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An extension of penalized ordinal response models

by Qing Zhou

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2015

Major Director: Kellie J. Archer, Ph.D., Professor, Department of Biostatistics

Ordinal responses are commonly seen in medical research. Many pathological evalu-

ations and health status outcomes are reported on an ordinal scales. Some examples

of ordinal outcomes include cancer stage (I, II, III and IV), or stage of liver disease

(normal liver, chronic hepatitis, cirrhosis and end of stage liver disease or hepatocel-

lular carcinoma (HCC)).

In recent years, there has been a demand to understanding the pathogenic as-

sociation between ordinal clinical outcomes and molecular characteristics. Genomic

charactersitics are often assayed using a high-dimensional platform where the num-

ber of interrogated sites (P ) exceeds the number of samples (n). Unfortunately,

traditional ordinal response models often do not perform well when the number

of parameter (P ) exceed the number of observations (n). A good solution to this

problem is penalization, for example, least absolute shrinkage and selection operator

(LASSO). Here, we extend a LASSO method, the generalized monotone incremental
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forward stagewise algorithm (GMIFS) method, to ordinal response models. Specifi-

cally, this research details the extension of the GMIFS method to probit link ordinal

response models and the stereotype logit model.

Moreover, motivated by the Bayesian LASSO proposed by Park and Casella

(2008), we developed an ordinal response model that incorporates a penalty term

so that both feature selection and outcome prediction are achievable. The ordinal

response model we are focusing on is the cumulative logit model, and the performance

will be compared with the frequentist LASSO cumulative logit model (GMIFS).

In addition to GMIFS and penalized Bayesian cumulative logit model, this re-

search also addresses filtering, which is another dimension reduction method (differ-

ent from penalization). We compare filtering, or univariate feature selection methods,

with penalization methods using grouped survival data.
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Chapter 1

Introduction

1.1 Ordinal outcomes and high-dimensional data

Ordinal responses are commonly used in medical research. Many pathological evalu-

ations and health status outcomes are reported on an ordinal scale. Some examples

of ordinal outcomes include cancer stage (stage I, II, III or IV), stage of liver disease

(normal liver, chronic hepatitis, cirrhosis and end of stage liver disease or hepato-

cellular carcinoma (HCC)) or grouped survival outcomes (short, intermediate and

long-term survival). Unlike nominal scales for categorical variables, ordinal variables

have some unique features. For example, there is a clear ordering of the levels, but

the absolute distances among these levels are unknown. For instance, stage II cancer

is more severe than stage I; however, it is hard to quantify the difference between

two levels by a numerical measure [Agresti, 2010]. Because of the distinct nature of

an ordinal response, it is often recommended to use a traditional ordinal response
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model for the analysis of ordinal data. Traditional ordinal response models include

the cumulative link model which has various link functions (logit, probit or com-

plementary loglog link), adjacent category model, and continuation ratio models.

These models have many advantages over a multinomial regression model. They are

usually more parsimonious, have simpler interpretations than multinominal models,

because multinomial models have different sets of slope coefficients for the log-odds

of each response while most ordinal response models assume proportional odds and

therefore only have one set of slope coefficients regardless of response level. Ordi-

nal response models also have greater power for detecting relevant trend effects of

predictors [Agresti, 2010]. In section 1.3, some common ordinal models are briefly

described.

In recent years, as genomic technologies have advanced and the number of genetic

studies have increased, there has been a demand to understand the pathogenic associ-

ation between ordinal clinical outcomes and molecular characteristics. For example,

it may be of interest to identify how methylation of CpG sites or gene/protein expres-

sion values are predictive of an ordinal outcome. Unlike traditional clinical variables,

genomic characteristics are often assayed using a high-dimensional platform where

the number of interrogated sites (P ) exceeds the number of samples (n). For example,

the Illumina HumanMethylation450 Array from Illumina can interrogate methyla-

tion levels of more than 485,000 CpG sites (P = 485, 512)[Bibikova et al., 2011], and

the Reverse phase protein array platform from the MD Anderson Cancer Center can

assess protein levels for more than 135 different antibodies (P ≥ 135) [Tibes et al.,

2



2006]. This high-dimensionality often causes problems when fitting models, for ex-

ample, traditional methods for modeling ordinal data do not perform well in the

presence of a high-dimensional covariate space, because traditional methods require

that the number of samples be greater than the number of covariates and assumes

the covariates are independent [Archer et al., 2014b].

Penalized methods have been shown to perform well in linear, logistic regression

and Cox proportional hazards models and have just recently been extended to the

ordinal response setting [Archer et al., 2014b, Archer and Williams, 2012]. In section

1.2, a brief overview of frequentist-based penalized methods for linear and logistic

regression models, as well as a penalized Bayesian approach for the linear model is

provided. Section 1.3 focuses on ordinal response models. In section 1.4, two penal-

ized methods for ordinal response models, glmpath.cr and glmnet.cr, which served

as motivation for expanding penalized ordinal response models are reviewed.

Throughout this thesis, mathematical notation is consistent unless specifically

mentioned. For example, n is always the number of samples and P is always the

number of covariates. For observations i = 1, 2, ...n, Yi is the response for ith obser-

vation, and xi is the P × 1 covariate vector for observation i.

3



1.2 Penalized methods for continuous and binary

responses

Tibshirani (1996) proposed a widely used method for dimensionality reduction called

the least absolute shrinkage and selection operator (LASSO) [Tibshirani, 1996]. In

linear regression, where Yi is the response variable for the ith individual, α is the

intercept, xi is the P × 1 covariate vector, β is the P × 1 vector of slope coefficient

and ε is the error term that follows a normal distribution with mean 0 and variance

σ2, the model is expressed as

Yi = α + xTi β + ε.

LASSO penalizes the sum of the absolute value of the coefficients (L1-norm)

by introducing a regularization parameter λ which shrinks some coefficients to be

exactly 0. For a dataset with n observations and P covariates, the LASSO solution

can be estimated as

β̂LASSO = argmin
β

( n∑
i=1

(Yi − α−
P∑
j=1

xijβj)
2 + λ

P∑
j=1

|βj|
)
. (1.1)

Another common regularization method is ridge regression [Hoerl and Kennard,

1970]. The ridge solution is chosen to minimize the penalized sum of squares:

n∑
i=1

(Yi − α−
P∑
j=1

xijβj)
2 + λ

P∑
j=1

β2
j .

4



However, ridge regression does not reduce any coefficients to zero; therefore, it can-

not be used for feature selection.

Since LASSO has been proposed, there have been both frequentist and Bayesian

approaches developed to obtain a LASSO solution. In section 1.2.1, some frequen-

tist approaches, specifically, the incremental forward stagewise (IFS) method for the

linear regression setting and generalized monotone incremental forward stagewise

(GMIFS) for the logistic regression setting, are described. In addition, the coordi-

nate descent algorithm introduced by Park and Hastie (2007) for fitting generalized

linear models and Cox proportional hazard models is described. In section 1.2.2, the

Bayesian LASSO for linear regression is also reviewed.

1.2.1 Frequentist penalized methods

When the outcome variable is continuous, several algorithms can be used to obtain

a LASSO solution based on the likelihood. These includes the incremental forward

stagewise (IFS) and the L1-Regularization path for generalized linear models (glm-

path). First, the IFS method is reviewed given it is the foundation of our penalized

method for ordinal response data. The glmpath algorithm is also reviewed, given we

later compare our penalized ordinal method with glmpath in the analysis of grouped

survival data.

5



IFS method for linear regression

Hastie, Tibshirani & Friedman (2001) observed that the LASSO solution is strikingly

similar to the coefficients estimated by the incremental forward stagewise algorithm

(IFS)[Hastie et al., 2007]. IFS increments the coefficient that is most correlated with

current residual vector (r) by an amount of ±ε at each step, the sign of ε being

determined by the sign of the correlation coefficient between the covariate and the

residual vector. The algorithm is:

1. Standardize all the predictors.

2. Initialize the residuals, r = y−ȳ and for p = 1, ..., P coefficients, let β1, β2, ..., βP =

0.

3. Find the predictor, xj, that is most correlated with r as the predictor to be

updated, j = argmaxp |ρ(r, xp)|.

4. Update βj → βj + δj, where δj = ε× sign[ρ(r, xj)].

5. Update r → r − δjxj.

6. Repeat steps 3-5 until no predictor has any correlation with r.

ε is some very small number, for example, 0.001. Although not specified in the

original publication, we also defined no correlation as the correlation between a

predictor and r is less than a certain threshold, for example, 0.2.

6



GMIFS method for logistic regression

Hastie et al. (2007) further extended the IFS method to the logistic regression set-

ting, and called it the generalized monotone incremental forward stagewise algorithm

(GMIFS) [Hastie et al., 2007]. When the response is discrete, minimizing the residual

sum of squares is not reasonable. An alternative procedure was proposed to maximize

the log-likelihood incrementally. For a logistic regression model with log-likelihood

logL(β) =
n∑
i=1

(Yi log πi + (1− Yi) log(1− πi))

where πi =
exp(xTi β)

1+exp(xTi β)
, the algorithm estimates the LASSO solution following the

steps below:

1. Standardize the predictors then expand the covariate matrix X to X̃ = [X :

−X].

2. Initialize the components of β̂
(s)

at step s=0 to be all 0.

3. Find the predictor xj that minimizes −δlogL/δβp at the current estimate β̂
(s)

,

j = argminp−δlogL/δβp.

4. Update β̂j
(s+1)

→ β̂j
(s)

+ ε.

5. Repeat steps 2 - 4 many times.

In step 5, the original paper did not specify the number of times GMIFS needs

to be updated. We proposed to stop the algorithm when the difference between

two successive logL less than a small threshold, such as 0.0001. The reason for

7



expanding the covariate matrix is to simplify computations by mitigating the need

for calculating the second derivative to find the direction of the update. Note because

the positive and negative versions of each covariate are present in the expanded

covariate matrix, the final coefficients are given by β̂p − β̂2p. Hastie et al. (2007)

proved that the monotone LASSO coefficients β for the expanded covariate matrix

X̃ = [X : −X] and loss function logL(β) is the LASSO solution solved by quadratic

programming.

L1-regularization path algorithm for generalized linear models

Other than GMIFS, Park and Hastie (2007) also provided a penalized method for

generalized linear models, the L1-regularization path algorithm for generalized linear

models (glmpath) [Park and Hastie, 2007]. Their method selects variables based on

the amount of penalization of the L1-term and is less greedy than forward selection-

backward deletion. At any given penalization parameter λ, glmpath calculates the

exact solution for the coefficients and connects these coefficients in a piecewise linear

manner for solutions corresponding to other values of λ.

The algorithm first determines the λmax which penalizes all coefficients except

the intercept to be zero and then alternates between a predictor and a corrector step

as λ decreases by a pre-defined step length. Park and Hastie (2007) introduced the

concept of the “active” set where only selected variables on the iteration are con-

tained. For example, if λ = λmax, the active set only contains the intercept. They

also suggested to use a step length equal to the difference between λk and λk + 1

8



that will change the active set of variables (k stands for kth iteration).

To illustrate further, on the kth iteration, glmpath proceeds according to the

following steps:

1. Determine the step length, δk = λk+1 − λk

2. In the predictor step, linearly approximate the coefficient vector: β̂
k+

= β̂
k

+

δk
δβ
δλ

3. In the correction step, find the exact solution for the coefficient vector by mini-

mizing the likelihood of the generalized linear model, by minimizing the partial

likelihood and using β̂
k+

as the initial value. The optimization is achieved by

using the coordinate descent algorithm.

4. Repeat the above steps until the active set cannot be augmented any further.

Park and Hasite (2007) also extended their method to the Cox proportional haz-

ard model. The main difference between the original glmpath and the glmpath

extended Cox proportional hazard model (Coxpath) is that the algorithm now esti-

mates coefficients by maximizing the partial likelihood of the Cox model.

1.2.2 Bayesian penalized methods

Tibshirani (1996) also suggested that LASSO estimates can be viewed as the modes of

the posterior distribution of β when β have independent and identically distributed

9



Laplace (e.g, double-exponential) priors [Tibshirani, 1996]. Inspired by this connec-

tion, several other authors have proposed using double-exponential (DE) priors to

fit a LASSO model from a Bayesian perspective [Hans, 2009, Lykou and Ntzoufras,

2013, Park and Casella, 2008].

Park and Casella (2008) compared their Bayesian LASSO to the ordinary LASSO

and Ridge regression using diabetes data studied by Efron et al. [2004]. The diabetes

data included 442 diabetes patients (n=442) and 10 baseline covariates (P=10): age,

sex, body mass index, average blood pressure, and six blood serum measurements.

The response was measured as a quantitative measure of disease progression one year

after baseline [Efron et al., 2004].

In their study, they considered a Laplace prior of the form

π(β|σ2) =
P∏
j=1

λ

2
√
σ2
e−λ|βj |

√
σ2

(1.2)

and because the Laplace distribution can be expressed as a scale mixture of normals

α

2
e−α|z| =

∫ ∞
0

1√
2πs

e
−z2
2s
α2

2
e

−α2s
2 ds, α > 0

the hierarchical Bayesian LASSO model can be represented as

10



Yi|α,xi, σ2 ∼ N(α + xTi β, σ
2),

β|σ2, τ 2
1 , τ

2
2 , ..., τ

2
P ∼ NP (0P , σ

2Dτ ),

Dτ = diag(τ 2
1 , ..., τ

2
P ),

σ2, τ 2
1 , ..., τ

2
P ∼ π(σ2)dσ2

P∏
j=1

λ2

2
e−λ

2τ2j /2dτ 2
j ,

σ2, τ 2
1 , ..., τ

2
P > 0.

where σ2 has a flat prior, π(σ2) = 1
σ2 .

After performing Gibbs sampling, the final coefficients and their confidence levels

were estimated using the medians of posterior distributions and 95% credible inter-

vals. The regularization parameter λ was selected by marginal maximum likelihood

using a Monte Carlo Expectation Maximization (EM) algorithm as a complement to

the Gibbs sampler. The Monte Carlo EM algorithm estimates λ from the sample of

the previous iteration. Specifically, at iteration k,

λ(k) =

√
2P∑P

j=1 Eλ(k−1) [τ 2
j |ỹ]

The initial value of λ is λ0 = P
√
σ̂2
LS/

∑p
j=1 |β̂LSj |, where σ̂2

LS and β̂LSj are the

least squares estimates for the variance and regression parameters. Although Park

and Casella (2008) considered a marginal maximum likelihood estimate for λ, they

11



also mentioned that λ can be chosen by imposing a gamma prior on λ2 (not λ), where

π(λ2) =
δr

Γ(r)
(λ2)r−1e−δλ

2

, λ2 > 0 (r > 0, δ > 0).

The prior density for λ2 should have a high probability near the maximum like-

lihood estimate. They further argued that although choosing an improper scale-

invariant prior for λ2 (e.g, r=0, δ = 0) is attractive, it will result in an improper

posterior. In their diabetes data example, they showed that a Gibbs sampler with

λ2 ∼ Gamma(1, 1.78) produced posterior medians for the regression coefficients iden-

tical to those when λ was selected by marginal maximum likelihood [Park and Casella,

2008]. Hans (2001) also considered selecting λ by assigning it an independent gamma

prior distribution, but rather than λ2, Hans (2001) suggested to impose a gamma

prior on λ [Hans, 2009].

In the end, Park and Casella (2008) plotted the LASSO, Bayesian LASSO, and

Ridge estimates against their respective L1 norm fraction ( ‖β̂‖
max‖β̂‖). They showed that

the Bayesian LASSO appeared to be a compromise between the ordinary LASSO and

ridge regression. Bayesian LASSO, like ridge estimates, had smoother paths, but the

shape was more like the LASSO path. Moreover, the Bayesian LASSO appeared to

be able to penalize weakly related parameters to 0 more quickly than ridge regres-

sion and the Bayesian posterior medians were very similar to the LASSO estimates

determined by cross-validation.

Lykou and Ntzoufras (2013) proposed a Bayesian LASSO that accomplishes both

12



shrinkage and variable selection in the linear regression setting. To enable variable

selection, they utilized binary variable inclusion indicators introduced by George

and McCulloch (1993) and widely used thereafter by Kuo and Mallick (1998) and

Dellaportas et al. (2002). When Y is a dependent variable and X1, X2, ..., XP is the

set of potential predictors, binary variable selection is performed by introducing a

vector of binary variable inclusion indicators γ = (γ1, γ2, ..., γP ), and then model the

jth slope coefficient βj as having come from a mixture of two normal distributions,

where

βj|γj ∼ (1− γj)N(0, τ 2
j ) + rjN(0, c2

jτ
2
j )

and

P (γj = 1) = 1− P (γj = 0) = πj.

George and McCulloch (1993) then set τ 2
j to be a very small number and cj to be a

very large number so that when γj = 0, βj ∼ N(0, τ 2
j ) is almost 0, and when γj = 1,

βj ∼ N(0, c2
jτ

2
i ) is estimated as a non-zero slope coefficient. In other words, γj = 1

indicates the jth parameter is included in the model while γj = 0 indicates that the

jth parameter is not included in the model. The method can then be processed using

Gibbs sampling. Those variables with higher probabilities, the variables that more

frequently appear in the Gibbs sample or with higher posterior inclusion probabil-

ity, are then selected. The binary variable inclusion indicator is especially useful

when the number of predictors is large, because most traditional variable selection

methods requires some comparison of model selection criteria (e.g. AIC, BIC or Cp)

for all 2p possible submodels, while this method can avoid calculating the posterior

13



probabilities of all 2p subsets [George and McCulloch, 1993].

Using a prior Bernoulli distribution of γj with hyperparameter π (γj ∼ Bernoulli(π)

for j = 1, 2, ..., P ), Lykou and Ntzoufras (2013) express their model as

Yi|α,β,xi, τ,γ ∼ N(α + xTi Dγβ, τ
−1),

where Dγ = diag(γ1, ..., γP ),

β|τ ∼ DE(0,
1

τλ
),

γj ∼ Bernoulli(πj),

τ ∼ Gamma(c, d)

where τ = 1
σ2 is the precision of the regression model. The posterior mean of γj is

used to estimate the posterior inclusion probabilities of each covariate. Lykou and

Ntzoufras select a variable if its posterior inclusion probability is greater than 0.5

[Lykou and Ntzoufras, 2013].

1.3 Ordinal response models

In this section, four common ordinal response models are presented. This includes

the cumulative logit model, adjacent category model, forward and backward continu-

ation ratio models. Each model has its own unique characteristics and depending on

the data structure and model interpretation, particular models can perform better

than others. For example, the backward continuation ratio model is preferable when
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interest lies in estimating the odds of more severe disease compared to less severe

disease, and the forward continuation ratio model is preferable when interest lies in

estimating the odds of having short survival time compared to longer survival time.

In addition to these four commonly used models, an overview of the stereotype logit

model, which can be used when the proportional odds assumption does not hold,

is provided. Moreover, at the end of this chapter, Bayesian inference for ordinal

response data is also briefly described.

For a dataset that contains n observations and P covariates, define Yi as the

response for the ith subject, where Yi can fall into one of K categories (k = 1, 2, ..., K).

Define αj to be a class-specific intercept for the jth class and β to be the P × 1

coefficient vector associated with covariate vector xi. Let πj(xi) be the probability

that the ith response falls into the jth category. Using these notations, the different

ordinal response models are described in the following subsections.

1.3.1 Cumulative logit model

The cumulative logit model is probably the most frequently used ordinal response

model, expressed as

P (Yi ≤ j|xi) =
exp(αj + xTi β)

1 + exp(αj + xTi β)
j = 1, ..., K − 1. (1.3)

Class-specific probabilities can be calculated by substracting successive cumulative

logits,
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πj(xi) = P (Yi ≤ j|xi)− P (Yi ≤ j − 1|xi).

Note that the model assumes the α to have a monotonic ordering constraint, −∞ =

α0 < α1 ≤ α2 ≤ ... ≤ αK−1 < αK =∞.

Although the logit link is probably the most popular link for the cumulative link

model, the probit link is also useful in many situations. For example, the probit link

is useful when the outcome is a survey response, because many assume that survey

outcomes will follow an underlying normal distribution [Agresti, 2010]. In chapter 2,

the extension of the GMIFS penalization method for probit link models is described

in detail.

1.3.2 Adjacent category model

The adjacent-category model models the pairs of adjacent categories, and has the

form

log

(
πj(xi)

πj+1(xi)

)
= αj + xTi β, j = 1, ..., K − 1. (1.4)

In addition, the adjacent-category model can be expressed as a baseline-category

logit model. For baseline category K, the model is
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log
πj
πK

= log(
πj
πj+1

) + log(
πj+1

πj+2

) + ...+ log(
πK−1

πK
)

= αj + xTi β + αj+1 + xTi β + ...+ αK−1 + xTi β

=
K−1∑
k=j

αk + (K − j)xTi β. (1.5)

1.3.3 Forward and backward continuation ratio models

The backward continuation ratio model using the logit link can be expressed as

logit(P (Y = j|Y ≤ j,x)) = log

(
P (Y = j|Y ≤ j,x)

P (Y < j|Y ≤ j,x)

)
= αj + xTi β (1.6)

where j = 2, ..., K. Then the conditional probabilities can be rewritten as

P (Y = j|Y ≤ j,x) =
exp(αj + xTi β)

1 + exp(αj + xTi β)
.

Whereas the forward formulation models can be expressed as

logit(P (Y = j|Y ≥ j,x)) = log

(
P (Y = j|Y ≥ j,x)

P (Y < j|Y ≥ j,x)

)
= αj + xTi β (1.7)

where j = 1, ..., K − 1.
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1.3.4 Stereotype logit model

The cumulative logit, adjacent category, forward and backward continuation ratio

models all assume proportional odds (PO). In other words, covariates will have same

effect on the outcome, regardless of the level of the outcome. Unfortunately, this

assumption does not hold in many situations. For example, we tested the assumption

using a gene expression dataset assayed by Affymetrix HG-U133A GeneChips. The

data contains hippocampal gene expression of 9 control and 22 Alzheimer’s Disease

subjects of varying severity (7 incipient, 8 moderate, and 7 severe). The MAS5

method was used to obtain probe set expression summaries. individual gene probe

set values were treated as missing values if they were > standard deviation from the

group mean and any probe sets that were missing in all 31 samples were removed,

leaving 15,189 probe sets [Blalock et al., 2004]. Score tests indicated that the PO

assumption did not hold for approximately 10% of probe sets. By letting some or

all predictors have non-proportional odds, we can possibly improve the model fit

[Agresti, 2010]. Using a baseline adjacent categories model as an example, if we let

predictors have a different effect on each pair of adjacent categories, the model is

then called a baseline categories model and can be expressed as

log(
πj(xi)

πK(xi)
) = αj + xTi βj, j = 1, 2, ...K − 1 (1.8)

Note that this model contains K − 1 slope parameters for each predictor instead

of a single slope parameter in equation (1.4). If model contains too many parameters,

which is most often the case in the high-dimensional data analysis, the model can

18



be very complicated.

