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 The role of cytosine modifications on nuclear transcription has been well characterized, 

but the function of DNA methylation in the mitochondrial genome has not been determined.  

Previous studies conducted by the Taylor laboratory have shown overexpression of the 

mitochondrial isoform of DNMT1 leads to strand-specific changes in gene expression.  Here, we 

show that increased mtDNMT1 expression leads to an increase in the polycistronic transcript 

encoding the ND1 and Cox1 sequences.  In order to understand the mechanistic basis of these 

changes, we investigated the effects of CpG methylation in the heavy strand promoter on 

transcription initiation and TFAM binding.  Methylation was found to increase transcription 

initiation from HSP1 and result in larger TFAM:DNA complexes forming at lower protein 

concentrations.  Our data suggest a functional role for cytosine methylation in the mitochondria, 

which we propose may have an effect on oxidative phosporylation and cellular function. 
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Introduction 

 

Epigenetics: an overview 

 Epigenetics is the study of heritable changes in gene expression that are not due to 

changes in the DNA sequence [1].  Although DNA is often represented as linear and protein-

free, in the nucleus it is heavily condensed to form chromatin.  This is achieved through several 

layers of compaction.  The most basic unit of compacted DNA and protein is the nucleosome, 

which consists of ~165 base pairs of DNA wrapped around a histone hetero-octamer [2].  This 

repeating motif results in five to tenfold compaction of the DNA, but makes the DNA sequence 

less accessible to regulatory proteins [2].  These nucleosomes are then coiled into a 30 nm fiber, 

which form higher order structures that result in the formation of the metaphase chromosome [2].  

Different modifications of the exposed histone tails are correlated to compacted, silenced 

chromatin (heterochromatin) or open, actively transcribed chromatin (euchromatin). 

 Epigenetic modifications are also present on the DNA itself in the form of cytosine 

modifications [1].  Cytosines in cytosine-guanine (CpG) dinucleotides can be modified with 

methyl (5mC) or hydroxymethyl (5hmC) groups, which are associated with compaction and 

transcriptional silencing [1] or active demethylation and expression[3] of a region, respectively.  

CpG methylation patterns are established during mammalian development by DNA 

methytransferases (DNMT) 3a and 3b [4] and maintained through cell division by DNMT1, but 

there is functional overlap between the different enzymes [5]. 5mC is converted to 5hmC by the 
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ten-eleven translocation (TET) family of enzymes [6].  Cytosine methylation can recruit methyl 

binding proteins (MBDs), which in turn recruit histone-modifying enzymes, resulting in the 

perpetuation of allele transcription states [7]. 

 The effects of cytosine modifications on transcription are fairly well understood for the 

nuclear genome, but there is a second source of genetic information in the cell, the mitochondrial 

genome, and the effects of CpG modification in this separate genome are not understood. 

 

The Mitochondrial Genome 

Each mitochondrion contains between 1 and 15 copies of the mitochondrial genome [8], 

and human cells can contain hundreds to one thousand mitochondria [9].  Accordingly, the 

number of mitochondrial genomes per cell can vary, but mitochondrial DNA (mtDNA) 

represents about 1% of the total DNA in a cell [10].   However, mitochondrial DNA contains the 

genes encoding essential components of the electron transport chain, making its regulation and 

expression necessary for normal energy homeostasis. 

The mitochondrial genome is a 16,569 bp circular DNA encoding 2 rRNAs, 22 tRNAs, 

and 13 proteins (Figure 1).   These genes are distributed across both strands of the genome, 

which are referred to as the light and heavy strands due to their different buoyant densities in 

cesium chloride gradients [11].  The heavy strand encodes the two rRNAs, 14 tRNAs and 12 of 

the 13 proteins, while the light strand encodes a single protein (ND6) and the remaining 8 tRNAs 

[12].  The mitochondrial genome lacks introns, but contains a noncoding region, called the D-

loop, that includes transcriptional promoters and the origin of replication for the heavy strand 

[13]. 
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 Figure 1.  Diagram of the mitochondrial genome and polycistronic transcription products.  The 

heavy strand is depicted in dark blue and the light strand is depicted in light blue.  The red lines 

depict the tRNA genes.  The mTERF binding site is shown by the red octagon.  The 

polycistronic messages produced by transcription initiation at the three promoters are depicted by 

the arrows. 
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Mitochondrial Transcription 

 Transcription of the mitochondrial genome occurs in a strand-specific manner and 

produces polycistronic primary messages [14] that are then processed to form the mature rRNAs, 

mRNAs, and tRNAs [15].  Transcription is initiated at one of three promoters: two heavy strand 

promoters (HSP1 and HSP2) and one light strand promoter (LSP).  HSP2 and LSP produce 

polycistronic messages that contain almost all of the respective strand, while transcription 

initiated at HSP1 results in a shorter polycistronic message containing the two rRNAs, 

terminating at the 3’ end of the 16s rRNA gene [14].  The existence of HSP2 has been debated, 

and though transcription can be initiated from this promoter in vitro, it has been found to be more 

than 100-fold less efficient at transcription initiation than HSP1 under identical conditions [28].  

It has been hypothesized that only HSP1 is used in vivo and that early termination of 

transcription immediately downstream of the 16s rRNA may better explain the higher levels of 

the rRNAs than mRNAs observed in mitochondria [32]. 

 The machinery responsible for mitochondrial transcription is distinct from the nuclear 

transcriptional machinery.  The single mitochondrial RNA polymerase (POLRMT) is a nuclear-

encoded, single-subunit enzyme that is homologous to bacteriophage T3 and T7 RNA 

polymerases, rather than the multi-subunit nuclear RNA polymerases [16].  While the single-

subunit RNA polymerase of T7 phage is functional without any accessory proteins [17], this is 

not the case for POLRMT, which requires mitochondrial transcription factor A (TFAM) and 

mitochondrial transcription factor B2 (TFB2M) (Figure 2) [18]. 

 TFB2M and the paralogous enzyme TFB1M show primary sequence similarity to 

bacterial rRNA dimethyltransferases, and phylogenetic analysis suggests that the TFBM factors 

were derived from the genome of the mitochondrial endosymbiont [17].  While TFB1M 
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primarily functions as a mitochondrial rRNA methyltransferase [19], TFB2M is less efficient as 

a methyltransferase [20] and is a much more active transcription factor in vitro than TFB1M 

[18].  TFB2M was shown to be the more active TFBM protein in mitochondrial transcription in 

Drosophila through RNAi knockdown – reduction of TFB2M resulted in a decrease in 

mitochondrial transcription [21] while reduction of TFB1M did not [22].  These data suggest that 

TFB2M is the TFBM factor primarily involved in the mitochondrial transcription initiation 

complex. 

 TFAM is a member of the high mobility group (HMG) superfamily of DNA binding 

proteins.  It is composed of two HMG box domains which bind the minor groove of promoter 

DNA, creating two kinks in the DNA and forcing it to undergo a U-turn [23].  These HMG box 

domains are separated by a linker region and followed by a C-terminal tail, which is essential for 

activation of transcription [24].  The HMG box domains of TFAM can also bind nonspecifically 

to non-promoter DNA, and in addition to transcription initiation, TFAM also packages the 

mitochondrial genome into a more compact, less active form, referred to as a nucleoid [25]. 

 TFAM is the first component of the mitochondrial transcription machinery to bind the 

promoter region [26].  POLRMT is then recruited to the promoter region through protein-protein 

interactions with the C-terminal end of TFAM and protein-DNA interactions with upstream 

sequence [27].  TFB2M then binds to POLRMT and the promoter sequence and melts the 

transcription start site, initiating transcription [28].  These interactions have been most clearly 

characterized for LSP, and to a lesser degree, HSP1 [28].  However, the binding of TFAM may 

have a different effect on transcription initiation from HSP2 [28,29].  In vitro assays using 

equimolar concentrations of template, TFAM, TFB2M, and POLRMT have shown that 
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transcription initiated from HSP2 results in 100-fold less run-off product than transcription 

initiated from  

 

 

Figure 2.  Assembly of the transcription initiation complex at LSP.  Transcription begins at +1.  

The numbers and arrows represent points of protein/DNA interactions upstream of the promoter, 

based on crosslinking studies [27].  
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HSP1 under identical conditions [28].  Removing TFAM from the same in vitro reaction does 

not result in a change in transcription from HSP2 [28], indicating that it is not essential.  Similar 

studies using a HSP2 template with a shorter transcribed sequence found that adding TFAM to 

the reaction resulted in reduced transcription [29], indicating that TFAM may be a repressor of 

transcription from HSP2.  In addition to its role in mitochondrial transcription initiation, TFAM 

also serves as a packaging protein by binding non-specifically to the mitochondrial genome and 

compacting it into nucleoids [30].  The mechanism by which the degree of TFAM-mediated 

compaction is regulated in different mtDNA molecules, allowing active transcription from some 

and the formation of nucleoids from others, has not yet been determined. 

 The study of transcription termination in mitochondria has focused largely on one 

protein, the mitochondrial transcription termination factor 1 (mTERF1).  mTERF1 binds in the 

Leu tRNA coding region of the mitochondrial genome and was originally shown to terminate in 

vitro transcription originating from HSP1 [31].  However, recent knock out studies in mice  

suggest that the primary role of mTERF in vivo is to prevent transcription interference at LSP 

from unterminated elongation complexes and transcription of antisense rRNAs [32].  Supporting 

this is the observation that mTERF terminates transcription from the light strand more effectively 

than transcription from the heavy strand [32]. 

 

Mitochondrial DNA Replication 

 Transcription from LSP is not only important for mitochondrial DNA expression, but 

also plays a role in the replication of the mitochondrial genome.  POLRMT can generate RNA 

primers used by DNA polymerase γ (pol γ) to initiate mtDNA replication from LSP [33].  Other 

proteins essential for replication of the mitochondrial genome are replicative helicase Twinkle, 
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which unwinds and melts the double-stranded DNA, and mitochondrial single-stranded DNA-

binding protein (mtSSB), which stabilizes single-stranded DNA produced by Twinkle before 

replication occurs [34]. 

 Several models for mitochondrial DNA replication currently exist.  The oldest model is 

based on electron microscopy of replicating mtDNA molecules [35] and pulse-chase labeling 

studies [36] demonstrating asynchrony in the synthesis of the light and heavy strands, and is 

referred to as the strand-displacement model [37].  This model proposes that replication begins at 

the heavy strand origin of replication in the D-loop.  As replication of the heavy strand proceeds, 

the light strand is displaced and maintained as single-stranded DNA until the light strand origin 

of replication is made available via strand displacement.  Light strand replication then proceeds.  

This model suggests that mitochondrial DNA replication is unidirectional, continuous, and 

asynchronous [34]. 

 More recent studies have demonstrated the presence of RNA intermediates incorporated 

in the lagging strand [38, 39], leading to the development of the RNA Incorporated ThroughOut 

the Lagging Strand, or RITOLS model [34].  This model suggests that both strands are replicated 

simultaneously and unidirectionally, with RNA replication intermediates that are later processed 

into DNA.  A second model, called the strand-coupled model [34], suggests that the RNA 

intermediates act as primers for coupled leading and lagging strand synthesis [40]. 

 Interestingly, TFAM has been shown to have a potential impact on mitochondrial 

replication beyond its role in the synthesis of replication primers as part of the transcription 

machinery.  A small increase in TFAM expression (~2-fold) in vivo results in an increase in the 

number of copies of the mitochondrial genome [41], but forced overexpression has been shown 

to result in mitochondrial DNA depletion in HEK293 cells [42].  These observations, combined 
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with in vitro data showing that TFAM-packaged nucleoids can block replication [43] suggest 

that TFAM binding plays a role in determining which mitochondrial genomes are available for 

replication, as well as which are engaged in transcription. 

 

Early Reports of Mitochondrial Methylation 

 DNA methyltransferase activity was detected in the mitochondria of higher-order 

eukaryotes in 1971 [44], suggesting that mitochondrial DNA could contain 5mC.  Two years 

later, both methyltransferase activity and the presence of 5mC were demonstrated to be present 

in the mitochondria of cultured mouse and hamster cells by in vivo incorporation of [methyl-

3
H]methionine into the mitochondrial genome in the form of 5mC [45].  The spectrophotometric 

detection of 5mC in mitochondrial DNA isolated from beef heart was also published that year 

[46].  However, in 1974, two papers were published that failed to detect 5mC in the 

mitochondrial DNA of Xenopus laevis, HeLa cells [47], and Paramecium aurelia [48], beginning 

a controversy over the existence of mitochondrial DNA methylation that continues to impact the 

field.  Later studies went on to show that mitochondrial 5mC occurs at CpG dinucleotides [49], 

as it does in the nucleus, and that the CpG dinucleotide is under-represented in animal 

mitochondrial genomes, indicating CpG suppression, also as in the nucleus [50].  While these 

early studies demonstrated the presence of methylation in mitochondrial DNA and 

methyltransferase activity, they failed to identify the enzyme responsible. 

 

DNA methyltransferases 

 DNA methyltransferases methylate DNA by transferring a methyl group from S-

adenosyl-L-methionine (SAM) to the 5-position of cytosine residues [51].  In the nucleus, three 
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DNA methyltransferases are responsible for establishing and maintaining DNA methylation.  

DNMT1 is considered to be a maintenance methyltransferase, as it has a 5- to 30-fold preference 

for hemimethylated substrates [52].  DNMT3a and 3b are considered de novo methyltransferases, 

responsible for establishing methylation patterns during development [53].  Despite these 

classifications, there is evidence for functional overlap between DNMT1 and 3a/b [54].  All three 

of these genes have been shown to be essential for viability in mouse knockout experiments.  

Loss of DNMT1 leads to lethality at E9.5 [55].  Loss of DNMT3b results in lethality at E14.5-

18.5 [53], and loss of DNMT3a results in mice that appear normal at birth, but which die at about 

4 weeks [53].  The early lethality resulting from loss of DNMT1 may be due to effects on cell 

division, as catalytic inactivation of DNMT1 in human cancer cells has been shown to result in 

severe mitotic defects and cell death [56].  These knockout and loss of function studies 

demonstrate the essential nature of DNA methyltransferases and, by extension, 5mC, in 

mammalian cells. 

 

Identification of mitochondrial cytosine modifying enzymes 

 In 2011, Shock et al. reported a mitochondrial isoform of DNA methyltransferase 1 

(mtDNMT1) [57].  A conserved ORF upstream of the reported DNMT1 translation start site was 

predicted to form a mitochondrial target sequence, and DNMT1 was shown to be present in 

mitochondria through immunoblotting [57.  The putative MLS was shown to transport GFP to 

the mitochondria using confocal microscopy [57].  It had been previously reported that p53 has a 

repressive effect on expression of DNMT1 through specific DNA binding [58].  Interestingly, 

loss of p53 was shown to preferentially upregulate the mitochondrial isoform of DNMT1; a 6-

fold increase in mtDNMT1 transcription was observed upon loss of p53, while the nuclear 
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isoform increased 3-fold [57].  Upregulation of mtDNMT1 has gene-specific effects on 

mitochondrial transcription [57], indicating that 5mC may be involved in regulating the 

transcription of the mitochondrial genome.  MEF cells lacking p53 were found to overexpress 

ND1, the first protein coding gene on the heavy strand following the rRNA genes [57].  Light 

strand transcription was also found to be altered; ND6 is underexpressed in p53 knockout cells 

[57].  These changes in transcription may be due to an increase in transcription from HSP2, or a 

decrease in termination of HSP1 transcription, resulting in increased production of downstream 

messages. 

Shock et al. also demonstrated the presence of 5hmC in mitochondrial DNA [57].  In the 

nucleus, the ten-eleven-translocation (TET) enzymes catalyze the conversion of 5mC to 5hmC 

[59], and two of the TET family members, TET1 and TET2 have been reported to be present in 

the mitochondria of HeLa cells [60] and cerebellar granule neurons [61].  Studies in the Taylor 

laboratory demonstrated protease-resistant Tet2, but not Tet1 immunoreactivity in human and 

mouse cell mitochondria (Thakkar, PhD dissertation, VCU 2013).  Confocal microscopy 

indicated that Tet1 did not colocalize with mitochondria.  These data indicate that Tet2 is likely 

the enzyme responsible for conversion of 5mC to 5hmC in this organelle.  In addition to 

DNMT1, DNMT3a [62] and DNMT3b [61] have been reported to localize to the mitochondria 

after detection in cell fractionation followed by immunoblotting, but this has not been shown 

consistently [57, 61].  Recent enzymatic studies using mitochondrial lysates generated from 

mouse embryonic stem cells in which the different DNMTs have been knocked out suggest that 

DNMT3b, but not DNMT3a, plays a role in mitochondrial DNA methylation (Figure 3) (Shock, 

unpublished data). 
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Figure 3.  Enzymatic activity assays performed by Dr. Lisa Shock suggest DNMT3b may be 

active in mitochondria.  The mouse ES cell lines used in this study were generated by Li, et al. 

[64, 65].  The catalytic domains of the DNMTs were deleted through gene targeting by 

homologous recombination.  J1 cells are wild-type for DNMT1, while c/+ and c/c cells are 

heterozygous and homozygous knockout lines, respectively.  DNMT3a and 3b homozygous 

knockouts were also investigated, in addition to two clones of a 3a/3b double knockout line 

(DKO1 and 2).  In the triple knockout cells (TKO), all three DNMTs were catalytically 

knocked out.  Dr. Shock isolated and trypsin treated mitochondria from these cell lines prior 

to lysis, then used the Fluorometric EpiQuik DNMT Activity Assay Ultra (Epigentek) to 

measure the DNMT activity of 10 μg of the mitochondrial proteins.  The data show that loss 

of DNMT1 or DNMT3b results in a decrease in the DNMT activity of the mitochondrial 

extracts.  Loss of all three DNMTs results in methylation activity similar to the boiled wild-

type extract which serves as a negative control. 

Lisa Shock 
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Through immunoprecipitation of DNA using 5mC and 5hmC specific antibodies 

(meDIP) [57] and qPCR, Dr. Lisa Shock demonstrated that loss of p53 in HCT116 cells led to 

increased CpG modification across the mitochondrial promoters (Figure 4) (Shock, unpublished  

data).  A roughly two-fold enrichment in modification of HSP1 and LSP was detected in 

immunoprecipitation reactions with 5mC and 5hmC in cells overexpressing mtDNMT1 due to 

loss of p53.  This change in modifications at the mitochondrial promoters presents a possible 

mechanism by which overexpression of mtDNMT1 results in the transcriptional changes 

previously observed [57].  However, this technique cannot be used to determine which CpG 

residues are modified; bisulfite sequencing of the mitochondrial genome would be necessary to 

obtain this information. 

