenerated 

the orthologs. Due to poor assemblies of the genomes available at NCBI, many of the orthologs 

were not identified in the assemblies, leaving us with 225 conserved single copy orthologs. After 

running the analysis with no outgroup specification, the vaginal phylotypes were again placed 

outside of all of the other taxa (Fig.22).  

We took another approach looking at conserved genes that other groups have used for 

phylogeny with the Veillonella outgrouped dataset (Arif et al., 2008; Aujoulat, Bouvet, Jumas-

Bilak, Jean-Pierre, & Marchandin, 2014; Mashima, Kamaguchi, Miyakawa, & Nakazawa, 2013). 

When analyzing the DnaJ tree, Veillonella did outgroup on its own with a branch support of 81. 

When analyzing the RpoB tree, the two vaginal phylotypes outgrouped again with branch 

support of 100 (Fig.23, Fig. 24). Several groups have reported a great deal of heterogeneity 

within the Veillonellaceae family at the level of the 16S rRNA gene, particularly within the 

Veillonella (Marchandin et al., 2003; Michon et al., 2010). This may explain the difference 

between the 16S rRNA gene tree and the ortholog tree given that most of our genomes are not  
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Figure 22. Phylogenetic analysis of 225 orthologs with Selenomonas, Sporomusa & 

Anaeromusa 

This maximum likelihood tree was created using RAxML-HPC with 100 bootstrap replications. 

We employed the gamma model of heterogeneity, optimization of substitution rates and the 

WAG model of amino acid substitution. The three taxa combination of Aneromusa, Sporomusa 

and Selenomonas were selected to form an outgroup since they fell outside of the Veillonella, 

Dialister, Megasphaera clade but remained in the Veillonellaceae family. Accession numbers of 

genomes used for this analysis are: GCA_000177555.1, GCA_000214495.2, 

GCA_000221545.2, GCA_000763195.1, GCA_000621885.1, GCA_000283495.1, 

GCA_000165735.1, GCA_000455225.1, GCA_000417505.1, GCA_000417525.1, 

GCA_000478965.1, GC_000239275.1, GCA_000183445.2, GCA_000024945.1, 

GCA_000284095.1, GCA_000423685.1, and GCA_000374545.1. 
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Figure 22.  
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Figure 23. Single copy orthologous gene DnaJ phylogenetic analysis 

This maximum likelihood tree was created using RAxML-HPC with 100 bootstrap replications. 

We employed the gamma model of heterogeneity, optimization of substitution rates and the 

WAG model of amino acid substitution. This analysis was performed using one single copy gene 

from each of the 20 genomes. Accession numbers of genomes used for this analysis are: 

GCA_000177555.1, GCA_000214495.2, GCA_000221545.2, GCA_000763195.1, 

GCA_000621885.1, GCA_000283495.1, GCA_000165735.1, GCA_000455225.1, 

GCA_000417505.1, GCA_000417525.1, GCA_000478965.1, GC_000239275.1, 

GCA_000183445.2, GCA_000024945.1, GCA_000284095.1, GCA_000423685.1, and 

GCA_000374545.1. 

 

 

 

 

 

 

 

 

 

 



  106 

106  

Figure 23.  
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Figure 24. Single copy orthologous gene RpoB phylogenetic analysis 

This maximum likelihood tree was created using RAxML-HPC with 100 bootstrap replications. 