The stereotype logit model is a compromise between the violation of proportional

odds assumption and model being too complicated. This model was proposed by

Anderson in 1984 [Anderson, 1984]. For baseline-category K , the stereotype logit

model is

log(
πj(xi)

πK(xi)
) = αj + φjx

T
i β, j = 1, ..., K − 1 (1.9)

where φ = (φ1, φ2, ..., φK−1) can be regarded as scores for the outcome categories.

Because the relationship between the linear components and the response is ordinal,

constraints are needed to make the model identifiable. Anderson (1984) recom-

mended the constraint 1 = φ1 ≥ φ2 ≥ ... ≥ φk = 0.

For logit j, the explanatory variable xk now has coefficients φjβk. That is, if

xk increases by 1 unit, the odds of response j instead of K are exp(φjβk) times

greater than the original odds. This model is more parsimonious than the baseline-

category logit model. When the ordinal model contains a large number of predictors

(P is large), this model contains K − 1 pairs of α and φ parameters and P slope

coefficients. This is less than the baseline-category model, which contains K − 1

intercepts, and (K − 1)P slopes [Agresti, 2010].

1.3.5 Bayesian ordinal regression model

Over the last few years, there has been increasing popularity of an alternative ap-

proach for analyzing ordinal response data, the Bayesian approach. Different from

the frequentist approach, the Bayesian approach includes probability distributions
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for parameters as well as for data. It assumes a prior distribution for the parameters

which may reflect our prior beliefs, and these priors are combined with the data likeli-

hood function to generate a posterior distribution for the parameters [Agresti, 2010].

However, in many situations, there is no closed-form expression for the posterior dis-

tribution of the ordinal model parameters. Fortunately, simulation methods can be

used to approximate the posterior distribution. One of these simulation methods is

the Markov Chain Monte Carlo (MCMC) method. MCMC is a stochastic process of

Markov chains designed so that its long-run stationary distribution is the posterior

distribution. Herein, the program Just Another Gibbs Sampler (JAGS) was used to

perform MCMC for the statistical analysis of the Bayesian hierarchical models.

In this section, a Bayesian cumulative logit model is presented as an example of

a Bayesian ordinal response model. It can be challenging to find a sensible prior

when the parameters relate to cumulative logit. One simple approach is taking the

prior distribution to be constant over all possible parameter values, in this way, the

posterior distribution is a constant multiple of the likelihood. In other words, the

posterior is a scaling of the likelihood so that it integrates to 1. The mode of the

posterior distribution is then the ML estimate [Agresti, 2010].

In the Bayesian cumulative logit model, Chipman and Hamada suggested to

use a multivariate normal prior distribution for the slope terms β and a truncated

multivariate normal distribution for the intercept terms α that enable ordering of

the α values [Chipman and Hamada, 1996]. If we assume independent covariates,
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the model can be represented as

P (Yi ≤ K|xi) =
exp(αk + xTi β)

1 + exp(αk + xTi β)

πK(xi) = P (Yi ≤ K|xi)− P (Yi ≤ K − 1|xi)

Yi ∼ dcat(π1, ..., πK)

α1 ∼ N(0, σ2
a)

αj ∼ N(0, σ2
a) αj ∈ (αj−1,∞) j = 2, ..., K − 1

βj ∼ N(0, σ2
b ) (1.10)

where σ2
a and σ2

b are very large numbers so that the prior distribution is extremely

diffuse.

1.4 Penalized methods for ordinal response mod-

els

The first penalized ordinal response models were penalized continuation ratio models

estimated using the coordinate descent algorithm and implemented using glmpath

and glmnet [Archer and Williams, 2012]. These two methods have been made avail-

able in the R programming environment in the glmpathcr and glmnetcr Comprehen-

sive R Archive Network packages [Archer et al., 2014a]. Both methods benefit from

the reconstruction of the likelihood function for the continuation ratio model.

In these methods, we again define xi as a P × 1 covariate vector for individual
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i (i = 1, ..., n) and Yi as the ordinal response for the ith individual that can take on

one of K ordinal levels. Yi can then be re-written as a response matrix containing n

rows and K columns where

yij =

 1 if observation i is class j

0 otherwise.
(1.11)

In this way, we can represent the likelihood for an ordinal response with K ordinal

levels as

L =
n∏
i=1

K∏
j=1

πj(xi)
yij (1.12)

and the log-likelihood as

logL =
n∑
i=1

K∑
j=1

yij log(πj(xi)) (1.13)

where πj(xi) is the probability that individual i with covariates xi falls into the

jth class. In terms of continuation ratio model, the conditional probability can be

modeled as

δij = δj(xi) = P (Y = j|Y ≤ j,xi) =
exp(αj + xTi β)

1 + exp(αj + xTi β)
.

The likelihood is then the product of conditionally independent binomial terms,

L(β|y,x) =
n∏
i=1

K∏
j=2

δy
ij

ij (1− δij)
1−

K∑
k=j

yik
,
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such that the likelihood can be factored into K − 1 independent likelihoods, so that

maximization of the independent likelihoods will lead to an overall maximum likeli-

hood. Therefore, a penalized continuation ratio model can be estimated by passing

a restructured dataset to a penalized logistic regression function like glmpath or

glmnet. The resulting L1 penalized continuation ratio models were referred to as

glmpath.cr and glmnet.cr, respectively [Archer et al., 2014a, Archer and Williams,

2012].

Unfortunately, extending glmpath or glmnet to other types ordinal models, for

example, cumulative link, adjacent category, and the stereotype logit models is not

straightforward. As a result, we extend the GMIFS method to ordinal response

models [Archer et al., 2014b]. Specifically, this research details the extension of

the GMIFS method to probit link ordinal response models and the stereotype logit

model. Since the GMIFS algorithm for logit link models and adjacent category model

are similar to the extension to probit link and sterotype logit model, the GMIFS will

not be reviewed here in detail. In chapter 2, the GMIFS algorithm is described

thoroughly with examples when implementing probit link models and the stereotype

logit model.

Although the Bayesian LASSO has been implemented in the linear regression

setting, there is currently no penalized Bayesian ordinal response models. There-

fore, another goal of this dissertation is to implement Bayesian LASSO to ordinal

response models such as cumulative logit, cumulative probit, adjacent category, and
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continuation ratio models.

In the following chapters, our GMIFS extension to both the probit link ordinal

model and the stereotype logit model is reviewed (Chapter 2). In chapter 3, our im-

plementation of the Bayessian LASSO for modeling an ordinal response is described.

In chapter 4, filtering, which is another dimension reduction method (other than

penalization) is addressed, and we compare filtering, or univariate feature selection

methods, with penalization methods using grouped survival data. The last chapter

provides our conclusions and discussion.

24



Chapter 2

Penalized Probit models and

Stereotype logit model

2.1 GMIFS ordinal response models

In this chapter, the GMIFS algorithm for three probit link models: cumulative probit

model, forward continuation-ratio model with probit link and backward continuation-

ratio model with probit link, as well as the stereotype logit model, are described. Al-

though GMIFS was originally proposed by Hastie for logistic regression [Hastie et al.,

2007], Archer et al. (2014) extended GMIFS algorithm to the ordinal response set-

ting and developed an R package, ordinalgmifs, to implement the algorithm [Archer

et al., 2014b]. In this section, the GMIFS algorithm for ordinal response model is

reviewed. In section 2.2, we detail the extension of the GMIFS method to probit

link models, specifically, the cumulative probit model, as well as the backward and
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forward continuation ratio models with a probit link. The computational details nec-

essary for utilizing the GMIFS algorithm are also described. In section 2.3, GMIFS is

extended to the stereotype logit model. The ordinalgmifs package provides functions

that fits both penalized probit models and the stereotype logit model. The function

code is included in Appendix A.

Similar to glmnet.cr and glmpath.cr (section 1.4), the GMIFS algorithm for or-

dinal response models also requires the construction of an ordinal response variable,

Yi and its corresponding likelihood function (equation (1.12), equation (1.13)). The

likelihood and log-likelihood function differs based on the model as shown in next

two sections.

In general, most ordinal response models have K − 1 intercept terms α and P

slope terms, β. The α are essential for an ordinal model that assumes proportional

odds because slope terms, β do not have category specific effects. Therefore, α are

the only parameters that distinguish between the different ordinal levels. GMIFS

produces a series of solutions, each time selecting the slope coefficient which leads

to the maximum decrease in the negative likelihood and updating that slope coeffi-

cient by a small increment, ε. Then the algorithm calculates Maximum Likelihood

(ML) estimates of α based on the current slope coefficients using a quasi-Newton

or modified quasi-Newton optimization. This iterative process stops until the differ-

ence between two successive log-likelihoods is smaller than a pre-specified tolerance

τ , where a typical τ is 0.0001. Additionally, during each iteration, the AIC or BIC
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can be calculated, which enables model selection based on commonly used criteria.

For K ordinal classes and P predictors, the GMIFS algorithm is as follows:

1. Standardize the predictors then expand covariate matrix X to X̃ = [X : −X].

2. Initialize α based on the specific model being fit (see the following 2.2 and 2.3

sections).

3. Initialize the components of β̂
(s)

at step s=0 to be all 0.

4. Find m = argminp(−δlogL/δβp) at the current estimate β̂
s
.

5. Update β̂
s+1

m → β̂
s

m + ε.

6. Consider β̂
s+1

as fixed, update αs using the maximum likelihood method.

7. Repeat steps 4 - 6 until logL(s+1) − logL(s) < τ .

2.2 Penalized Probit models

For binary or ordinal data, regression models can use link functions other than the

logit, for example, the probit link. The term probit is short for “probability unit”

and was first introduced in the 1930’s by biologists to model data such as the per-

centage of a pest killed by pesticide [Bliss, 1934]. The probit function is the inverse

of the standard normal cumulative distribution function (CDF) denoted by Φ. The

standard normal CDF has similar shape to that of the symmetric S-shape of standard
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logistic CDF, the difference lies in that the standard normal has a mean of 0 and

a standard deviation of 1, while standard logistic has a mean of 0 and a standard

deviation of π√
3
≈ 1.81. Because of this similarity, a logistic model and a probit

model tends to fit similarly for the same data.

In section 2.2.1 and 2.2.2, the cumulative probit model and continuation ratio

models with probit link are presented, together with their log-likelihood, gradients,

and initial intercept estimates that are necessary for utilizing GMIFS algorithm. In

addition, an application of the penalized cumulative probit model was demonstrated

to predict depression level in women with breast cancer using methylation dataset

in section 2.2.3.

2.2.1 Cumulative probit model

The cumulative probit models K − 1 probits of the form.

P (Yi ≤ j|xi) = Φ(αj + xTi β) (2.1)

where Φ is the cumulative distribution function (CDF) of the standard normal

distribution, αj denotes the class-specific intercept, and β is a p× 1 vector of

coefficients associated with explanatory variables xi. Note that the class-specific

probabilities can be calculated by subtracting successive cumulative probabilities,

πj(xi) = P (Yi ≤ j|xi)− P (Yi ≤ j − 1|xi)

28



Therefore, for any class j, we can express the class-specific probabilities by

πj(xi) = Φ(αj + xTi β)− Φ(αj−1 + xTi β)

Similar to the cumulative logit model (equation (1.3)), when we require α0 = −∞

and αK =∞, this expression simplifies to

π1 = Φ(α1 + xTi β)

for j = 1 and

πK = 1− Φ(αK−1 + xTi β)

for j = K.

Therefore, the derivative of the reconstructed log-likelihood (equation (1.13)) with

respect to pth slope term βp is

∂ logL

∂βp
=

∂
n∑
i=1

(
yi1 log(π1(xi)) +

K−1∑
j=2

yij log(πj(xi)) + yiK log(πk(xi))
)

∂βp

=
n∑
i=1

yi1
∂ log(π1(xi))

∂βp
+

n∑
i=1

K−1∑
j=2

yij
∂ log(πj(xi))

∂βp
+

n∑
i=1

yiK
∂ log(πK(xi))

∂βp
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Let φ represent the probability density function of the standard normal distribution.

For j = 1,
∂ log(π1(x))

∂βp
=
∂ log(Φ(α1 + xTβ))

∂βp

=
φ(α1 + xTβ)

Φ(α1 + xTβ)
xTp .

For j = 2, ..., K − 1,

∂ log(πj(x))

∂βp
=
φ(αj + xTβ)− φ(αj−1 + xTβ)

Φ(αj + xTβ)− Φ(αj−1 + xTβ)
xTp .

For j = K,

∂ log(πK(x))

∂βp
=
−φ(αK−1 + xTβ)

1− Φ(αK−1 + xTβ)
xTp .

Therefore, we have

∂logL

∂βp
=xTp

(φ(α1 + xTβ)y1

Φ(α1 + xTβ)
+

K−1∑
j=2

(φ(αj + xTβ)− φ(αj−1 + xTβ))yj
Φ(αj + xTβ)− Φ(αj−1 + xTβ)

− φ(αK−1 + xTβ)yK
1− Φ(αK−1 + xTβ)

) (2.2)

In the GMIFS algorithm, the α terms are initialized considering all slope terms

in equation 2.1 to be 0:

P (Yi ≤ j|xi) = Φ(αj)

αj = Φ−1(
n∑
i=1

j∑
k=1

yik/n).

Subsequently, α is estimated with the MLE using quasi-Newton optimization

(BFGS method) after each β update. Because the class-specific probabilities are

30



obtained by subtracting successive cumulative probabilities, we require

α1 ≤ α2 ≤ ... ≤ αK−1. In the GMIFS extended cumulative probit model, the

solution of the constrained optimization is solved by using an adaptive barrier

method. The adaptive barrier method minimizes the twice continuously

differentiable function logL subject to the linear inequality constraints Aθ − b ≥ 0,

where A is a K − 1 by K matrix,

A =

1 2 3 . . . K − 1 K


−1 1 0 . . . 0 0 1

0 −1 1 . . . 0 0 2

...
...

...
. . .

...
...

...

0 0 0 . . . −1 1 K − 1

,

θ = [α1, α2, α3, ..., αK−1], and b = 0K−1×1. We carried out the constrained

optimization using the package constrOptim in the R programming environment.

Since the derivative of log-likelihood function with respect to α is necessary for

optimization, we derive the partial derivative as described below.

For j = 1,
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∂ logL

∂α1

=
n∑
i=1

(yi1
∂ log(π1(xi))

∂α1

+ yi2
∂ log(π2(xi))

∂α2

)

=
n∑
i=1

(
yi1
∂ log Φ(α1 + xTi β)

∂α1

− yi2
∂ log(Φ(α2 + xTi β)− Φ(α1 + xTi β))

∂α2

)
=

n∑
i=1

(
yi1

φ(α1 + xTi β)

Φ(α1 + xTi β)
−

yi2
φ(α1 + xTi β)

Φ(α2 + xTi β)− Φ(α1 + xTi β)

)
. (2.3)

For j = 2, ..., K − 2,

∂ logL

∂αj
=

n∑
i=1

(yij
∂ log(πj(xi))

∂αj
+ yi(j+1)

∂ log(πj+1(xi))

∂αj
)

=
n∑
i=1

(
yij

φ(αj + xTi β)

Φ(αj + xTi β)− Φ(αj−1 + xTi β)

− yi(j+1)
φ(αj + xTi β)

Φ(αj+1 + xTi β)− Φ(αj + xTi β)

)
. (2.4)

For j = K − 1,

∂ logL

∂αK−1

=
n∑
i=1

(
yi(K−1)

∂ log(πK−1(xi))

∂αK−1

+ yiK
∂ log(πK(xi))

∂αK−1

)

=
n∑
i=1

(yi(K−1)
φ(αK−1 + xTi β)

Φ(αK−1 + xTi β)− Φ(αK−2 + xTi β)

− yiK
φ(αK−1 + xTi β)

1− Φ(αK−1 + xTi β)

)
. (2.5)
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The code for fitting GMIFS cumulative probit models appears in Appendix A.1.

2.2.2 Continuation ratio models with probit link

Backward continuation ratio model

The backward continuation ratio model with the probit link is similar to the backward

continuation ratio model with the logit link. It models the probit of the j = 2, .., K

conditional probabilities or

Φ−1(P (Yi = j|Yi ≤ j,xi)) = αj + xTi β. (2.6)

The backward formulation can be used when the response variable represents

disease states from none, mild, moderate, and severe and interest is in estimating

the odds of more severe disease compared to less severe disease. Let δij represent

the conditional probabilities,

δij = δj(xi) = P (Yi = j|Yi ≤ j,xi) = Φ(αj + xTi β)

such that for K ordinal classes, there are K − 1 probits. The likelihood can be

expressed using these j = 2, ..., K conditionally independent probabilities:

L(β|Y ,X) =
n∏
i=1

K∏
j=2

δ
yij
ij (1− δij)

1−
K∑
k=j

yik

33



which can be seen as the product of K−1 binomial likelihoods. Using this expression,

the log-likelihood is

logL =
n∑
i=1

K∑
j=2

(
yij log(δij) + (1−

K∑
k=j

yik) log(1− δij)
)

Then, the derivative of the log-likelihood with respect to βp for the backward con-

tinuation ratio is given by

∂ logL

∂βp
=

n∑
i=1

K∑
j=2

yij
δij

∂δij
∂βp

+

K∑
k=j

yik − 1

1− δij
∂δij
∂βp

=
K∑
j=2

n∑
i=1

xip

(
yij
φ(αj + xTi β)

Φ(αj + xTi β)
+ (

K∑
k=j

yik − 1)
φ(αj + xTi β)

1− Φ(αj + xTi β)

)

which can be rewritten as the matrix form

∂logL

∂βp
=

K∑
j=2

xTp

(
yj
φ(αj + xTβ)

Φ(αj + xTβ)
+ (

K∑
k=j

yk − 1)
φ(αj + xTβ)

1− Φ(αj + xTβ)

)
. (2.7)

In the GMIFS algorithm, the α terms are initialized considering all slope terms in

equation 2.6 to be 0, where

P (Yi = j|Yi ≤ j,xi) = Φ(αj), such that

αj = Φ−1(

n∑
i=1

yij

n∑
i=1

j∑
k=1

yik

).
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Forward continuation ratio model

The forward continuation ratio model with the probit link models the probit of the

j = 1, .., K − 1 conditional probabilities or

Φ−1(P (Yi = j|Yi ≥ j,xi)) = αj + xTi β (2.8)

Here we have used the forward formulation, which can be used when the response

variable is grouped survival time, and the goal is to estimate the odds of shorter

survival time compared to longer survival time. As with the backward continuation

ratio model, the likelihood and log-likelihood for the forward continuation ratio model

can be expressed using the K − 1 conditionally independent probabilities,

L(β|Y ,X) =
n∏
i=1

K−1∏
j=1

δijij (1− δij)
K∑
k=j

yik−yij

logL =
n∑
i=1

k−1∑
j=1

yij log(δij) + (
K∑
k=j

yik − yij) log(1− δij)

The partial derivative of the log-likelihood with respect to βp for the forward

continuation ratio model with probit link is given by,
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∂logL

∂βp
=

n∑
i=1

K−1∑
j=1

yij
δij

∂δij
∂βp

+

(yij −
K∑
k=j

yik)

1− δij
∂δij
∂βp

=
K−1∑
j=1

n∑
i=1

xip

(
yij
φ(αj + xTi β)

Φ(αj + xTi β)
+ (yij −

K∑
k=j

yik)
φ(αj + xTi β)

1− Φ(αj + xTi β)

)
=

K−1∑
j=1

xTp

(
yj
φ(αj + xTβ)

Φ(αj + xTβ)
+ (yj −

K∑
k=j

yk)
φ(αj + xTβ)

1− Φ(αj + xTβ)

)
(2.9)

In the GMIFS algorithm, the α terms are initialized considering all slope terms in

equation 2.8 to be 0, where P (Yi = j|Yi ≥ j,xi) = Φ(αj)

P (Yi = j|Yi ≥ j,xi) = Φ(αj), such that

αj = Φ−1(

n∑
i=1

yij

n∑
i=1

K∑
k=j

yik

).

The code that fits the penalized continuation ratio models using the probit link

appears in the Appendix A.2.

2.2.3 Example using cumulative probit model

Breast cancer (BC) is the second most common cancer among women. Research

shows that many women with BC experience anxiety, depression, and stress (ADS).

A potential mechanism for the development of ADS is epigenetics, such as methyla-

tion [Zhou et al., 2015]. In this example, we demonstrate the application of our pe-

nalized cumulative probit model to predict severity of psychoneurological symptoms,

specifically, ADS levels, using a methylation data assayed using the Illumina Human
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Methylation 450K assay. The original dataset contains ADS scales and methylation

levels on 485,512 CpG sites. The β-values were defined as the proportion methy-

lated, and CpG sites with all β-values over 0.9 or below 0.1 were filtered out [Zhou

et al., 2015]. For each CpG site, β values were plotted against GC content across all

subjects. Based on the results, CpG sites with a GC content greater than 40% were

also filtered out, left 285,173 CpG sites [Zhou et al., 2015].

Severity of depression and anxiety was measured using the Hospital Anxiety and

Depression Scale (HADS), which is a 14-item questionnaire [Zigmond and Snaith,

1983]. Among the 14-items, 7 assess anxiety and 7 assess depression. Each item is on

a four level ordinal scale, the scale response is calculated such that the ordinal levels

contribute 0-3 points, and the seven items within each scale are summed. Using these

sums, subjects are classified into three ordinal levels: normal (score < 8), borderline

(8− 10), or having clinical anxiety or depression (score > 10) [Lambert et al., 2013].