One factor that complicates the analysis of mitochondrial modifications through PCR-

based methods is the presence of nuclear insertions of mitochondrial origins, or NUMTs.  These 

pseudogenes represent portions of mitochondrial DNA incorporated into the nuclear genome and 

are thought to be a product of the non-homologous end joining (NHEJ) repair method of double-

strand DNA breaks [66].  Through incorporation of mitochondrial DNA that has escaped to the 

nucleus, NHEJ repair can be performed without the deletion of nuclear DNA [66].  PCR 

amplification of total cellular DNA with primers generated from mtDNMA sequence might 

therefore amplify NUMTs in the nuclear genome, rather than true mtDNA sequences.  Therefore 

amplification primers should be tested against cells devoid of mitochondrial DNA (rho zero) to 

confirm specificity.  The human genome contains 33 NUMTs that share over 80% sequence 

similarity to the corresponding mitochondrial sequence and are longer than 500 bp [67].  This 

may have an effect on mitochondrial methylation studies because nuclear CpG sites are 60-90% 

methylated [68], compared to the 2-5% of CpGs estimated to be methylated by nearest neighbor 
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analysis in mitochondria [49].  This 10-fold higher degree of methylation in the nucleus could 

affect mitochondrial methylation analysis if NUMT contamination is present.  To prevent this, 

future experiments analyzing mitochondrial DNA modification may need to be performed using 

isolated mitochondrial DNA [57], as opposed to total DNA. 

 

Possible mechanisms of mtDNA modification action 

 Despite the recent interest in mitochondrial epigenetics, no mechanistic studies 

demonstrating a causal relationship between altered methylation and changes in mitochondrial 

transcription have been published.  In the nucleus, DNA methylation can recruit histone 

deacetylase-containing complexes to further silence transcription [63], but mitochondria do not 

contain histones, and there is to date no evidence for the presence of methyl binding proteins in 

mitochondria.  The mitochondrial genome is packaged into nucleoids by the cross-strand binding 

of TFAM in a transcription independent manner [25].  Changes in the methylation status of 

mitochondrial DNA could affect TFAM binding and have an effect on transcription by changing 

the accessibility of the DNA due to changes in nucleoid formation. 

 Methylation of the D-loop could also affect the binding of TFAM to the different 

promoters.  TFAM has been shown to promote transcription from HSP1, but inhibit transcription 

from HSP2 [29].  Methylation of the D-loop could affect the ability of TFAM to bind to or bend 

the promoters, changing the ratio of bound TFAM without altering the amount of TFAM in the 

mitochondria.  Because mitochondria usually contain more than one genome [8], differential 

methylation could allow for separate individual genomes to be performing independent 

functions, such as transcribing from different promoters within the same organelle or undergoing 

replication.  The work described in this thesis attempts to better understand the effects of   
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Figure 4.  Loss of p53 leads to increased CpG modification in mitochondrial promoters.  The 

above data was generated by Dr. Lisa Shock.  Total DNA was isolated from HCT116 cells with 

and without p53.  The DNA was sheared by sonication, then precipitated with antibodies specific 

for 5mC or 5mcC.  The immunoprecipated DNA was then evaluated by qPCR with primers 

specific for different regions of the mitochondrial genome.  The largest changes were observed 

in the HSP and LSP regions of the mitochondrial genome, as indicated by the red boxes. 
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mtDNMT1 overexpression on transcription and the effect of CpG methylation on the interaction 

of mTERF and TFAM with cognate mtDNA sequences.  It was hypothesized that overexpression 

of mtDNMT1 and resulting increases in cytosine methylation would affect transcription by 

altering the interaction of transcription factors with the mitochondrial genome.  This hypothesis 

was tested by 

1) Examining the effect of overexpression of mtDNMT1 through loss of p53 on 

mitochondrial gene expression by RT-qPCR  and generating a cell line in which the 

mitochondrial isoform of DNMT1 was overexpressed without the loss of p53 

2) Determining the effects of DNA modifications on the interaction of mTERF and TFAM 

with mitochondrial DNA through electophoretic mobility shift assays (EMSA) and 

fluorescence polarization (FP) 
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Chapter 2:  Role of mitochondrial DNA methylation in control of mitochondrial transcription 

 

Introduction 

 Mitochondrial transcription is initiated from the D-loop, a non-coding regulatory region 

that contains the promoters for the light and heavy strands [13].  Transcription occurs in a strand-

specific manner, resulting in the synthesis of polycistronic messages [14] that are processed to 

form the mature rRNAs, mRNAs, and tRNAs [15].  Transcription of the light strand is initiated 

at a single promoter, referred to as LSP, and results in a polycistronic message that contains most 

of the strand, terminating before entering the 16s coding sequence [14].  This termination is 

thought to be due to the binding of mTERF1 in the Leu tRNA coding region, which prevents 

transcription of antisense rRNAs [32].  Transcription of the heavy strand is initiated at one of 

two promoters, HSP1 or HSP2.  HSP2 is located within the Phe tRNA coding sequence, and 

transcription initiated at this promoter results in a polycistronic message encoding most of the 

heavy strand, including 12 of the 13 protein coding sequences contained in the mitochondrial 

genome [14].  HSP1 is located upstream of the Phe tRNA coding sequence.  When transcription 

is initiated from HSP1, a shorter polycistronic message is produced which contains the two 

rRNAs and is terminated by mTERF binding in the Leu tRNA coding region [14]. 

 5mC [45, 46, 57] and 5hmC [57] have been detected in mitochondrial DNA, but the 

effect of these cytosine modifications on transcription has not been extensively studied.  In the 

nucleus, 5mC is associated with repression of transcription [1], while 5hmC is associated with 

demethylation and active expression [3], but because the proteins that form the mitochondrial 
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transcription initiation complex are different from those in the nucleus, cytosine modifications 

may not have the same effect on transcription from the mitochondrial genome. 

 Shock et al. found that loss of p53 in MEF cells resulted in an increase in the amount of 

the mitochondrial isoform of DNMT1 produced relative to wild-type cells [57].  A similar effect 

was observed in HCT116 cells, and this increase in mtDNMT1 through loss of p53 was 

correlated to an increase in 5mC and 5hmC at the promoter regions of the mitochondrial genome 

(Figure 1-4) (Lisa Shock, unpublished data).  To determine what effect these changes have on 

mitochondrial transcription, cDNA was generated for p53 null and wild-type MEF cells using 

random hexamers, and qPCR was performed using primers specific for several mRNA sequences 

[57].  No changes were observed in the amount of Cox1 or ATP6 message present, but the 

amount of ND1 in p53 null cells was increased, and the amount of ND6 was decreased [57].  

These changes suggested that the effect of mtDNMT1 overexpression on mitochondrial 

transcription was strand-specific, because ND1 is the first protein coding gene on the heavy 

strand, directly downstream from the termination site, and ND6 is the only protein coding gene 

on the light strand. 

 The experimental method used to determine the effect of increased mtDNMT1 

expression on mitochondrial transcription was further refined by Dr. Prashant Thakkar, through 

the use of strand-specific cDNA synthesis.  Mitochondrial transcription occurs in a strand-

specific manner, and random hexamer primed cDNA synthesis will result in reverse transcription 

of messages from both strands.  qPCR analysis of the resulting cDNA will give an average of the 

level of transcription across both strands.  To generate strand-specific cDNA, a single primer 

specific for the ATP6 region of the mitochondrial genome was used to prime the reverse 

transcription reaction.  Light-strand cDNA was synthesized in one reaction, and heavy-strand 
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cDNA was synthesized in another.  These reactions were then evaluated by qPCR separately, 

using primers specific for each ORF.  Using this method, an increase in Cox1, the second protein 

coding gene on the heavy strand was detected in addition to a more substantial 3-fold increase in 

ND1 (Figure 2-1) (Prashant Thakkar, unpublished data).  A difference in ND6 was not detected 

using the strand-specific method (Figure 2-1) (Prashant Thakkar, unpublished data), suggesting 

that the primary effect of increased mtDNMT1 expression due to loss of p53 is on heavy strand 

transcription. 

 This method of cDNA synthesis allowed Dr. Thakkar to analyze the transcription of the 

two strands separately, but only polycistronic message was represented.  ND1 and Cox1 

transcripts will only be reverse transcribed using ATP6 primers if the precursor messages have 

not been processed into mature mRNAs [15] (see Figure 2-2b for a schematic representation).  In 

order to capture both polycistronic and mature transcripts, strand-specific cDNA synthesis 

primers must be used to reverse transcribe the individual messages.  These strand-specific, gene-

specific cDNA reactions can then be analyzed by qPCR using nested primers specific for each 

gene. 

 The previous studies performed in the Taylor laboratory and described above used p53 

null and wild-type cells to study the effects of mtDNMT1 overexpression on mitochondrial 

transcription.  Loss of p53 results in overexpression of the mitochondrial isoform of DNMT1 

[57], but expression of the nuclear DNMT1 is also increased [58].  The proteins that form the 

transcription initiation complex are nuclear-encoded [16], and previous studies demonstrated that 

p53 shRNA-mediated knockdown in primary human fibroblasts resulted in a decrease in TFAM 

protein [69].  In order to determine if the observed effects on mitochondrial transcription are due 
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to increased mtDNMT1 and not a product of p53 loss or increased nuclear DNMT1 expression, a 

cell line overexpressing only the mitochondrial isoform must be generated. 

 Previous students in the Taylor laboratory generated an expression vector containing a 

cDNA clone of DNMT1 including the mitochondrial leader sequence.  In addition, the 

translational start site of the nuclear isoform was mutated to ATC, to prevent transcription of the 

nuclear isoform from this construct.  HEK293 cells were transfected with this construct in order 

to determine how mitochondrial DNA modification and transcription would be affected. 

 It was hypothesized that changes in mitochondrial DNA modifications would lead to 

changes in mitochondrial transcription and function.  To test this hypothesis, mitochondrial 

transcription was analyzed in a gene specific-strand specific fashion in p53 -/- and +/+ MEF and 

HCT116 cells.  HEK293 cells were transiently and stably transfected with mtDNMT1 

overexpression vectors to study the effect of increased mtDNMT1 in a p53 wild-type 

background.  Increased mtDNMT1 due to loss of p53 was found to alter transcription of the 

heavy strand on the polycistronic level, and a DNMT1 overexpression construct was found to 

transiently express in mitochondria, but that expression was lost over time. 

 

Methods 

 

Cell culture 

HEK293 and wild-type and p53 null MEF cells were grown at 37˚C in 10% CO2 in DMEM 

(Gibco/Life Technologies) with 10% FBS.  HCT116 p53 +/+ and HCT116 p53 -/- cells were 

grown at 37˚C in 5% CO2 in RPMI 1640 medium (Gibco/Life Technologies) with 10% FBS.  All 

cells were fed 48 hours prior to harvesting, then trypsinized and replated 24 hours prior to 

harvesting to ensure uniform distribution of cell cycle traverse. 
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RNA isolation 

Cells from 2 sub-confluent 150 mm dishes were washed twice with PBS (Gibco/Life 

Technologies) and resuspended in 6 mL TRIzol Reagent (Life Technologies).  After a 5 minute 

room temperature incubation, 1.2 mL of chloroform were added to the sample, which was then 

shaken for 15 seconds.  After a 2 minute incubation at room temperature, the sample was 

centrifuged at 12,000 x g for 15 minutes at 4˚C.  The colorless aqueous phase was transferred to 

a clean tube, and an equal volume of chloroform was added.  The sample was then shaken for 15 

seconds and centrifuged at 12,000 x g for 15 minutes at 4˚C.  The aqueous phase was then 

transferred to a clean tube.  3 mL of 100% isopropanol were added to the aqueous phase and the 

sample was incubated at room temperature for 10 minutes, then centrifuged at 12,000 x g for 10 

minutes at 4˚C.  The supernatant was removed, and the pellet was washed with 6 mL of 75% 

ethanol.  After centrifuging at 7,500 x g for 5 minutes at 4˚C, the wash was discarded and the 

pellet was air dried for 5 minutes at room temperature.  The RNA was then resuspended in 100 

μL of HPLC H20 and the concentration was determined using a ND-1000 NanoDrop 

spectrophotometer.  The RNA was stored at -80˚C. 

 

First Strand cDNA Synthesis 

First strand cDNA was synthesized using the SuperScript ™ First-Strand Synthesis kit 

(Invitrogen).  5 μg of RNA were mixed with 1 μL of 10 mM dNTP mix, 1 μL of specific primer 

or 1 μL of random hexamers, and HPLC H2O to bring the reaction volume to 10 μL.  The 

reactions were incubated at 65˚C for 5 minutes, then placed on ice for at least 1 minute.  9 μL of 
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a 2x reaction mix containing 2 µL  of 10X RT buffer, 4 µL of 25 mM MgCl2, 2 µL of 0.1 M 

DTT, and 1 µL of RNaseOUT™ (40 U/µl) were added to the RNA mixtures, followed by 1 µL 

of SuperScript™ II RT.  Control reactions without RT were also performed, using 1 µL of HPLC 

H2O.  Reactions primed with random hexamers were incubated at 25˚C for 10 minutes, and all 

reactions were incubated at 42°C for 50 minutes.  The reactions were terminated at 70°C for 15 

minutes then cooled on ice.  1 µL of RNase H was added to each reaction, which were then 

incubated at 37°C for 20 minutes.  The cDNA was stored at -20°C. 

 

End point PCR 

End point PCR was performed using HotStarTaq Master Mix (Qiagen).  For each reaction, 12.5 

µL of HotStarTaq, 9.5 µL of HPLC H2O, and 1 µL of a 10 µM working stock of both the 

forward and reverse primers were mixed.  1 µL of cDNA was added to each reaction.  The 

reactions were run in a DNA Engine PTC-200 thermal cycler (Bio-Rad).  The reactions were 

incubated at 95°C for 5 minutes before cycling.  Each cycle consisted of a 30 second melting 

step at 95°C, a 30 second annealing step based on the melting temperature of the primers 

(typically between 55°C and 65°C) (see Table 1-1 and 1-2), and a 1 minute extension step at 

72°C.  The total number of cycles run was between 25 and 40 cycles.  A 40 cycle reaction was 

performed to confirm cDNA synthesis, and a 25 cycle reaction was performed to qualitatively 

assess differences in transcript levels before qPCR was performed.  After cycling, the reactions 

were held at 72°C for 5 minutes, then stored at 4°C.  The PCR products were visualized on a 1% 

agarose gel in 1x TAE with ethidium bromide.  5 µL of the PCR reactions were mixed with 1 µL 

6x DNA loading buffer containing bromophenol blue and run at 100V for 50 minutes.  The gels 

were viewed using UV transillumination. 



23 
 

 

qPCR 

qPCR was performed using Quantitect SYBR Green PCR mix (Qiagen).  For each reaction, 12.5 

µL of Quantitect SYBR Green PCR mix, 9.5 µL of HPLC H2O, and 1 µL of a 10 µM working 

stock of both the forward and reverse primers were mixed (see Table 1-1 and 1-2).  1 µL of 

cDNA was added to each reaction, and each reaction was performed in triplicate.  The reactions 

were run on a BioRad DNA Engine Peltier thermal cycler fitted with a Chromo4 Real-Time 

Fluorescence Detector attachment.  The reactions were incubated at 95°C for 5 minutes before 

cycling.  Each cycle consisted of a 30 second melting step at 95°C, a 30 second annealing step 

based on the melting temperature of the primers (typically between 55°C and 65°C) (see Table 1-

1 and 1-2), and a 1 minute extension step at 72°C.  40 cycles were performed, and an absorbance 

measurement was taken after each cycle.  After 40 cycles, a melting curve was generated by 

raising the temperature from 40°C to 90°C in 1°C increments.  Each temperature was held for 1 

second, and an absorbance measurement was performed.  The data was analyzed using 

OpticonMonitor3 software. 

 

Transfection 

 24 hours before the transfection, 9x10
5
 HEK293 cells were plated per well of a 6 well 

plate.  One hour before the transfection, fresh medium was added to the cells.  For each well, 3 

µL of PolyJet (SignaGen) was diluted in 50 µL of serum-free DMEM.  The plasmids containing 

the DNMT1 constructs were also diluted in 50 µL of DMEM.  For transfections used to evaluate 

the levels of transient expression of the constructs, 2 µg of plasmid were used.  For transfections 

that would be used to generate stable cell lines, 1 µg of plasmid was used.  The diluted PolyJet 
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was added to the diluted DNA and the mixture was incubated for 15 minutes at room 

temperature.  Following the incubation, the PolyJet/DNA mixture was added drop-wise to the 

medium in each well and mixed.  The plates were returned to the incubator, and the PolyJet-

containing medium was replaced with DMEM containing 10% FBS and 1% Pen/Strep after 18 

hours. 

 To generate stable cell lines, the transfected cells were trypsinized and replated in 150 

mm dishes 48 hours after the transfection.  The cells were grown in DMEM containing 10% 

FBS, 1% Pen/Strep, and 2 mg/mL G418 until discreet colonies formed.  Colonies were then 

selected and grown in selective media until enough cells were available to perform cell 

fractionation.  Transiently transfected cells were harvested 48 hours after the transfection by 

washing each well twice with cold PBS, then adding 100 µL of SDS Lysis buffer (62.5 mM Tris 

pH 6.8, 5% glycerol, 2% SDS, 5% β-mercaptoethanol, and 1x complete protease inhibitor 

cocktail (Roche)).  The cell lysate was stored at -80°C. 

 

Cell Fractionation 

 Cells were plated into two 150 mm dishes 24 hours before the fractionation.  The cells 

were washed twice with cold PBS, pH 7.4, then scraped from the plate, transferred to a 15 mL 

conical tube (Falcon), and placed on ice.  5% of the cells were transferred to another tube and 

spun down at 900 x g for 5 minutes and resuspended in 5x weight/volume of SDS lysis buffer. 

 The remaining cells were pelleted at 900 x g for 5 minutes and resuspended in 3mL of 

mitochondrial homogenization buffer (0.25M sucrose, 10mM Tris-HCl, pH7.0, 1mM EDTA, pH 

6.8) containing 1 tablet of Complete EDTA-free Protease Inhibitor Cocktail tablets (Roche) per 

25 mL of homogenization buffer.  The resuspended cells were transferred to a 7mL glass dounce 
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homogenizer (Wheaton) on ice and incubated for 5 minutes.  The cells were homogenized with 

15 strokes and centrifuged at 900 x g for 5 minutes at 4°C.  The supernatant was transferred to a 

clean 15 mL conical tube.  The pellet containing unbroken cells and nuclei was resuspended in 3 

mL of homogenization buffer, and the process was repeated for a total number of three times.  