We employed the gamma model of heterogeneity, optimization of substitution rates and the 

WAG model of amino acid substitution. This analysis was performed using one single copy gene 

from each of the 20 genomes. Accession numbers of genomes used for this analysis are: 

GCA_000177555.1, GCA_000214495.2, GCA_000221545.2, GCA_000763195.1, 

GCA_000621885.1, GCA_000283495.1, GCA_000165735.1, GCA_000455225.1, 

GCA_000417505.1, GCA_000417525.1, GCA_000478965.1, GC_000239275.1, 

GCA_000183445.2, GCA_000024945.1, GCA_000284095.1, GCA_000423685.1, and 

GCA_000374545.1. 
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Figure 24.  
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circular and thus the multiple copies of the gene are not accurately represented. When a genome 

is assembled from contigs, if a genome is not circularized, 16S rRNA gene sequences often 

collapse together due to their similarity, yielding a consensus sequence representative of all of 

the 16S rRNA genes. Laterally transferred genes may also be contributing to the difference 

observed between the 16S rRNA and ortholog trees. Some publications have discussed the need 

for validation of the phylogeny of the family Megasphaera (Yutin & Galperin, 2013). The genus 

was once a member of the class Clostridia but was moved to the class Negativicutes. There is 

evidence that it should be placed back into Clostridia (Yutin & Galperin, 2013).  

This is an intriguing result but this level of phylogenetic analysis is unfortunately beyond 

the scope of this current project. There may be a confounding evolutionary factor such as 

horizontal transfer or transduction at play. Future work will include analysis at the nucleotide 

level instead of at the protein level, recreating phylogeny of the entire Veillonellaceae family 

using single copy orthologs and/or conserved ribosomal proteins, an approach which was been 

utilized by other groups analyzing this family of bacteria (Yutin & Galperin, 2013).  
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DISCUSSION 

 

 

 Since they were first identified by 16S rRNA sequencing in 2008, the two known vaginal 

phylotypes of the genus Megasphaera, known in the vaginal microbiome research community as 

Megasphaera phylotype 1 and Megasphaera phylotype 2, have been repeatedly associated with 

negative reproductive health outcomes (Datcu, 2014; Datcu et al., 2014; Fethers et al., 2012; 

Marconi, Donders, Parada, Giraldo, & da Silva, 2013; D. B. Nelson et al., 2014; D. E. Nelson et 

al., 2012; Srinivasan et al., 2015; Zozaya-Hinchliffe et al., 2008). Megasphaera phylotype 1 has 

been observed to be associated with bacterial vaginosis in several publications. This more 

prevalent phylotype’s association with the common vaginal infection is so consistent that it has 

been suggested as a biomarker for the condition using first-void urine samples (Datcu et al., 

2014). Megasphaera phylotype 1 has been associated with increased HIV viremia in HIV-

positive women in a single study (Dang et al., 2012). It was also associated with an increased 

risk of spontaneous preterm delivery in women who had previously given birth prematurely, 

demonstrated to be able to invade the upper genital tract in a single study of women having 

hysterectomies and found to be correlated with the inflammatory lipid marker 12-HETE, which 

is present in higher concentrations during active labor (Mitchell et al., 2015; D. B. Nelson et al., 

2014; Srinivasan et al., 2015).   

Megasphaera phylotype 2 has also been associated with bacterial vaginosis in a smaller 

number of studies and exhibits a weaker association with the condition compared to 
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Megasphaera phylotype 1. Megasphaera phylotype 2 has also been associated with 

trichomoniasis, the most common non-viral sexually transmitted disease worldwide (Zozaya-

Hinchliffe et al., 2008).  Given the strong associations found to exist between these two closely 

related organisms and highly prevalent vaginal infections as well as Megasphaera phylotype 1’s 

association with preterm labor and delivery, these organisms were of interest to our group. Most 

of the information currently available about these organisms is limited to 16S rRNA association 

studies and at the time that this study began, there were no genomes available in any public 

databases. Our aims for this study were threefold. First, we set out to develop a method to sub-

classify these organisms in our dataset of 16S rDNA V1-V3 reads. After achieving sub-

classification, we sought to associate these microbial community data with clinical and 

demographic data. The third aim was to cultivate, isolate and sequence genomes representative 

of each of these phylotypes, characterize the genomes and examine the differences existing 

between the two phylotypes with the goal of informing our clinical findings using genomic 

insights.  