Stress was measured using the 10-item Perceived Stress Scale (PSS). Ten scores were

summed, with higher total scores of PSS indicating higher overall stress [Cohen and

Williamson, 1988]. Subjects were categorized into four quantiles, where the category

1 has lowest stress, and the category four has highest stress. Based on described cat-

egorization, our ordinal response variables are three ADS categories, where anxiety

has three levels: normal (n=30), borderline (n=25), and anxiety (n=18); depression

has three levels: normal (n=66), borderline (n=4), and depression (n=3); and stress

has four levels: I (n=19), II (n=18), III (n=18), and IV (n=18).
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Since ADS categories are based on survey scores, assumed to have underlying

normal distributions, we used the cumulative probit model to fit the data. Separate

cumulative probit models were fit for each ADS scales (anxiety, depression and stress)

using the ordinal.gmifs function in the ordinalgmifs library. The increment, ε for

each update step was set to be 0.01, and all covariates were standardized to reduce

correlations between covariates.

When fitting separate models for each ADS category based on the minimum AIC,

among 285,173 CpG sites, 67 CpG sites were significantly associated with anxiety;

19 CpG sites were significantly associated with depression; and 10 CpG sites were

significantly associated with stress. Significant CpG sites for each ADS scales are

listed in Appendix A.3. We also examined the prediction accuracy of each ADS

model by assessing misclassification rate. Anxiety and depression models have no

misclassifications; however it may be due to the model overfitting (the number of

significant covariates in anxiety and depression models = 67 and 19, respectively).

The stress model had a misclassification rate of 0.34.

To avoid the problem of overfitting, we also examined models attaining the min-

imum BIC. The anxiety model based the minimum BIC only selected 1 significant

CpG site, and is not adequate to predict the response. The depression model based

on the minimum BIC selected seven significant CpG sites and the corresponding mis-

classification rate was 0.10. Stress models based on the the minimum BIC selected

10 significant CpG sites, and the misclassification rate was 0.34. All these significant
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CpG sites are also listed in Appendix A.3. In conclusion, both AIC and BIC selected

anxiety models did not have good prediction accuracy. The BIC selected depression

and stress models have similar prediction accuracy compared to their correspond-

ing AIC models but are more parsimonious. However, misclassfication rates were

estimated using the training dataset, and therefore, are not good indicators for fu-

ture performance. A better approach would be to estimate generalization error (i.e.,

cross-validation error). Since the penalized cumulative probit model took long time

to converge due to the high-dimensionality (P = 285, 173), in the future, we plan to

implement parallel processing to speed up our cross-validation computations. The

code for performing this example appears in Appendix A.1.

2.3 Penalized stereotype logit model

The GMIFS procedure was also extended to the stereotype logit model described in

Chapter 1 (equation (1.9)). The GMIFS procedure for the stereotype logit model

and for probit-link models are similar except that the algorithm for the stereotype

logit model updates not only α but also φ during each iteration.

From the definition of the stereotype logit model (equation 1.6), we can rewrite

the formula in terms of response probabilities:

πj(xi) =
exp(αj + φjx

T
i β)

K∑
k=1

exp(αk + φkxTi β)

(2.10)
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where the intercept terms α and scale parameters φ are both constrained as:

α1 ≤ α2 ≤ ... ≤ αK − 1 ≤ αK

and

φ1 ≥ φ2 ≥ ... ≥ φK

For convenience, we define αK = 0 and φK = 0. Then, the expression simplifies

to

πK(xi) =
exp(0)

K∑
k=1

exp(αk + φkxTi β)

=
1

K−1∑
j=1

exp(αj + φjxTi β)

(2.11)

when j = K.

Again, the GMIFS algorithm requires the log-likelihood for the model and the

partial derivative with respect to βp to find the solution numerically. Based on

equation (1.13), the log-likelihood of the model can be rewritten as a summation of

individual log-likelihoods

logL =
n∑
i=1

(K−1∑
j=1

yij log(πj(xi)) + yiK log(πK(xi))
)
. (2.12)

The first derivative of the log-likelihood with respect to βp is given by

∂logL

∂βp
=

n∑
i=1

(K−1∑
j=1

yij
∂ log(πj(xi

)
)

∂βp
+

n∑
i=1

yiK
∂ log(πK(xi))

∂βp

)
(2.13)

given the simplification from equation (2.11). For j = K, we have
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∂ log(πK(xi
)
)

∂βp
=

∂(log(1)− log(1 +
K−1∑
j=1

exp(αj + φjx
T
i β)))

∂βp

= −xip

K−1∑
j=1

φj exp(αj + φjx
T
i β)

1 +
K−1∑
j=1

exp(αj + φjxTi β)

.

and because of the equation 2.10, for j = 1, ..., K − 1, we have

∂ log(πj(xi
)
)

∂βp
=

αj + φjx
T
i β − log(1 +

K−1∑
j=1

exp(αj + φjx
T
i β)

∂βp

= φjxip −

K−1∑
j=1

φj exp(αj + φjx
T
i β)

1 +
K−1∑
j=1

exp(αj + φjxTi β)

xip

= xip
(
φj −

K−1∑
j=1

φj exp(αj + φjx
T
i β)

1 +
K−1∑
j=1

exp(αj + φjxTi β)

)
.

Substituting the above two equations back into equation 2.13, we have
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∂logL

∂βp
=

n∑
i=1

xip

(
K−1∑
j=1

yij

(
φj −

K−1∑
j=1

φj exp(αj + φjx
T
i β)

1 +
K−1∑
j=1

exp(αj + φjxTi β)

)

− yiK

K−1∑
j=1

exp(αj + φjx
T
i β)

1 +
K−1∑
j=1

exp(αj + φjxTi β)

)
, (2.14)

which can be further rewritten as

∂logL

∂βp
= xTp

(
K−1∑
j=1

yj

(
φj −

K−1∑
j=1

φj exp(αj + φjx
T
i β)

1 +
K−1∑
j=1

exp(αj + φjxTi β)

)

− yK

log(1 +
K−1∑
j=1

exp(αj + φjx
T
i β))

1 + log(1 +
K−1∑
j=1

exp(αj + φjxTi β))

)
. (2.15)

For K ordinal classes and P predictors, the GMIFS algorithm for the stereotype

logit model is

1. Standardize the predictors then expand the covariate matrix X to X̃ = [X :

−X].

2. Initialize α and φ.

3. Initialize the components of β̂
(s)

at step s=0 to be all 0.
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4. Find m = argminp(−∂logL/∂βp) at the current estimate β̂
s
.

5. Update β̂
s+1

m → β̂
s

m + ε.

6. Consider β̂
s+1

as fixed, update αs and φ using maximum likelihood method.

7. Repeat steps 4 - 6 until logL(s+1) − logL(s) < τ .

The α terms are initialized considering all slope terms in equation 1.9 to be 0, or

log(
πj(xi)

πK(xi)
) = Φ(αj),

such that,

αj = log(

n∑
i=1

yij

n∑
i=1

yiK

).

while φ are initialized as φ1 = 1, φ2, ..., φK−1 = 0.1 [Agresti, 2010]. The constraints

on α and φ were insured by box-constraints.

2.3.1 Example of penalized stereotype logit model

Alzheimer’s disease (AD) has been intensely studied during the last 10 years. Ge-

nomic microarray provides new tools in understanding the underlying pathological

mechanism in AD. In this section, we illustrate the utility of the steretype logit

model using a high-throughput genomic dataset. The goal is to predict the sever-

ity of Alzheimer’s disease (AD) using microarray gene expression data assayed by

Affymetrix HG-U133A GeneChips. The full dataset, GSE1297 was downloaded from
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Gene Expression Omnibus [Blalock et al., 2004]. A total of 35 subjects were cat-

egorized into four groups based on the MiniMental Status Examination (MMSE)

criteria: control AD (MMSE > 25), incipient AD (MMSE 20 − 26), moderate AD

(MMSE 14 − 19) and severe AD (MMSE < 14). Four subjects with MMSE < 20

were removed from the study because they were potentially affected by confounding

conditions. The remain 31 subjects fell in the four levels of AD: control (n = 9),

incipient (n = 7), moderate (n = 8) and severe (n = 7). After microarray pre-

processing, probe set level data was summarized using the MAS5 method. Control

probes sets and probe sets absent in all 31 samples were removed, leaving 15,189

probe sets.

Before performing the analysis, we tested the proportional odds assumption using

a score test in a univariate ordered logistic model for each probe set. Since the test

indicated that 9.6% of the probe sets do not have the same slope coefficient across all

levels of the response, modeling the data using the penalized stereotype logit model

is a reasonable approach.

After fitting the GMIFS stereotype logit model, with ε = 0.001, the penalized

stereotype logit model selected by the minimum AIC only select three predictors:

203643 at, 206278 at and 212122 at and the misclassification rate was 45%.

The code for fitting GMIFS stereotype logit models and performing Alzheimer’s

disease example appears in Appendix A.4.
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Chapter 3

Penalized Bayesian Cumulative

logit model

Park and Casella (2008) proposed their Bayesian LASSO for linear regression using a

double exponential prior (equation (1.2)). The hyperparameter λ in the density func-

tion of the double exponential prior determines the total amount of shrinkage and

can be selected in several ways. Park and Casella [Park and Casella, 2008], together

with other authors [Hans, 2009, Lykou and Ntzoufras, 2013], considered selecting λ

by assigning it to an independent gamma prior distribution. The shrinkage property

of the LASSO make it a popular variable selection method under the frequentist

framework. Under the Bayesian framework, Park and Casella suggested that the

Bayesian credible intervals could be used to guide variable selection; however, Lykou

and Ntzoufra (2013) argued that the selection based on posterior credible intervals

depends both on the selection of the posterior probability attached to such inter-
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vals and the way that they are constructed, and does not take into account model

uncertainty. Lykou and Ntzoufra (2008) then proposed to use the binary inclusion

indicators method for feature selection [Dellaportas et al., 2002, George and McCul-

loch, 1993, Kuo and Mallick, 1998].

Motivated by these previous developments with respect to the Bayesian LASSO,

here we aimed to extend the Bayesian LASSO to an ordinal regression model, specif-

ically, the cumulative logit model. We present a method for choosing λ by giving

it a hyperprior, and utilize the binary variable inclusion indicator to perform fea-

ture selection. Our method for implementing the Bayesian LASSO cumulative logit

model is described in section 3.1. In sections 3.2 and 3.3, the utility of our method is

illustrated using both simulated data and a high-throughput genomic dataset. In our

simulation study, we compare our penalized ordinal Bayesian model using different

priors to a penalized cumulative logit model using a frequentist approach (gener-

alized monotone incremental forward stage-wise method) in term of their abilities

to predict the ordinal response and to correctly incorporate true predictors from

noise predictors into the model. We will also demonstrate application of our method

to predict stage of liver disease (normal, cirrhotic but without hepatocellular car-

cinoma, hepatocellular carcinoma) using methylation data assayed by the Illumina

GoldenGate Methylation BeadArray Cancer Panel I.
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3.1 Penalized Bayesian LASSO cumulative logit

model

3.1.1 Bayesian cumulative logit model

Let Yi represent the ordinal response for subject i where Yi can fall into one of K

categories (k = 1, 2, ...K). Let xi denote a P × 1 covariate vector for subject i.

Let α1, ..., αK−1 represent the K − 1 intercept terms in the cumulative logit model

where α1 ≤ α2 ≤ ... ≤ αK−1. Let πk(xi) represent the probability that subject i falls

into the kth category. The non-penalized, Bayesian cumulative logit model can be

expressed as

P (Yi ≤ k|xi) =
exp(αk + xTi β)

1 + exp(αk + xTi β)

πk(xi) = P (Yi ≤ k|xi)− P (Yi ≤ k − 1|xi)

Yi ∼ Cat(π1, ..., πK)

α1 ∼ N(0, 1000)

αk ∼ N(0, 1000) αk ∈ (αk−1,∞) for k = 2, ..., K − 1

βj ∼ N(0, 1000) for j = 1, ..., P (3.1)

Here, the response variable Yi follows a categorical distribution, which contains a

vector of parameters where each of the K parameters represent the probability an

outcome falls into that response category. The probability mass function (PMF) for

the categorical distribution is P (Yi = i) = πi. To respect the ordering constraint of
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the intercepts, we used a truncated normal prior distribution for α, where the kth

intercept αk will have a lower boundary αk−1. To reflect a lack of prior information,

the intercepts have a mean of 0 and a large, diffuse standard deviation of 1000. We

have a similar prior setting for slope coefficients, where the jth slope βj (j = 1, 2, ...P )

has a normal prior with a mean of 0, and a standard deviation of 1000. Since both

intercepts and slopes have non-informative priors, theoretically, we would expect the

mode/mean/median of the posterior distribution to be similar to the ML estimates.

Other than assuming the normal distribution for the K − 1 intercepts, we could also

use a gamma distribution for the difference between two adjacent intercepts.

3.1.2 Bayesian LASSO cumulative logit model

In this section, we modify Equation 3.1 to construct our penalized Bayesian cu-

mulative logit model. Inspired by Park and Casella’s Bayesian LASSO for linear

regression, here we impose shrinkage by giving a double exponential prior to each of

the slope coefficients βj (j = 1, 2, ...P ):

π(βj|σ2) =
λ

2τ
e−λτ

−1|βj |,

where λ controls the amount of shrinkage and τ is the standard deviation of the

response variable. In our method, the prior for τ is taken to be relatively diffuse,

non-informative gamma distribution with a shape of 0.001, and a scale of 0.001.

There are many ways to select λ, here we chose λ by giving it a gamma hyperprior,
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λ ∼ Gamma(a, b) with a mean a/b and a variance a/b2. Although it is attractive to

assign a and b small values so the prior is non-informative, in reality, λ cannot be

too large or too small. Lykou and Ntzoufra (2013) argued that a large λ can force

the posterior distributions of the coefficients to be close to 0; therefore, the data (in

comparison to the prior) are not strong enough to provide evidence for a significant

coefficient. They further argued that when the λ is too small, the posterior coefficient

shrinks back to zero instead of the MLE estimates due the Lindley-Barlett paradox

(Lindley-Barlett paradox states that small values of λ lead to posterior model odds

that fully support the most parsimonious model which shrink coefficients to zero)

[Lykou and Ntzoufras, 2013]. Therefore, as a reasonable start, we assign λ with a

Gamma(1, 1) prior distribution. The sensitivity analysis will be conducted in the

second simulation study in section 3.2, where we compare models with different λ

priors in term of their feature selection accuracy.

Although Tibshirani suggested that LASSO estimates can be interpreted as pos-

terior mode estimates when the regression parameters have independent and iden-

tical Laplace priors [Tibshirani, 1996], under the Bayesian framework, we often use

the posterior means and medians as points estimates. Since the Bayesian posterior

mean/medians lose the ability to shrink coefficients to exactly zero as the frequen-

tist LASSO estimates or the posterior modes, we then utilize the binary variable

inclusion indicator method first proposed by George and McCulloch [George and

McCulloch, 1993] to enable feature selection. Specifically, for every βj, we introduce

a Bernoulli indicator γj, where γj = 1 indicates the jth covariate is selected into the
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model and γj = 0 otherwise. George and McCulloch (1993) suggested a Bernoulli

prior distribution for γj with success probability of 0.5 (psucc = 0.5). This can be in-

terpreted as one half of the features will be selected into the model without knowing

any data and therefore, can be considered as a non-informative prior. Combining βj

and γj together, now our slope coefficient will be denoted as β
(γ)
j = βjγj for the jth

covariate. Similar to equation (3.1), the intercept terms α in the penalized Bayesian

logit cumulative model follow truncated normal distributions. For a non-informative

prior, the normal distribution can have a very large standard deviation, for example,

1000. Additionally, since it would be strange for an ordinal class to have less than

0.1% of the observations, we further assume the α terms follow a truncated normal

with a lower bound of logit(0.001) = −6.9 and upper bound of logit(0.999) = 6.9.

This alleviates obtaining really wildly large values for α terms, speeds up the MCMC

convergence, but is still non-informative.
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Our penalized Bayesian cumulative logit model is

P (Yi ≤ k|xi) =
exp(αk + xTi β

(γ))

1 + exp(αk + xTi β
(γ))

πk(xi) = P (Yi ≤ k|xi)− P (Yi ≤ k − 1|xi)

Yi ∼ Cat(π1, ..., πK)

α1 ∼ N(0, 1000) α1 ∈ (−6.9, 6.9)

αk ∼ N(0, 1000) αk ∈ (αk−1, 6.9) for k = 2, ..., K − 1

β(γ) = (β
(γ)
1 , β

(γ)
2 , ..., β

(γ)
P )

β
(γ)
j = γjβj

For j = 1, 2, ..., P., βj ∼ DE(0,
1

τλ
)

γj ∼ Bernoulli(psucc)

λ ∼ Gamma(a, b)

τ ∼ Gamma(0.001, 0.001). (3.2)

Although we have used non-informative truncated normal priors for intercept

terms, α, we could also consider more informative priors. Agresti (2010) stated

that when there are many parameters, the posterior mode need not then necessarily

be close to the ML estimate, and Markov chains may converge slowly. Therefore,

it is usually more sensible to construct a prior distribution that represents careful

expression of our prior beliefs about the parameter values. For example, instead of

using a very large standard deviation for a normal prior distribution, use a mean and

standard deviation such that the range within three standard deviations of the mean
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contains all plausible values the parameter could take[Agresti, 2010]. In our penalized

Bayesian cumulative logit model, we can also assign α with more informative priors,

where

α1 ∼ N(a0,1, 1000) α1 ∈ (−6.9, 6.9)

αk − αk−1 ∼ Gamma(a0,k − a0,k−1, 1) for k = 2, ..., K. (3.3)

a0,1, a0,k, and a0,k−1 can be any reasonable numbers for means of the intercepts. For

example, they can be initial values for the 1st, kth and (k − 1)th intercepts, respec-

tively, in the GMIFS method. In the GMIFS method, we set the initial values of the

intercepts to aj = logit(
∑n

i=1

∑j
k=1 yik/n), for the cumulative logit model, which is

equivalent to the intercepts in a null cumulative logit model. These priors reflect a

belief that the sizes of the effects are not extremely strong and the difference between

two adjacent intercepts has a mean of a0,k − a0,k−1, and a variance of a0,k − a0,k−1.

We compare our penalized Bayesian cumulative logit model using both informative

priors (equation 3.3) and non-informative priors (equation 3.2) to a penalized cumu-

lative logit model using our GMIFS method in terms of their ability to accurately

select features in simulation study II, section 3.3.

Due to the complexity of double exponential priors, it is less straightforward to

find the closed-form expression for the posterior distribution [Lykou and Ntzoufras,

2013]. Therefore, we approximate the posterior distribution using Markov Chain

Monte Carlo (MCMC), specifically, Gibbs sampling. Gibbs sampling was carried
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out using the R package R2jags. After Gibbs sampling, the slope coefficients were

estimated using the posterior means of β(r), and the intercepts were estimated using

the posterior means of α. The posterior means of γ can be interpreted as the poste-

rior inclusion probabilities. The covariates with high posterior inclusion probabilities

will then be selected and the ones with low or zero posterior inclusion probabilities

can be ignored. In the simulation study of Kykou and Ntzoufras (2013), Kykou and

Ntzoufras selected important predictors as those for which the posterior inclusion

probabilities were greater than 0.5. However, in a real genomic data set the sample

size is often quite small compared to the number of predictors, such that there may

be no high posterior means of γ [George and McCulloch, 1993].

The MCMC convergence will be confirmed visually via traceplot when the number

of parameters is small and examined statistically by the Gelman-Rubin test. The

Gelman-Rubin test calculates within-chain and between-chain variance, and then

estimates the variance of the parameter as a weighted sum of the within-chain and

between-chain variance. After that, it calculates the potential scale reduction factor

R̂, which indicates non-convergence when R̂ is greater than 1.1. To illustrate the

test with formulas, suppose we have m parallel chains (m ≥ 2) and each chain has a

length n. sij is the parameter of interest at the ith iteration for the jth chain. Then
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R̂ can be calculated using the following equations:

B =
n

m

m∑
j=1

(s̄.j − s̄..)2

where, s̄.j =
1

n

n∑
i=1

sij and s̄.. =
1

m
s̄.j

W =
1

m

m∑
j=1

s2
j where, s2

j =
1

n− 1

n∑
i=1

(sij − s̄.j)2

ˆvar+ =
n− 1

n
W +

1

n
B

R̂ =
√

ˆvar+/W

In our method, we used three Markov chains, and we considered MCMC to have

converged when R̂ ≤ 1.1.

3.1.3 Prediction

In Bayesian analysis, predictions of future observations are based on the posterior

predictive distributions. When future observations are Ỹ , and the posterior distri-

bution for the modeling parameters θ is π(θ|Y ), the posterior predictive distribution

is

f(Ỹ ) =

∫
f(Ỹ |θ)π(θ|Y )δθ.

A merit of Bayesian analysis using MCMC is that future observations Ỹ can be

viewed as additional parameters under estimation, and therefore, estimated directly

from an MCMC sampler. In fact, to predict ordinal responses using the same data

used for training the model, one can simply generate replicated responses, Y rep = Ỹ
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from the posterior predictive distribution by adding a single step within any MCMC

sampler using the likelihood function f(Y rep|θ(t)) evaluated at parameter values θ(t)

of the current stage of the algorithm [Ntzoufras, 2008]. In our penalized Bayesian

model, we can generate the predicted values by adding the below step

Y rep
i ∼ Cat(π1, ..., πK).

If we want to generate a predicted response Yn+1 from a vector of new data xn+1,

then the below steps can be added to a cumulative logit model.