After the three rounds of douncing, the collected supernatant was centrifuged at 900 x g for 5 

minutes at 4°C to remove any additional unbroken cells and nuclei.  The supernatant from this 

centrifugation was transferred to a 14 mL round-bottom tube (Falcon) and centrifuged at 

10,000xg for 15 minutes at 4°C to pellet the mitochondria. 

 Nuclei were isolated from the pellet containing nuclei and unbroken cells by 

resuspending the pellet in 3 mL of nuclear buffer (0.25 M sucrose, 10 mM MgCl2).  The 

resuspended pellet was layered over a 3 mL sucrose cushion (0.88 M sucrose, 0.5 mM MgCl2) 

and centrifuged at 2800 x g for 5 min.  The pellet was resuspended in 5x weight/volume of SDS 

lysis buffer. 

 Cytosolic proteins were isolated from 5 mL of the supernatant from the mitochondrial 

pellet.  5 mL of 20% TCA were added, and the mixture was incubated on ice for 20 minutes.  

After this incubation, the mixture was centrifuged at 6000 x g for 15 minutes.  The pellet was 

washed three times with 1 mL of acetone and centrifugation at 6000 x g for 5 minutes.  The 

pellet was air-dried on ice for 5 minutes before being resuspended in 10x weight/volume of SDS 

lysis buffer. 

 The mitochondrial pellet was washed with 1 mL of mitochondrial homogenization buffer 

without protease inhibitors and resuspended in 20x weight/volume of Trypsin digestion buffer 

(10mM HEPES-KOH, pH 7.4, 250mM sucrose, 0.5mM EGTA, 2mM EDTA, 1mM DTT).  

Trypsin-EDTA (Gibco) was added to a final concentration of 10 µg/mL and the samples were 
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incubated at room temperature for 20 minutes with occasional mixing.  Bovine trypsin inhibitor 

(Sigma) was added to a final concentration of 10 µg/mL , mixed, and incubated on ice for 10 

minutes.  The mitochondria were then pelleted again by centrifugation at 10000 x g for 10 

minutes at 4°C.  The pellet was washed twice with 1 mL of mitochondrial homogenization buffer 

containing protease inhibitors and 10 µg/mL bovine trypsin inhibitor.  The pellet was then lysed 

in 10x weight/volume of SDS lysis buffer. 

 

Immunoblotting 

The protein concentration for each lysate was determined using a Bradford assay (Bio-Rad) 

comparing the lysates to a standard curve generated using known concentrations of BSA.  

Lysates were loaded onto SDS-PAGE gels.  For immunoblots comparing whole cell lysates, 40 

µg of protein were loaded.  For immunoblots of fractionation experiments, fractions were loaded 

to obtain equal signal with compartment specific antibodies (whole cell lysate: 70 µg, nuclear 

lysate: 20 µg, cytosolic lysate: 25 µg, mitochondrial lysate: 18 µg).  The appropriate volume of 

lysate was diluted with an equal volume of 2x Laemmli buffer (Bio-Rad) with 5% 2-

mercaptoethanol.  The samples were boiled for 5 minutes before being loaded onto the gel.  5 μL 

of Precision Plus Dual Color pre-stained protein ladder (BioRad) were also loaded.  The gels 

were run in 1L of 1x running buffer (25mM Tris base, 250mM glycine, 0.1% SDS) at 150V for 

approximately one hour at room temperature.   

After running, gels were transferred to an Immobilon-FL PVDF membrane.  1x transfer 

buffer was prepared by mixing 100mL of 10x transfer buffer with SDS (16.879g TrisHCl, 

17.299g Tris Base, 144.134g Glycine, 10g SDS in 1L total volume) with 200mL of 100% MeOH 

and 700mL H2O.  The transfer buffer, tank, and sponges were placed at 4°C for 1 hour prior to 
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transfer.  The SDS-PAGE gel was washed with MilliQ H2O and equilibrated in 1x transfer buffer 

for 15 minutes at 4°C.  The membrane was soaked in 100% methanol for 1 minute, washed with 

MilliQ H2O for 2 minutes, and equilibrated in 1x transfer buffer for 15 minutes at 4°C.  The 

transfer was assembled by opening a clear and black transfer plate and placing it with the black 

plate down.  One of the soaked sponges was placed on the black plate and rolled flat to remove 

potential air bubbles.  3 sheets of Whatman paper were then individually soaked in chilled 

transfer buffer and placed on the sponge, each being rolled flat to remove air bubbles.  The gel 

was then floated onto the third sheet of Whatman paper and gently rolled flat.  The membrane 

was placed on top of the gel, air trapped between the gel and membrane was removed by rolling.  

Three additional sheets of Whatman paper were placed on top of the membrane as before, 

followed by a second soaked sponge.  The plate was then closed, locked, and placed in the black 

and red transfer holder so that the black plate faced the black side of the holder.  The holder was 

placed into the tank, which had been equilibrated in an ice bath, and filled with 1x transfer 

buffer.  The tank was then placed on ice.  The transfer unit was plugged into a power supply and 

set to run at 100V for 1 hour.  After 1 hour, the transfer apparatus was disassembled and the gel 

and membrane were washed in MilliQ water for about 2 minutes.  The gel was stained with Bio-

Safe Coomassie Stain (Bio-Rad) for 30 minutes to check for complete transfer.  The membrane 

was soaked in 100% methanol for 1 minute, then stained with Ponceau S (Bio-Rad) to visualize 

the transferred proteins by incubating the membrane in the solution for 5 minutes then rinsing off 

the background staining with MilliQ H2O. 

The membrane was then blocked in StartingBlock T20 (ThermoFisher Scientific) on a 

platform shaker for 1 hour at room temperature or overnight at 4°C to prevent nonspecific 

antibody binding.  Primary antibodies were then applied to the membrane, diluted in 
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StartingBlock T20 according to the optimized conditions for each antibody (see Table 1-3), with 

gentle shaking for 1 hour.  The primary antibody was removed and membrane was washed with 

1x TBS-T (0.5M Tris-HCl, pH 7.5, 0.14M NaCl, 2.7mM KCl and 0.1% Tween 20) three times 

for 5 minutes each with vigorous shaking.  Secondary antibodies were then applied to the 

membrane, diluted in StartingBlock T20 according to the optimized conditions for each antibody 

(see Table 1-3), with gentle shaking for 1 hour.  The primary antibody was removed and 

membrane was washed with 1x TBS-T three times for 10 minutes each with vigorous shaking.  

All secondary antibodies were conjugated with horseradish peroxidase, so proteins were detected 

using the SuperSignal West Dura (Pierce) Chemiluminescent Substrate kit according to 

manufacturer’s instructions.  Blots were developed using autoradiography film (ISC Bioexpress) 

and a Konica SRX-101A developer or the Li-Cor Odyssey system. 

 

 

Results 

 

Loss of p53 results in an increase in polycistronic heavy strand message in MEF and 

HCT116 cells 

 RNA was isolated from isogenic WT and p53 -/- MEFs and first strand cDNA was 

generated using strand specific primers specific for the ATP6 coding region of the mitochondrial 

genome.  RT-qPCR was then performed on this cDNA using primers specific for the ND1 and 

Cox1 genes.  Expression levels were normalized to cDNA generated using random hemaxers and 

amplified using primers specific for 18s rRNA.  This experiment was first performed by Prashant 

Thakkar (Fig. 2-1A) and repeated (Fig. 2-1B) to check for the same trend.  These data show that  
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Fig 2-1. Effect of loss of p53 is on the level of the polycistronic transcript.  (A) qPCR performed by 

Prashant Thakkar on strand specific polycistronic cDNA generated from MEF cells.  Loss of p53 

results in increased levels of ND1 and Cox1.  (B) End-point PCR using the same method as (A), 

demonstrating the same trend. 
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Fig 2-2. A) qPCR on cDNA generated in a strand-specific, gene-specific manner to capture 

both polycistronic and mature messages (n=2, combined data).  No significant difference in 

total transcript levels is observed.  B) A graphical comparison of the strand-specific and 

strand-specific gene-specific cDNA synthesis methods.  The orange bars represent cDNA 

generated by the strand-specific ATP6 primers and the green bars represent the cDNA 

generated by the strand-specific, gene-specific primers. 
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Fig 2-3.  Effect of loss of p53 on polycistronic transcript in HCT116 cells is similar to 

MEFs. A qPCR performed on strand-specific polycistronic cDNA.  Error bars represent 

SEM of technical triplicate data points, n=1. 
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there is an increase in polycistronic message containing transcript from ND1 and Cox1 in cells 

which overexpressed mtDNMT1 due to loss of p53. 

 In order to measure the level of mature mRNA within mitochondria, RNA isolated from 

WT and p53 -/- MEFs was used to generate cDNA using strand-specific cDNA primers placed 

within each individual ORF.  RT-qPCR was then performed on this cDNA using nested primers 

specific for the ND1 and Cox1 genes.  Data generated in this fashion suggested that there was no 

difference in the amount of ND1 and Cox1 transcripts present in WT and p53 -/- MEFs (Fig. 2-

2a).  The difference in cDNA generated by the methods used in Figure 2-1 and 2-2a is 

graphically represented in Figure 2-2b.  The strand-specific method using primers specific for 

ATP6 would only generate ND1 and Cox1 cDNA in messages that have not yet been processed.  

The strand-specific gene specific method would capture both polycistronic and mature messages.  

The differences in the data presented in Figures 1 and 2 suggested that the effect of p53 loss on 

transcription was at the level of production of the polycistronic transcript, which has been shown 

by others to be short lived [70]. 

 To determine if the effect of p53 loss and resulting mtDNMT1 overexpression on 

mitochondrial transcription was specific to MEFs or a more general phenomenon, RNA was 

isolated from WT and p53 -/- HCT116.  First strand cDNA was generated using strand specific 

primers specific for the ATP6 coding region so the effect of loss of p53 on polycistronic message 

could be evaluated.  RT-qPCR was then performed on this cDNA using primers specific for the 

16s, ND1, and Cox1 genes (Fig. 2-3).  Expression levels were normalized to the geometric mean 

of the expression of 18s, GAPDH, and Actin, which were amplified from cDNA generated using 

random hexamers.  These data showed a similar trend to the data generated from MEFs, 

specifically that ND1 transcript levels were increased in p53 -/- cells.  This suggests that the 
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effect of p53 loss and resulting mtDNMT1 overexpression on mitochondrial transcription is not a 

cell-line specific phenomenon. 

 

The effect of loss of p53 on transcription is not due to changes in TFAM expression 

 Previous studies demonstrated that shRNA-mediated knockdown of p53 in primary 

human fibroblasts resulted in a decrease in TFAM protein [69].  It was therefore possible that the 

increased gene-specific transcription observed in Figures 1 and 2 could be due to changes in the 

amount of TFAM present in p53 -/- cells.  Whole cell lysates were prepared from WT and p53 -/- 

HCT116 cells, and a immunoblot was performed using antibodies specific for p53, TFAM, and 

H3K4me
3
, which served as a loading control (Fig. 2-4).  No difference was observed in the level 

of TFAM in p53 -/- cells, indicating that the effect of the loss of p53 on transcription was not due 

to changes in the amount of TFAM protein present. 

 

A mtDNMT1 construct can be transiently expressed in mitochondria 

 Previous studies used p53 null cells to analyze the effect of increased mtDNMT1 on 

mitochondrial transcription [57].  Loss of p53 also results in increased nuclear DNMT1 

expression, which may have an effect on the nuclear-encoded transcription machinery [16].  To 

evaluate the impact of increased mtDNMT1 expression on mitochondrial transcription in 

isolation, expression constructs were generated to drive overexpression of the mitochondrial 

isoform only.  Several DNMT1 constructs were used in this study, and they are depicted in 

Figure 2-5.  A construct beginning with the ATG that has been identified as the translational start 

site for the nuclear isoform was used as a control (nuclear DNMT1).  An expression construct for 

the mitochondrial isoform of DNMT1 had been generated by previous students in the Taylor  
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Fig 2-4.  Loss of p53 does not alter TFAM expression in HCT116 cells.  Immunoblot on p53 

null and WT HCT116 cells shows that TFAM expression is not changed by loss of p53 in 

HCT116 cells (n=2, representative image).  H3K4me
3
 serves as a loading control. 
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Fig 2-5.  A schematic of DNMT1 constructs for nuclear and mitochondrial expression used in 

this study.  Not drawn to scale.  ATG3 represents the published transcription start site for 

nuclear DNMT1.  These constructs were generated in the pDEST40 vector, and each carries a 

C-terminal V5 epitope tag. 
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Fig 2-6.  Schematic showing the workflow for the generation of cells transiently and stably 

expressing the DNMT1 constructs, as well as the separation of stably expressing mass 

cultures and stably expressing clones.  
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laboratory.  This construct contained the mitochondrial leader sequence upstream of the nuclear 

translational start ATG (ATG3), which had been mutated to ATC (Ile), eliminating the 

translational start site.  The sequence surrounding one of the upstream ATGs, referred to as 

ATG2, was altered to better match the Kozak consensus sequence.  This construct was further 

altered by the VCU Molecular Biology Core Facility to generate the mtDNMT1 Δ147 and Δ166 

constructs.  In the Δ147 construct, the sequence between the CMV promoter and the first ATG 

(ATG1) of the mtDNMT1 coding sequence, which contained a T7 promoter and an attB1 

recombination site, was removed and the sequence surrounding ATG1 was altered to better 

match the Kozak consensus sequence.  In the Δ166 construct, the sequence between the CMV 

promoter and the second ATG (ATG2) of the mtDNMT1 coding sequence was removed.  All of 

the constructs contained a C-terminal V5 epitope tag, which allowed for analysis of the 

exogenously expressed protein separately from endogenous DNMT1. 

 The nuclear DNMT1, Δ147, and Δ166 constructs were used to transiently transfect 

HEK293 cells, as well as generate stable mass cultures and clones, as shown in Figure 2-6.  

Whole cell and mitochondrial lysates were generated from transiently transfected cells and 

mitochondrial localization was investigated by immunoblotting (Fig. 2-7).  The Δ166 construct 

was found to localize to the mitochondria, while the Δ147 construct was not detected in 

mitochondrial lysates, suggesting that ATG2 may be the translational start site for the 

mitochondrial isoform of DNMT1.  This is the position of the conserved p53 and NRF1 

regulatory elements [57]. 

 Mass cultures of cells expressing the Δ166 construct were fractionated to generate whole 

cell, nuclear, cytoplasmic, and mitochondrial lysates (Fig. 2-8).  At an early passage (passage 3), 

V5 signal was detected in all of the cell compartments, including the mitochondria.  At a later 
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passage (passage 10), the mass cultures were again fractionated and very little V5 signal was 

observed in the mitochondrial compartment (Fig. 2-8).  This suggests that passaging of the cells 

resulted in a loss of mitochondrial expression of DNMT1.  A similar effect was observed in 

stable clones (Fig. 2-9).  Stable clones were generated from a transfection of HEK293 cells with 

the Δ166 construct, but many of the clones did not show V5 expression in the whole cell lysates 

by passage 3.  By passage 5, cellular fractionation of stable clone 3 showed very little V5 signal 

in the mitochondrial compartment.  This suggests that overexpression of mtDNMT1 may be 

detrimental and selected against in cell culture. 

 The mtDNMT1 Δ147 and Δ166 proteins were also present in the nuclear compartment of 

the stably expressing cells (Fig. 2-8 and 2-9).  This is due to the presence of a nuclear 

localization signal (NLS) within the coding sequence of DNMT1.  A construct was designed to 

replace the NLS with a nuclear export signal (NES) (Fig. 2-10).  We first attempted to switch the 

MLS for DNMT1 with that for TFAM, to more efficiently target DNMT1 to the mitochondria, 

and then to mutate the NLS to a NES.   The construct was assembled through Gibson assembly 

of PCR amplification products of the desired sequences, but the construct was found to be highly 

recombinogenic, even in Stbl3 E. coli cells (Invitrogen).  Thus, the expression construct was not 

able to be generated at this time. 

 

Discussion 

 

Loss of p53 affects mitochondrial transcription on the polycistronic level 

 Strand specific, polycistronic analysis of mitochondrial transcription in p53 null and 

wild-type MEF cells showed an increase in ND1 and Cox1 messages in p53 null cells expressing 

6-fold higher DNMT1 (Figure 2-1a), but this change was not observed when only mature  
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Fig 2-7.  Transient expression of mtDNMT1.  Cells transiently transfected with nuclear, Δ147, 

and Δ166 mtDNMT1 constructs were fractionated into whole cell and mitochondrial lysates, 

then analyzed by immunoblot (n=1).  V5 indicates the DNMT1 construct, VDAC is a 

mitochondrial marker, and H3K4me
3
 is a nuclear marker. 
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Fig 2-8.  Mitochondrial expression of Δ166mtDNMT1 is lost over time in mass cultures under 

selection.  Cells transfected with Δ166 mtDNMT1 constructs and grown in selective media were 

fractionated into whole cell, nuclear, cytoplasmic and mitochondrial lysates, then analyzed by 

immunoblot (n=1).  V5 indicates the DNMT1 construct, VDAC is a mitochondrial marker, and 

H3K4me
3
 is a nuclear marker. 
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Fig 2-9.  Δ166mtDNMT1 is not well expressed in mitochondria in stable clones.  A) V5 

immunoblot of whole cell lysates from Δ166mtDNMT1 stable clones, passage 3 (n=1).  Most 

clones are not expressing. B) Cell fractionation of clone 3 at passage 5.  Most V5 signal is 

located in the nuclear and cytoplasmic fractions. 



42 
 

  

Fig 2-10.  Design for a DNMT1 construct with the MLS from TFAM and a NES 
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messages were measured (Figure 2-2a). Polycistronic messages are quickly cleaved into the 

individual rRNAs, mRNAs, and tRNAs [15], and are present at a much lower level than the 

mature messages [70].  Changes in the smaller population of polycistronic messages could be 

lost when analyzing the larger pool of more stable mature mRNAs, because a larger increase 

would be necessary to determine a statistically significant change.  The smaller amount of 

transcripts present in the strand-specific cDNA synthesis method may have led to the detection 

of differences when these differences would be harder to detect in the larger population of more 

stable mature messages (see Figure 2-2b for a visual representation of this effect).  Overall, these 

results suggest an increase in transcription firing from HSP. 

 ND1 and Cox1 are transcribed as part of the polycistronic message generated by 

transcription initiated from HSP2, and are immediately downstream of the termination site for 

transcription initiated at HSP1 [14].  Changes in mitochondrial DNA modification due to the 

increased levels of mtDNMT1 observed in p53 null cells [57] could result in increased ND1 and 

Cox1 transcripts by altering the interaction of mitochondrial transcription factors with the DNA.  