 We were able to develop a method for sub-classifcation using a USEARCH based 

approach in combination with an updated and comprehensive Megasphaera reference database 

(Edgar, 2010). This method was tested for precision and was found to concordantly assign reads 

to the phylotype level at the minimum read length of 200bp and at the full length greater than 

ninety-nine percent of the time. Reads assigned to the genus Megasphaera by the RDP classifier 

were used for a cluster analysis with AbundantOTU to search for new Megasphaera organisms 

detected in our samples that were not contained in the reference database (Wang et al., 2007; Ye, 

2011). Three unique clusters were discovered including one representative of Anaeroglobus 

geminatus, an oral bacterium likely misclassified as a separate genus, one cluster ninety-six 
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percent similar to Megasphaera massiliensis, which was only present in a few samples, and one 

cluster for which a full genome had been submitted to a public database. This genome was 

labeled BV3C16-1, suggesting that it may be associated with bacterial vaginosis. After further 

analysis, it was determined to be present only in BV-positive samples, representing a strongly 

associated taxon. However, it was only present in four individuals and thus was excluded from 

further analyses.  

 After sub-classifying the Megasphaera reads, reads terminal at higher taxonomic levels 

above Megasphaera including Veillonellaceae, Clostridiales, Clostridia, Firmicutes and Bacteria 

by the RDP classifier were also screened for potential Megasphaera hits using the new 

USEARCH approach. Thousands more Megasphaera reads were detected and added to further 

analyses. In-house scripts were utilized to add the updated Megasphaera data to an existing 

database of 16S rRNA gene microbiome data and clinical and demographic data. The 16S rRNA 

survey was used to analyze microbial co-occurrence. We sought to determine which organisms 

often co-occurred with each of the two phylotypes. As expected, the two phylotypes often co-

occurred with other bacterial vaginosis associated bacteria. Interestingly, Megasphaera 

phylotype 2 was also associated with organisms known to be associated with trichomniasis 

including Mycoplasma hominis and “Ca.  Mycoplasma girerdii”. This finding suggested that this 

organism could be correlated with trichomoniasis infection and the associated microbial 

community. Both phylotypes were also strongly associated with Prevotella species. More than 

ninety-five percent of Megasphaera phylotype 1 and ninety-nine percent of Megasphaera 

phylotype 2 organisms were identified in samples that also contained Prevotella species, 

suggesting a potentially dependent relationship between the taxa.  
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 Both phylotypes were positively associated with African descent and negatively 

associated with European descent. Megasphaera phylotype 1 was also negatively associated with 

Asian descent. The strength of these associations suggests that there may be a genetic factor 

predisposing certain ethnic groups to the acquisition of these phylotypes. Previous research has 

shown that African descent is positively associated with other BV-associated bacteria and the 

less protective Lactobacillus iners species (Fettweis, Brooks, et al., 2014a). Protective 

Lactobacillus species including Lactobacillus crispatus have been associated with European 

ancestry, potentially explaining the negative association with these BV-associated phylotypes 

(Ravel et al., 2011). Both phylotypes were also strongly associated with markers of lower 

socioeconomic status including yearly income and level of education and negatively associated 

with markers of higher socioeconomic status including yearly income, level of education, use of 

probiotics and vitamins. This suggests that there may be a socioeconomic associated risk to 

carriage of BV-associated organisms like these two phylotypes.  