P (Yn+1 ≤ k|xn+1) =
exp(αk + xTn+1β)

1 + exp(αk + xTn+1β)

πk(xn+1) = P (Yi ≤ k|xn+1)− P (Yi ≤ k − 1|xn+1)

Yn+1 ∼ Cat(π1, ..., πK)
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Thus, a penalized Bayesian cumulative logit model with prediction embedded is

P (Yi ≤ k|xi) =
exp(αk + xTi β)

1 + exp(αk + xTi β)

πk(xi) = P (Yi ≤ k|xi)− P (Yi ≤ k − 1|xi)

Yi ∼ Cat(π1, ..., πK)

α1 ∼ N(0, 1000)

αk ∼ trunN (0, 1000) αk ∈ (αk−1,∞) for k = 2, ..., K − 1

βj ∼ DE(0,
1

τλ
) for j = 1, ..., P

τ ∼ Gamma(a, b)

λ ∼ Gamma(0.001, 0.001)

P (Yn+1 ≤ k|xn+1) =
exp(αk + xTn+1β)

1 + exp(αk + xTn+1β)

πk(xn+1) = P (Yi ≤ k|xn+1)− P (Yi ≤ k − 1|xn+1)

Yn+1 ∼ Cat(π1, ..., πK). (3.4)

Note that the above model uses non-informative prior distributions for the α terms,

though they can be changed to informative priors to speed up the MCMC process. In

addition, when the number of covariates is relatively small, β can be assigned diffuse

normal priors. In this way, we will have a non-penalized regular cumulative logit

model for prediction. In section 3.3, we demonstrate how our method can be used

to predict stage of liver disease using features from a high-throughput methylation

array.
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3.2 Simulation Study

In this section, we present results from two simulation studies. In subsection 3.2.1,

we demonstrate our Bayesian cumulative logit model using a simulated non-high

dimensional dataset. The estimated coefficients will be compared to a penalized

cumulative logit model using a frequentist approach (GMIFS) and a non-penalized

cumulative logit model. In subsection 3.2.2, we compare our penalized Bayesian

cumulative logit model using different priors to GMIFS in terms of their abilities

to predict the ordinal response and to correctly incorporate true predictors from

noise predictors into the model when feature space is high-dimensional. The code for

performing these two simulation studies appears in Appendix B.1. The model files

that are necessary for running JAGS appear in Appendix B.3.

3.2.1 Simulation study I

The main objective of this simulation study is to illustrate our method and compare it

to existing methods. Ordinal responses were simulated according to the cumulative

logit model. Five covariates (P = 5) were generated from independent standard

normal distributions. We then generated a three level ordinal response variable

(K = 3) for 200 individuals (n = 200). The values for the α terms and β terms

were chosen by trial and error to ensure approximately equal outcome frequencies in

the individual categories. The simulation was performed according to the following

steps:

1. Randomly generate 5 variables, x1,x2, ...,x5, each follows a standard normal
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distribution.

2. Let the first two predictors, x1 and x2 be associated with the outcome so

that x1 and x2 are important covariates while the rest of the covariates are

non-important.

3. Assign α1 = −1, α2 = 2, β1 = 3, β2 = 1.

4. Generate P (Yi ≤ 1) and P (Yi ≤ 2) according to the cumulative logit model,

Specifically, let

P (Yi ≤ 1) = α1 + β1xi1 + β2xi2 and

P (Yi ≤ 2) = α2 + β1xi1 + β2xi2.

5. Randomly generate a variable T where T ∼ Unif (0, 1).

6. If T ≤ P (Yi ≤ 1), then assign Yi = 1; if P (Yi ≤ 1) < T ≤ P (Yi ≤ 2), then

assign Yi = 2; otherwise, assign Yi = 3.

7. Repeat steps 4-6 for the remaining n− 1 observations.

Here, we present the coefficients estimated by three different cumulative logit

models. The regular non-penalized cumulative logit model (VGLM) was fit using

the vglm function in the VGAM package. The LASSO estimates were obtained

by the generalized monotone incremental forward stage-wise (GMIFS) method us-

ing the ordinal.gmifs function in the ordinalgmifs R package and the final model

was selected based on the minimum AIC. For the Bayesian analysis, we used non-

informative truncated normal prior distributions for the two intercepts, α1 and α2

(equation (3.2)).
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The analysis was implemented using the Bayesian software JAGS using an in-

terface through R, implemented in the R2jags package. The posterior estimation

results were based on three MCMC chains each using 10,000 iterations followed by

5000 iterations auto-updating until the model converged. The first 10,000 iterations

were discarded as burn-in and the last 2500 iterations from the updating step were

saved with a thinning rate of 2 (number of iterations saved = number of iterations /

thinning rate). The initial values for the three chains are shown in the Table 3.1.

Table 3.1: Bayesian initiation table

α1 α2 β

Chain 1 logit(
∑n
i=1 yi1/n) logit(

∑n
i=1

∑2
j=1 yij/n) 0

Chain 2 -1 1 ∼ N(0, 0.012)

Chain 3 -2 2 ∼ N(0, 0.0012)

The Trace Plot of the last 2500 iterations versus sampled values for each param-

eter was used to assess convergence. Based on the plots, the three chains mixed well

and converged to their stationary distributions (figs. 3.1 to 3.3). The Gelman-Rubin

tests supported this conclusion as R̂ ranged from 1 to 1.03 for all parameters.
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Figure 3.1: Traceplot of the two α terms. The trajectory of our chains is consistent over
time, with a relatively constant mean and variance indicating good convergence.
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Figure 3.2: Traceplot of the five β terms. β1 and β2 have a relatively constant mean and
variance indicating good convergence. β3, β4, and β5 have means at 0, the high variances
are due to random error.
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Figure 3.3: Traceplot of the five γβ terms. β1γ1 and β2γ2 have a relatively constant
mean and variance indicating good convergence. β3γ3, β4γ4, and β5γ5 have means at 0,
the high variances are due to random error.

Table 3.2 shows the results from the three different cumulative logit models

(VGLM, LASSO, and Bayesian LASSO). In terms of parameter estimation (α1, α2,

β1 and β2), the three analyses produced similar estimates and were close to the true

underlying values. Although the penalized Bayesian cumulative logit model was not

able to shrink some of the non-important covariates to be exactly zero, like GMIFS

algorithm, the model was able to assign important covariates with much higher pos-

terior inclusion probabilities. For example, the posterior inclusion probabilities for

x1 and x2 were both 1; on the contrary, the posterior inclusion probabilities for x3,
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x4, and x5 were 0.09, 0.101 and 0.09, respectively (Table 3.2).

Table 3.2: Simulation results from three different cumulative logit models

True

parameters

VGLM

coefficient estimates

GMIFS

coefficient estimates

Bayesian LASSO

coefficient estimates

Bayesian LASSO

Posterior inclusion

probability

α1 -1 -1 -1 -1 -

α2 2 2.3 2.3 2.3 -

β1 3 3.2 3.1 3.2 1

β2 1 1.1 1 1.1 1

β3 - -0.02 0 -0.001 0.09

β4 - 0.09 0.07 0.008 0.101

β5 - 0.023 0 0.002 0.09

The last column is the inclusion probabilities obtained from Bayesian LASSO cumulative logit model which are not
directly comparable to the slope estimates (columns 1 to 4)

3.2.2 Simulation II

The goal of simulation study II is to examine the ability of our method to correctly

incorporate true predictors from noise predictors into the model when the feature

space is high-dimensional. To start the simulation, 90 ordinal responses were pre-

defined (n = 90): 30 of them belong to category 1 (Y1 = ... = Y30 = 1), 30 belong

to category 2 (Y31 = ... = Y60 = 2), and the remaining 30 belong to category 3

(Y61 = ... = Y90 = 3). We then designed our covariate matrix to consist of 100

covariates (P = 100) and 90 observations. Among these 100 covariates, we let the

first five covariates be the important predictors, which are truly associated with the

response, and we let the remaining 95 be non-important covariates, which are not as-

sociated with the response. Our covariate matrix X was generated as a combination
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of four submatrices,

X =


Xa

(30×5) Xd
(90×95)

Xb
(30×5)

Xc
30×5

 ,

where the elements in the submatrices were simulated as follow:

• elements in Xa were randomly generated from ∼ N(0, 0.16);

• elements in Xb were randomly generated from ∼ N(1, 0.16);

• elements in Xc were randomly generated from ∼ N(2, 0.16); and

• elements in Xd were randomly generated from ∼ N(0, 0.16).

In this way, [Xa,Xb,Xc]
T is the matrix of true predictors; while, Xd is the

matrix of non-important predictors. Note that we used 0.16 as the variance for the

normal distributions, because ordinarily the level of gene expression ( on log base

2 scale ) follows a normal distribution with a variance of approximately 0.16. We

simulated the data in this way 100 times, so that in the end, we could examine feature

selection performance by counting the number of true predictors that were identified

and the number of non-important predictors that were identified. We evaluated our

method by two measurements: true positives and false positives. True positives

were measured by the median number and the range of correctly identified non-zero

predictors over 100 simulations. False positives were measured by the median number

and the range of incorrectly identified non-zero predictors over 100 simulations. Here,

we compared four models:

64



1. A penalized cumulative logit model using a frequentist approach (GMIFS);

2. A penalized Bayesian cumulative logit model using a hyperprior λ ∼ Gamma(1, 1)

(equation (3.2));

3. A penalized Bayesian cumulative logit model using a hyperprior λ ∼ Gamma(0.025, 0.05)

(equation (3.2)); and

4. A penalized Bayesian cumulative logit model with informative α priors (equa-

tion (3.3)).

The reason we used a hyperprior λ ∼ Gamma(0.025, 0.05) was because if we

treated our response as a continuous outcome and used least angle regression as

implemented in the R package lars, the λ selected by CV had a mean of 0.5. There-

fore, based on this prior information, we used a hyperprior λ ∼ Gamma(0.025, 0.05),

where the distribution has a mean of 0.025/0.05 = 0.5 and a relatively larger variance

of 0.025/0.05/0.05 = 10. The fourth model used informative priors for the α terms,

where a0,1 = logit(
∑n

i=1 yi1/n) ≈ −0.7, and a0,k − a0,k−1 = logit(
∑n

i=1

∑2
j=1 yij/n)−

logit(
∑n

i=1 yi1/n) = 1.4. Therefore, α1 ∼ N(−0.7, 1000) α1 ∈ (−6.9, 6.9) and

α2 − α1 ∼ Gamma(1.4, 1).

Table 3.3 show the results of the second simulation study. The median number of

correctly identified true covariates using all four methods is 5 (range=5,5), indicating

all methods perform well in identifying the true predictors. The median number of

incorrectly identified non-zero coefficients using all four methods is 1 for all methods,

with slightly different ranges. GMIFS had a slightly larger range compared to the
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rest, but all methods had a small number of false positives. Using a different gamma

hyperprior for λ did not change the results indicating that feature selection is ro-

bust for different gamma hyperpriors. Also, the Bayesian penalized cumulative logit

model using informative priors for α had similar results when compared to the other

methods, but the chains converged faster than when using non-informative priors.

Table 3.3: Simulation II results

Median (Range) GMIFS
Bayesian LASSO

λ ∼ gamma(1, 1)

Bayesian LASSO

λ ∼ gamma(0.025, 0.05)

Bayesian LASSO

λ ∼ gamma(1, 1)

αk − αk−1 ∼ gamma(1.4, 1)

True Positive 5(5,5) 5(5,5) 5(5,5) 5(5,5)

False Positive 1(0,7) 1(0,5) 1(0,4) 1(0,4)

3.3 Application

The penalized Bayesian cumulative logit model was applied to a methylation dataset

assayed using the Illumina GoldenGate Methylation Bead Array Cancer Panel I. The

data set was downloaded from GEOquery (GSE18081) and was filtered by Archer et

al. (2014). The response variable was liver hepatocellular carcinoma (HCC) status:

Normal (N=20), cirrhotic but not having HCC (N=16), and HCC (N=20). Cirrho-

sis is considered as the middle level, because the cirrhotic liver is often described

as being a pre-malignant condition of more severe liver disease such as HCC. In

this study, All 20 HCC patients had cirrhosis due to HCV infection. 16 independent

HCV-cirrhotic tissue from patients without HCC were collected from liver transplant

patients [Archer et al., 2010]. Covariates are methylation levels on 1469 CpG sites
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[Archer et al., 2014b], since interest is in predicting stage of liver disease using DNA

methylation levels on different CpG sites. Traditional non-penalized methods such as

ML estimation carried out by functions in the VGAM package can not be estimated

due to the fact that the number of covariates (P = 1469) exceeds the number of

samples (n = 56).

Previous to the Bayesian analysis, all covariates were standardized to reduce the

correlations between explanatory variables. For the Bayesian analysis, we used non-

informative normal priors for the α terms. The initial values for all three chains are

shown below in Table 3.4.

Table 3.4: Bayesian initiation table for Liver data

α1 α2 − α1 β

Chain 1 logit(
∑n
i=1 yi1/n) logit(

∑n
i=1

∑2
j=1 yij/n)− logit(

∑n
i=1 yi1/n) 0

Chain 2 -1 2 ∼ N(0, 0.012)

Chain 3 -2 4 ∼ N(0, 0.0012)

The Bayesian estimates were based on three MCMC chains using 100,000 itera-

tions (first 50,000 are treated as burn-in). Since the number of sampled parameters

is too high for graphical evaluation, we determined the convergence solely by the

values of R̂.

Unfortunately, due to the large predictor space (P = 1469) and the sparsity of

the model, most of CpG sites have very low posterior inclusion probabilities. And

the posterior inclusion probabilities for all covariates did not have a bi-peak distri-

bution to clearly distinguish the important features from the non-important features
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like in simulation I, where 2 features had extremely high posterior inclusion proba-

bilities (posterior inclusion probabilities for x1 and x2 were both 1), and the remain-

ing features had extremely low posterior inclusion probabilities (posterior inclusion

probabilities for x3, x4 and x5 were 0.09, 0.101 and 0.09, respectively). Instead,

the posterior inclusion probabilities for the liver disease data followed a relatively

normal distribution with a mean of 0.5 and a SD of 0.008 (Figure 3.4). Note that the

distribution also had a long right tail. Therefore, we proposed to select features that

have posterior inclusion probabilities greater than mean + 3× SD. After using this

selection criterion, 9 out of 1,469 features were selected. The selected CpG sites are

related to the following genes: ABL1, CDKN2B, DDIT3, GML, HOXA5, MMP7,

PADI4, PLSCR3, and S100A2. Note that among these selected features, CDKN2B,

DDIT3, GML, PADI4 were also selected by using the generalized monotone incre-

mental forward stage-wise method [Archer et al., 2014b]. Table 3.5 shows the genes

that were selected and related literature that has previously linked these genes to

liver disease.
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Figure 3.4: Distribution of posterior inclusion probabilities for all covariates.

Table 3.5: Genes identified as Liver disease related by penalized Bayesian cumulative
logit model

PROBE ID GENE NAME (SYMBOL) RELEVANT PUBLICATION

ABL1 P53 F ABL proto-oncogene 1 (ABL1) HCC[Rana et al., 2013]

Hepatitis infection [Yamauchi et al., 2015]

CDKN2B seq 50 S294 F Cyclin-dependent kinase inhibitor 2B isoform 1

(CDKN2B)

DDIT3 P1313 R DNA damage inducible transcript 3 (DDIT3) Acute liver failure [Rao et al., 2015]

GML E144 F GPI anchored molecule like protein (GML)

HOXA5 E187 F Homeobox A5 (HOXA5) HCC [Kanai et al., 2010]

MMP7 E59 F Matrix metallopeptidase 7 (MMP7) HCC [Chen et al., 2013]

PADI4 P1158 R Peptidyl arginine deiminase, type IV (PADI4) HCC [Zhang et al., 2013]

PLSCR3 P751 R Phospholipid scramblase 3 (PLSCR3)

S100A2 E36 R S100 calcium binding protein A2 (S100A2) cholangiocarcinoma [Sato et al., 2013]

HCC (mouse model) [Wang et al., 2001]
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To predict ordinal responses, we proposed to fit predictive models using only

the selected features. We compared four Bayesian predictive models by examining

two types of errors: re-substitution error and leave-one-out cross validation error

(CV error). Lower error rates indicate better prediction power. The four predictive

models are

1. Penalized Bayesian cumulative logit model with non-informative priors for α

terms ( βj ∼ DE(0, 1
τλ

) for j = 1, ..., P and α1 ∼ N(0, 1000), α1 ∈ (−6.9, 6.9),

αk ∼ N(0, 1000), αk ∈ (αk−1, inf) for k = 1, ..., K − 1);

2. Penalized Bayesian cumulative logit model with informative priors for α terms

( βj ∼ DE(0, 1
τλ

) for j = 1, ..., P and α1 ∼ N(−0.6, 1000), α1 ∈ (−6.9, 6.9),

αk − αk−1 ∼ Gamma(1.2, 1) for k = 1, ..., K − 1);

3. Non-penalized Bayesian cumulative logit model with non-informative priors

for α terms ( βj ∼ N(0, 1000) for j = 1, ..., P and α1 ∼ N(0, 1000), α1 ∈

(−6.9, 6.9), αK ∼ N(0, 1000),αk ∈ (αk−1, 6.9) for k = 1, ..., K − 1); and

4. Non-penalized Bayesian cumulative logit model with informative priors for α

terms ( βj ∼ N(0, 1
τλ

) for j = 1, ..., P and α1 ∼ N(−0.6, 1000), α1 ∈ (−6.9, 6.9),

αk − αk−1 ∼ Gamma(1.2, 1) for k = 1, ..., K − 1).

The results are displayed in the Table 3.6. All four predictive models provided

good predictions (small misclassification rates and CV errors). In conclusion, our

penalized Bayesian cumulative logit model performs accurate feature selection and is

helpful in predicting an ordinal response when applied to a high-dimensional dataset.

Extensions of this approach for other ordinal response models will be investigated in
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the near future. The code for performing this application appears in Appendix B.2.

The model files that are necessary for running JAGS appear in Appendix B.3.

Table 3.6: Error rates from four penalized Bayesian cumulative response models.

βk ∼ DE

αk ∼ trunN (0, 1000)

βj ∼ DE

αk − αk−1

∼ gamma(1.2, 1)

βk ∼ N(0, 1000)

αk ∼ trunN (0, 1000)

βk ∼ N(0, 1000)

αk − αk−1

∼ gamma(1.2, 1)

Misclassification

rate
0.107 0.107 0.107 0.09

Leave-one-out

CV error
0.161 0.178 0.179 0.23
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Chapter 4

Univariate feature selection

method

This chapter is supplemental to the previous three chapters. The first three chapters

focused on penalized models that perform automatic feature selection, so the model

building step is not necessary. The frequentist LASSO ordinal models using the

GMIFS method in Chapter 2 can shrink coefficients corresponding to non-important

covariates to be exactly zero, and therefore, leave only important features in the

model. In chapter 3, the Bayesian LASSO is not able to shrink coefficients to ex-

actly zero, but it is able to give the important covariates high posterior inclusion

probabilities, so that feature selection is achievable. In this chapter, we describe a

competing method for feature selection other than frequentist or Bayesian penaliza-

tion. We assume that many of the features are irrelevant to predicting overall survival

and thus can be removed by some feature selection methods before fitting a multi-
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variable model. This is a univariate feature selection or filtering method. In section

4.1, we introduce the survival dataset that inspired us to examine filtering methods,

we then examine the performance of filtering methods in comparison to penalization

methods. The survival dataset contains clinical variables and proteomic measure-

ments for 187 subjects with acute myeloid leukemia (AML). The goal is to predict

survival using both proteomic expression and other covariates. In section 4.2, four

univariate feature selection methods are described, together with two penalization

approaches for comparison purposes. We also describe our error assessment process.

The results of filtering and penalization when applied to high-dimensional protein

expression data are presented in section 4.3.

4.1 Introduction

Acute myeloid leukemia (AML) is a cancer of the blood and the bone marrow. Muta-

tions in the myeloid line of blood stem cells lead to the formation of aberrant myeloid

blasts and white blood cells. If a treatment fails to destroy all the neoplastic cells,

the rapid or delayed regrowth of blasts can eventually lead to death [Kornblau et al.,

2013]. It was estimated that in 2014, there were 18,860 new cases of AML in the

United States, and the estimated number of deaths reached 10,460 [Society, 2014].

As AML progress rapidly, only about one fourth of the patients diagnosed with AML

survive beyond 5 years. Therefore, there is an urgency in finding better treatments

for AML [York et al., 2012].
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One difficulty in treating AML is that the cancer is heterogeneous. It is a collec-

tion of diseases that often share a similar clinical presentation, for example, weight

loss, fatigue, fever or low white blood cell counts; however, these diseases can arise

from diverse mutations and genetic events [Mardis et al., 2009]. As a consequence,

AML patients treated with similar therapies often respond differently. For exam-

ple, AML associated with cytogenic abnormalities t(8;21), t(15,17) or inv(16) are

predicted to survive longer (5-year survival =70%), whereas patients with cytogenic

abnormalities -5, -7, del(5q) or abnormal 3q are predicted to survive a shorter time

(5-year survival=15%) [Grimwade et al., 1998]. Currently, protein expression has

become more important in affecting AML treatment [Kornblau et al., 2009]. For

example, it has been shown that patients with low or high Friend leukemia virus in-

tegration 1(FLI1) expression had shorter overall survival (22.6 and 30.3 versus 51.1

weeks, respectively) [Kornblau et al., 2011]. In another study, Kornbalu (2009) sepa-

rated patients into seven protein signature groups using principle component analysis

and showed that these signature groups were associated with overall survival [Korn-

blau et al., 2009].

In this chapter, we sought to determine a statistical model that is able to predict

overall survival of AML patients using their protein expression profiles assayed by

Reverse phase protein array (RPPA). RPPA is able to assess the total proteins and

their corresponding phosphoprotein of an given pathway, and has been shown to

have a high precision and reproduciblility in printing, detecting, amplificating, and

staining arrays [Tibes et al., 2006].
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However, overall survival time is not immediately predictable. The argument has

been that point prediction of survival has poor accuracy [Henderson et al., 2001].

Henderson (2001) showed that Cox, Weibull, log-normal and Aalen models all have

poor predictive capabilities with practical parameter values [Henderson et al., 2001].

As a consequence, the interest may lie in seeking an alternative method of predicting

actual survival time. In this study, the goal is to predict grouped survival time, where

overall survival was categorized into several intervals, specifically, short, intermediate

and long-term survival.

Another main challenge in predicting survival using protein expression profiles

is the high-dimensionality of the covariate space. In our study, 231 proteomic mea-

surements (proteins and phosphoprotein expression levels) and 18 clinical/baseline

demographic, cytogenic and blood tests results were measured on 187 AML patients.

Most traditional predictive models cannot be estimated when the number of pa-

rameters exceeds the sample size. One approach to overcome this issue is to use a

penalization method, such as the generalized monotone incremental forward stage-

wise regression method (GMIFS) described in Chapter 1 and 2. Archer et al. (2014)

extended the GMIFS algorithm to several ordinal response models, including the

forward continuation ratio model with a complementary log-log link (FCR-cloglog).