Increased modification of the mTERF1 binding site could prevent mTERF1 binding and 

termination of transcription from HSP1.  Reduced termination would allow transcription to 

continue through the mTERF1 binding site and into the ND1 and Cox1 coding sequences, which 

are immediately downstream of the termination site.  This possibility is investigated in the next 

chapter. 

 Another possible mechanism by which mitochondrial DNA modification could affect 

ND1 and Cox1 transcription is by increasing transcription initiation from HSP2.  HSP2 has been 

shown to be 100-fold less active than HSP1 in the presence of POLRMT, TFB2M, and TFAM in 

vitro [28].  While TFAM is required for transcription from HSP1, recent in vitro studies have 
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shown that TFAM is not required for transcription from HSP2 [28], and may even repress 

initiation from HSP2 [29].  If CpG modifications affect TFAM binding at the heavy strand 

promoters, a shift in promoter usage could result in increased polycistronic message. 

 Because TFAM appears to have different effects on transcription from the two heavy 

strand promoters, it was necessary to determine if the loss of p53 was affecting TFAM levels in 

the cells used in the transcription studies.  Previous studies demonstrated that p53 shRNA-

mediated knockdown in primary human fibroblasts results in a decrease in TFAM protein [69]. 

However, we observed no difference in TFAM protein levels in p53 +/+ and -/- HCT116 cells 

(Figure 2-4).  This suggested that the observed changes in transcription were not due to the 

changes in the amount of TFAM present, and could be a result of changes in mitochondrial DNA 

modifications. 

 

A mitochondrial DNMT1 construct can be transiently expressed in mitochondria, but 

stable expression is lost over time 

 In order to examine the effect of mtDNMT1 overexpression on mitochondrial 

transcription without the confounding effects of p53 loss, HEK293 cells were transfected with 

expression vectors containing several DNMT1 constructs.  It was found that cells transiently 

transfected with a V5-tagged mtDNMT1 construct containing only the second ATG (mtDNMT1 

Δ166) (Figure 2-5) showed the presence of V5 in the mitochondrial fraction (Figure 2-7).  This 

indicated that the second ATG was the translational start site of the mitochondrial leader 

sequence, and that a tagged DNMT1 construct could be directed to the mitochondria. 

 A nuclear DNMT1 construct was used as a positive control for transfection and V5 

expression.  It was expected that these cells would only show V5 expression in the whole cell 
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lysate, but some V5 signal is present in the mitochondrial fraction generated from these cells 

(Figure 2-7).  There does not appear to be any H3K4me
3
 signal in the mitochondrial fraction 

generated from these cells, indicating no detectable nuclear contamination.  It is possible that 

some protein adhered to the outside of the mitochondria and was not digested during the trypsin 

treatment, but some H3K4me
3
 signal would still be expected in that situation.  This leaves the 

possibility that some V5-tagged DNMT1 was imported into the mitochondria without a MLS.  In 

other studies in the lab, the MLS of DNMT1 was disrupted by Cas/CRISPR genome editing, but 

DNMT1 was still detected in the mitochondria (Jason Robinson, unpublished data).  This 

suggests that DNMT1 may be transported into the mitochondria without a MLS. 

 After it was determined that a DNMT1 construct could be transiently expressed in the 

mitochondria, I attempted to derive stably-expressing cell lines.  These lines would allow the 

analysis of changes in mitochondrial DNA modification and transcription over time in the 

presence of increased mtDNMT1.  However, many of the clones selected did not express the V5 

tag (Figure 2-9a), and passaging a clone that did initially express mtDNMT1 resulted in nearly 

complete loss of expression by passage 5.  Furthermore, mass cell cultures grown under selection 

lost mitochondrial expression over time (Figure 2-8).  This suggests that overexpression of 

mtDNMT1 may be detrimental to cell growth or survival.  The passaging of cells in culture over 

time selects for cells that grow well, so it is possible that cells expressing the V5-tagged 

construct in the mitochondria may have grown more slowly and been competed out by cells that 

did not have mitochondrial expression.   

The V5 epitope of Δ166mtDNMT1was detected in nuclear extracts, increasing as cells 

were passaged, indicating that some of the mtDNMT1 construct was being transported to the 

nucleus (Figure 2-8, 9b).  To prevent nuclear localization of the protein and generate more robust 
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mitochondrial localization, a mtDNMT1 construct was designed in which the MLS from 

DNMT1 was replaced with the TFAM MLS, and the NLS was replaced by a nuclear export 

signal (NES) (Figure 2-10).  However, plasmid recombination during bacterial growth prevented 

these constructs from being successfully generated.  The difficulty maintaining mtDNMT1 

overexpression suggests that increased methyltransferase activity in the mitochondria negatively 

effects cell growth.  Dr. Taylor has therefore designed an inducible expression construct in which 

the TFAM MLS has been added to a human codon-optimized bacterial CpG methyltransferase, 

M.SssI.  This may allow the lab to test the effect of increased methyltransferase activity on 

mitochondrial DNA modification, transcription, and cell growth without the loss of p53. 

These data demonstrate that loss of p53 affects mitochondrial transcription on the 

polycistronic level, specifically resulting in increased ND1 and Cox1 transcript in MEF p53 -/- 

cells.  This is likely due to changes in heavy strand promoter usage.  It was also found that while 

a plasmid expressing mtDNMT1 can be transiently overexpressed, long term overexpression 

appears to be selected against in cell culture.  These findings support the hypothesis that 

mitochondrial DNA modification may have an effect on transcription and mitochondrial 

function. 
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Chapter 3:  Effect of mtDNA methylation on interaction of mTERF and TFAM with recognition 

sequences 

 

Introduction 

 Previous studies have shown that loss of p53 leads to increased expression of the 

mitochondrial isoform of DNMT1 [57].  This increase in mtDNMT1 is associated with increased 

modification of mitochondrial DNA (Lisa Shock, unpublished data) (Figure 1-4) and strand-

specific changes in mitochondrial transcription [57] (Prashant Thakkar, unpublished data) 

(Figures 2-1, 2a, 3).  Specifically, an increase in ND1 and Cox1 transcripts was observed when 

polycistronic messages were reverse transcribed in a strand-specific manner (Prashant Thakkar, 

unpublished data) (Figures 2-1). 

 ND1 and Cox1 are the first protein coding genes transcribed as part of a polycistronic 

message initiated at the second heavy strand promoter, HSP2 [14].  The polycistronic messages 

transcribed from HSP1 do not contain these sequences, due to termination by mTERF1 binding 

within the Leu tRNA coding region [31].  Changes in mitochondrial DNA modification due to 

the increased levels of mtDNMT1 observed in p53 nulls cells [57] could result in altered 

interaction of mTERF1 with its binding site.  If methylation of the termination site were to 

prevent mTERF1 from binding, HSP1 transcription might fail to terminate and continue 

downstream into the ND1 and Cox1 coding sequences. 

 The structure of mTERF1 is composed entirely of helices, consisting of 19 α-helices and 

7 310 helices (a more tightly coiled helix with 3 residues per turn instead of the 4 residues per 
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turn found in α-helices) that are arranged in a repeating motif of two α-helices followed by a 310 

helix [71].  The protein contains 8 repeats of this motif, which suggests a modular architecture – 

the individual motifs are thought to be fairly rigid, but there is relative flexibility between motifs 

[71].  mTERF1 binds along the major groove of DNA, resulting in a 25˚ bend in the double helix 

[71].  In addition to bending the DNA, mTERF1 binding disrupts the twist of the helix, 

unwinding and partially melting the DNA, resulting in three nucleotides being everted from the 

double helix [71].  Cytosine methylation has been shown to change the mechanical properties of 

DNA, decreasing flexibility [72] and increasing the forces necessary for strand separation [73].  

Because bending and melting of the termination site are required for mTERF1 binding, 

methylation of this sequence could affect mTERF binding and transcriptional termination. 

 Another possible explanation for the observed increase in ND1 and Cox1 transcripts 

(Prashant Thakkar, unpublished data) (Figures 2-1) would be an increase in transcription 

initiation from HSP2.  Increased initiation from HSP2 would result in more of the polycistronic 

message containing the ND1 and Cox1 sequences being synthesized.  The first component of the 

transcription initiation complex to bind to the promoter region is TFAM [26].  TFAM binds 

along the minor groove of the double helix and creates two kinks in DNA, which forces it to 

undergo a U-turn [23].  This U-turn brings the C-terminal tail of TFAM closer to the 

transcription start site, where it is necessary for recruitment of POLRMT and TFB2M and the 

activation of transcription [24].  Methylation of the promoter sequence could alter TFAM 

binding and, therefore, transcription initiation. 

 Interestingly, TFAM has been shown to have different effects on transcription initiation 

at the two heavy strand promoters [28, 29].  While required for transcription from HSP1, TFAM 

is not necessary for transcription initiation at HSP2 in vitro [28], and may even be a repressor 
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[29].  If methylation of the promoter sequence were to disrupt TFAM binding, transcription from 

HSP2 might increase. 

 Changes in protein-DNA interactions can be observed through electrophoretic mobility 

shift assays (EMSA) or fluorescence polarization (FP).  Both of these techniques take advantage 

of the increased size of a protein-DNA complex relative to the DNA alone.  In an EMSA, one of 

the complex components (typically the DNA) is labeled with a radioactive nucleotide or 

fluorophore.  The components are then allowed to interact.  The reactions are then run on a 

native gel, through which the larger complexes travel more slowly than the individual 

components.  This is visualized as an upwards shift on the gel. 

 FP also takes advantage of relative changes in complex size, but these interactions are 

measured in solution.  Molecules in solution tumble randomly, a phenomenon referred to as 

Brownian motion [74].  If a small molecule in solution labeled with a fluorophore is excited, it 

will randomly and rapidly reorient itself before emission, due to this motion [74].  This will 

result in largely depolarized light.  If another molecule binds to the fluorescent probe, the 

resulting complex will be larger and tumble more slowly.  This will result in slower reorientation 

of the molecule, and the emission from the fluorophore will be along the same axis as the 

excitation, resulting in polarization.  FP uses this principle to determine the degree of 

polarization when complexes are allowed to form, which is indicative of the amount of binding 

occurring [74].  The relative polarization of samples can be quantified and used to determine 

affinity of a protein for a substrate [74]. 

 While EMSA and FP can identify changes in protein-DNA interactions, they cannot 

provide data on the molecular basis for those changes.  One way to analyze molecular interaction 

in detail is through the use of unnatural amino acids.  Unnatural amino acids can serve as sites 
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for photocrosslinking or as resonance probes in Resonance Raman spectroscopy [75].  Unnatural 

amino acids can be incorporated into recombinant proteins produced in E. coli by reassigning the 

amber stop codon (TAG) to encode the desired unnatural amino acid [75].  First, an expression 

vector is generated for the protein of interest in which the coding sequence for the amino acid to 

be replaced has been mutated to TAG.  This expression vector is used to co-transform E. coli 

cells with a pEVOL vector for the desired unnatural amino acid [75].  The pEVOL vectors 

contain coding sequences for an optimized CUA tRNA and a modified tRNA synthetase that can 

charge the CUA tRNA with the unnatural amino acid [75].  This allows for unnatural amino acid 

incorporation to occur during protein production, without the need for modifications after protein 

purification. 

 The two unnatural amino acids used in this work are p-benzoyl-L-phenylalanine (BpA) 

and cyanophenylalanine (CNF).  BpA is photo reactive and can be used to form covalent adducts 

between the amino acid residue and nearby molecules [76].  Through crosslinking, transient 

interactions can be captured and analyzed.  Both BpA and CNF may be used as vibrational 

probes for Raman Resonance spectroscopy.  These unnatural amino acids can be excited at 

known wavelengths, and the wavenumber generated is sensitive to the polarity of the 

environment [77].  This allows for slight changes in the molecular environment of the residue to 

be detected, and this data can be used to generate models of the interactions. 

 It was hypothesized that methylation of the termination and HSP1 sequences would alter 

mTERF1 and TFAM binding, respectively.  To test this hypothesis, mTERF1 and TFAM 

binding to methylated and unmethylated probes was analyzed using EMSA and FP.  It was found 

that methylation did not affect mTERF1 binding.  TFAM was observed to have higher affinity 

for methylated nonspecific DNA than unmethylated nonspecific DNA, and appeared to form 
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higher order complexes at lower protein concentrations with methylated HSP1 probes.  The 

effect of methylation on transcription initiation from HSP1 was analyzed by Dr. Lisa Shock, and 

methylation was shown to increase transcription from HSP1.  Finally, unnatural amino acids 

were incorporated into recombinant TFAM and mTERF1 proteins.  TFAM was expressed with 

incorporated unnatural amino acids, while mTERF1 was not. 

 

Methods 

 

Cloning mTERF into pET32XT 

The mTERF cDNA sequence in the pLX304 vector was obtained from ASU.  Primers 

were designed to amplify the coding sequence without the mitochondrial leader sequence.  The 

forward primer contained a BamHI restriction site, and the reverse primer contained a XhoI 

restriction site.  Following PCR amplification (see Chapter 1 for conditions), the PCR product 

was purified using a QIAquick PCR purification kit (Qiagen), according to the manufacturer’s 

instructions.  The purified PCR product and PET32XT vector (a gift from Dr. David Williams) 

were digested with BamHI and XhoI in NEBuffer 3.  The reactions were resolved on a 1% 

agarose gel with TAE (see Chapter 1), then excised and purified using an E.Z.N.A gel extraction 

kit (Omega), according to the manufacturer’s instructions.  The ligation reaction was prepared 

using a molar ration of 1:3 vector to insert, and the vector and insert were ligated using T4 

Ligase (NEB).  1 µL of the ligation reaction was added to 25 µL of Top10 competent cells 

(Invitrogen), which were then incubated on ice for 30 minutes.  The cells were then incubated at 

42°C for 30 seconds and placed back on ice.  125 µL of S.O.C. media was added to the cells, 

which were then placed in a shaking incubator at 37°C for 1 hour at 225 rpm.  Following the 1 

hour incubation, the cells were plated onto selective LB agar plates and placed in a 37°C 



52 
 

incubator overnight.  5 mL of selective LB were inoculated with resulting colonies and grown at 

37°C overnight in a shaking incubator.  Plasmid DNA was isolated from these cultures using the 

E.Z.N.A Plasmid Mini Kit (Omega), according to the manufacturer’s instructions.  The plasmids 

were then analyzed by sequencing performed by Eurofins. 

 

Expression and purification of mTERF 

HMS174 competent cells obtained from Dr. Hackett’s laboratory were transformed with 

the mTERF-pET32XT expression vector by incubating the cells on ice with the plasmid for 5 

minutes, then heating the cells to 42°C for 30 seconds and returning them to ice for 2 minutes.  

125 µL of S.O.C. media was added to the cells, which were then placed in a shaking incubator at 

37°C for 1 hour at 250 rpm.  Following the 1 hour incubation, the cells were plated onto 

selective LB agar plates containing 50 ug/mL Carbenicillin and placed in a 37°C incubator 

overnight.  A colony was selected and used to inoculated 5 mL of LB containing 50 ug/mL 

Carbenicillin.  This culture was grown overnight in a shaking incubator at 37°C at 250 rpm.  The 

5 mL overnight culture was then added to 95 mL of LB containing 50 ug/mL Carbenicillin.  The 

100 mL culture was grown at 37°C with 250 rpm shaking until it reached an OD600 of 0.5 

relative to a blank consisting of the growth media alone, when it was split into two 50 mL 

cultures.  To one of these cultures was added IPTG to a final concentration of 1mM, and then the 

cultures were incubated at 20°C for 18 hours. 

After 18 hours, the cells were pelleted by centrifugation at 4000 x g for 10 minutes at 

4°C.  The growth media was discarded and the pellets were weighed and resuspended in NiNTA 

lysis buffer (50 mM sodium phosphate, 300 mM NaCl), using 5 mL for every gram of pellet wet 

weight.  Lysozyme (Sigma) was added to a final concentration of 1 mg/mL and the resuspended 
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cells were incubated on ice for 30 minutes.  The cells were then lysed on ice using a microtip 

sonicator on high for 3 minutes total sonication time, alternating between 45 seconds on and 3 

minutes off to prevent the sample from overheating.  The soluble and insoluble fractions were 

separated by centrifugation at 30,000 x g for 30 minutes at 4°C.  The soluble fraction was then 

moved to a new tube and the pellet was resuspended in an amount of 6M urea equal to the 

volume of the soluble fraction.  The soluble and insoluble lysates for both the induced and 

uninduced cultures were then evaluated using SDS-PAGE.  20 μL of each fraction were mixed 

with an equal volume of 2x Laemmli buffer (Bio-Rad) with 5% 2-mercaptoethanol, boiled for 5 

minutes, and loaded onto an SDS-PAGE gel.  5 μL of Precision Plus Dual Color pre-stained 

protein ladder (BioRad) were also loaded.  The gels were run in 1L of 1x running buffer (25mM 

Tris base, 250mM glycine, 0.1% SDS) at 150V for approximately one hour.  After running, the 

gels were washed for 2 minutes with MilliQ H2O, then stained with R-250 Coomassie staining 

solution (0.1% Coomassie Brilliant Blue, 40% methanol, 10% acetic acid). 

For every 4 mL of soluble fraction obtained from the induced culture, 1 mL of 50% 

NiNTA resin slurry (Qiagen) was added and the lysate/resin solution was incubated for 1 hour at 

4°C with rotation.  The mixture was then added to an empty 10 mL column and the flowthrough 

was collected.  The resin was then washed with twice the original resin slurry volume of lysis 

buffer containing 20 mM imidazole.  Two washes were performed, and each was collected 

separately.  Bound protein was then eluted with a volume of lysis buffer containing 250 mM 

imidazole equal to the volume of resin slurry initially added.  The fractions were then evaluated 

by SDS-PAGE (see above). 

 

mTERF EMSA 
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An oligonucleotide representing the mTERF binding site [82] (see Table 2-1) was 

methylated with MsssI (NEB).  1 μg of the oligo was mixed with NEBuffer 2, 80 μM SAM 

(stock solution stored at -20˚C and diluted with HPLC), and 4 units of M.SssI.  The reaction was 

incubated at 37°C for 1 hour, then the enzyme was inactivated by a 20 minute, 65°C incubation.  

To prepare an unmethylated oligo, the same reaction was performed without SAM.  The 

methylated and unmethylated oligos were labeled with γ-32P ATP (3000Ci/mmol, 10mCi/ml) 

(Perkin Elmer) with T4 Polynucleotide Kinase (NEB) according to the protocol provided by the 

manufacturer.  Unincorporated ATP was removed using illustra ProbeQuant G-50 Micro 

Columns (GE Healtcare) according to the manufacturer’s instructions, and labeling efficiency 

was checked by taking readings with a scintillation counter. 