 Both phylotypes were also associated with a number of common sexually transmitted 

infections including chlamydia, syphilis and gonorrhea. We hypothesize that these associations 

may be partly explained by the association of both phylotypes with an increased number of 

sexual partners. Interestingly, Megasphaera phylotype 1 was more strongly associated with 

bacterial vaginosis than Gardnerella vaginalis in a relative risk analysis. We hypothesize that 

this effect may be explained by the smaller prevalence of Megasphaera phylotype 1 in the total 

cohort in comparison to Gardnerella.  Gardnerella has been prototypically described as a marker 

of bacterial vaginosis but can be found in microbial communities of women without any 

diagnosis (Fredricks, Fiedler, Thomas, Oakley, & Marrazzo, 2007).  This subclinical presence of 

Gardnerella vaginalis is especially prevalent among women of African ancestry who have been 
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largely underrepresented in previous vaginal microbiome work (Datcu, 2014; Ravel et al., 2011; 

Romero et al., 2014). The VaHMP dataset addresses this issue: more than two-thirds of the 

participants were women of African ancestry (Fettweis, Serrano, Girerd, Jefferson, & Buck, 

2012a).  

Megasphaera phylotype 2 was strongly associated with trichomoniasis infection by a 

relative risk analysis. This finding supported one previously published association of this 

phylotype with trichomoniasis (Zozaya-Hinchliffe et al., 2008). This phylotype was also 

associated with other trichomoniasis-associated organisms in the vaginal microbiome including 

Mycoplasma hominis and “Ca. Mycoplasma girerdii”. Megasphaera phylotype 2 was also 

associated with self-reported vaginal itching, a common symptom of trichomoniasis, while 

Megasphaera phylotype 1 was not. These findings together suggest that Megasphaera phylotype 

2 may be most prevalent among women with a current trichomoniasis infection.  

After analyzing the prevalence of both organisms in a case-matched cohort of 421 

pregnant and 421 non-pregnant women, Megasphaera phylotype 1 was found not to be excluded 

in pregnancy. Previous research suggests that pregnancy is characterized by decreasing 

prevalence of BV-associated organisms coupled with increasing prevalence of Lactobacillus 

species (Kiss et al., 2007; MacIntyre et al., 2015; Romero et al., 2014; Verstraelen et al., 2009). 

This organism defies that trend, although the finding was not statistically significant (p=0.12). 

Given this specific organism’s lack of exclusion with pregnancy, association with spontaneous 

preterm birth, suggested ability to invade the upper genital tract and association with the 

inflammatory labor-associated lipid marker 12-HETE, it should be a target of future research 

examining the microbial contribution to spontaneous preterm labor and preterm birth.  
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Three vaginal Megasphaera strains, including one Megasphaera phylotype 1 organism 

and two Megasphaera phylotype 2 organisms, were cultivated from mixed vaginal swab 

samples, isolated and sequenced using next-generation sequencing technologies. Three publicly 

available genomes including two Megasphaera phylotype 1 genomes and one Megasphaera 

phylotype 2 genome selected to be used in a comparative genomic analysis. These six genomes, 

three of each phylotype, were annotated and analyzed for gene content, metabolic potential and 

similarity. Overall these genomes were similar in genic content and size. Megasphaera 

phylotype 1 genomes were slightly larger and contained more genes on average than 

Megasphaera phylotype 2 genomes. Synteny between the two phylotypes was not conserved and 

massive genome rearrangement was apparent. The syntenic conservation between the two 

phylotypes mimicked the syntenic conservation present between two different species of 

Megasphaeara. This lack of synteny may be a characteristic of this genus. The GC composition 

of genes was also starkly different between the two phylotypes with the average GC composition 

of genes in Megasphaera phylotype 1 genomes being 46.25% and the average GC composition 

of genes in Megasphaera phylotype 2 genomes being 38.90%.  

Although most of the metabolic pathways were conserved between these phylotypes, they 

differed in important ways. Most notably, they exhibited differential metabolic strategies for 

carbohydrate metabolism, amino acid biosynthesis and nucleotide salvage. Megasphaera 

phylotype 2 genomes had lost the enzyme hexokinase, potentially rendering them incapable of 

using glucose as a carbon source via the process of glycolysis. This finding suggests that these 

two phylotypes may use different carbon sources for energy in the vaginal microbiome. 