This model can be used to describe the hazard function for grouped survival data

[Ferber and Archer, 2015] and has the advantage of being equivalent to the propor-

75



tional hazards model of the form:

log[− log(1− ωj(x))] = αj + βTx

where ωj(x) = P (Y = j|Y ≥ j) for j = 1, ..., K − 1. K is the level of the grouped

survival, αj denotes the class-specific intercept and the β vector represents the co-

efficients associated with the covariate matrix x in this study [Agresti, 2010]. Al-

though the GMIFS extended FCR-cloglog model (GMIFS-FCR) is helpful in predict-

ing grouped survival time, currently there is no study in comparing its performance

to other feature selection methods or to other existing penalized survival models, such

as a penalized Cox model. Tibshirani (1997) proposed a version of the LASSO for

the Cox model [Tibshirani, 1996]. Park and Hastie (2007) developed a path follow-

ing method for the Cox PH model that uses the predictor-corrector method called

L1-regularization path algorithm for the Cox model (Coxpath) [Park and Hastie,

2007]. The details of the GMIFS extended FCR model and Coxpath are described

in section 4.2.2.

Another traditional method to overcome the issue of high-dimensionality is to

assume that many of the features are irrelevant to predicting overall survival and thus

can be removed by some feature selection method before fitting a multivariable model.

Here, we describe competing methods for feature selection. These four methods

are univariate Cox proportional hazards (PH) model, Spearman’s rank correlation

test, and two additional methods that are based on the categorization of continuous

feature data (for example, low, intermediate and high-protein expression) referred to
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as Importance Scores Ic and Id. The difference between the two importance scores

is that Ic is based on continuous survival time and Id is based on discretized survival

(grouped survival). These two importance scores are inspired by Multigene profile

association method (MPAS) proposed by Yan and Zheng [Yan and Zheng, 2008], and

can identify important genes for capturing the difference in survival time between

expression categories. We describe the four filtering methods in section 4.2.1. In

the last section (4.3), we will investigate the performance of all previously mentioned

methods to determine if any method yields superior prediction accuracy when applied

to our high-dimensional AML dataset.

4.2 Univariate feature selection and penalization

methods

This section contains four subsections. In the first two subsections, the four uni-

variate feature selection methods and the two penalized methods: GMIFS extended

forward continuation ratio model with a complementary log-log link (GMIFS-FCR)

and the L1-regularization path algorithm for the Cox model (Coxpath), are described.

After that, we illustrate how these methods can be used in predicting our ordinal

response when the dataset is high-dimensional (Section 4.2.3) and how well their

prediction can be measured (Error assessment) (section 4.2.4).
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4.2.1 Univariate feature selection methods

In this study, we first focused on selecting features based on the importance of individ-

ual features. The first feature selection method uses p-values from fitting univariate

Cox proportional hazards (PH) models. The Cox PH model has long been used as

a statistical technique to explore the relationship between survival time and patient

features. Herein, Cox PH models were fit to each of 249 features (18 clinical/demo-

graphic and 231 proteomic measurements) and features having an observed p-value

less than 0.1 were retained for multivariable model building.

A common way to test association between two continuous variables is correla-

tion. Because survival time may not follow a Gaussian distribution, non-parametric

Spearman’s rank correlation test was performed to estimate the strength of the re-

lationship between survival and each feature. The significance level was again set

at 0.1. We note, however, that Spearman’s rank correlation does not take censoring

into account.

The remaining two feature selection methods were inspired by methods developed

by Yan and Zheng [Yan and Zheng, 2008], where they discretized protein expression

into three levels: high, normal, or low using K-means clustering. They argued that

discretization can simplify the data and make the analysis more resistant to outliers

or extreme values [Yan and Zheng, 2008]. In their first feature selection method,

after discretization, they created a multigene profile association score (MAPS) for a

given gene among P genes and this score measures the importance of each gene in
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terms of its association with a binary outcome, given the current genes. Based on

the MAPS, they selected important genes through a backward elimination for class

prediction [Yan and Zheng, 2008]. Here, we propose two methods. The first is de-

signed to capture differences in continuous survival time between discretized protein

expression categories (Ic), while the second is designed to capture the association

between discretized protein expression levels and grouped survival (Id)

The importance score based on continuous overall survival (Ic) is defined for each

feature as

Ic(xp) =

K∑
k=1

n2
k(Ȳk − Ȳ )2

n∑
i=1

(Yi − Ȳ )2

where K represents the number of discrete levels of the feature. The continuous

features were discretized into K = 3 groups using K-means clustering independently.

K-mean clustering is an algorithm that partitions data points into a pre-specified

number of clusters, K. In our study, for each continuous feature, the 187 observa-

tions were clustered into one of K groups so that the within cluster variance was

minimized [Hastie et al., 2001]. n represents the total number of observations; nk

represents the number of observations at level k; Ȳk represents the average overall

survival at level k; Ȳ represents the global average of overall survival and Yi rep-

resents the observed overall survival for observation i. Because Ic is a complicated

statistic without a well-defined distribution, a bootstrap technique was used to per-

form hypothesis testing. In our study, the null hypothesis is that a feature is not

associated with overall survival while the alternative hypothesis (Ha) is that a fea-
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ture is associated with overall survival. Ic is defined such that the more the data are

consistent with alternative hypothesis, the greater Ic tends to be.

The bootstrap resampling method for the pth feature was performed according to

the following steps

1. Combine observations for a feature from different discrete levels together, define

the number of observations in level 1 = n1, number of observations in level 2

= n2, etc.

2. Draw a random sample with replacement (bootstrap sample) where the first n1

observations are taken to represent group 1, the second set of n2 observations

are taken to represent group 2, etc.

3. Recalculate the importance scores using that bootstrap samples, denoted as

I∗c (xp).

4. Repeat steps 1 through 3, B=1000 times.

Thus p-values for testing H0 for Ic were defined as

p-valueIc(xp) =

B∑
b=1

I
(
I∗c (xp) ≥ Iobsc (xp)

)
B

where Iobsc (xp) is the observed test statistic for the pth feature.

We developed importance score Id based on categorized survival to leverage the

ordinal nature of grouped survival. The continuous features were again discretized
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by applying K-means clustering (K = 3). Let Fk(g) represent the proportion of

samples characterized by an outcome less than or equal to g within cluster k, then

for each variable, the importance score, Id, is defined as

Id(xp) =
K∑
k=1

G∑
g=1

Fk(g)(1− Fk(g))

where g = 1, 2 or 3. Note Id is the summation of ordinal impurity functions based

on nominal-ordinal association proposed by Piccarreta (2001) over K clusters. The

ordinal impurity function for J classes ordinal response is

ios(t) =
G∑
g=1

F (g)(1− F (g))

where F (g) represent the proportion of samples characterized by an outcome less

than or equal to g [Archer, 2010, Piccarreta, 2001, 2008].

We also used a bootstrap technique to perform hypothesis testing. Id is defined

such that the more the data are consistent with the alternative, the smaller Id tends

to be. Therefore, p-values for testing of the H0 for Id were defined as

p-valueId(xp) =

B∑
b=1

I
(
I∗d(xp) ≤ Iobsd (xp)

)
B

Where Iobsd (xp) and I∗d(xp) are the observed and bootstrapped test statistics for the

pth feature. For both Ic and Id, features with a p-value less than 0.1 were retained
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for multivariable modeling.

4.2.2 Penalization approach

Two penalized approaches were examined for feature selection: GMIFS-FCR and

Coxpath.

Ferber and Archer (2015) implemented the GMIFS algorithm for the forward

continuation ratio model, which was implemented in the ordinalgmifs R package

[Archer et al., 2014b] and is often used when interest lies in estimating the odds of

shorter survival compared to longer survival. Park and Hastie (2007) proposed the

L1-regularization path algorithm for the Cox model (Coxpath). Coxpath implements

the predictor-corrector method to calculate the coefficient estimates iteratively as the

tuning parameter λ varies. The algorithm first determines the λmax which penalizes

all coefficients except the intercept to be zero and then alternates between a predictor

and a corrector step as λ decreases by a pre-defined step length. Park and Hastie

(2007) introduced the concept of the “active” set where only selected variables on the

iteration are contained. For example, if λ = λmax, the active set only contains the

intercept. They also suggested to use a step length equal to the difference between λk

and λk + 1 that will change the active set of variables (k stands for kth iteration). To

illustrate further, on the kth iteration, Coxpath linearly approximates the coefficient

vector, called β̂
k+

in the predictor step and in the corrector step, it finds the exact

coefficient solution β̂
k+1

by minimizing the partial likelihood of Cox PH model and

using β̂
k+

as the initial value. The iterative process continues until the active set

82



cannot be augmented any further [Park and Hastie, 2007].

4.2.3 Prediction

After selecting features using four different methods (Univariate Cox PH model,

Spearman’s rank correlation test, Ic and Id), both FCR-cloglog and Cox PH models

were fit to predict grouped survival using the more parsimonious set of features as

predictors. FCR-cloglog produced the fitted conditional probabilities that can be

used to estimate the class specific probability πik for ith subject and kth class. The

predicted class ω̂ for observation i can be determined by

ω̂i = arg max(πik).

GMIFS-FCR and Coxpath were also applied to the dataset with no filtering. For

GMIFS-FCR, the above approach was applied for prediction.

Predicting grouped survival for the Cox PH model and Coxpath model is more

complicated because the Cox model is not designed for predicting discrete survival

time. In this study, we proposed to predict grouped survival by estimating the class

specific probability from the predicted survival curve. To be more specific, after

fitting a Cox PH model or a Coxpath model, the baseline hazards were estimated

using the extension of the Nelson-Aalen estimate proposed by Cox and Oakes (1984).

In our study, there were n individuals with observed survival or censored times,

t1, t2, ..., tn and r distinct failure times. Arranging these failure times in ascending

83



order t(1) < t(2), ..., < t(r), then t(i) is the ith failure time. Let di denote the number of

failures at time t(i); Ri represent the risk set at t(i); and xj represent a p×1 covariate

vector for individual j (j = 1, ..., n). The baseline hazard at distinct failure time t(i)

is estimated as

λ̂i =
di∑

j∈Ri e
xTj β

.

The baseline hazards at censored times are zero. Therefore, the cumulative baseline

hazard function at time t is estimated as

Λ̂0(t) =
∑

i:t(i)<t
λ̂i

and the cumulative hazard and the predicted survival for the jth individual at time

t are estimated as

Λ̂j(t) = Λ̂0(t)ex
T
j β Ŝj(t) = −eΛ̂j(t).

After that, the difference in the range of the estimated survival probability was

used for estimating class specific probability for class k. To describe using a formula,

for the jth subject, define ∆Sjk as the difference in the range of Ŝj(t) when t ≤ 52,

52 < t ≤ 104, t ≥ 104, respectively, for class k (k=1, 2 or 3). Then, the class-specific

probability πjk for the jth subject and kth class can be estimated as

π̂ik = ∆Sjk.

The class with highest probability is taken to be the predicted class.
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4.2.4 Error assessment

We investigated the accuracy of all proposed methods by examining two types of

errors: re-substitution error and leave-one-out cross validation error (CV error).

Lower error indicates better performance.

4.3 Application

In this section, we applied the two existing penalized methods as well as the four

feature selection methods to the AML data. We compared the results to determine if

any methods yielded consistently superior predictions. Statistical methods used are

displayed in Figure 4.1. The two penalization methods are displayed in yellow blocks

while the feature selection methods followed by multivariable models are displayed

in blue blocks. All statistical analyses were performed using the R programming

environment (version 3.0.2). Cox PH models were fit using the survival library;

forward continuation ratio models were fit using the vglm function in the VGAM

library; GMIFS-FCR were fit using the ordinal.gmifs function in the ordinalgmifs

library; and Coxpath was fit using coxpath the function in the glmpath library.

The code for performing four univariate feature selection followed by multivariable

predictive model appears in Appendix C.1. The code for applying two existing

penalized methods appears in Appendix C.2.
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Figure 4.1: Methods flowchat

The training data for 187 AML patients was provided by M.D. Anderson Cancer

Center. The data consisted of 18 covariates measuring baseline demographics (sex

and age), medical histories (whether a patient has been diagnosed with a prior cancer,

infection or had a prior chemotherapy, radiation therapy), cytogenetics and results

from standard blood tests (counts of white blood cells, myeloid blast cells, hemoglobin

and platelets together with Albumin, Bilirubin, and Creatinine levels measured in

blood; myeloid blast cells, moncytes and promegakaryocytes counts in bone marrow).

Although the original data contained 16 categories of AML cytogenetic abnormal-

ities (“-5”, “-5,-7”, “-5,-7,+8”, “-7”, “-7,+8”, “11q23”, “21”, “8”, “diploid”, “IM”,

“inv6”, “inv9”, “Misc”, “t6;9”, “t8;21” and “t9;22”), we dichotomized these 16 cyto-

genic abnormalities to “diploid” and “non-diploid” and labeled them as “abnormal”

and “no cytogenetic abnormality” due to the low frequencies in the individual cat-

egories. The resulting abnormal group contained 86 subjects (46% of total sample

size). All missing covariates were imputed using mean-imputation.

In addition, the data included proteomic measurements probed by Reverse phase
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protein array (RPPA) using 231 antibodies. The process started with preparing

leukemia enriched whole cell lysates from blood and bone marrow of newly diagnosed,

untreated AML patients. After probed with primary and secondary antibodies, the

slides coated lysate were scanned. The final data were analyzed by Microvigene R©

software (Vigene Tech, Carlisle, MA) and normalized by “variable slopes” and “to-

pographical” using SuperCurve software.

Overall survival and censoring times were classified into G = 3 groups: 1) 52

weeks or less, 2) more than 52 weeks but less than or equal to 104 weeks or 3) more

than 104 weeks to create grouped survival data. These groups were developed to

represent short, intermediate and long-term survival.

After applying different feature selection methods, univariate Cox PH model,

Spearman’s rank correlation test, Ic and Id methods selected 55, 76, 46 and 41 fea-

tures, respectively (Table 4.1). Ic and Id methods selected a smaller number of

features relative to the other methods; while Spearman’s rank correlation test se-

lected the most. Although Ic and Id methods produced similar numbers of features,

only 21 features overlapped (Figure 4.2). Figure 4.2 is a Venn diagram illustrating

the relationship between the features selected by the four feature selection methods.
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Table 4.1: Significant features selected using four feature selection methods.

Methods Selected features

Cox proportional hazards model Age, PRIOR.MAL, PRIOR.CHEMO, PRIOR.XRT, cyto.cat, WBC,

BM.BLAST, HGB, ALBUMIN, ACTB, ARC, BAD.pS136, BCL2L1,

BECN1, BIRC2, CASP7.cl198, CCND3, CD74, EGFR.pY992, EIF2AK2,

EIF2S1, EIF4E, ERG, Fli1, FN1, FOXO3.S318 321, GSKA B,

H3histon,H3K27Me3,HNRNPK, HSP90AA1 B1, HSPA1A L,HSPB1,

INPPL1, ITGA2, LCK, MAPT, NCL, NRP1, PA2G4, PA2G4.pS65,

PA2G4.pT37 46, PA2G4.pT70, PIK3CA, PRKCD.pT507, SMAD2.pS245,

SMAD4, SRC.pY416, STAT1.pY701, STAT3, STMN1, TP53, TRIM62,

TSC2, YAP1p

Spearman’s rank correlation test Age, PRIOR.XRT, Infection, cyto.cat, WBC, ABS.BLST, BM.BLAST,

HGB, ALBUMIN, ACTB, AKT1 2 3.pT308, ARC, ASH2L, BAD.pS136,

BCL2L1, BECN1, BIRC2, CASP7.cl198, CASP8, CBL, CCND3, CD74,

CDK4, CDKN1A, CDKN2A, EGFR.pY992, EIF2AK2, EIF2S1, EIF4E, Fli1,

FN1, FOXO3.S318 321, GSKA B, GSKA B.pS21 9, H3histon, H3K27Me3,

HDAC1, HIF1A, HNRNPK, HSP90AA1 B1, HSPA1A L, HSPB1, INPPL1,

IRS1.pS1101, ITGA2, ITGB3, KDR, LCK, LEF1, MAPT, NCL,

NOTCH1.cl1744, NPM1.3542, NR4A1, PA2G4, PA2G4.pS65, PA2G4.pT70,

PIK3CA, PPP2R2A B C D, PRKCD.pS664, PRKCD.pT507, RAC1 2 3,

SMAD3, SMAD4, SPP1, SRC.pY416, STAT3, STAT3.pS727, STK11,

STMN1,TAZ, TP53, TRIM24, TRIM62, TSC2, YAP1p

Ic PRIOR.MAL, PRIOR.CHEMO, cyto.cat, Age, WBC HGB,

AKT1 2 3.pT308, ARC, BAD.pS136, BCL2L1, CASP7.cl198, CASP8,

CAV1, CCNB1, CD74, CDKN2A, DIABLO, EIF2AK2, EIF4E, ERG,

GSKA B, H3K27Me3, H3K4Me3, HNRNPK, HSP90AA1 B1, HSPA1A L,

HSPB1, INPPL1, ITGA2, KDR, MAPK1 3.pT202Y204, MAPK9, NR4A1,

NRP1, PA2G4.pT70, PIK3CA, PPARA, PPP2R2A B C D, PRKCB.I,

PTK2, SMAD1, SMAD4, SPP1, STAT5A B.pY694, TRIM62, YAP1p

Id PRIOR.MAL, PRIOR.CHEMO, PRIOR.XRT, Infection, cyto.cat, Age,

HGB, ALBUMIN, CREATININE, ARC, BAD.pS112, BECN1, CASP8,

CCND3, DIABLO, EGFR.pY992, EIF2S1, EIF2S1.pS51, EIF4E, H3histon,

H3K27Me3, HNRNPK, HSP90AA1 B1, HSPA1A L, INPPL1, ITGA2,

KDR, MAPK9, MAPT, MET.pY1230 1234 1235, NPM1, PA2G4.pS65,

PA2G4.pT70, PRKCD.pT507, PTK2, STAT5A B, TP53, TRIM62, TSC2,

YAP1p, YWHAZ 88
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Figure 4.2: Venn diagram

After fitting GMIFS-FCR, Coxpath and FCR-cloglog/ Cox PH model for each

of the four univariate feature selection methods, the re-substitution error and cross

validation error associated with each method are shown in Table 4.2 and Table 4.3.

The graphic presentation of error rates are shown in Figure 4.3 and Figure 4.4. Note

that the Spearman’s rank correlation test has lowest resubstitution error but the

highest CV error because Spearman’s rank correlation test selected most number of

features which resulted in a complicated predictive model. However, when applied

to a future data, a complicated model do not necessary provide a good prediction.

In general, the FCR-cloglog model had smaller re-substitution errors in compar-
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ison to the same feature selection method followed by the Cox PH model. Although

CV errors were similar regardless of the feature selection method, FCR generally had

a slightly lower CV error than Cox PH.
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Figure 4.3: Resubstitution misclassification error rates for each filtering and modeling
method.
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Figure 4.4: Cross-validated misclassification error rates for each filtering and modeling
method.
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Table 4.2: Re-substitution errors.

Univariate feature selection method Multivariable model Re-substitution error

Cox PH Cox PH 0.321

Spearman Cox PH 0.257

Ic Cox PH 0.326

Id Cox PH 0.310

Cox PH FCR 0.262

Spearman FCR 0.230

Ic FCR 0.278

Id FCR 0.273

GMIFS-FCR 0.283

Coxpath 0.01

* Cox PH = Cox proportional hazards model, Spearman = Spearman’s rank correlation
test, FCR = Forward continuation ratio model; GMIFS-FCR = GMIFS extended forward
continuation-ratio model; Coxpath = L1-regularization path algorithm for the Cox model.
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Table 4.3: Cross-validation errors.

Univariate feature selection method Multivariable model Cross-validation error

Cox PH Cox PH 0.439

Spearman Cox PH 0.476

Ic Cox PH 0.433

Id Cox PH 0.417

Cox PH FCR 0.433

Spearman FCR 0.465

Ic FCR 0.406

Id FCR 0.422

GMIFS-FCR 0.439

Coxpath 0.465

* Cox PH = Cox proportional hazards model, Spearman = Spearman’s rank correlation
test, FCR = Forward continuation ratio model; GMIFS-FCR = GMIFS extended forward
continuation-ratio model; Coxpath = L1-regularization path algorithm for the Cox model.

4.3.1 Discussion

Unfortunately, other than univariate Cox proportional hazards model, the other three

feature selection methods cannot handle censored data. Although both penalization

methods (GMIFS-FCR and Coxpath) can incorporate censoring information, regular

FCR-cloglog cannot. It would be beneficial to extend FCR-cloglog to censored data.

Ic and Id methods had similar performance in term of cross-validation error and
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number of features selected. However, Id has advantage of analyzing grouped survival

data; therefore, if only grouped data are available, the Id method is recommended.

95



Chapter 5

Conclusions and Future Work

5.1 Conclusion

Ordinal responses are commonly collected in biomedical studies. There has been

increasing emphasis in medical research on the relationship between clinical phe-

notypes and high-dimensional genomic information. Many clinical phenotypes are

on an ordinal scale and thus are recommended to be analyzed using ordinal re-

sponse models. Traditional methods for modeling ordinal data do not perform well

in the presence of a high-dimensional covariate space, because traditional methods

require that the number of samples is greater than the number of covariates and

assumes covariate independence. A good solution to this problem is penalization,

for example, LASSO [Tibshirani, 1996]. In chapter 1, we first reviewed the LASSO

method under both a frequentist and a Bayesian framework. Under the frequentist

framework, the incremental forward stagewise algorithm (IFS) for linear regression,
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generalized monotone incremental forward stagewise algorithm (GMIFS) for logis-

tic regression, and L1-regularization path for generalized linear models (i.e., Cox

regression) were described. Under the Bayesian framework, the Bayesian LASSO

which uses i.i.d LaPlace priors to enable penalization was described. Next, we re-

viewed the six classical ordinal response models: cumulative logit model, adjacent

category model, forward and backward continuation ratio models, stereotype logit

models and Bayesian cumulative logit model. We also reviewed two LASSO ordinal

response models, glmnet.cr and glmpath.cr were reviewed.