4 μg of NiNTA purified mTERF and 10 nM of termination probe were mixed in reaction 

buffer (25 mM HEPES, pH 7, 50 mM KCl, 12.5 mM MgCl2, 1 mM DTT, 20% glycerol, 0.1% 

Tween 20) with 0.5 μg polydIdC, and 5 μg BSA in a volume of 25 μL.  For reactions containing 

cold competitor, 10, 100 or 1000 nM of unlabelled probe were also added.  The reactions were 

incubated at 22°C for 20 minutes.  Following the incubation, the samples were mixed with 6x 

loading buffer (15% Ficoll 400) without dye and loaded onto a pre-run native 10% gel 

containing 28.25:1 acrylamide/bis-acrylamide, 0.5x TBE, and 0.1% ammonium persulfate.  The 

gel was run in 0.5x TBE at 200 V for approximated 30 minutes on ice at 4°C.  The gel was then 

vacuum dried at 60˚C for 2 hours and developed using a phosphorscreen and Typhoon scanner.  

Exposure times ranged from 20 minutes to overnight. 

 

Expression and purification of TFAM 
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TFAM was cloned without the MLS in the same manner as mTERF and ligated into the 

pET28 expression vector by the VCU Molecular Biology Core Facility.  HMS174 competent 

cells obtained from Dr. Hackett’s laboratory were transformed with the TFAM expression vector 

by incubating the cells on ice with the plasmid for 5 minutes, then heating the cells to 42°C for 

30 seconds and returning them to ice for 2 minutes.  125 µL of S.O.C. media was added to the 

cells, which were then placed in a shaking incubator at 37°C for 1 hour at 250 rpm.  Following 

the 1 hour incubation, the cells were plated onto selective LB agar plates containing 50 ug/mL 

Kanamycin and placed in a 37°C incubator overnight.  A colony was selected and used to 

inoculated 5 mL of LB containing 50 ug/mL Kanamycin.  This culture was grown overnight in a 

shaking incubator at 37°C at 250 rpm.  The 5 mL overnight culture was then added to 95 mL of 

LB containing 50 ug/mL Kanamycin.  The 100 mL culture was grown at 37°C with 250 rpm 

shaking until it reached an OD600 of 0.5 relative to a blank consisting of the growth media alone, 

when it was split into two 50 mL cultures.  To one of these cultures was added IPTG to a final 

concentration of 1mM, and then the cultures were incubated at 20°C for 18 hours. 

After 18 hours, the cells were pelleted by centrifugation at 4000 x g for 10 minutes at 

4°C.  The growth media was discarded and the pellets were weighed and resuspended in NiNTA 

lysis buffer (50 mM sodium phosphate, 300 mM NaCl), using 5 mL for every gram of pellet wet 

weight.  Lysozyme (Sigma) was added to a final concentration of 1 mg/mL and the resuspended 

cells were incubated on ice for 30 minutes.  The cells were then lysed on ice using a microtip 

sonicator on high for 3 minutes total sonication time, alternating between 45 seconds on and 3 

minutes off to prevent the sample from overheating.  The soluble and insoluble fractions were 

separated by centrifugation at 30,000 x g for 30 minutes at 4°C.  The soluble fraction was then 

moved to a new tube and the pellet was resuspended in an amount of 6M urea equal to the 
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volume of the soluble fraction.  The soluble and insoluble lysates for both the induced and 

uninduced cultures were then evaluated using SDS-PAGE.  5 μL of each fraction were mixed 

with an equal volume of 2x Laemmli buffer (Bio-Rad) with 5% 2-mercaptoethanol, boiled for 5 

minutes, and loaded onto an SDS-PAGE gel.  5 μL of Precision Plus Dual Color pre-stained 

protein ladder (BioRad) were also loaded.  The gels were run in 1L of 1x running buffer (25mM 

Tris base, 250mM glycine, 0.1% SDS) at 150V for approximately one hour.  After running, the 

gels were washes for 2 minutes with MilliQ H2O, then stained with R-250 Coomassie staining 

solution (0.1% Coomassie Brilliant Blue, 40% methanol, 10% acetic acid). 

For every 4 mL of soluble fraction obtained from the induced culture, 1 mL of 50% 

NiNTA resin slurry (Qiagen) was added and the lysate/resin solution was incubated for 1 hour at 

4°C with rotation.  The mixture was then added to an empty column and the flowthrough was 

collected.  The resin was then washed with twice the original resin slurry volume of lysis buffer 

containing 20 mM imidazole.  Two washes were performed, and each was collected separately.  

Bound protein was then eluted with a volume of lysis buffer containing 250 mM imidazole equal 

to the volume of resin slurry initially added.  The fractions were then evaluated by SDS-PAGE 

(see Expression and Purification of mTERF). 

The NiNTA elution fraction from was dialyzed overnight at 4°C into ion exchange buffer 

(50 mM Hepes, pH 7.0, 50 mM NaCl, 1 mM DTT) using dialysis tubing with a 10 kDa pore size.  

An ENrich S 5 x 50 mm column (Bio-Rad) was connected to an NGC system (Bio-Rad) and 

equilibrated with 5 mL of ion exchange buffer (50 mM Hepes, pH 7.0, 50 mM NaCl, 1 mM 

DTT).  The dialyzed NiNTA elution was then loaded onto the column and washed with 3 mL of 

ion exchange buffer.  The flowthrough and wash were collected.  A 15 mL gradient was then run 

from the starting 50 mM NaCl concentration to 0.5 M NaCl, and 1 mL fractions were collected.  
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To elute any protein remaining on the column after the gradient, 3 mL of ion exchange buffer 

contain 1 M NaCl were run over the column and collected.  The fractions were evaluated by 

SDS-PAGE (see Expression and Purification of mTERF). 

 

Methylation reaction and analysis for EMSA and FP probes 

 EMSA and FP probes were methylated with M.SssI (NEB).  To assess the methylation 

efficiency, 1 μg of HSP1 transcription template was mixed with NEBuffer 2, 320 μM SAM 

(stock solution stored at -20˚C and diluted with HPLC), and 4 units of M.SssI.  The reaction was 

incubated at 37°C overnight, then the enzyme was inactivated by a 20 minute, 65°C incubation.  

The reaction was purified by phenol/chloroform extraction and precipitated with ethanol.  200 μg 

of the methylated DNA was digested with the methylation sensitive restriction enzyme AciI 

(NEB) in CutSmart buffer for 1 hour and 37°C.  Percent protection was then determined by 

qPCR (See Chapter 1 for reaction conditions). 40 cycles were performed, with a 55˚C annealing 

step.  A set of primers amplifying the entire sequence was used to determine the amount of 

protection, as only methylated sequences would remain intact and be able to be amplified.  

Another primer specific for the region of the sequence between the restriction site and the end of 

the sequence was used as an input control. 

 

TFAM EMSA 

 EMSAs were performed with rmtTFA purchased from Enzymax, LLC.  Binding probes 

(see Table 2-1) were labeled with γ-32P ATP (3000Ci/mmol, 10mCi/ml) (Perkin Elmer) with T4 

Polynucleotide Kinase (NEB) according to the protocol provided by the manufacturer.  

Unincorporated ATP was removed using illustra ProbeQuant G-50 Micro Columns (GE 
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Healtcare) according to the manufacturer’s instructions, and labeling efficiency was checked by 

taking readings with a scintillation counter. 

 200 nM rmtTFA and 10 nM probe were mixed with reaction buffer (50 mM HEPES, pH 

7.5, 50 mM KCl, 2 mM MgCl2 and 2 μg/mL BSA for Figures 16 and 18 or 20 mM Tris HCL, pH 

8, 10 mM MgCl2, 60 mM NaCl, 15% glycerol, 1 mM EDTA, 1mM DTT, and 0.1mg/mL in 

Figures 20 and 21) in a 10 μL reaction.  For experiments using cold competitor, 10 or 100 nM of 

unlabelled probe were also added.  The reactions were incubated at 22°C for 30 minutes.  

Following the incubation, the samples were mixed with 6x loading buffer (15% Ficoll 400) and 

loaded onto a pre-run native 12% gel containing 28.25:1 acrylamide/bis-acrylamide, 0.33x TBE 

(in Figures 16 and 18) or 0.5x TBE (in Figures 20 and 21), and 0.1% ammonium persulfate.  The 

gel was run in 0.33x or 0.5x TBE (the same as the concentration of TBE present in the gel) at 

100 V for approximated 2.5 hours on ice at 4°C.  The gel was then vacuum dried and developed 

using autoradiography film (ISC Bioexpress) and a Konica SRX-101A developer or a 

phosphorscreen and Typhoon scanner.  Exposure times ranged from 20 minutes to overnight. 

 

Native gel immunoblotting 

 1200 nM rmtTFA and 60 nM cold probe or 1800 nM rmtTFA and 90 nM probe were 

mixed with reaction buffer (50 mM HEPES, pH 7.5, 50 mM KCl, 2 mM MgCl2 and 2 μg/mL 

BSA) in a 10 μL reaction.  The reaction was incubated and run on a 12% native gel as for an 

EMSA (described above).  After running, the gel was washed with MilliQ H2O and incubated in 

1x transfer buffer with 1% SDS for 1 hour at 4°C.  Following this incubation, the gel was 

transferred to a PVDF membrane, probed with an antibody specific for TFAM, and developed as 

described in Chapter 2. 
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TFAM Fluorescence Polarization 

 FAM-labeled probes for fluorescence polarization (FP) studies were methylated as 

described above.  10 μg of methylated or unmethylated probe was diluted into 500 μL of 20 mM 

Tris, pH 8, and loaded onto an Enrich Q column (Bio-Rad) connected to an NGC system (Bio-

Rad) that had been equilibrated with 5 mL of the buffer.  The column was washed with 5 mL of 

20 mM Tris, pH 8, and the wash was collected.  A gradient from 20 mM Tris, pH 8 containing 

no NaCl to 20 mM Tris, pH 8 plus 1 M NaCl was run over the column over 15 mL.  1 mL 

fractions were collected.  5 mL of 20 mM Tris, pH 8 plus 1 M NaCl were then run over column, 

and 1 mL fractions were collected.  The fractions containing DNA were identified using a 

NanoDrop spectrophotometer and the DNA was precipitated by adding 3 volumes of 100% 

ethanol to the fractions and incubating them for at least 1hour at -80°C or overnight at -20°C.  

The DNA was then pelleted by centrifugation at 16100 x g for 45 minutes at 4°C.  The pellet was 

washed with 75% ethanol and resuspended in HPLC H2O. 

 Varing concentrations of rmtTFA and 0.5 nM probe were mixed with reaction buffer (50 

mM HEPES, pH 7.5, 50 mM KCl, 2 mM MgCl2 and 2 μg/mL BSA for Figure 17 or mM Tris 

HCL, pH 8, 10 mM MgCl2, 60 mM NaCl, 15% glycerol, 1 mM EDTA, and 1mM DTT in 

Figures 22) in a 100 μL reaction volume.  The reactions were performed in triplicate.  The 

reactions were incubated at 22˚C for 30 minutes, then transferred to a 96 well black Optiplate F.  

The reactions were read using a PHERAstar FS fitted with a FP optic module.  The data were fit 

to the Hill equation in Prism GraphPad to determine Kd. 

 

Transcription assays 
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 Transcription assays were performed by Dr. Lisa Shock as described by Morozov YI, et 

al. (2014).  Transcription templates were designed so that the respective promoter sequences 

were placed upstream of a common transcribed sequence, based on the sequence transcribed 

from LSP.  Reactions were performed using varied amounts of template, mtRNAP (50 nM), 

TFAM (50 nM), TFB2M (50 nM) in a transcription buffer containing 40 mM Tris (pH = 7.9), 10 

mM MgCl2 and 10 mM dithiothreitol (DTT) in the presence of ATP (0.3 mM), GTP (0.3 mM), 

UTP (0.01 mM) and 0.3 µCi[α-32P] UTP (800 Ci/mmol).  The reactions were incubated at 35°C 

for 30 minutes and stopped by addition of an equal volume of stop buffer (95% formamide, 

0.05M EDTA, 0.25% bromophenol blue). The reactions were resolved on a 20% polyacrylamide 

gel electrophoresis (PAGE) gel containing 6 M urea and developed using a phosphorscreen and 

Typhoon scanner. 

 

Results 

 

mTERF can be expressed in and purified from E. coli 

 An expression construct containing the mTERF coding sequence without the MLS was 

generated by PCR amplification, restriction digest, and ligation (Fig. 3-1a).  HMS174 competent 

cells were transformed with this expression construct and induced with IPTG (Fig. 3-1b).  The 

cells were lysed and the soluble lysate was purified using a NiNTA column (Fig. 3-1b).  A band 

of the appropriate size for mTERF was found in the soluble lysate (Fig. 3-2a) and the elution 

fraction of the NiNTA column purification (Fig. 3-2b).  Additional bands were observed in the 

elution fraction, but the expected band was the dominant species. 
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Fig 3-1.  Schematic for the expression and purification of mTERF.  mTERF sequence was confirmed 

by sequencing. 
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Fig 3-2.  Wild-type mTERF can be expressed and purified from bacterial cells, but 

incorporation of unnatural amino acids resulted in no detectable protein production.  SDS-

PAGE gels showing mTERF (A) is present in both the soluble and insoluble fraction of 

induced cells and (B) can be purified using a NiNTA column.  (C) An SDS-PAGE gel 

comparing wild-type and mutant mTERF expression after NiNTA purification.  No bands of 

the appropriate size are visible in the elution fractions of the F243x or Y288x purifications. 
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 Expression constructs of mTERF in which key residues had been mutated to allow the 

incorporation of an unnatural amino acid were generated by the VCU Molecular Biology Core  

Facility.  Unnatural amino acids can be used as vibrational probes and crosslinking sites to 

evaluate changing in molecular interactions in further detail.  However, when expression of 

mTERF with incorporated unnatural amino acids was attempted, no expressed proteins were 

detected (Figure 3-2c). 

 

Methylation does not affect mTERF binding to the termination site 

 The mTERF purified from HMS174 cells was used in an EMSA with a probe containing 

the termination site.  mTERF was found to bind to both unmethylated and methylated probe, and 

was able to be competed off using unlabeled unmethylated probe (Fig. 3-3).  No differences were 

observed in the shift of the unmethylated and methylated DNA. 

 

TFAM can be expressed in and purified from E. coli 

 An expression construct containing the TFAM coding sequence without the MLS was 

generated by PCR amplification, restriction digest, and ligation by the VCU Molecular Biology 

Core Facility (Fig. 3-4a).  HMS174 competent cells were transformed with this expression 

construct and induced with IPTG (Fig. 3-4b).  The cells were lysed and purified using a NiNTA 

column and an ENrich S column (Fig. 3-4b).  A band of the expected size was present in the 

induced soluble lysate and the NiNTA elution fraction (Fig. 3-5).  There were other bands 

present, so the elution fraction was further purified over an ENrich S column (Fig. 3-5).  The 

NiNTA column yielded approximately 50% purified TFAM, and the EnRICH S column yielded  
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Fig 3-3.  Methylation does not affect mTERF binding to the termination site.  Shown is an 

EMSA in which mTERF was incubated with methylated or unmethylated radiolabeled DNA 

containing its binding site (n=1).  Unlabeled, unmethylated DNA was used as a cold competitor. 



65 
 

 

 

 

 

Fig 3-4.  Schematic for the expression and purification of TFAM.  TFAM sequence was confirmed by 

sequencing. 
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Fig 3-5.  TFAM can be expressed in and purified from E. coli. SDS-PAGE gels showing TFAM 

is present in the soluble lysate of induced cells, the elution fraction of an NiNTA column 

purification and in fraction 14 of an Enrich S column purification. 
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approximately 80% purified TFAM (Figure 3-5).  After both purification steps, approximately 30 

μg/gram of cell pellet were recovered. 

 

Unnatural amino acids can be incorporated into bacterially expressed TFAM 

 Expression constructs of TFAM in which key residues have been mutated to allow the 

incorporation of an unnatural amino acid were generated by the VCU Molecular Biology Core 

Facility.  The sequences encoding tyrosines 15 and 120 were mutated to match the amber stop 

codon, TAG, which allows an optimized CUA tRNA charged with an unnatural amino acid to 

used during translation [75].  These residues were selected based on X-ray crystallography data 

[23] and binding simulations performed by Dr. John Hackett.  Unnatural amino acids can be used 

as vibrational probes and crosslinking sites to evaluate changes in molecular interactions in 

further detail.  BpA and CNF residues were individually incorporated into TFAM, replacing 

residues Y15 and Y120.  The proteins with BpA substituted were expressed less robustly than 

the wild-type TFAM (Fig. 3-6), but more robustly than CNF substituted proteins (Fig 3-8).  

Incorporation of the unnatural amino acids was verified by mass spec analysis performed by 

Charles Lyons (Fig. 3-7). 

Methylation affects TFAM binding to DNA 

 Purchased recombinant TFAM was used in EMSAs to determine if methylation affects 

TFAM binding to DNA.  Figure 3-8 shows HSPxTFAM, the DNA probe used in the initial 

binding studies.  The underlined sequence shows the published TFAM binding site at HSP1, 

while the CpG residues near the binding site are shown in red.  HSPxTFAM was methylated, 

labeled with P
32

, and incubated with purchased recombinant TFAM.  EMSA data showed that  
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Fig 3-6.  TFAM can be expressed with unnatural amino acid BpA substituted positions Y15 and 

Y120. SDS-PAGE of induced soluble and NiNTA column fractions showng a band at 25 kDa. 
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Fig 3-7.  TFAM mutants contain unnatural amino acids.  A representative mass spectrometry 

scan showing the peptide with the appropriate substituation.  Experiment and figure done by 

Charles Lyons.  
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Fig 3-8.  TFAM can be expressed with unnatural amino acid BpA substituted positions 

Y15 and Y120.  SDS-PAGE of induced soluble and NiNTA column fractions showng a 

band at 25 kDa. 
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Fig 3-9.  Methylation affects binding at HSP1 binding site described by Ngo et al [78].  (A) 

The sequence of the HSP1 probe.  The TFAM binding half-sites are underlined.  (B)  EMSA 

with methylated and unmethylated probe and unmethylated cold competitor.  Image shown is 

representative of 3 experiments.  More probe is shifted up when the probe is methylated.  
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Fig 3-10.  Fluorescence polarization shows an increased affinity for methylated HSPxTFAM.  