Megasphaera phylotype 1 genomes had lost adenosine deaminase and adenine 

phosphoribosyltransferase, two essential genes involved in the salvage of adenine bases. 
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Conversely, Megasphaera phylotype 2 genomes had lost cytidine deaminase, an essential gene in 

the salvage of cytosine bases. This was especially interesting given the drastic differences in GC 

composition between the two phylotypes. It is unclear whether these gene losses are the result of 

relaxed selection for maintaining these nucleotide salvage pathways due to the GC skew in the 

genomes or if these gene losses occurred first and resulted in a shift in GC composition over 

time.  

Megasphaera phylotype 2 had lost the ability to biosynthesize the amino acid cysteine, 

although it maintained the ability to convert serine amino acids into cysteine. This organism had 

also lost the ability to biosynthesize leucine, an amino acid important for protein structure and 

tryptophan. Tryptophan biosynthesis has been suggested as a potential virulence factor as it 

allows the evasion of IFN-γ mediated killing (Bhutia et al., 2015). Collectively, these genomic 

findings suggest that Megasphaera phylotype 2 genomes have lost essential metabolic functions 

and reduced their genomes over time. This in combination with the AT-rich quality of the 

genomes suggests that these organisms may be more host-associated than Megasphaera 

phylotype 1. Intriguingly, Megasphaera phylotype 2 shares the AT rich quality, reduced genome 

and evidence of genome plasticity with vaginal Mycoplasma, which have the capability of living 

out part of their life cycle inside of the trichomonad (Rappelli et al., 2001). It is intriguing to 

hypothesize that Megasphaera phylotype 2 may also be capable of this sort of parasitic 

relationship, although this would require further experimentation.  

 We performed a phylogenetic analysis using 321 single-copy orthologous genes from 16 

genomes including publicly available Megasphaera, Anaeroglobus and Dialister genomes. 

Dialister micraerophilus was selected as an outgroup for this analysis. Unexpectedly, this 

analysis placed the six vaginal Megasphaera pyhlotypes outside of the single Dialister species. 
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This branching had 100 percent bootstrap support. After forcing the Dialister species to be an 

outgroup in the analysis, its placement at the root had zero bootstrap support. We attempted the 

same analyses with further related organsism including Veillonella parvula, Selenomonas 

ruminantium, Sporomusa ovata and Anaeromusa acidaminophila.  These analyses also placed 

the two phylotypes outside of the other organisms. There are two explanations for this finding. 

The first is that our selection of genes is somehow biased to select for genes placing the 

Megasphaera phylotypes in the incorrect place in the tree. The second is that these organisms 

may not in fact be Megasphaera and may represent two Veillonellaceae family species more 

dissimilar to other Megasphaera than previously described using 16S rRNA phylogenetic 

analyses.  

 In conclusion, these two phylotypes, although closely related at the 16S rRNA level, are 

distinct at the genome level both structurally and functionally. They exhibit unique metabolic 

strategies, genome structure and GC composition. The reduced genome and metabolic potential 

of Megasphaera phylotype 2 suggests that this organism may be more host-associated than 

Megasphaera phylotype 1.  These organisms also exhibit distinct clinical features. While both 

phylotypes are associated with negative reproductive health outcomes and a number of risk 

factors for bacterial vaginosis, Megasphaera phylotype 1 exhibits a stronger association with 

BV. Megasphaera phylotype 2 is strongly associated with trichomoniasis, an infection often co-

diagnosed with BV. In combination, these distinct clinical and genomic characteristics suggest 

that these organisms are less similar than anticipated. Although they have been grouped together 

at the genus level for some vaginal microbiome association analyses, our findings suggest that 

this is inadvisable. Based on the syntenic and phylogenetic analyses, these organisms likely 

represent separate species and are potentially incorrectly classified as Megasphaera.  These two 
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distinct vaginal Megasphaera phylotypes likely play unique roles in the vaginal microbial 

community and their genomic composition in combination with microbial and clinical 

associations suggest phylotype-specific niche specialization. 
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