GMIFS was recently adapted to fit cumulative logit, adjacent category, and con-

tinuation ratio models, and were shown to be capable of deriving a parsimonious

classifier [Archer et al., 2014b]. However, the GMIFS method had not been adapted

to fit ordinal response models with the probit link or the stereotype logit model. In

chapter 2, the GMIFS method was extended to the cumulative probit model, forward

continuation-ratio model with probit link and the backward continuation-ratio model

with probit link. The GMIFS extended cumulative probit link model was applied

to a methylation dataset to identify methylation patterns that are associated with

anxiety, depression and stress. After fitting separate GMIFS extended cumulative

probit models, a large number of CpG sites were found to be associated with anxi-

ety and depression based on the AIC selected model (67 CpG sites were associated

with anxiety; 19 CpG sites were associated with depression; and 10 CpG sites were

associated with stress). BIC selected model can be used to avoid overfitting.
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The GMIFS method was also extended to the stereotype logit model to cope with

situations when the proportional odds assumption does not hold. The method was

applied to a gene expression dataset to predict the severity of Alzheimer’s disease

(AD), and the resulting misclassification rate based on the AIC selected model was

45%. The poor performance for AIC is probably due to the fact that our AD dataset

only included 31 subjects.

Chapter 3 focused on the penalized Bayesian cumulative logit model. We de-

veloped an innovative Bayesian ordinal response model that incorporates a penalty

term so that a sparse model is obtained. Our Bayesian method includes the like-

lihood of the cumulative logit model combined with a LaPlace prior. The feature

selection property is achieved by utilizing the binary variable inclusion indicator

method. The proposed model was first examined using two simulation studies. It

was shown that, when the data are not high-dimensional (Simulation study I), the

penalized Bayesian cumulative logit model produced similar estimates to other exist-

ing methods and were close to the true underlying values. The proposed model was

also able to perform feature selection by assigning important covariates with much

higher posterior inclusion probabilities. If the data are high-dimensional (Simula-

tion study II), the proposed model performs accurate feature selection, since it has

good ability to correctly incorporate true predictors from noise predictors. We also

applied our proposed model to a methylation dataset to demonstrate its usage in

analysis of a real high-dimensional dataset. The penalized Bayesian cumulative logit

model was first fit to perform feature selection. To predict ordinal responses, we
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proposed to fit predictive models using only the selected features. The performance

of this two step prediction method was assessed using both misclassification rate and

cross-validation error. In conclusion, our proposed model provided good prediction

(small misclassification rates and CV errors).

In chapter 4, filtering, a competing feature selection method that differs from

penalization was addressed. We first stated the question of interest, that is, which

methods can predict grouped survival more accurately using the high-dimensional

acute myeloid leukemia (AML) dataset. We described our proposed methods: four

filtering methods (univariate Cox proportional hazards model, Spearman’s s rank cor-

relation test, Ic and Id) and two penalization methods (Coxpath and GMIFS-FCR).

After fitting all these competing methods, results were presented and compared. In

conclusion, penalized methods and filtering methods have similar performance in

terms of prediction accuracy.

5.2 Future work

5.2.1 Assessing generalization errors for GMIFS extended

probit model and stereotype logit model

Prediction performance of the GMIFS extended cumulative probit model and stereo-

type logit model were examined by assessing the misclassification rates in section

2.2.3 and section 2.3.1; however, misclassification rate cannot be used to evaluate

the model performance when applying to the future data. A better way of estimat-

ing generalization error should be introduced. In section 2.2.3, we can assess the
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cross-validation error. Although cross-validation procedure is straightforward, the

GMIFS algorithm needs a long time to fit a model due to the fact that the dataset

contains 285,173 covariates. One way to speed up the process is by parallel compu-

tation. In the stereotype logit model example in section 2.3.1, since the dataset is

too small for a cross-validation, we need to find an independent testing dataset to

assess the generalization error. Unfortunately, finding an independent dataset can

be challenging, because the response variable in the testing dataset also needs to

be the severity of Alzheimer’s disease categorized based on the MiniMental Status

Examination criteria. Moreover, the gene expression levels in the new testing dataset

also need to be assayed by Affymetrix HG-U133A. One challenge in genomic data

analysis is that since the techniques advanced rapidly, one platform may soon be

out of date, it is difficult to find an independent testing dataset assayed by the same

platform.

5.2.2 Selecting optimal priors for λ and α

In Chapter 3, we assigned the shrinkage parameter λ with a Gamma(a, b) prior distri-

bution, where a = 1, and b = 1. Here, inspired by Huang et al (2013), we proposed to

obtain the optimal values of hyperparameters a and b with cross-validation by three

steps. In the first step, we examined a = b = 0.01, 1, and 2, and a pair (a1, b1) cor-

responding to the smallest cross-validation error was obtain. In the second step, we

treated b as fixed at b1, and examined a = −0.5,−0.3,−0.1,−0.01, 0.01, 0.05, 0.1, 0.5,

and 1, and kept an a2 corresponding to the smallest cross-validation error. In the
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third step, a was fixed at a2, and b was chosen from the set [0.01, 0.1, 0, 1, 2, 3, 4, 5],

which yielded our optimal b2 [Huang et al., 2013]. Note that this process can result

in a long computation time, we propose to introduce parallel computing to speed up

the MCMC convergence.

Additionally, we can check the results of the Bayesian LASSO when an improper

flat prior is used for intercepts.

5.2.3 Bayesian variable selection with consideration of the

correlations between features

In our proposed penalized Bayesian cumulative logit model, we made a strong as-

sumption that all covariates are independent and we imposed i.i.d Bernoulli priors

to each of the binary indicate variables, γi. However, the independence assumption

is almost always violated when we have a high-dimensional data, especially, genomic

data. For example, in section 3.3, we demonstrated the application of our proposed

Bayesian method using a methylation data assayed by the Illumina GoldenGate Can-

cer Panel I (Illumina, San Diego, CA). This platform interrogates 1,505 CpG sites,

selected from 807 genes. As a consequence, many of the CpG sites are correlated

since they are located on the same gene. For instance, 463 genes are represented on

the assay by two CpG sites, and 114 genes are represented on the assay by more than

three CpG sites. Not only are CpG sites located on the same gene are correlated,

many genes are correlated, too. For example, among these 807 interrogated genes,

the OCT, NBC, MDR1, ABCG5, and ABCB4 genes are presented on the same Bile

secretion pathway [Klaassen and Aleksunes, 2010]. The highly correlated nature
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of genomic data has deleterious effects on the performance of our methods [Clarke

et al., 2008]. Although normalization during data filtering process and standardiza-

tion before statistical analysis can remove correlation, the normalization itself can

make different results [Qiu et al., 2005].

When there is a known biological structure among the predictor spaces, the

Bayesian framework provides a very natural setting for incorporating pre-existing

correlation structures in the covariate matrix. Li and Zhang (2010) proposed theo-

retical and computational schemes to incorporating prior structural information in

linear regression setting. They proposed to give general Ising prior for γ and present

Gibbs Sampling scheme of f(γ|Y ). The feature selection are then performed based

on the posterior inclusion probabilities of γ.

5.2.4 Extensions of Bayesian LASSO to other cumulative

logit models

In the near future, we also propose to investigate the extensions of the Bayesian

LASSO for other ordinal response models. For example, probit link models, adjacent

category model, forward and backward continuation-ratio models.

5.2.5 Inclusion of unpenalized predictors

It is sometimes desirable to include relevant predictors based on the prior knowledge.

For example, methylation is known to be age-related; therefore, the predictive model

including age as a non-penalized covariate can adjust for confounding. In the future,
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we would include no penalty subset for predictors, such as age in our Bayesian LASSO

framework.
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Appendix A

Chapter 2 appendix

A.1 GMIFS cumulative probit model with exam-

ple code

1 ############################----------------------------------

2 The code for fitting GMIFS cumulative probit models code in ordinal.

gmifs function

3 ############################-----------------------------------

4 cumprobit.likelihood<-function (par, xmatrix, y)

5 {

6 k <- length(unique(y))

7 levels <- sort(unique(y))

8 Ymat <- matrix(0, nrow = length(y), ncol = k)

9 for (i in levels) {
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10 Ymat[which(y == i), which(levels == i)] <- 1

11 }

12 alpha <- numeric()

13 alpha[1] <- -Inf

14 alpha[k + 1] <- 400 ###change to 100 to match Jiayi

15 alpha[2:k] <- par[1:(k-1)]

16 beta<- par[k:length(par)]

17 Xb <- xmatrix %*% beta

18 G.mat <- matrix(0, nrow = length(y), ncol = k+1)

19 G.mat[,1]<-0

20 G.mat[,k+1]<-1

21 for (i in 2:k) { G.mat[,i]<-pnorm(alpha[i]+Xb) }

22 pi <- matrix(0, nrow = length(y), ncol = k)

23 for (i in 2:(k + 1)) {

24 pi[, i - 1] <- G.mat[,i] - G.mat[,i-1]

25 }

26 pi <- apply(pi * Ymat, 1, sum)

27 loglik <- sum(log(pi))

28 -loglik

29 }

30

31 cumprobit.stepwise<-function (x, y, epsilon = 0.0001, tol = 1e-05,

scale = FALSE)
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32 {

33 levels <- sort(unique(y))

34 k <- length(unique(y))

35 x <- as.matrix(x)

36 vars <- dim(x)[2]

37 oldx <- x

38 if (scale) {

39 x <- scale(x, center = TRUE, scale = TRUE)

40 }

41 x <- cbind(x, -1 * x)

42 Ymat <- matrix(0, nrow = length(y), ncol = k)

43 for (i in levels) {

44 Ymat[which(y == i), which(levels == i)] <- 1

45 }

46

47 # initiating alpha

48 pi.0 <- table(y)/length(y)

49 alpha <- qnorm(cumsum(pi.0))[1:(k - 1)]

50 beta <- rep(0, dim(x)[2])

51 names(beta) <- dimnames(x)[[2]]

52 step <- 0

53 Estimates<-matrix(0,ncol=dim(oldx)[[2]])

54 alpha.update <- matrix(alpha, ncol = k-1)
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55 Likelihood<-numeric()

56 AIC<-numeric()

57

58 ui<-matrix(0,nr=length(alpha)-1,nc=length(alpha)) #constrain matrix

59 for (i in 1:dim(ui)[1]){

60 ui[i,i]<- -1

61 ui[i,i+1]<- 1

62 }

63

64 ci<-rep(0,dim(ui)[1])

65 repeat {

66 z <- matrix(ncol = k - 1, nrow = length(y))

67 for (i in 1:(k - 1)) {

68 z[, i] <- alpha[i] + x %*% beta

69 }

70

71

72 u1<-matrix(nr=dim(x)[1],nc=k)

73 for (j in 1:k){

74 if (j==1){

75 u1[,j]<-Ymat[,1]*dnorm(z[,1])/pnorm(z[,1])

76 }

77 else if (j <= k-1 ){
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78 u1[,j]<-Ymat[,j]*(dnorm(z[,j])-dnorm(z[,j-1]))/(pnorm(z[,j])-pnorm(

z[,j-1]))

79 }

80 else if (j == k) {

81 u1[,j]<- -Ymat[,k]*dnorm(z[,k-1])/(1-pnorm(z[,k-1])+1e-16)

82 }

83 }

84

85 u<- -t(x) %*% apply(u1,1,sum)

86

87

88

89 update.value <- min(u)

90 update.j <- which.min(u)

91 if (update.value < 0) {

92 beta[update.j] <- beta[update.j] + epsilon

93 }

94 Estimates<-rbind(Estimates,beta[1:vars]-beta[(vars+1):length(

beta)])

95

96

97 out<-constrOptim(alpha.update[step+1,],fn.cumprobit,grad=gr.

probit, ui=ui,ci=ci,x=x[,1:vars], y=y,
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98 beta=beta[1:vars]-beta[(vars+1):length(beta)],method="BFGS")

99 #out<-optim(alpha.update[step+1,], fn.cumprobit, x=x[,1:vars], y=

y, beta=beta[1:vars]-beta[(vars+1):length(beta)], method="

BFGS")

100 alpha.update <- rbind(alpha.update, out$par)

101 alpha <- out$par

102 p <- sum(Estimates[step+2,]!=0) + length(alpha)

103

104 Likelihood[step+1]<- LL1<- -out$value

105 AIC[step+1]<-2*p-2*Likelihood[step+1]

106 print(step)

107

108 #cat("update.value=",update.value,"\n")

109

110 if (step >= 1 && LL1 - LL0 < tol) {

111 break

112 }

113 LL0 <- LL1

114 step <- 1 + step

115 }

116 beta <- Estimates[-1,]

117 alpha<-alpha.update[-1,]

118 model.select<-which.min(AIC)
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119 list(beta = beta, alpha = alpha, x=oldx, y=y, scale=scale,

Likelihood=Likelihood, AIC=AIC, model.select=model.select)

120 }

121

122 fn.cumprobit<-function (par,beta,x, y)

123 {

124 k <- length(unique(y))

125 levels <- sort(unique(y))

126 Ymat <- matrix(0, nrow = length(y), ncol = k)

127 for (i in levels) {

128 Ymat[which(y == i), which(levels == i)] <- 1

129 }

130 alpha <- numeric()

131 alpha[1] <- -Inf

132 alpha[k + 1] <- 400 ###change to 100 to match Jiayi

133 alpha[2:k] <- par

134 xmatrix<-as.matrix(x)

135 Xb <- xmatrix %*% beta

136 G.mat <- matrix(0, nrow = length(y), ncol = k+1)

137 G.mat[,1]<-0

138 G.mat[,k+1]<-1

139 for (i in 2:k) { G.mat[,i]<-pnorm(alpha[i]+Xb) }

140 pi <- matrix(0, nrow = length(y), ncol = k)
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141 for (i in 2:(k + 1)) {

142 pi[, i - 1] <- G.mat[,i] - G.mat[,i-1]

143 }

144 pi <- apply(pi * Ymat, 1, sum)

145 loglik <- sum(log(pi))

146 #cat(par,"\n")

147 -loglik

148

149 }

150

151 #gradient function that used in constrOptim function

152 gr.probit<-function(par,beta,x, y){

153 k <- length(unique(y))

154 levels <- sort(unique(y))

155 Ymat <- matrix(0, nrow = length(y), ncol = k)

156 for (i in levels) {

157 Ymat[which(y == i), which(levels == i)] <- 1

158 }

159

160 alpha <- par

161 xmatrix<-as.matrix(x)

162 Xb <- xmatrix %*% beta

163 z <- matrix(ncol = k - 1, nrow = length(y))
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164 for (i in 1:(k - 1)) {

165 z[, i] <- alpha[i] + Xb

166 }

167

168 grad<-matrix(nr=dim(xmatrix)[1],nc=k-1)

169 for (j in 1:(k-1)){

170 if (j==1){

171 grad[,j]<-Ymat[,1]*dnorm(z[,1])/pnorm(z[,1])- Ymat[,2]*(dnorm(z

[,1])/(pnorm(z[,2])-pnorm(z[,1])))

172

173 }

174 else if (j < k-1 ){

175 grad[,j]<-Ymat[,j]*(dnorm(z[,j])/(pnorm(z[,j])-pnorm(z[,j-1])))-

Ymat[,j+1]*(dnorm(z[,j])/(pnorm(z[,j+1])-pnorm(z[,j])))

176 }

177 else if (j == k-1) {

178 grad[,j]<- Ymat[,k-1]*(dnorm(z[,k-1])/(pnorm(z[,k-1])-pnorm(z[,k

-2])))-Ymat[,k]*dnorm(z[,k-1])/(1-pnorm(z[,k-1]))

179 }

180 }

181

182 c(-apply(grad,2,sum))

183 }
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184

185

186

187 # Predict outcome for a given vector of fit=c(beta,alpha) estimates

188 predict.forward.cumprobit<-function(fit,newx,scale=TRUE,model.select=

NA) {

189 y<-fit$y

190 x<-fit$x

191 if (is.na(model.select)) model.select=dim(fit$beta)[1]

192 beta<-fit$beta[model.select,]

193 alpha<-fit$alpha[model.select,]

194 k<-length(unique(y))

195 if (identical(newx,x)) {

196 if (scale) {

197 newx<-scale(newx,center=TRUE,scale=TRUE)

198 }

199 } else if (scale) {

200 newx<-rbind(x,newx)

201 newx<-scale(newx,center=TRUE,scale=TRUE)

202 newx<-matrix(newx[-(1:dim(x)[1]),],ncol=dim(x)[2])

203 }

204 levels<-sort(unique(y))

205 z<-matrix(ncol=k-1,nrow=dim(newx)[1])
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206 for (i in 1:(k-1)) {

207 z[,i]<-alpha[i]+newx%*%beta

208 }

209 pi.z<-matrix(ncol=k,nrow=dim(newx)[1])

210 for (i in 1:k) {

211 if (i==1) {

212 pi.z[,i]<-pnorm(z[,i])

213 } else if (i <= k-1) {

214 pi.z[,i]<-pnorm(z[,i]) - pnorm(z[,i-1])

215 } else if (i==k) {

216 pi.z[,i]<-1 - pnorm(z[,i-1])

217 }

218 }

219 class<-levels[apply(pi.z,1,which.max)]

220 class}

221

222

223 #

#-------------------------------------------------------------------------

224 Code for performing example in chapter 2.2.3

225 #

#-------------------------------------------------------------------------
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226 ##09/15/2014###

227 rm(list=ls())

228 load("phenoinfo.RData") #pheno info for baseline data

229 load("qz_bcworkspace.RData") # geno info for baseline data

230 #library(gtools)

231 #library(reshape2)

232 #library(lme4)

233 library(ordinalgmifs)

234

235 #get rid of duplicated rows

236 pheno.info2<-pheno.info[!duplicated(pheno.info$Sid),] #I keep pheno.

info2 for numeric outcomes

237 dim(pheno.info2)

238

239 pheno.info3<-transform(pheno.info2, Stress =quantcut(pheno.info2$

TotalPSS, q=seq(0,1,by=0.25),labels=FALSE,na.rm=TRUE),

240 Anxiety=ifelse(pheno.info2$HadsAxiety<=7,1,ifelse(pheno.info2$

HadsAxiety <=10 ,2,3)),Depress=ifelse(pheno.info2$HadsDepress

<=7,1,ifelse(pheno.info2$HadsDepress <=10 ,2,3))

241 )

242
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243 #Filtering process

-----------------------------------------------------------------------------------------------------------------

244 #filtering out CpG sites that fully methylated (beta > 0.9) and not

methylated(beta <0.1) for all samples

245 ind.full_unmethy<-numeric()

246 for (i in 1:dim(beta.corrected)[1]){

247 ind.full_unmethy[i]<-ifelse(sum(beta.corrected[i,]<=0.1 | beta.

corrected[i,]>=0.9)==73,1,0)

248 }

249 table(ind.full_unmethy)

250 beta.filtered<-beta.corrected[ind.full_unmethy==0,]

251 #methy.M<-log(beta.filtered/(1-beta.filtered))

252 methy.M<-beta.filtered

253 dim(methy.M)

254

255 x.genes<-t(methy.M)

256

257 #Seperated model

------------------------------------------------------------------------------------------------------------------------------------------------

258 Anxiety.model<-ordinal.gmifs(Anxiety ~1,x=x.genes,data=pheno.info3,

epsilon=0.01,probability.model="Cumulative",link="probit",scale=
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TRUE)

259 Depress.model<-ordinal.gmifs(Depress ~1,x=x.genes,data=pheno.info3,

epsilon=0.01,probability.model="Cumulative",link="probit",scale=

TRUE)

260 Stress.model<-ordinal.gmifs(Stress ~1,x=x.genes,data=pheno.info3,

epsilon=0.01,probability.model="Cumulative",link="probit",scale=

TRUE)

261

262 save.image("ADS_gmifs1.RData")

263 #-------------------------------------------------

264 load("ADS_gmifs1.RData")

265 ls()

266 library(ordinalgmifs)

267 #AIC model misclassification--------------------

268 pred.an<-predict(Anxiety.model)

269 table(pheno.info3$Anxiety, pred.an$class)

270 pred.dep<-predict(Depress.model)

271 table(pheno.info3$Depress, pred.dep$class)

272 pred.st<-predict(Stress.model)

273 out<-table(pheno.info3$Stress, pred.st$class)

274 (sum(out)-sum(diag(out)))/sum(out)

275

276 #obtain BIC models--------------------------------------------------
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277 an.b<-coef(Anxiety.model, model.select=which.min(Anxiety.model$BIC))

278 dep.b<-coef(Depress.model, model.select=which.min(Depress.model$BIC))

279 st.b<-coef(Stress.model, model.select=which.min(Stress.model$BIC))

280

281 pred.an.bic<-predict(Anxiety.model,model.select=which.min(Anxiety.

model$BIC))

282 out<-table(pheno.info3$Anxiety, pred.an.bic$class)

283 out

284 pred.dep.bic<-predict(Depress.model,model.select=which.min(Depress.

model$BIC))

285 out<-table(pheno.info3$Depress, pred.dep.bic$class)

286 out

287 pred.st.bic<-predict(Stress.model,model.select=which.min(Stress.model

$BIC))

288 out<-table(pheno.info3$Stress, pred.st.bic$class)

289 out

290 (sum(out)-sum(diag(out)))/sum(out)

291

292 Sig.B<-list(Anxiety.BIC=an.b[an.b!=0][-c(1:2)],Depress.BIC=dep.b[dep.

b!=0][-c(1,2)],Stress.BIC=st.b[st.b!=0][-c(1,2,3)])

293 savehistory(file = "Probit analysis.Rhistory")

A.2 GMIFS continuation ratio model code
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1 ####----------------------------------------------------

2 Penalized forward continuation ratio model using probit link code

3 ####----------------------------------------------------

4 FCR_probit.fn<-function(par, x, y, beta) {

5 x<-as.matrix(x)

6 k <- length(unique(y))

7 levels <- sort(unique(y))

8 Ymat <- matrix(0, nrow = length(y), ncol = k)

9 for (i in levels) {

10 Ymat[which(y == i), which(levels == i)] <- 1

11 }

12 Xb<-x%*%beta

13 G.mat <- matrix(0, nrow = length(y), ncol = k)

14 G.mat[,1]<-pnorm(par[1]+Xb)

15 G.mat[,2]<-pnorm(par[2]+Xb)*(1-G.mat[,1])

16 if (k>3) {

17 for (i in 3:(k-1)) {

18 G.mat[,i]<-pnorm(par[i]+Xb)*(1-matrix(apply(G.mat[,1:(i-1)],1,

sum),nrow=nrow(G.mat),byrow=T))

19 }

20 }

21 G.mat[,k]<-1-matrix(apply(G.mat[,1:(k-1)],1,sum),nrow=nrow(G.mat),

byrow=T)
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22 pi <- Ymat*G.mat

23 pi <- apply(pi,1,sum)

24 loglik <- sum(log(pi))

25 -loglik

26 }

27

28

29 ### Forward Continuation Ratio GMIFS function ###

30 fcr_probit.stepwise<-

31 function(x,y,tol=1e-5, epsilon=0.0001, scale=FALSE, step=TRUE) {

32 levels<-sort(unique(y))

33 k<-length(unique(y))

34 x<-as.matrix(x)

35 vars<-dim(x)[2]

36 oldx<-x

37 if (scale) {

38 x<-scale(x,center=TRUE,scale=TRUE)

39 }

40 x<-cbind(x,-1*x)

41 Ymat<-matrix(0,nrow=length(y),ncol=k)

42 for (i in levels){

43 Ymat[which(y==i),which(levels==i)]<-1

44 }
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45 beta <- rep(0, dim(x)[2])

46 names(beta) <- dimnames(x)[[2]]

47

48 alpha<-numeric()

49 tab<-table(y)

50

51 Cum.Ymat<-matrix(0,nrow=nrow(Ymat),ncol=k-1)

52 for(i in 1:(k-1)) {

53 alpha[i]<- dnorm(tab[i]/sum(tab[i:k]))

54 Cum.Ymat[,i]<-apply(matrix(Ymat[,i:k],nrow=dim(Ymat)[1]),1,sum)

55 }

56 names(alpha)<-paste("alpha",1:(k-1),sep=".")