Polarization values for reactions containing methylated and unmethylated HSPxTFAM-fam were fit 

to the Hill Equation and the Kd values for each trend line were calculated using Prism Graphpad.  

Each data point represents 3 replicate reactions. 
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TFAM binds to methylated and unmethylated HSPxTFAM, but more unmethylated cold 

competitor is required to compete TFAM off methylated HSPxTFAM (Fig. 3-9b).  This 

suggested that TFAM has a higher affinity for methylated HSPxTFAM than unmethylated 

HSPxTFAM.  Fluoresence polarization data supported this (Fig 3-10).  Reactions containing 

methylated probe reached the maximum polarization value at a lower concentration of TFAM 

than reactions containing unmethylated probe.  

 In order to determine if the individual CpG residues near the published TFAM binding 

site contributed differently to this change in binding, the CpG residues were changed to CpC 

residues separately and simultaneously.  These probes were methylated and used in an EMSA 

(Fig. 3-11).  Loss of the second CpG residue (ΔCpG2) resulted in less signal being shifted 

upward proportionately than loss of the first CpG residue (ΔCpG1).  This suggests that 

methylation of CpG2 contributed more to the increase in affinity than methylation of CpG1. 

 Multiple bands were observed on the EMSAs, so in order to determine if TFAM was 

present in the higher order complexes, the protein was allowed to bind to unlabelled probe and 

run on a native gel.  This gel was then transferred to a membrane and probed with antibody 

specific to TFAM (Fig. 3-12).  This demonstrated that TFAM was present in all the shifted 

bands. 

 During the course of these studies, the Temiakov laboratory demonstrated that the 

published TFAM binding site for HSP1 was incorrect.  The previous (underlined) and new 

(bolded) binding sites are shown in Figure 3-13a.  Because the HSP1 transcription template used 

in transcription assays contained the new binding site, it was used for further studies.  It was 

found that increasing levels of TFAM relative to the HSP1 transcription probe resulted in larger 

complexes being formed (Fig. 3-13b), as expected.  Methylation was found to cause the 
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Fig 3-11.  Loss of methylation at CpG2 results in loss of increased binding.  The CpG residues in 

the HSPxTFAM probe were changed to CpC to prevent methylation.  TFAM binding to 

methylated and unmethylated forms of the mutated and original probe was compared using EMSA 

(n=2, representative image). 
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Fig 3-12.  Shifted bands contain TFAM.  TFAM was incubated with unlabeled, unmethylated probe 

and the reaction was run on a 12% native gel.  This was then transferred to a membrane and 

immunoblotted with a TFAM-specific antibody (n=1).  The arrows indicate bands of different sizes 

containing TFAM.  The reactions labeled with “+” include the binding oligo, while the reactions 

labeled with “-“ do not. 
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Fig 3-13.  Increase in the relative amount of TFAM results in larger complexes being formed with 

a larger probe [26].  EMSA comparing the shorter HSPxTFAM probe and the longer 

HSPtranscription oligo used as a template for transcription assays (n=1).  Increases in relative 

TFAM concentration result in more probe being shifted upward.  

Fig 3-14.  Methylation results in larger complexes being formed.  EMSAs using (A) increasing 

relative amounts of TFAM (n=2) and (B) unmethylated cold competitor (n=2).  Reactions with 

the methylated probe results in larger complexes being formed at lower concentrations of 

TFAM.  
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Fig 3-15.  Fluorescence polarization using the HSP1 transcription template shows higher 

polarization of methylated probe at low levels of TFAM, but no change in Kd.  Polarization 

values for TFAM concentrations below 1 nM are higher using the methylated probe, but the 

trendlines for the data are not significantly different.  Each data point represents 3 replicate 

reactions. 
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formation of larger complexes at lower relative levels of TFAM to probe (Fig. 3-14a).  

Unmethylated cold competitor was able to compete TFAM off of the methylated probe at similar 

levels as the unmethylated probe (Fig. 3-14b).  This was different than what was seen in the 

previous studies with HSPxTFAM, which is representative of nonspecific DNA.  Fluorescence 

polarization showed no significant difference in Kd for methylated and unmethylated HSP1 

transcription probe (Fig. 3-15).  Interestingly, higher polarization was observed at lower 

concentrations of TFAM when methylated probe was used in the reaction, indicating there may 

be some differences in how TFAM interacts with methylated and unmethylated promoter DNA. 

 

Methylation results in increased transcription from HSP1 

 In order to determine if the changes seen in TFAM binding affect transcription, 

transcription assays were performed by Dr. Lisa Shock.  These assays demonstrated that 

methylation of HSP1 results in increased transcription (Fig. 3-16).  At 10 nM template, more 

product is produced from a methylated template (Fig. 3-16b).  The increase is about 3-fold (Fig. 

3-16c).  This change at 10 nM template is interesting, because there is a TFAM molecule for 

every 16.6 bp in the mitochondrial genome in human fibroblasts [80].  This is very similar to the 

ratio present when 10 nM of tenplate are used in the transcription assay, suggesting that the 

results obtained at that ratio are the most biologically relevant. 

 In order to determine if the individual CpG residues in the HSP1 promoter contributed 

differently to this change in transcription inititation, the CpG residues were changed to CpC 

residues separately and simultaneously.  These probes were methylated and used in transcription 

assays at 10 nM (Fig. 3-17).  The changes of the CpG residues to CpC residues alone were found 

to have an extreme effect on transcription (Fig. 3-17b).  Loss of methylation at either CpG  
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Fig 3-16.  Methylation increases transcription from the Heavy Strand Promoter.  Assays 

designed and analyzed by Lisa Shock.  (A) Transcription template used in assays.  

Methylation targets are in red, and the blue sequence indicates the transcribed sequence.  (B) 

Representative image of assay.  (C) Quantitation of 10 nM reactions performed using 

ProbeQuant software. 
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Fig 3-17.  Methylation of individual CpG residues contributes differently to increases in 

transcription from the Heavy Strand Promoter.  Assays designed and analyzed by Lisa 

Shock.  (A) Transcription template used in assays.  Methylation targets that were mutated 

to CC are in red, and the blue sequence indicates the transcribed sequence.  (B) 

Representative image of assay.  (C) Quantitation of assays performed using ProbeQuant 

software. 
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residue impacted transcription, but loss of methylation at CpG2 seemed to have a greater impact 

(Fig. 17c).  These findings support the observation above that methylation has an effect on 

TFAM binding, and may partially explain the transcriptional differences observed in Chapter 1. 

 

Discussion 

 

Expression of recombinant mTERF1 and TFAM in E. coli 

 Both wild-type mTERF1 and TFAM were expressed in and purified from E. coli.  

However, unnatural amino acids were only successfully incorporated into TFAM.  Attempts to 

incorporate unnatural amino acids into mTERF1 resulted in no protein being expressed.  This 

could be due to the helical structure and rigid motifs of mTERF1 [71], resulting in co-

translational protein degradation. 

 It has been shown that elongation factor thermal unstable (EF-Tu) binds less efficiently to 

tRNAs charged with unnatural amino acids [81], which can lead to translational pausing, 

inefficient incorporation and translation, and co-translational protein degradation.  

Overexpression of this elongation factor has been shown, in many cases, to minimize these 

effects and allow more efficient production of proteins carrying unnatural amino acids (REF). In 

an attempt to improve expression of mutant mTERF, HMS174 were transformed with an 

expression vector encoding EF-Tu, then made competent and transformed with the mutated 

mTERF1 expression vector and pEVOL.  Protein expression was then induced.  However, the 

recombinant EF-Tu is close in size to the recombinant mTERF and also contained a 6x His tag, 

resulting in its co-purification by NiNTA resin.  This made visualization of the unnatural amino 

acid-substituted mTERF1 protein difficult.  Attempts were made to remove the 6x his tag from 
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the EF-Tu expression vector by mutagenesis, but these were unsuccessful.  If the tag were to be 

removed, increased expression of EF-Tu could be used in an attempt increase the levels of 

mutant TFAM produced, as well. 

 

Methylation does not affect mTERF1 interaction with the termination sequence 

 Methylation of the termination sequence did not appear to affect mTERF binding to its 

recognition sequence (Figure 3-3).  This observation led us to focus our analysis on the impact of 

methylation on TFAM binding to promoter DNA.  However, mTERF1 has been shown to also 

bind upstream of HSP1, forming a loop in the DNA that is thought to facilitate recycling of the 

transcription machinery [82].  Given the recent suggestion that the primary termination role of 

mTERF1 may be on transcription of the light strand [32], the effect of methylation on mTERF1 

promoter binding transcription loop formation may be worth investigating. 

 

Methylation affects the interaction of TFAM with nonspecific and promoter DNA 

differently 

 The HSPxTFAM binding probe was designed based on the published TFAM binding site 

at HSP described by Ngo, et al [78].  The probe was reported to contain the TFAM binding site 

and the transcription start site.  TFAM was found to have a higher affinity for methylated 

HSPxTFAM probe than unmethylated probe (Figures 3-9, 3-10), and was observed to form 

complexes of an appropriate size to contain multiple TFAM molecules.  These larger complexes 

were shown to contain TFAM through immunoblotting with an antibody specific for TFAM 

(Figure 3-11).  However, there was some concern over the apparent loss of probe observed (see 

Figure 3-9, Unmethylated/TFAM only lane).  It was possible that some of the complexes being 
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formed were remaining in the reaction tube and therefore were not represented on the gel.  

Reaction conditions were changed from those described by Gangelhoff et al [79] to those used 

by Kukat et al [25].  The primary difference between the two sets of reaction conditions was the 

addition of 15% glycerol and a 50-fold increase in the amount of BSA present.  After changing 

reaction conditions, recovery of probe was consistent between experimental samples and close to 

complete (Figure 3-13a). 

 While the experiments with the HSPxTFAM probe were being conducted, it was 

demonstrated that the TFAM binding site published by Ngo, et al. was incorrect (Temiakov, 

personal communication), using DNA-protein crosslinking studies.  The binding site is further 

upstream from the transcription start site (shown in bold in Figure 3-12a), placing it at a similar 

position relative to the transcription start site as the TFAM binding site at LSP (Temiakov, 

personal communication).  The complete binding site was not present in the HSPxTFAM probe, 

meaning that the changes in TFAM binding due to methylation observed using the HSPxTFAM 

probe are representative of the effect of methylation on TFAM binding to non-specific, rather 

than promoter DNA. 

 A longer oligo had been developed for use in transcription assays, HSPtranscription 

(Figure 3-12a).  This oligo contained the entire TFAM binding site at HSP1, so was used in 

further studies to evaluate the effect of methylation on the binding of TFAM at HSP1.  In 

EMSAs with the HSPtranscription oligo, TFAM was observed to form higher order complexes at 

lower concentrations when the probe was methylated (Figure 3-13).  However, FP with 

fluorophor-labeled HSPtranscription probe did not reveal any differences in the affinity of 

TFAM for methylated and unmethylated promoter DNA (Figure 3-14).  This could be due to the 

formation of larger complexes than was observed with EMSA (Figure 3-13).  If a 1:1 binding 
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ratio of TFAM:DNA forms a large enough complex to polarize the fluorescence emitted from the 

probe, still larger complexes will not result in increased polarization.  The formation of the larger 

complexes at lower relative levels of TFAM when the DNA is methylated would not be observed 

with this technique. 

 

Methylation results in increased transcription from HSP1 

 Transcription assays performed by Dr. Lisa Shock demonstrated that transcription from a 

methylated template is increased relative to transcription from an unmethylated template in 

reactions containing 10 nM of the HSP1 transcription template and 50 nM TFAM, POLRMT, 

and TFB2M (Figure 3-15b).  These relative concentrations are biologically relevant, because the 

amount of TFAM present in mitochondria has been calculated to be 1 TFAM molecule for every 

16.6 bp of mtDNA [80].  Because the HSP1 transcription template is 80 bp, the 1:5 ratio of 

TFAM:DNA molecules almost perfectly replicates the relative levels of TFAM and mtDNA 

observed in vivo. 

 This increase in transcription from HSP1 could be easily explained if TFAM had been 

shown to bind with higher affinity to methylated promoter DNA, but this was not found (Figures 

3-13, 3-14).  However, the formation of larger complexes at lower relative levels of TFAM 

observed when the promoter sequence was methylated provides a potential alternate hypothesis.  

The formation of larger complexes suggests that TFAM may be able to more effectively recruit 

additional proteins to the promoter when it is methylated.  In the EMSA and FP experiments, the 

only available proteins were other TFAM molecules.  It is possible that this increase in 

recruitment efficiency may apply to the other components of the mitochondrial transcription 
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machinery, as well.  If POLRMT and TFB2M are recruited to the promoter more efficiently 

when the promoter is methylated, an increase in transcription would be expected. 

 This could be tested using the protein-DNA and protein-protein photocrosslinking 

protocol described by Morozov, et al [26].  Photo-reactive molecules incorporated into TFAM 

and promoter oligos allow TFAM to be crosslinked with POLRMT and POLRMT to be 

crosslinked with the DNA [26].  If TFAM is able to more efficiently recruit POLRMT to a 

methylated promoter, more crosslinked complexes should be observed when methylated oligo is 

used in the reaction. 
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Chapter 4:  Conclusions and Perspectives 

 

 The effects of cytosine modifications in DNA are fairly well understood in the nuclear 

genome.  Cytosines in CpG dinucleotides can be modified with methyl groups, which is 

associated with chromatic compaction and transcriptional silencing [1], or hydroxymethyl 

groups, which is associated with active demethylation and gene expression [3].  However, the 

effects of these modifications in the mitochondrial genome are not yet understood. 

 Methylated cytosine residues were identified in the mitochondrial genome several 

decades ago [45], but a methyltransferase was not identified in the organelle until the Taylor 

laboratory demonstrated an isoform of DNMT1 which is translocated to the mitochondria [57].  

It was found that expression of mtDNMT1 is increased in the absence of p53 [57], and this 

increase is correlated to increased methylation at the mitochondrial promoters (Figure 1-1) and 

strand-specific changes in mitochondrial transcription [57].  Specifically, loss of p53 results in an 

increase in the polycistronic transcript encoding the ND1 and Cox1 sequences (Prashant 

Thakkar, unpublished data and Figure 2-1). Thus, it appears that cytosine methylation has a 

different effect on transcription in the mitochondria than in the nucleus.   

 ND1 and Cox1 encode the core subunits of Complex I and IV of the electron transport 

chain, respectively.  Changes in the expression levels of these proteins could affect oxidative 

phosphorylation and ATP synthesis by altering the flow of electrons from the mitochondrial 

matrix to the intermembrane space.  An increase in the amounts of ND1 and Cox1 proteins may 



87 
 

be detectable by immunoblotting with specific antibodies.  It is also possible to measure 

mitochondrial respiration in cell cultures by determining the oxygen consumption and 

extracellular acidification rates using an instrument such as the Seahorse XF (Agilent 

Technologies).  These analyses would allow us to determine what effect changes in 

mitochondrial DNA methylation might have on cellular energy levels. 

 The observed changes may be due to the impact of methylation on TFAM binding to 

promoter DNA (Figure 3-14), as methylation of the promoter sequence increases transcription 

from HSP1 (Lisa Shock, unpublished data) (Figure 3-16).  Methylation of the promoter sequence 

results in larger TFAM:DNA complexes forming at lower protein concentrations (Figure 3-14), 

which suggests an increase in cooperativity.  This increase in cooperativity may result in 

increased efficiency in the compaction of mtDNA into nucleoids [25].  The compaction of the 

mitochondrial genome by different relative amounts of TFAM has been visualized by electron 

microscopy [25].  Using this method, the degree of compaction achieved by different relative 

concentrations of TFAM and DNA, methylated and unmethylated, could be compared.  

Methylation may impact binding in such a way that TFAM is more able to recruit other proteins, 

which may allow TFAM to more efficiently bring POLRMT and TFB2M to the promoter and 

initiate transcription.  This could be investigated through crosslinking studies described by 

Morozov et al [26].  TFAM and POLRMT would be allowed to bind to methylated and 

unmethylated promoter sequences, then crosslinked via photoreactive sites incorporated into the 

proteins and DNA.  The relative efficiency of complex formation could then be analyzed by 

running the complexes on a gel to visualize differences in size.  Crosslinking at different 

incubation times could provide information regarding how quickly the complexes are formed, 

and the relative amounts of shifted probe could be used to determine changes in total complexes 
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formed.  Formaldehyde-mediated DNA:protein crosslinking could also be performed in cell 

culture, and chromatin immunoprecipitation with antibodies specific for components of the 

mitochondrial transcription initiation complex could be used to test for increased presence of 

POLRMT and TFB2M at the promoter regions.  Based on the in vitro data presented in this 

thesis, increased methylation at the promoter region through increased methyltransferase 

expression is expected to result in enrichment of the promoter regions in qPCR analysis of 

POLRMT and TFB2M IPs. 

 In order to better understand the molecular basis for the effect promoter methylation has 

on TFAM binding and transcription initiation, recombinant TFAM proteins were expressed in 

which key residues were replaced with unnatural amino acids (Figures 3-6, 3-8).  These 

unnatural amino acids will be used as vibrational probes for Raman Resonance spectroscopy and 

crosslinking sites to determine if methylation of DNA results in changes in the protein:DNA 

interactions. 