57 step<-0

58 Estimates<-matrix(0,ncol=dim(oldx)[[2]])

59 alpha.update <- matrix(alpha, ncol = k-1)

60 Likelihood<-numeric()

61 AIC<-numeric()

62 repeat {

63 u <- rep(0,dim(x)[[2]])

64 Xb<-x%*%beta

65 eta<-matrix(0,ncol=k-1,nrow=dim(x)[1])

66 for (i in 1:(k-1)) {

67 eta[,i]<-alpha[i] + Xb
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68 }

69 z1<- dnorm(eta)/pnorm(eta)*Ymat[,1:(k-1)] + dnorm(eta)/(1-

pnorm(eta))*(Ymat[,1:(k-1)]-Cum.Ymat)

70 u<- -apply(t(x)%*%z1,1,sum)

71 update.value<-min(u)

72 if (update.value<0) {

73 beta[which.min(u)]<- beta[which.min(u)]+epsilon

74 }

75 Estimates<-rbind(Estimates,beta[1:vars]-beta[(vars+1):length(

beta)])

76 out<-optim(fn=FCR_probit.fn, par=alpha.update[step+1,], x=x

[,1:vars], y=y, beta=beta[1:vars]-beta[(vars+1):length(beta

)], method="BFGS")

77 alpha.update <- rbind(alpha.update, out$par)

78 alpha <- out$par

79 p <- sum(Estimates[step+2,]!=0) + length(alpha)

80 Likelihood[step+1]<- LL1<- -out$value

81 AIC[step+1]<-2*p-2*Likelihood[step+1]

82 if (step){

83 print(step)}

84 if ( (step>=1 && LL1-LL0<tol) ) {

85 break

86 }
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87 LL0<-LL1

88 step<-1+step

89 }

90 beta<-Estimates[-1,]

91 alpha<-alpha.update[-1,]

92 model.select<-which.min(AIC)

93 list(beta = beta, alpha = alpha, x=oldx, y=y, scale=scale,

Likelihood=Likelihood, AIC=AIC, model.select=model.select)

94 }

95

96

97 ### Function to predict class ###

98 predict.FCR_probit<-function(fit,newx,model.select=NA) {

99 x<-fit$x

100 y<-fit$y

101 if (is.na(model.select)) model.select=dim(fit$beta)[1]

102 beta<-fit$beta[model.select,]

103 alpha<-fit$alpha[model.select,]

104 k<-length(unique(y))

105 newx<-as.matrix(newx)

106 if (identical(newx,x)) {

107 if (fit$scale) {

108 newx<-scale(newx,center=TRUE,scale=TRUE)
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109 }

110 } else if (fit$scale) {

111 newx<-rbind(x,newx)

112 newx<-scale(newx,center=TRUE,scale=TRUE)

113 newx<-matrix(newx[-(1:dim(x)[1]),],ncol=dim(x)[2])

114 }

115 levels<-sort(unique(y))

116 Xb<-newx%*%beta

117 pi <- matrix(0, nrow = dim(newx)[1], ncol = k)

118 pi[,1]<-pnorm(alpha[1]+Xb)

119 pi[,2]<-pnorm(alpha[2]+Xb)*(1-pi[,1])

120 if (k>3) {

121 for (i in 3:(k-1)) {

122 pi[,i]<-pnorm(alpha[i]+Xb)*(1-matrix(apply(pi[,1:(i-1)],1,sum),

nrow=nrow(pi),byrow=T))

123 }

124 }

125 pi[,k]<-1-matrix(apply(pi[,1:(k-1)],1,sum),nrow=nrow(pi),byrow=T)

126 class<-levels[apply(pi,1,which.max)]

127 list(predicted=pi,class=class)

128 }

129

130 ####----------------------------------------------------
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131 Penalized back continuation ratio model using probit link code

132 ####----------------------------------------------------

133 backcr_probit.stepwise<-

134 function(x,y,tol=1e-5, epsilon=0.0001, scale=FALSE,step=TRUE) {

135 levels<-sort(unique(y))

136 k<-length(unique(y))

137 x<-as.matrix(x)

138 vars<-dim(x)[2]

139 oldx<-x

140 if (scale) {

141 x<-scale(x,center=TRUE,scale=TRUE)

142 }

143 x<-cbind(x,-1*x)

144 Ymat<-matrix(0,nrow=length(y),ncol=k)

145 for (i in levels){

146 Ymat[which(y==i),which(levels==i)]<-1

147 }

148 beta <- rep(0, dim(x)[2])

149 names(beta) <- dimnames(x)[[2]]

150

151 alpha<-numeric()

152 tab<-table(y)

153
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154 Cum.Ymat<-matrix(0,nrow=nrow(Ymat),ncol=k-1)

155 for(i in 1:(k-1)) {

156 alpha[i]<- dnorm(tab[i+1]/sum(tab[1:(i+1)]))

157 Cum.Ymat[,i]<-apply(matrix(Ymat[,(i+1):k],nrow=dim(Ymat)[1]),1,sum

)

158 }

159 names(alpha)<-paste("alpha",1:(k-1),sep=".")

160 step<-0

161 Estimates<-matrix(0,ncol=dim(oldx)[[2]])

162 alpha.update <- matrix(alpha, ncol = k-1)

163 Likelihood<-numeric()

164 AIC<-numeric()

165 repeat {

166 u <- rep(0,dim(x)[[2]])

167 Xb<-x%*%beta

168 eta<-matrix(0,ncol=k-1,nrow=dim(x)[1])

169 for (i in 1:(k-1)) {

170 eta[,i]<-alpha[i] + Xb

171 }

172 z1<- dnorm(eta)/pnorm(eta)*Ymat[,2:k] + dnorm(eta)/(1-

pnorm(eta))*(Cum.Ymat-1)

173 u<- -apply(t(x)%*%z1,1,sum)

174 update.value<-min(u)
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175 if (update.value<0) {

176 beta[which.min(u)]<- beta[which.min(u)]+epsilon

177 }

178 Estimates<-rbind(Estimates,beta[1:vars]-beta[(vars+1):length(

beta)])

179 out<-optim(fn=BackCR_probit.fn, par=alpha.update[step+1,], x=x

[,1:vars], y=y, beta=beta[1:vars]-beta[(vars+1):length(beta

)],method="BFGS")

180 alpha.update <- rbind(alpha.update, out$par)

181 alpha <- out$par

182 p <- sum(Estimates[step+2,]!=0) + length(alpha)

183 Likelihood[step+1]<- LL1<- -out$value

184 AIC[step+1]<-2*p-2*Likelihood[step+1]

185 if (step){

186 print(step)}

187 if ( (step>=1 && LL1-LL0<tol) ) {

188 break

189 }

190 LL0<-LL1

191 step<-1+step

192 }

193 beta<-Estimates[-1,]

194 alpha<-alpha.update[-1,]
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195 model.select<-which.min(AIC)

196 list(beta = beta, alpha = alpha, x=oldx, y=y, scale=scale,

Likelihood=Likelihood, AIC=AIC, model.select=model.select)

197 }

198

199

200 ### Function to update alpha ###

201 BackCR_probit.fn<-function(par, x, y, beta) {

202 x<-as.matrix(x)

203 k <- length(unique(y))

204 levels <- sort(unique(y))

205 Ymat <- matrix(0, nrow = length(y), ncol = k)

206 for (i in levels) {

207 Ymat[which(y == i), which(levels == i)] <- 1

208 }

209 Xb<-x%*%beta

210 G.mat <- matrix(0, nrow = length(y), ncol = k)

211 G.mat[,k]<-pnorm(par[k-1]+Xb)

212 G.mat[,k-1]<-pnorm(par[k-2]+Xb)*(1-G.mat[,k])

213 if (k>3) {

214 for (i in (k-2):2) {

215 G.mat[,i]<-pnorm(par[i-1]+Xb)*(1-matrix(apply(G.mat[,k:(i+1)],1,

sum),nrow=nrow(G.mat),byrow=T))
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216 }

217 }

218 G.mat[,1]<-1-matrix(apply(G.mat[,k:2],1,sum),nrow=nrow(G.mat),byrow

=T)

219 pi <- Ymat*G.mat

220 pi <- apply(pi,1,sum)

221 loglik <- sum(log(pi))

222 -loglik

223 }

224

225

226

227 ### Function to predict class ###

228 predict.backCR_probit<-function(fit,newx,model.select=NA) {

229 x<-fit$x

230 y<-fit$y

231 if (is.na(model.select)) model.select=dim(fit$beta)[1]

232 beta<-fit$beta[model.select,]

233 alpha<-fit$alpha[model.select,]

234 k<-length(unique(y))

235 newx<-as.matrix(newx)

236 if (identical(newx,x)) {

237 if (fit$scale) {
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238 newx<-scale(newx,center=TRUE,scale=TRUE)

239 }

240 } else if (fit$scale) {

241 newx<-rbind(x,newx)

242 newx<-scale(newx,center=TRUE,scale=TRUE)

243 newx<-matrix(newx[-(1:dim(x)[1]),],ncol=dim(x)[2])

244 }

245 levels<-sort(unique(y))

246 Xb<-newx%*%beta

247 pi <- matrix(0, nrow = dim(newx)[1], ncol = k)

248 pi[,k]<-pnorm(alpha[k-1]+Xb)

249 pi[,k-1]<-pnorm(alpha[k-2]+Xb)*(1-pi[,k])

250 if (k>3) {

251 for (i in (k-2):2) {

252 pi[,i]<-pnorm(alpha[i-1]+Xb)*(1-matrix(apply(pi[,k:(i+1)],1,sum)

,nrow=nrow(pi),byrow=T))

253 }

254 }

255 pi[,1]<-1-matrix(apply(pi[,k:2],1,sum),nrow=nrow(pi),byrow=T)

256 class<-levels[apply(pi,1,which.max)]

257 list(predicted=pi,class=class)

258 }
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AIC model : CpG sites that were significantly associated with Anxiety (Illumina

loci ID) : cg22417589 cg07424927 cg17129821 cg10313047 cg15060599 cg18005693

cg20449692 cg03827835 cg13619597 cg22056094 cg26630791 cg15262505 cg13679303

cg27615378 cg27332938 cg02072400 cg16094511 cg12485185 cg00049664 cg09955084

cg08900396 cg15250633 cg08888354 cg09759458 cg17399362 cg01943289 cg00375105

cg01044189 cg11152528 cg18412777 cg21471515 cg25832529 cg07501029 cg16298457

cg17443007 cg01267068 cg02058002 cg16277214 cg17336044 cg22532079 cg05350396

cg05237015 cg02734955 cg19685567 cg23169584 cg23684218 cg05483021 cg05738743

cg17795240 cg19049724 cg13717350 cg14090916 cg14223966 cg12566078 cg16871435

cg23260525 cg06730161 cg15001406 cg06722407 cg17809365 cg26657240 cg14556515

cg20985587 cg03234186 cg03832839 cg18917378 cg00192046

CpG sites that were significantly associated with Depression (Illumina loci ID) :

cg00378717 cg00147788 cg20399616 cg24394624 cg10043663 cg17336044 cg03049125

cg03091070 cg19748937 cg18873166 cg05453820 cg13781956 cg19683821 cg25542438

cg20418308 cg14516632 cg06771839 cg04932840 cg19913465

CpG sites that were significantly associated with Stress (Illumina loci ID) :

cg21566642 cg22040631 cg13619597 cg22307444 cg10758057 cg10174864 cg00324161

cg21121843 cg19755435 cg26889118

BIC model : CpG sites that were significantly associated with Anxiety (Illumina

loci ID) : cg15060599

CpG sites that were significantly associated with Depression (Illumina loci ID) :

cg24394624 cg03091070 cg13781956 cg19683821 cg25542438 cg20418308 cg19913465
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CpG sites that were significantly associated with Stress (Illumina loci ID) :

cg21566642 cg22040631 cg13619597 cg22307444 cg10758057 cg10174864 cg00324161

cg21121843 cg19755435 cg26889118

A.3 GMIFS stereotype logit model with example

code

1 ### sterotype model with fixed beta

2 stereo.fn<-function (par, xmatrix, y,beta)

3 {

4 k <- length(unique(y)) # there are k levels

5 levels <- sort(unique(y))

6 Ymat <- matrix(0, nrow = length(y), ncol = k) # create a matrix of

i * k, yi1=1 if control else 0, yi2=1 if incipient else 0...

7 for (i in levels) {

8 Ymat[which(y == i), which(levels == i)] <- 1

9 }

10 Xb<-xmatrix%*%beta

11 eta<-matrix(0,ncol=k-1,nrow=dim(xmatrix)[1])

12 eta[,1] <- exp(par[1] + Xb)

13 for (i in 2:(k-1)) {

14 eta[,i]<- exp(par[i] + par[i+k-2]*Xb)

15 }
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16 pik<- 1- apply(eta,1,sum)/(1+apply(eta,1,sum))

17

18

19 pi<-matrix(0,ncol=k,nrow=dim(xmatrix)[1])

20 pi[,k]<- pik

21 pi[,1:(k-1)]<-eta*pik

22 loglik<-sum(apply(Ymat*log(pi),1,sum))

23 -loglik

24 }

25

26 stereo.stepwise<-function(xmatrix,y,tol=1e-5,epsilon=0.001, scale=

FALSE) {

27 levels<-sort(unique(y))

28 k<-length(unique(y))

29 x<-as.matrix(xmatrix)

30 vars<-dim(x)[2]

31 oldx<-x

32 if (scale) {

33 x<-scale(x,center=TRUE,scale=TRUE)

34 }

35 x<-cbind(x,-1*x)

36 Ymat<-matrix(0,nrow=length(y),ncol=k)

37 for (i in levels){
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38 Ymat[which(y==i),which(levels==i)]<-1

39 }

40

41 #initialize beta

42 beta <- rep(0, dim(x)[2])

43 names(beta) <- dimnames(x)[[2]]

44

45 #initialize alpha

46 alpha<-numeric()

47 pi.0 <- table(y)/length(y)

48 for(i in 1:(k-1)) {

49 alpha[i]<- log(pi.0[i]/pi.0[k])

50 }

51 names(alpha)<-paste("alpha",1:(k-1),sep=".")

52

53 #initialize phi

54 phi <- c(1,rep(0.1,k-2))

55 names(phi) <- paste("phi",1:(k-1),sep=".")

56

57 step<-0

58 Estimates<-matrix(0,ncol=dim(oldx)[[2]])

59 alpha.update <- matrix(alpha, ncol = k-1) # 1*3 matrix for updated

alpha
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60 phi.update <- matrix(phi,ncol=k-1)

61

62 Likelihood<-numeric()

63 AIC<-numeric()

64 repeat {

65 u <- rep(0,dim(x)[[2]])

66 Xb<-x%*%beta

67

68 eta<-matrix(0,ncol=k-1,nrow=dim(x)[1])

69 for (i in 1:(k-1)) {

70 eta[,i]<- exp(alpha[i] + phi[i]*Xb)

71 }

72 denom<- 1+apply(eta,1,sum)

73 numer<-matrix(0,ncol=k-1,nrow=dim(x)[1])

74 for (i in 1:(k-1)){

75 numer[,i]<-eta[,i]*phi[i]

76 }

77 numer2<- -apply(numer,1,sum)*Ymat[,k]/denom #contribution to

log-like for class K

78 numer1<-matrix(0,ncol=k-1,nrow=dim(x)[1]) # contribution to

log-like for classes 1 to K-1

79 for (i in 1:(k-1)){

80 numer1[,i]<-Ymat[,i]*(phi[i]-apply(numer,1,sum)/denom)
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81 }

82 numer1f<- apply(numer1,1,sum)

83 dll<-x*(numer1f + numer2)

84 u<-apply(-dll,2,sum) # u is a 2p*1 vector of -dlogL/dbeta

85 update.value<-min(u)

86 if (update.value<0) {

87 beta[which.min(u)]<- beta[which.min(u)]+epsilon

88 }

89 Estimates<-rbind(Estimates,beta[1:vars]-beta[(vars+1):length(

beta)]) #?

90 #out<-optim(par=c(alpha.update[step+1,],phi.update[step+1,2:

dim(phi.update)[2]]), stereo.fn, x=x[,1:vars], y=y, beta=

beta[1:vars]-beta[(vars+1):length(beta)], method="BFGS")

91 out<-optim(par=c(alpha.update[step+1,],phi.update[step+1,2:

dim(phi.update)[2]]), stereo.fn, x=x[,1:vars], y=y, beta=

beta[1:vars]-beta[(vars+1):length(beta)],

92 method="L-BFGS-B",upper=c(rep(Inf,k-1),rep(1,k-2)),lower=c(rep

(-Inf,k-1),rep(0,k-2)))

93 alpha.update <- rbind(alpha.update, (out$par)[1:k-1])

94 phi.update <- rbind(phi.update, c(1,out$par[k:length(out$par)]))

95 alpha <- out$par[1:k-1]

96 phi <- c(1,out$par[k:length(out$par)])

144



97 p <- sum(Estimates[step+2,]!=0) + length(alpha) + length(phi)

# ?

98 Likelihood[step+1]<- LL1<- -out$value

99 AIC[step+1]<-2*p-2*Likelihood[step+1]

100 print(step)

101 if (step >= 1 && LL1 - LL0 < tol) {

102 break

103 }

104 LL0<-LL1

105 step<-1+step

106 }

107 beta<-Estimates[-1,]

108 alpha<-alpha.update[-1,]

109 phi<-phi.update[-1,]

110 model.select<-which.min(AIC)

111 list(beta = beta, alpha = alpha, phi = phi, x=oldx, y=y, scale=

scale, Likelihood=Likelihood, AIC=AIC, model.select=model.

select)

112 }

113

114

115

116 ### Function to predict class ###
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117 predict.stereo<-function(fit,newx,model.select=NA) {

118 x<-fit$x

119 y<-fit$y

120 if (is.na(model.select)) model.select=dim(fit$beta)[1] # if no

model.select, using the last iteration

121 beta<-fit$beta[model.select,]

122 alpha<-fit$alpha[model.select,]

123 phi<-fit$phi[model.select,]

124 k<-length(unique(y))

125 newx<-as.matrix(newx)

126 if (identical(newx,x)) {

127 if (fit$scale) {

128 newx<-scale(newx,center=TRUE,scale=TRUE)

129 }

130 } else if (fit$scale) {

131 newx<-rbind(x,newx)

132 newx<-scale(newx,center=TRUE,scale=TRUE)

133 newx<-matrix(newx[-(1:dim(x)[1]),],ncol=dim(x)[2])

134 }

135 levels<-sort(unique(y))

136 eta<-matrix(0,ncol=k-1,nrow=dim(newx)[1])

137 Xb <- newx%*%beta

138 for (i in 1:(k-1)) {
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139 eta[,i]<-exp(alpha[i] + phi[i]*Xb)

140 }

141

142 pik<- 1- apply(eta,1,sum)/(1+apply(eta,1,sum))

143

144

145 pi<-matrix(0,ncol=k,nrow=dim(newx)[1])

146 pi[,k]<- pik

147 pi[,1:(k-1)]<-eta*pik

148

149 class<-levels[apply(pi,1,which.max)]

150 list(predicted=pi,class=class)

151 }

152

153

154 load("GSE1297.RData")

155 class<-sorted.pheno$y

156 x<-log(x,2)

157 x<-scale(x,center=TRUE,scale=TRUE)

158

159

160 Alz.stereo<-stereo.stepwise(xmatrix=x,y=class)
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161 fit.class<-predict.stereo(Alz.stereo,newx=x,model.select=Alz.stereo$

model.select)

162 table(fit.class$class,class)

163 full.class<-predict.stereo(Alz.stereo,newx=x,model.select=dim(Alz.

stereo$beta)[1])

164 table(full.class$class,class)

165 save.image("stereo1297.RData")

148



Appendix B

Chapter 3 appendix

B.1 Simulation code

1 #-----------------------------------------

2 #Simulation 1 code------------------------

3 #-----------------------------------------

4 n.sim<-200

5 set.seed(125)

6 x.var<-matrix(nr=n.sim,ncol=5)

7 for (i in 1:5){

8 x.var[,i]<-rnorm(n.sim,0,1)

9 }

10

11

149



12 alpha1=-1

13 alpha2=2

14

15 beta1<-3

16 beta2<-1

17

18 logit1<-alpha1+beta1*x.var[,1]+beta2*x.var[,2]

19 logit2<-alpha2+beta1*x.var[,1]+beta2*x.var[,2]

20

21 G<-function(z){

22 exp(z)/(1+exp(z))

23 }

24

25 p1<-G(logit1)

26 p2<-G(logit2)