 It is important to try to understand the impact cytosine modification has on mitochondrial 

transcription because of its critical role in oxidative phosphorylation and normal cellular 

function.  The fact that mtDNMT1 could not be stably overexpressed suggests that regulation of 

methylation in the mitochondria is important for cell growth and survival (Figure 2-8, 2-9). It 

appears that cytosine methylation has a different effect on transcription in the mitochondria than 

in the nucleus, enhancing, rather than reducing gene expression, so further studies will be 

necessary to better understand the role of DNA modifications in this organelle.  Cells expressing 

a M.SssI construct containing the MLS from TFAM in cell culture will be generated to 

investigate the effect of increased mitochondrial methyltransferase activity without the loss of 

p53 through strand-specific transcription assays and analysis of cellular respiration.  The effect 
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of increased TFAM cooperativity on initiation complex assembly will be studied through 

crosslinking studies, and the molecular basis for the changes observed will be analyzed using 

proteins containing unnatural amino acids through crosslinking and Raman Resonance 

spectroscopy. 
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Appendix 1 

 

 

 

Table 1-1: PCR primers for stand-specific polycistronic transcription analysis 

 

 

Table 1-2: PCR primers for gene-specific strand-specific cDNA synthesis and PCR 

 cDNA synthesis qPCR 

Annealing 

Temp 

16s 

rRNA 

5’-AAAAGAGGGACAGCTCTTCTGGAACG-3’ 5’-TCTCTGTTAACCCAACACCGGAATGC-3’ 
60˚C 

5’-CGGACCAAGTTACCCTAGGGATAA-3’ 5’-GGACTAGCATGAACGGCTAAACGA-3’ 

ND1 
5’-TAATCGCCATAGCCTTGGTAACATTAG-3’ 5’-GGTCCATACGGCATTTTACAACC-3’ 

50˚C 
5’-TTAATGGGTGTGGTATTGGTAGGG-3’ 5’-CTAGTGTGAGTGATAGGGTAGGTG-3’ 

Cox1 
5’-TCGTAACTGCCCATGCTTT-3’ 5’-CCCTTCATTTAGCTGGAGTGT-3’ 

57˚C 
5’-GTGTAAGCATCTGGGTAGTCTG-3’ 5’-GGTTGCGGTCTGTTAGTAGTATAG-3’ 

18s 
Random hexamers 5'-GTCTGTGATGCCCTTAGATG-3' 

50˚C 
Random hexamers 5'-AGCTTATGACCCGCACTTAC-3' 

 

Mouse 

 Forward Primer Reverse Primer 

Annealing 

Temp 

ATP6 
(cDNA 

synthesis) 5'-ATTCCCATCCTCAAAACGCC-3' 5'-TGTTGGAAAGAATGGAGACGGT-3' 50˚C 

16S rRNA 5’-TCTCTGTTAACCCAACACCGGAATGC-3’ 5’-GGACTAGCATGAACGGCTAAACGA-3’ 55˚C 

ND1 5'-CAGGATGAGCCTCAAACTCCA-3' 5'-CGGCTCGTAAAGCTCCGA-3' 52˚C 

COX1 5'-TCGCAATTCCTACCGGTGTC-3' 5'-CGTGTAGGGTTGCAAGTCAGC-3' 53˚C 

18S rRNA 5'-GTCTGTGATGCCCTTAGATG-3' 5'-AGCTTATGACCCGCACTTAC-3' 50˚C 

 

Human 

 Forward Primer Reverse Primer 

Annealing 

Temp 

16s rRNA 5′-ACCTTACTACCAGACAACCTTAGCC-3′ 5′-TAGCTGTTCTTAGGTAGCTCGTCTGG-3′ 50˚C 

ND1 5′-TGCGAGCAGTAGCCAAACAAT-3′ 5′-TGATGGCAGGAGTAATCAGAGG-3′ 52˚C 

ATP6 5′-ATTCAACCAATAGCCCTGGCCG-3′ 5′-ACGTAGGCTTGGATTAAGGCGAC-3′ 55˚C 

GAPDH 5’-CCACGTGGTCTCCTCTGACTTC-3’ 5’-TTGGAGGCCATGTGGGCCATGA-3’ 55˚C 

Actin 5’-TTCTCACTGGTTCTCTCTTCTGCC-3’ 5’-ACCTACTTAATACACACTCCAAGGC-3’ 53˚C 
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Table 1-3: Optimal antibody conditions 

Antibody 

 
Manufacturer Species 

Blocking 

Buffer 

Primary 

Dilution 

Secondary 

Dilution 

Secondary 

Antibody 

Protein 

Size 

(kDa) 

VDAC Sigma Rabbit StartingBlock 1:4,000 1:10,000 
Goat 

antirabbit 
32 

H3K4me
3 Upstate 

Biotechnology 
Rabbit StartingBlock 1:2,000 1:15,000 

Goat 

antirabbit 
17 

TFAM Abcam Rabbit StartingBlock 1:10,000 1:10,000 
Goat 

antirabbit 
25 

p53 Calbiochem Mouse StartingBlock 1:1,000 1:2,000 
Goat 

antimouse 
53 

V5 Invitrogen Mouse StartingBlock 1:500 1:30,000 
Goat 

antimouse 
Varies 

 

Table 2-1:  Probes used in binding studies and transcription assays.  Single strand of 

complimentary pair shown 

Termination probe 5’- AGAACAGGGTTTGTTAAGATGGCAGAGCCCGGTAATCGCATAAA-3’ 

HSPxTFAM 5’- CCGCTGCTAACCCCATACCCCGAACCAACCAAACCCCAAAGACACCCGC-3’ 

HSPxTFAM ΔCG1 5’- CCCCTGCTAACCCCATACCCCGAACCAACCAAACCCCAAAGACACCCGC-3’ 

HSPxTFAM ΔCG2 5’- CCGCTGCTAACCCCATACCCCCAACCAACCAAACCCCAAAGACACCCGC-3’ 

HSPxTFAM 

ΔCG1+2 
5’- CCCCTGCTAACCCCATACCCCCAACCAACCAAACCCCAAAGACACCCGC-3’ 

HSPtranscription 
5’-CCATCCTACCCAGCACACACACACCGCTGCTAACCCCATACCCCGAAC 

CAACCAAACCCCAAAGATAAAATTTGTGGGCC-3’ 

HSPtranscription 

ΔCG1 

5’-CCATCCTACCCAGCACACACACACCCCTGCTAACCCCATACCCCGAAC 

CAACCAAACCCCAAAGATAAAATTTGTGGGCC-3’ 

HSPtranscription 

ΔCG2 

5’-CCATCCTACCCAGCACACACACACCGCTGCTAACCCCATACCCCCAAC 

CAACCAAACCCCAAAGATAAAATTTGTGGGCC-3’ 

HSPtranscription 

ΔCG1+2 

5’-CCATCCTACCCAGCACACACACACCCCTGCTAACCCCATACCCCCAAC 

CAACCAAACCCCAAAGATAAAATTTGTGGGCC-3’ 
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Appendix 2 

 

 

 

 

Reverse transcription 

 

Cell culture 

 Plate cells into a 150 mm dish 

 48 hours before isolating RNA, feed the cells 

 24 hours before isolating RNA, split the cells into 2x150 mm dishes 

 

Isolating RNA with TRIzol 

 Wash the cells twice with PBS 

 To each plate, add 4 mL of TRIzol 

 Incubate for 5 minutes at room temp 

 Pipet up and down, then transfer the TRIzol from both plates into a 15 mL conical 

tube 

 Add 1.6 mL of chloroform and shake for 15 seconds 

 Incubate at room temp for 3 minutes and centrifuge for 15 minutes at 12,000xg at 

4
o
C 

 Transfer the aqueous (colorless) layer to a new tube and add an equal volume of 

chloroform 

 Centrifuge for 15 minutes at 12,000xg at 4
o
C 

 Transfer the aqueous layer to a new tube 

 Add 4 mL of isopropanol, mix, and incubate for 10 minutes at room temp 

 Centrifuge for 10 minutes at 12,000xg at 4
o
C 

 Wash the pellet with 1 mL of 75% ethanol and centrifuge at 7,500xg at 4
o
C for 5 

minutes 

 Air dry for 5 minutes at room temp, then resuspend in 50 uL HPLC H2O 

 Determine the RNA concentration using the NanoDrop 

 

Reverse transcription with SuperScript III RT 

 Mix the following for each reverse transcription primer x2 (one with RT and one 

no RT control) 

o 1 ug of RNA 

o 1 uL of a 2 uM primer dilution or 1 uL of random hexamers for control 

reactions 

o 1 uL 10 mM dNTP mix 

o HPLC H2O to 10 uL 

 Incubate at 65
o
C for 5 minutes, then place on ice for at least 1 minute 
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 For each reaction, mix 

o 2 uL 10x RT buffer 

o 4 uL 25 mM MgCl2 

o 2 uL 0.1 M DTT 

o 1 uL RNaseOUT 

 Add 9 uL of the above mixture to the RNA mixtures 

o To the reverse transcription reactions, add 1 uL SuperScript III RT 

o To the negative controls, add 1 uL HPLC H2O 

 For random hexamer primed reactions, incubate at 25
o
C for 10 minutes 

 Incubate all reactions for 50 minutes at 50
o
C 

 Terminate the reactions at 85
o
C for 5 minutes, then cool the reactions on ice 

 Add 1 uL RNase H to each reaction and incubate at 37
o
C for 20 minutes 

 Store at -20
o
C 

 

End-point PCR 

 Set up a PCR reaction for each reverse transcription reaction and no RT control + 

1 no DNA control 

 Mix 

 12.5 mL HotStarTaq master mix 

 1 uL forward primer 

 1 uL reverse primer 

 9.5 uL HPLC H2O 

 1 uL template or HPLC H2O 

 PCR cycling conditions 

1. 95
 o
C for 15 minutes 

2. 95
 o
C for 30 seconds 

3. Annealing temp (Primer melting temp - 5
 o
C) for 30 seconds 

4. 72
 o
C for 1 minute 

5. Go to step 2 39 times 

6. 72
 o
C for 5 minutes 

7. 4
 o
C forever 

 Make a 1% Agarose gel with 1x TAE by mixing 0.5g agarose with 50 mL 1x 

TAE and microwaving to dissolve 

 Add 3 uL EtBr to the gel mix and cast the gel 

 Mix 5 uL of each PCR reaction with 1 uL 6x loading dye and load it onto the gel 

with 5 uL DNA ladder 

 Run at 100V for 50 minutes and visualize on the UV box 

 Bands should be present in the cDNA synthesis reactions with RT, but not in the 

reactions without RT or the H2O reactions 

 

qPCR 

 Mix the qPCR reactions as the end-point reactions using the reverse transcribed 

samples and water controls 

o Use 12.5 uL Qiagen SybrGreen master mix 

o Prepare each reaction in triplicate 
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 PCR cycling conditions 

o 95
 o
C for 15 minutes 

o 95
 o
C for 30 seconds 

o Annealing temp (Primer melting temp - 5
 o
C) for 30 seconds 

o 72
 o
C for 1 minute 

o Go to step 2 39 times 

o 72
 o
C for 5 minutes 

o Melting curve: 40
 o
C-90

 o
C, hold for 1 second, read every 1

 o
C 

 

 

Cell Fractionation 

 

Cell culture 

 Plate cells into a 150 mm dish 

 48 hours before cell fractionation, feed the cells 

 24 hours before cell fractionation, split the cells into 2x150 mm dishes 

 

Fractionation 

 Wash the cells 2x with cold PBS 

 Scrape the cells and transfer them into a 15 mL conical tube – take 5% off and 

transfer it to a microfuge tube 

 Spin the 5% of cells at 900xg at 4
o
C for 5 minutes to pellet and resuspend in 5x 

weight/volume of SDS lysis buffer (example: 50 mg = 250 uL SDS lysis buffer) 

 Spin the remaining cells at 900xg at 4
o
C for 5 minutes to pellet and resuspend in 3 

mL of mitochondrial homogenization buffer (0.25 M sucrose, 10 mM Tris-HCl, 

pH 7.0, 1 mM EDTA, pH 6.8) with protease inhibitors – add half a protease 

inhibitor cocktail tablet per 12.5 mL buffer 

 Transfer resuspended cells to a dounce homogenizer on ice and incubate for 5 

minutes 

 Homogenize with 15 strokes, transfer to a 15 mL conical tube and centrifuge at 

900xg at 4
o
C for 5 minutes to pellet unbroken cells 

 Transfer the supernatant to a new 15 mL conical tube labeled “post nuclear soup” 

 Resuspend the pellet in 3 mL of homogenization buffer and repeat the 

homogenization and centrifugation twice more 

Nuclear isolation 

 Resuspend homogenized cells in 3 mL nuclear buffer (0.25 M sucrose, 10 mM 

MgCl2) 

 Layer the resuspended cells over 3 mL sucrose cushion (0.88 M sucrose, 0.5 mM 

MgCl2) 

 Spin at 2800xg for 5 minutes 

 Resuspend pelleted nuclei in 5x weight/volume SDS lysis buffer 

Mitochondrial isolation 

 Spin the “post nuclear soup” at 900xg at 4
o
C for 5 minutes 

 Transfer supernatant to a 14 mL round bottom tube, leaving a couple mL behind 

to avoid contamination 
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 Spin the supernatant at 10,000xg for 15 minutes at 4
o
C 

 Transfer the supernatant to a new tube to isolate cytosolic proteins 

 Wash the mitochondrial pellet with 1 mL of mitochondrial homogenization buffer 

without protease inhibitors 

 Resuspend the pellet in 20x weight/volume Trypsin digestion buffer (10 mM 

HEPES-KOH, pH 7.4, 0.25 M sucrose, 0.5 mM EGTA, 2 mM EDTA, 1mM 

DTT) 

 Add Trypsin-EDTA to 10 ug/mL and incubate for 20 minutes at room temp 

 Add Bovine Trypsin inhibitor to 10 ug/mL and incubate on ice for 10 minutes 

 Pellet the mitochondria by spinning at 10,000xg for 10 minutes at 4
o
C 

 Wash the pellet twice with 1 mL of mitochondrial homogenization buffer with 

protease inhibitors 

 Resuspend the mitochondria in 10x weight/volume SDS lysis buffer 

Cytoplasmic protein isolation 

 To 5 mL of the saved mitochondrial supernatant, add 5 mL 20% TCA 

 Incubate on ice for 20 minutes 

 Spin at 6,000xg for 15 minutes 

 Wash the pellet 3 times with 100% acetone, spinning at 6,000xg for 5 minutes 

 Air dry the pellet on ice for 5 minutes 

 Resuspend the pellet in 10x weight/volume SDS lysis buffer 

 

 

Immunoblots 

 

Bradford assay 

 Turn on the spectrophotometer 

 Add 35 uL BSA to 35 uL H2O and mix 

 Add water, lysis buffer, then BSA or sample to a glass borosilicate tube – prepare 

each mixture in duplicate 

Sample Sample Volume Water Lysis Buffer 

BSA 0 799 1 

BSA 2 797 1 

BSA 4 795 1 

BSA 6 793 1 

BSA 8 791 1 

BSA 10 789 1 

Lysate 1 799 0 

 Add 200 uL Biorad dye to each of the mixtures and mix by flicking them tube 

 Incubate at room temp for 15 minutes 

 Transfer samples into a plastic microcuvette and read the absorbance at 595 nm 

using both UV and visible on the spectrophotometer– re-use the microcuvette to 

reduce cost 

 Use the slope of the standard curve to calculate the concentration of the lysates 

 

Casting a gel 
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 Make fresh 10% APS by mixing 50 mg ammonium persulfate into 500 uL H2O 

 Mix the following reagents in a 50 mL conical tube (volumes are in mL) 

Reagent 5% gel 10% gel 12% gel 

H2O 13 11.5 10.2 

1.5 M Tris-HCl, pH 8.8 6 6 6 

40% acrylamide 37.5:1 4.5 6 7.2 

10% SDS 0.24 0.24 0.24 

10% APS 0.24 0.24 0.24 

 Using a stopper attached the vacuum flask tubing, de-gas the gel mixture for 10 

minutes 

 Clean the front and back gel plates (use 1.5mm plates for immunoblots) with 70% 

ethanol and assemble the casting apparatus 

 Use parafilm on the grey foam part of the clamp to seal the bottom of the gel 

plates 

 Test the seal with water and use Whatman paper to remove the water 

 Add 24 uL of TEMED to the gel mixture, then pipet 8 mL into the gel plates 

 Add 500 mL water-saturated butanol to the top of the gel and allow it to 

polymerize 

 Mix the 4% stacking gel – volumes are in mL 

Reagent 4% gel 

H2O 2.14 

0.5 M Tris-HCl, pH 6.8 1.26 

40% acrylamide 37.5:1 0.5 

10% SDS 0.05 

10% APS 0.05 

 Using a stopper attached the vacuum flask tubing, de-gas the gel mixture for 10 

minutes 

 Use a Chemwipe to remove the butanol from the top of the resolving gel 

 Add 5 uL of TEMED to the stacking gel mixture and mix 

 Fill the remaining space between the gel plates with staking gel, then insert the 

comb at an angle so the bubbles can escape 

 Allow the stacking gel to polymerize, then wrap in wet paper towels and cling 

film for storage at 4
o
C for up to 3 days 

 

Sample preparation 

 Make Laemmli sample buffer by adding 25 uL BME to 475 uL Biorad Laemmli 

and vortexing 

 Dilute lysates 1:1 in Laemmli sample buffer and adjust the samples to equal 

volume with SDS lysis buffer 

 Boil the samples for 5 minutes, then spin the samples down 

 Do not place the samples back on ice after boiling 

 

SDS-PAGE 

 Make 1L of 1x PAGE running buffer by adding 200 mL 5x Running buffer (30.2g 

Tris Base, 188g glycine, 10g SDS in 2L of ddH2O) to 800 mL H2O 



104 
 

 Clamp the gel(s) into the electrophoretic frame and place the unit in a gel box 

 Fill the space within the frame completely with 1x running buffer, and fill the rest 

of the box about halfway 

 Remove the comb and rinse the wells 

 Load the boiled samples, along with 5 uL Biorad Precision Plus Dual Color 

marker 

 Place the lid on the box and run the gels for ~1 hour (or until the dye front reaches 

the bottom of the gels) at 150V 

 

Wet Transfer 

 Prepare 1x Transfer buffer 

o 100 mL 10x Transfer buffer (16.879g Tris HCl, 17.299g Tris Base, 

144.314g glycine, 10g SDS) 

o 200 mL MeOH 

o 700 mL H2O 

 Pour ~500 mL into a transfer box, place it in the cold room, and soak 2 sponges 

 Wash the gel(s) with water, then equilibrate in ~50 mL of transfer buffer in the 

cold room for 15 minutes 

 Cut a piece of PVDF slightly smaller than the front gel plate, soak it in MeOH for 

1 minute, wash it in ddH2O for 2 minutes, then equilibrate in ~50 mL of transfer 

buffer in the cold room for 15 minutes 

 Assemble the transfer sandwich 

o Open a transfer plate and place it on the bench with the black side down 

o Place a wet sponge on top of the black plate and roll out the bubbles 

o Place 3 sheets of soaked Whatman paper, one at a time, on the sponge and 

roll out the bubbles 

o Float the gel onto the third sheet of Whatman paper 

o Place the membrane on the gel and roll out the bubbles 

o Place 3 sheets of soaked Whatman paper, one at a time, on the membrane 

and roll out the bubbles 

o Put the second sponge on top and close the plate 

 Insert the plate into the transfer apparatus with the black plate facing the black 

side of the apparatus 

 Place the apparatus into the cold box with a frozen spacer and a stir bar and fill 

the box with transfer buffer 

 Put on the lid and run at 100V for one hour, on ice and with stirring 

 After the transfer, disassemble the sandwich 

 To check the transfer, soak the membrane in MeOH for one minute, then stain it 

with Ponceau S 

o Add Ponceau S to the membrane and shake until bands are visible 

o Rinse with ddH2O until the background is white 

 Check the gel for complete transfer by rinsing it with ddH2O and staining with 

Coomassie 

 

Probing the membrane 
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 Block the membrane in StartingBlock overnight at 4
o
C or for 1 hour at room temp 

with gentle rocking 

 Cut the membrane into the appropriate strips for the proteins of interest with a 

razor blade and the front plate for a gel as a straight edge 

 Place the primary antibody dilution on the membrane for 1 hour at room temp 

with gentle rocking 

 Remove the primary antibody and save it for future use 

 Wash three times with TBS-T for 5 minutes with vigorous rocking 

 Dilute the secondary antibody in the StartingBlock used to block the membrane 

 Place the secondary antibody dilution on the membrane for 1 hour at room temp 

with gentle rocking 

 Wash three times with TBS-T for 10 minutes with vigorous rocking 

 Transfer membrane pieces to a dry container 

 Mix 200 uL each of the two ECL reagents (SuperSignal West Dura) and pipet 

dropwise onto the membrane 

 Incubate covered with foil for 5 minutes, then wrap in cling flim and develop 

using film or the Licor 

 

 

mTERF Expression and purification 

 

Growth of mTERF-expressing HMS174 cells 

 Mix 25 uL Competent HMS174 cells with 50 ng of mTERF-pET32XT 

 Incubate on ice for 5 minutes 

 Heat shock at 42
o
C for 30 minutes 

 Incubate on ice for 2 minutes 

 Add 125 uL SOC and incubate with 200 rpm shaking for 1 hour 

 Plate onto an LB agar plate containing 50 ug/mL Carbenicillin  

 Incubate overnight at 37
o
C 

 Pick a colony and inoculate 5 mL of LB media containing 50 ug/mL Carbenicillin 

 Grow the 5 mL culture overnight at 37 degrees C with 250 rpm shaking 

 Add the 5 mL culture to 95 mL of LB containing 50 ug/mL Carbenicillin 

 Grow the 100 mL culture at 37 degrees C with 250 rpm shaking until it reaches an 

OD600 of 0.5 relative to a blank consisting of the growth media used for the 100 

mL culture 

 Split the 100 mL into 2x50 mL cultures, with one serving as an uninduced control 

 Add IPTG to the induced culture to a final concentration of 1 mM 

 Incubate culture with shaking at 20 degrees C for 18 hours 

 After 18 hours, spin down the cells at 4000 x g for 10 minutes and discard the 

growth media 

 

Lysis 

 Weigh the cell pellets and resuspend in NiNTA lysis buffer (50 mM sodium 

phosphate, 300 mM NaCl) using 5 mL for every gram of pellet wet weight 
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 Add lysozyme to a final concentration of 1 mg/mL and incubate on ice for 30 

minutes 

 Lyse the cells on ice using a microtip sonicator on high for 3 minutes total 

sonication time – 45 seconds on, 3 minutes off 

 Clear the lysate by spinning at 30,000xg for 30 minutes at 4
o
C 

 Transfer the soluble fraction (the supernatant) to a new tube and resuspend the 

pellet in an amount of 6M urea equal to the volume of the soluble fraction 

 

NiNTA column purification 

 Add 1 mL of 50% NiNTA resin slurry for every 4 mL of soluble fraction 

 Incubate lysate/slurry mix with rotation in the cold room for 1 hour 

 Add the lysate/slurry mix to a 10 mL plastic column and collect the flowthrough 

 Wash the resin twice with ½ the starting lysate volume (or twice the 50% slurry 

volume) with lysis buffer +20 mM imidazole – collect the washes 

 Elute the protein with ¼ the starting lysate volume of lysis buffer + 250 mM 

imidazole 

 

 

TFAM Expression and purification 

 

Growth of TFAM-expressing HMS174 cells 

 Mix 25 uL Competent HMS174 cells with 50 ng of WT TFAM-pET28 or 300 ng 

mutant TFAM-pET28 and 300 ng of pEVOL plasmid for the desired unnatural 

amino acid 

 Incubate on ice for 5 minutes 

 Heat shock at 42
o
C for 30 minutes 

 Incubate on ice for 2 minutes 

 Add 125 uL SOC and incubate with 200 rpm shaking for 1 hour 

 Plate onto an LB agar plate containing the appropriate antibiotic(s) – 50 ug/mL 

Kanamycin for WT or 50 ug/mL Kanamycin and 25 ug/mL Chloramphenicol for 

mutants 

 Incubate overnight at 37
o
C 

 Pick a colony and inoculate 5 mL of LB media containing the same antibiotics 

 Grow the 5 mL culture overnight at 37 degrees C with 250 rpm shaking 

 Add the 5 mL culture to 95 mL of LB containing the appropriate antibiotics and, 

for the mutants, a 0.5 mM concentration of the unnatural amino acid 

 Grow the 100 mL culture at 37 degrees C with 250 rpm shaking until it reaches an 

OD600 of 0.5 relative to a blank consisting of the growth media used for the 100 

mL culture 

 Split the 100 mL into 2x50 mL cultures, with one serving as an uninduced control 

 Add IPTG to the induced culture to a final concentration of 1 mM for WT.  For 

the mutants, also add arabinose to a 0.2% final concentration 

 Incubate culture with shaking at 20 degrees C for 18 hours 

 After 18 hours, spin down the cells at 4000 x g for 10 minutes and discard the 

growth media 
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Lysis 

 Weigh the cell pellets and resuspend in NiNTA lysis buffer (50 mM sodium 

phosphate, 300 mM NaCl) using 5 mL for every gram of pellet wet weight 

 Add lysozyme to a final concentration of 1 mg/mL and incubate on ice for 30 

minutes 

 Lyse the cells on ice using a microtip sonicator on high for 3 minutes total 

sonication time – 45 seconds on, 3 minutes off 

 Clear the lysate by spinning at 30,000xg for 30 minutes at 4
o
C 

 Transfer the soluble fraction (the supernatant) to a new tube and resuspend the 

pellet in an amount of 6M urea equal to the volume of the soluble fraction 

 

NiNTA column purification 

 Add 1 mL of 50% NiNTA resin slurry for every 4 mL of soluble fraction 

 Incubate lysate/slurry mix with rotation in the cold room for 1 hour 

 Add the lysate/slurry mix to a 10 mL plastic column and collect the flowthrough 

 Wash the resin twice with ½ the starting lysate volume (or twice the 50% slurry 

volume) with lysis buffer +20 mM imidazole – collect the washes 

 Elute the protein with ¼ the starting lysate volume of lysis buffer + 250 mM 

imidazole 

 For the FPLC nickel column, the buffers are the same, but the wash is run until 

the Abs280 reaches baseline and the elution is run until the Abs280 reaches baseline, 

so the volumes vary. 

 

EnrichS 5x50 mm column purification – 1 mL column volume 

 Dialyze the elution fraction from an NiNTA column overnight in the cold room 

into 50 mM Hepes, pH 7.0, 50 mM NaCl, 1 mM DTT (Gangelhoff et al, 2009, 

NAR) – use at least 10x the elution fraction volume and change the dialysis buffer 

2x 

 Equilibrate the column with 5mL of the above buffer 

 Load the dialyzed elution fraction onto the column and wash with 3 mL of the 

above buffer – collect the flowthrough and wash 

 Run a 15 mL gradient from the starting 50 mM NaCl concentration to the above 

buffer + 0.5 M NaCl – collect 1 mL fractions 

 Run 3 mL of the above buffer + 1 M NaCl to remove any remaining protein – 

collect this 

 

Methylating and testing DNA 

 

Annealing binding oligos 

 Resuspend oligos in HPLC H2O to 100 uM 

 Mix 20 uL of each of the complimentary oligos 

 Heat to 95
o
C for 5 minutes 

 Allow the mix to cool to room temperature on the bench 

 Measure DNA concentration on the NanoDrop 
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Methylation reaction 

 Dilute SAM from stock 

o SAM – 4 uL 

o HPLC H2O – 16 uL 

 Reaction mix 

o 2 uL 10x NEBuffer 2 

o 2 uL diluted SAM (or water for unmethylated control sample) 

o 1 ug DNA 

o HPLC H2O to 19 uL 

 Add 1 uL SssI and mix by pipetting 

 Incubate at 37
o
C overnight 

 Stop reaction by incubating at 65
o
C for 20 minutes 

If you are not methylating the HSPtranscription DNA as your test DNA, set up a 

reactions using 1 ug of HSPtranscription with and without SAM to test methylation 

efficiency 

 

Purifying the HSPtranscription test reactions 

 Increase the volume of the HSPtranscription reactions with and without SAM to 

100 uL with HPLC H2O 

 Add 100 uL phenol, vortex, and spin at full speed in the 4
o
C benchtop centrifuge 

 Transfer aqueous (top) layer to a clean tube 

 Add 100 uL HPLC H2O to the phenol layer, vortex, and spin at full speed in the 

4
o
C benchtop centrifuge 

 Transfer aqueous (top) layer to the tube containing the previous aqueous layer 

 Add 200 uL Chlorofom to the collected aqueous layers, vortex, and spin at full 

speed in the 4
o
C benchtop centrifuge 

 Transfer aqueous (top) layer to a clean tube 

 Add 100 uL HPLC H2O to the chloroform layer, vortex, and spin at full speed in 

the 4
o
C benchtop centrifuge 

 Transfer aqueous (top) layer to the tube containing the previous aqueous layer 

 To the collected aqueous layers (about 300 uL), add 900 uL 100% ethanol and 40 

ug of glycogen (8 uL of the 5 mg/mL stock) 

 Incubate at -80
o
C for at least 20 minutes or -20

o
C overnight 

 Spin at full speed in the 4
o
C benchtop centrifuge for 45 minutes 

 Remove the supernatant from the pellet and wash the pellet with 100 uL 70% 

ethanol 

 Spin at full speed in the 4
o
C benchtop centrifuge for 10 minutes 

 Remove the supernatant from the pellet and allow it to dry for 5 minutes 

 Resuspend the pellet in 25 uL of HPLC H2O and check the concentration on the 

nanodrop 

Diagnostic restriction digest with AciI 

 Set up 4 restriction digest reactions – one with and without AciI for the reactions 

with and without SAM 

 Reaction mix 
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o 200 ng purified HSPtranscription DNA 

o 2 uL CutSmart Buffer 

o HPLC H2O to 19 uL 

 Add 1 uL of AciI or HPLC H2O to the reactions 

 Incubate at 37
o
C for 1 hour 

 Stop the reaction with a 20 minute, 65
o
C incubation 

 Check for cutting by running 15 uL (150ng) of each reaction on a 2% nusieve gel 

made in 1x TBE 

 

qPCR to determine degree of protection from digestion 

 For each PCR reaction, use 0.001 ng of digested DNA 

o Reactions are at 10 ng/uL, so perform two serial dilutions of 1:100 in 

HPLC H2O 

 For each condition, set up qPCR reactions in triplicate with test and control 

primer pairs 

o Test primers – pcrHSPtranscripF and pcrHSPtranscripR 

o Control primers – pcrHSPtransquantF and pcrHSPtranscripR 

 SsoFast single reaction mix 

o 10 uL 2x SsoFast master mix 

o 7.5 uL HPLC H2O 

o 0.75 uL forward primer 

o 0.75 uL reverse primer 

o 1 uL template 

 qPCR protocol 

1. 98
o
C for 00:02:30 

2. 98
o
C for 00:00:10 

3. 58
o
C for 00:00:20 

4. Plate read 

5. Go to Step 2 39 times 

6. Melting curve from 58
o
C to 95

o
C with plate reads every 1

o
C, hold for 

00:00:05 

7. End 

 Analyse qPCR data using the deltadeltaC(t) method 

o Determine the average C(t) for the triplicate reactions 

o Subtract the average C(t) of the control primer reactions from the average 

C(t) of the test primer reaction for each condition to obtain the deltaC(t) 

o Subtract the deltaC(t) of the reactions with template that was not cut with 

AciI from the deltaC(t) of the reactions with template that was cut with 

AciI to determine the deltadeltaC(t) 

o Fold change = 2^-deltadeltaC(t) 

o Express the fold change as a percentage to determine the percent 

protection 

 

TFAM EMSA 

 

Radioactive labeling with T4 PNK for EMSAs 
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 Reaction mix 

o 5 pmol methylated or unmethylated DNA, as determined by length and 

concentration using the Promega Biomath Calculator 

o 1.5 uL [gamma-32P] ATP 

o 5 uL 10x T4 PNK buffer 

o 2 uL T4 PNK 

o HPLC H2O to 50 uL 

 Incubate at 37
o
C for 30 minutes 

 Stop reaction by incubating at 65
o
C for 20 minutes 

 

Removing unincorporated ATP with a probeQuant column 

 Break off bottom seal of illustra ProbeQuant column and loosen the cap ¼ turn 

 Spin at 3000 rpm in the radioactive room centrifuge for 1 minute 

 Transfer the column to a clean tube and pipette the T4 PNK reaction onto the 

column 

 Spin at 3000 rpm in the radioactive room centrifuge for 2 minutes 

 Discard column and determine CPM with the scintillation counter 

 Store probes at -20
o
C in small radioisotope freezer 

 

Casting Native gels – to be done immediately before performing the EMSA 

 Gel mix 

o 1.875 mL 40% acrylamide, 19:1 

o 2.5 mL 30% acrylamide, 37.5:1 

o 2.5 mL 5x TBE 

o 0.25 mL fresh 10% APS 

 De-gas under vacuum for 5-10 minutes while setting up 0.75 mm plates 

 Separate off 12.5 mL of the gel mix in case there is leakage 

 To the other 12.5 mL of the gel mix, add 12.5 uL TEMED and fill plates 

 Use 10 well, 0.75 mm comb 

 After gels have polymerized, pre-run in 0.5x TBE at 100V for 1 hour in the cold 

room on ice 

 

EMSA reactions 

 Reaction buffer – 1x 

o 20 mM Tris-HCl, pH 8 

o 10 mM MgCl2 

o 60 mM NaCl 

o 15% glycerol 

o 1 mM EDTA 

o 1 mM DTT 

 Make a 2x concentration for use in EMSA reactions 

 Dilute rmtTFA 1:10 in 1x reaction buffer 

 Make a mastermix for methylated and unmethylated probe – (Single reaction 

below) x (Number of reactions +1) 

o 5 uL 2x reaction buffer 
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o 1 uL 1 mg/mL BSA 

o 1 uL H2O 

 To each master mix, add (Number of reactions + 1) uL of labeled probe 

 Aliquot 8 uL of the reaction mix + probe into low bind 0.6 mL tubes 

 Add 1 uL H2O to the probe-only reactions and 1 uL of the diluted rmtTFA to 

binding reactions 

 For cold competitor reactions, add 1 uL 

o H2O for no competitor reactions 

o 10 nM cold probe for 1x reactions 

o 100 nM cold probe for 10x reactions 

 Incubate at 22
o
C for 30 minutes 

 Rinse the wells of the gel with running buffer before loading 

 Add 2 uL of 15% Ficoll + 0.25% bromophenol blue + 0.25% xylene cyanol to the 

probe only reactions, and 2 uL of 15% Ficoll to the binding reactions 

 Load the gel and run on the bench on ice for 10 minutes at 100V 

 Move the gel to the cold room and run for 2.5 hours, or until the bromophenol 

blue has just run off the bottom of the gel 

 Disassemble the gel and place on a sheet of Whatman paper 

 Dry for 2 hours at 60
o
C in the vacuum dryer 

 Expose in a phosphorscreen cassette for 1 hour to overnight and scan using the 

Typhoon 

 

TFAM Fluorescence Polarization 

 

Preparing the FP probes 

 Prepare 10 ug of methylated FAM-probe in 10 x 1 ug methylation reactions (see 

Methylating and Testing DNA) 

 Equilibrate the ENrich Q column with 5 mL of 20 mM Tris, pH 8.0 

 Turn off the UV lamp and wrap the column in aluminum foil 

 Dilute the probe to a volume of 1 mL in 20 mM Tris, pH 8.0 

 Load the diluted probe onto the ENrich Q column using the 1 mL loading loop 

and 5 mL of 20 mM Tris, pH 8.0, collecting the flowthrough 

 Run a 15 mL gradient from 20 mM Tris, pH 8.0 to 20 mM Tris, pH 8.0 + 1 M 

NaCl over the column and collect 1 mL fractions 

 Run 5 mL 20 mM Tris, pH 8.0 + 1 M NaCl over the column and collect 1 mL 

fractions 

 Check the DNA concentrations in the fractions by NanoDrop – the double-

stranded probe is usually present in fraction 15 

  To the DNA-containing fraction(s), add 3 mL 100% ethanol and 40 ug of 

glycogen (8 uL of the 5 mg/mL stock) 

 Incubate at -80
o
C for at least 20 minutes or -20

o
C overnight 

 Aliquot into 2 mL microfuge tubes and spin at full speed in the 4
o
C benchtop 

centrifuge for 45 minutes 

 Remove the supernatant from the pellet and wash the pellet with 100 uL 70% 

ethanol 
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 Spin at full speed in the 4
o
C benchtop centrifuge for 10 minutes 

 Remove the supernatant from the pellet and allow it to dry for 5 minutes 

 Resuspend the pellet in 25 uL of HPLC H2O and check the concentration on the 

nanodrop 

 Prepare a 50 nM stock of the purified FAM probes for use in FP 

 

Fluorescence Polarization reaction 

 Reaction buffer – 1x 

o 20 mM Tris-HCl, pH 8 

o 10 mM MgCl2 

o 60 mM NaCl 

o 15% glycerol 

o 1 mM EDTA 

o 1 mM DTT 

 Make a 2x concentration for use in FP reactions 

 Dilute purchased rmtTFA 1:20 in 1x reaction buffer 

 Prepare each reaction in triplicate – 1 3x reaction is 

o 150 uL 2x reaction buffer 

o 3 uL 50 nM purified FAM oligo 

o Diluted rmtTFA to the desired concentration 

o H2O to 300 uL 

 Incubate at 22
o
C for 30 minutes 

 Place the reactions on ice and take them up to the PheraStar in Sanger Hall 

 Transfer the reactions to a black 96 well OptiPlate with flat wells, 100 uL per well 

 Take an end-point reading with the FP module at an optical distance of 5.6 

 Subtract the average polarization value of reactions without TFAM from those 

containing TFAM to determine the ΔmP 


	Virginia Commonwealth University
	VCU Scholars Compass
	2016

	Functional Consequences of mtDNA Methylation on Mitochondrial Transcription Factor Binding and Transcription Initiation
	Elliot N. Burton
	Downloaded from


	tmp.1463083820.pdf.QbnHr