27

28 tmp <- runif(n.sim)

29 y <- 4-((tmp < p1) + (tmp < p2) + (tmp<1))

30 y

31 table(y)

32

33 simu.x<-scale(x.var,center=TRUE,scale=TRUE)

34 simu.y<-y
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35

36 ##vglm

37 library(VGAM)

38 vglm.simu<-vglm(simu.y~ simu.x[,1]+simu.x[,2] + simu.x[,3]+simu.x[,4]

+ simu.x[,5], family=cumulative(parallel=T,reverse=F))

39 vglm.pi<-predict(vglm.simu,type="response")

40 vglm.class<-apply(vglm.pi,1,which.max)

41 out<-table(simu.y, vglm.class)

42 1-sum(diag(out))/sum(out)

43 summary(vglm.simu)

44

45 #ordinalgmifs

46 library(ordinalgmifs)

47 penal.ord.simu<-ordinal.gmifs(simu.y~1, x=simu.x, data=data.frame(

simu.x))

48 summary(penal.ord.simu)

49

50

51 #Bayesian

52 library(rjags)

53 library(R2jags)

54 k<-length(unique(simu.y))

55 pi.0 <- table(simu.y)/length(simu.y)
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56 alpha.0 <- log(cumsum(pi.0)/(1 - cumsum(pi.0)))[1:(k - 1)]

57 simu.inits1<-list(tau=alpha.0,beta=c(rep(0,5)))

58 simu.inits2<-list(tau=c(-1,1),beta=c(rnorm(5,0,0.01)))

59 simu.inits3<-list(tau=c(-2,2),beta=c(rnorm(5,0,0.001)))

60 simu.inits<-list(simu.inits1,simu.inits2,simu.inits3)

61 simu.data<-list(Y=simu.y,X=as.matrix(simu.x),N=length(simu.y),nb=5,k=

k)

62 simu.params<-c("tau","beta","gamma","lambda","bgamma")

63

64 simujags <- jags(data=simu.data, inits=simu.inits, simu.params,

65 n.iter=10000, model.file="Non_info_model.txt",n.chains=3,n.thin=2)

66 simujags.upd <-autojags(simujags,n.thin=2,n.iter=5000,Rhat=1.1,n.

update=4)

67 print(simujags.upd)

68 range(simujags.upd$BUGSoutput$summary[,"Rhat"])

69

70

71 #####traceplot#####

72

73 traceplot.qz<-function(x,param,v.name){

74 x <- x$BUGSoutput

75 n.chain <- x$n.chains

76 n.keep <- x$n.keep
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77 bugs.array <- x$sims.array

78 range.x <- c(1, n.keep)

79

80 range.y <- range(bugs.array[, , param])

81 plot(range.x, range.y, type = "n", main = v.name, xlab = "iteration",

ylab = v.name, xaxt = "n",

82 xaxs = "i")

83

84 col = rainbow(x$n.chains)

85 for (i in 1:n.chain) {

86 x.cord <- 1:n.keep

87 y.cord <- bugs.array[, i, param]

88 lines(x.cord, y.cord, col = col[i], lty = 1,

89 lwd = 1)

90 }

91 abline(h=x$summary[param,"mean"],lwd=2)

92 mtext(paste("Mean=",round(x$summary[param,"mean"],2)),side=4,at=x$

summary[param,"mean"],line=0.5)

93 axis(1, at = seq(0, n.keep, n.keep * 0.1), tick = TRUE)

94 }

95

96

97 par(mfrow=c(2,1))
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98 traceplot.qz(x=simujags.upd,param="tau[1]",v.name=expression(alpha

[1]))

99 traceplot.qz(x=simujags.upd,param="tau[2]",v.name=expression(alpha

[2]))

100

101

102 par(mfrow=c(3,2))

103 traceplot.qz(x=simujags.upd,param="beta[1]",v.name=expression(beta

[1]))

104 traceplot.qz(x=simujags.upd,param="beta[2]",v.name=expression(beta

[2]))

105 traceplot.qz(x=simujags.upd,param="beta[3]",v.name=expression(beta

[3]))

106 traceplot.qz(x=simujags.upd,param="beta[4]",v.name=expression(beta

[4]))

107 traceplot.qz(x=simujags.upd,param="beta[5]",v.name=expression(beta

[5]))

108

109 par(mfrow=c(3,2))

110 traceplot.qz(x=simujags.upd,param="bgamma[1]",v.name=expression(gamma

[1]*beta[1]))

111 traceplot.qz(x=simujags.upd,param="bgamma[2]",v.name=expression(gamma

[2]*beta[2]))
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112 traceplot.qz(x=simujags.upd,param="bgamma[3]",v.name=expression(gamma

[3]*beta[3]))

113 traceplot.qz(x=simujags.upd,param="bgamma[4]",v.name=expression(gamma

[4]*beta[4]))

114 traceplot.qz(x=simujags.upd,param="bgamma[5]",v.name=expression(gamma

[5]*beta[5]))

115

116

117

118

119 rm(list=ls())

120

121 #--------------------------------------------------

122 #Simulation 2 codes--------------------------------

123 #--------------------------------------------------

124

125 #Simulation for frequentist GMIFS

--------------------------------------

126 library(ordinalgmifs)

127 n.sim<-90

128 p.sim<-100

129

130 gmifs.coef<-list()
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131 seed.se<-seq(1234,123456,by=120)

132 for (j in 1:100){

133 set.seed(seed.se[[j]])

134 x.var<-matrix(nr=n.sim,ncol=p.sim)

135 for (i in 1:5){

136 x.var[,i]<-c(rnorm(30,0,0.4),rnorm(30,1,0.4),rnorm(30,2,0.4))}

137

138

139 for (i in 6:p.sim){

140 x.var[,i]<-rnorm(n.sim,0,0.4)

141 }

142

143

144 colnames(x.var)<-paste0("x",seq(1,p.sim))

145

146

147 simu.x<-scale(x.var,center=TRUE,scale=TRUE)

148 simu.y<-c(rep(1,30),rep(2,30),rep(3,30))

149 table(simu.y)

150 head(simu.x)

151

152 penal.ord.simu<-ordinal.gmifs(simu.y~1, x=simu.x, data=data.frame(

simu.x),

156



153 epsilon = 0.001,verbose=TRUE)

154 summary(penal.ord.simu)

155 coefficients<-coef(penal.ord.simu)

156 gmifs.coef[[j]]<-coefficients[coefficients!=0]

157 }

158

159 save.image("gmifs100_01132016.RData")

160

161 #Simulation for Bayesian with non-info \alpha -----------------------

162 library(rjags)

163 library(R2jags)

164 n.sim<-90

165 p.sim<-100

166 num<-100

167 simujags.upd<-list()

168 seed.se<-seq(1234,123456,by=120)

169 for (j in 1:100){

170 set.seed(seed.se[j])

171 x.var<-matrix(nr=n.sim,ncol=p.sim)

172 for (i in 1:5){

173 x.var[,i]<-c(rnorm(30,0,0.4),rnorm(30,1,0.4),rnorm(30,2,0.4))}

174

175
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176 for (i in 6:p.sim){

177 x.var[,i]<-rnorm(n.sim,0,0.4)

178 }

179

180

181 colnames(x.var)<-paste0("x",seq(1,p.sim))

182

183

184 simu.x<-scale(x.var,center=TRUE,scale=TRUE)

185 simu.y<-c(rep(1,30),rep(2,30),rep(3,30))

186 table(simu.y)

187 head(simu.x)

188

189 k<-length(unique(simu.y))

190 pi.0 <- table(simu.y)/length(simu.y)

191 alpha.0 <- log(cumsum(pi.0)/(1 - cumsum(pi.0)))[1:(k - 1)]

192 simu.inits1<-list(tau=alpha.0,beta=c(rep(0,num)))

193 simu.inits2<-list(tau=c(-1,1),beta=c(rep(0,num)))

194 simu.inits<-list(simu.inits1,simu.inits2)

195 simu.data<-list(Y=simu.y,X=as.matrix(simu.x),N=length(simu.y),nb=num,

k=k)

196 simu.params<-c("tau","beta","gamma")

197
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198 simujags <- jags(data=simu.data, inits=simu.inits, simu.params,

199 n.iter=10000, model.file="Non_info_model.txt",n.chains=2,n.thin=16)

200 simujags.upd[[j]] <-autojags(simujags,n.thin=16,n.iter=5000,Rhat=1,n.

update=4)$BUGSoutput$summary

201

202 }

203

204 save.image("bayes100_flat.RData")

205

206

207 #Simulation with shrink \lambda, non-info \alpha

--------------------------------------------

208 library(rjags)

209 library(R2jags)

210 n.sim<-90

211 p.sim<-100

212 num<-100

213 simujags.upd<-list()

214 seed.se<-seq(1234,123456,by=120)

215 for (j in 1:100){

216 set.seed(seed.se[j])

217 x.var<-matrix(nr=n.sim,ncol=p.sim)

218 for (i in 1:5){
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219 x.var[,i]<-c(rnorm(30,0,0.4),rnorm(30,1,0.4),rnorm(30,2,0.4))}

220

221

222 for (i in 6:p.sim){

223 x.var[,i]<-rnorm(n.sim,0,0.4)

224 }

225

226

227 colnames(x.var)<-paste0("x",seq(1,p.sim))

228

229

230 simu.x<-scale(x.var,center=TRUE,scale=TRUE)

231 simu.y<-c(rep(1,30),rep(2,30),rep(3,30))

232 table(simu.y)

233 head(simu.x)

234

235 k<-length(unique(simu.y))

236 pi.0 <- table(simu.y)/length(simu.y)

237 alpha.0 <- log(cumsum(pi.0)/(1 - cumsum(pi.0)))[1:(k - 1)]

238 simu.inits1<-list(tau=alpha.0,beta=c(rep(0,num)))

239 simu.inits2<-list(tau=c(-1,1),beta=c(rep(0,num)))

240 simu.inits<-list(simu.inits1,simu.inits2)
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241 simu.data<-list(Y=simu.y,X=as.matrix(simu.x),N=length(simu.y),nb=num,

k=k)

242 simu.params<-c("tau","beta","gamma")

243

244 simujags <- jags(data=simu.data, inits=simu.inits, simu.params,

245 n.iter=10000, model.file="Non_info_model2.txt",n.chains=2,n.thin=16)

246 simujags.upd[[j]] <-autojags(simujags,n.thin=16,n.iter=5000,Rhat=1,n.

update=4)$BUGSoutput$summary

247

248 }

249

250 save.image("bayes100_shrink.RData")

251

252 #Simulation with informative \alphas ----------------------

253 library(rjags)

254 library(R2jags)

255 n.sim<-90

256 p.sim<-100

257 num<-100

258 simujags.upd<-list()

259 seed.se<-seq(1234,123456,by=120)

260 for (j in 1:100){

261 set.seed(seed.se[j])
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262 x.var<-matrix(nr=n.sim,ncol=p.sim)

263 for (i in 1:5){

264 x.var[,i]<-c(rnorm(30,0,0.4),rnorm(30,1,0.4),rnorm(30,2,0.4))}

265

266

267 for (i in 6:p.sim){

268 x.var[,i]<-rnorm(n.sim,0,0.4)

269 }

270

271

272 colnames(x.var)<-paste0("x",seq(1,p.sim))

273

274

275 simu.x<-scale(x.var,center=TRUE,scale=TRUE)

276 simu.y<-c(rep(1,30),rep(2,30),rep(3,30))

277 table(simu.y)

278 head(simu.x)

279

280 k<-length(unique(simu.y))

281 pi.0 <- table(simu.y)/length(simu.y)

282 alpha.0 <- log(cumsum(pi.0)/(1 - cumsum(pi.0)))[1:(k - 1)]

283
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284 simu.inits1<-list(tau1=alpha.0[1],beta=c(rep(0,100)),Diff=alpha.0[2]-

alpha.0[1])

285 simu.inits2<-list(tau1=-1,beta=c(rep(0,100)),Diff=2)

286 simu.inits3<-list(tau1=-2,beta=c(rep(0,100)),Diff=4)

287 simu.inits<-list(simu.inits1,simu.inits2,simu.inits3)

288 simu.data<-list(Y=simu.y,X=as.matrix(simu.x),N=length(simu.y),nb=num,

k=k,a=alpha.0[1])

289 simu.params<-c("tau1","Diff","beta","gamma")

290

291

292 simujags <- jags(data=simu.data, inits=simu.inits, simu.params,

293 n.iter=5000, model.file="Info_model.txt",n.chains=3,n.thin=16)

294 simujags.upd[[j]] <-autojags(simujags,n.thin=16,n.iter=2000,Rhat=1,n.

update=4)$BUGSoutput$summary

295

296 }

297

298 save.image("bayes100_info.RData")

299

300

301 #Data loading--------------------------------------

302 #load bayesian model with noninformative alpha prior and gamma (1,1)

lambda prior
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303 load("bayes100_flat.RData")

304 post.flat<-simujags.upd

305 rm(list=ls()[ls()!="post.flat"])

306

307 #load bayesian model with informative alpha prior and gamma (1,1)

lambda prior

308 load("bayes100_info.RData")

309 post.info<-simujags.upd

310 rm(list=ls()[!ls()%in%c("post.flat","post.info")])

311

312 #load bayesian model with flat alpha prior but different gamma

(0.025,0.05) lambda prior

313 load("bayes100_shrink.RData")

314 post.shrink<-simujags.upd

315 rm(list=ls()[!ls()%in%c("post.flat","post.info","post.shrink")])

316

317 #load gmifs model

318 load("gmifs100_01132016.RData")

319 rm(list=ls()[!ls()%in%c("post.flat","post.info","post.shrink","gmifs.

coef")])

320

321

322 #analysis--------------------------------------
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323 select.threshold<-0.5

324 freq.alpha<-matrix(0,nc=2,nr=100)

325 freq.beta<-matrix(0,nc=100,nr=100)

326 freq.table<-matrix(0,nc=100,nr=100)

327

328

329 flat.alpha<-matrix(nr=100,nc=2)

330 flat.beta<-matrix(nr=100,nc=100)

331 flat.table<-matrix(0,nr=100,nc=100)

332

333 info.alpha<-matrix(nr=100,nc=2)

334 info.beta<-matrix(nr=100,nc=100)

335 info.table<-matrix(0,nr=100,nc=100)

336

337 shrink.alpha<-matrix(nr=100,nc=2)

338 shrink.beta<-matrix(nr=100,nc=100)

339 shrink.table<-matrix(0,nr=100,nc=100)

340

341

342 alpha.ind<-grep("tau",names(post.flat[[1]][,"mean"]))

343 beta.ind<-grep("beta",names(post.flat[[1]][,"mean"]))

344 gamma.ind<-grep("gamma",names(post.flat[[1]][,"mean"]))

345
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346 alpha.ind2<-c(grep("Diff",names(post.info[[1]][,"mean"])),grep("tau1"

,names(post.info[[1]][,"mean"])))

347 beta.ind2<-grep("beta",names(post.info[[1]][,"mean"]))

348 gamma.ind2<-grep("gamma",names(post.info[[1]][,"mean"]))

349

350

351 for(i in 1:100){

352 flat.alpha[i,]<-post.flat[[i]][,"mean"][alpha.ind]

353 flat.beta[i,]<-post.flat[[i]][,"mean"][beta.ind]

354 flat.table[i,which(post.flat[[i]][,"mean"][gamma.ind]>=select.

threshold)]<-1

355

356 shrink.alpha[i,]<-post.shrink[[i]][,"mean"][alpha.ind]

357 shrink.beta[i,]<-post.shrink[[i]][,"mean"][beta.ind]

358 shrink.table[i,which(post.shrink[[i]][,"mean"][gamma.ind]>=select.

threshold)]<-1

359

360 info.alpha[i,]<-post.info[[i]][,"mean"][alpha.ind2]

361 info.beta[i,]<-post.info[[i]][,"mean"][beta.ind2]

362 info.table[i,which(post.info[[i]][,"mean"][gamma.ind2]>=select.

threshold)]<-1

363

364 freq.alpha[i,]<-gmifs.coef[[i]][1:2]
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365 freq.beta.ind<-paste("x",seq(1:100),sep="") %in% names(gmifs.coef[[i

]][-(1:2)])

366 freq.beta[i,freq.beta.ind]<- gmifs.coef[[i]][-c(1:2)]

367 freq.table[i,freq.beta.ind]<-1

368 }

369

370 flat.true<-apply(flat.table[,c(1,2,3,4,5)],1,sum)

371 info.true<-apply(info.table[,c(1,2,3,4,5)],1,sum)

372 shrink.true<-apply(shrink.table[,c(1,2,3,4,5)],1,sum)

373 freq.true<-apply(freq.table[,c(1,2,3,4,5)],1,sum)

374 summary(flat.true)

375 summary(info.true)

376 summary(shrink.true)

377 summary(freq.true)

378

379 flat.false<-apply(flat.table[,-c(1,2,3,4,5)],1,sum)

380 info.false<-apply(info.table[,-c(1,2,3,4,5)],1,sum)

381 shrink.false<-apply(shrink.table[,-c(1,2,3,4,5)],1,sum)

382 freq.false<-apply(freq.table[,-c(1,2,3,4,5)],1,sum)

383 summary(flat.false)

384 summary(info.false)

385 summary(shrink.false)

386 summary(freq.false)

167



B.2 Application code

1 #-------------------------------------------------------

2 #HCC data-----------------------------------------------

3 #-------------------------------------------------------

4 load("hccCancerPanel.RData")

5 library(rjags)

6 library(R2jags)

7

8 k<-length(unique(hccCancerPanel$Tissue))

9 pi.0 <- table(hccCancerPanel$Tissue)/length(hccCancerPanel$Tissue)

10 alpha.0 <- log(cumsum(pi.0)/(1 - cumsum(pi.0)))[1:(k - 1)]

11 hcc.inits1<-list(tau=alpha.0,beta=c(rnorm(1469,0.01)))

12 hcc.inits2<-list(tau=c(-1,1),beta=c(rnorm(1469,0.0001)))

13 hcc.inits3<-list(tau=c(-2,2),beta=c(rnorm(1469,0.1)))

14 hcc.inits<-list(hcc.inits1,hcc.inits2,hcc.inits3)

15 hcc.params<-c("tau","beta","gamma")

16 hcc.data<-list(Y=hccCancerPanel$Tissue,X=scale(as.matrix(

hccCancerPanel[,-1]),center=TRUE,scale=TRUE),N=length(

hccCancerPanel$Tissue),nb=1469,k=k)

17 hcc.jags <- jags(data=hcc.data, inits=hcc.inits, hcc.params,

18 n.iter=100000, model.file="Non_info_model.txt",n.chains=3)

19 hcc.upd <- autojags(hcc.jags,n.iter=10000)
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20

21 save.image("hcc_bay0_5_03232016.RData")

22

23 load("hcc_bay0_5_03232016.RData")

24 result<-hcc.jags$BUGSoutput$summary

25

26 #Obtain posterior slopes

27 beta.ind<-grep("bgamma",names(result[,"mean"]))

28 beta.value<-result[,"mean"][beta.ind]

29

30 beta.ind2<-grep("beta",names(result[,"mean"]))

31 beta.value2<-result[,"mean"][beta.ind2]

32

33 #Obtain posterior binary indicator

34 gamma.ind0<-grep("gamma",names(result[,"mean"]))

35 gamma.ind<-gamma.ind0[gamma.ind0%in%beta.ind==FALSE]

36 gamma.value<-result[,"mean"][gamma.ind]

37 hist(gamma.value,breaks=100, xlab=expression(paste(gamma, " value")),

main=expression(paste("Histogram of ", gamma, " value")))

38

39 #Obtain posterior intercepts

40 alpha.ind<-grep("tau1",names(result[,"mean"]))

41 diff.ind<-grep("Diff",names(result[,"mean"]))
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42 alpha.value<-c(result[,"50%"][alpha.ind],result[,"50%"][alpha.ind]+

result[,"50%"][diff.ind])

43

44

45 genename<-colnames(hccCancerPanel[,-1])

46 threshold<-mean(result[,"mean"][gamma.ind])+3*sd(result[,"mean"][

gamma.ind])

47 sig.ind<-which(result[,"mean"][gamma.ind]>=threshold)

48

49

50 slope.coef<-beta.value[sig.ind]

51 names(slope.coef)<-genename[sig.ind]

52

53 freq.sig<-c("CDKN2B_seq_50_S294_F","DDIT3_P1313_R","ERN1_P809_R","GML

_E144_F","HDAC9_P137_R","HLA.DPA1_P205_R","HOXB2_P488_R","IL16_

P226_F",

54 "IL16_P93_R","IL8_P83_F","MPO_E302_R","MPO_P883_R","PADI4_P1158_R","

SOX17_P287_R","TJP2_P518_F")

55 table(genename[sig.ind]%in%freq.sig)

56

57 #Prediction for misclassification error

---------------------------------------
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58 #refit a non-penalized cumulative logit model with only selected

features

59 x.select<-scale(as.matrix(hccCancerPanel[,-1]),center=TRUE,scale=TRUE

)[,sig.ind]

60

61 library(rjags)

62 library(R2jags)

63 #with non-informative priors

64 k<-length(unique(hccCancerPanel$Tissue))

65 pi.0 <- table(hccCancerPanel$Tissue)/length(hccCancerPanel$Tissue)

66 alpha.0 <- log(cumsum(pi.0)/(1 - cumsum(pi.0)))[1:(k - 1)]

67 pred.inits1<-list(tau=alpha.0,beta=c(rep(0,dim(x.select)[2])))

68 pred.inits2<-list(tau=c(-1,1),beta=c(rnorm(dim(x.select)[2],0,0.001))

)

69 pred.inits3<-list(tau=c(-2,2),beta=c(rnorm(dim(x.select)[2],0,0.01)))

70 pred.inits<-list(pred.inits1,pred.inits2,pred.inits3)

71 pred.params<-c("tau","beta","Y.pred")

72 pred.data<-list(Y=hccCancerPanel$Tissue,X=x.select,N=length(

hccCancerPanel$Tissue),nb=dim(x.select)[2],k=k)

73 pred.jags <- jags(data=pred.data, inits=pred.inits, pred.params,

74 n.iter=2000, model.file="Reg_pred.txt",n.chains=3)

75 pred.upd <- autojags(pred.jags)$BUGSoutput$summary

76

171



77 y.ind<-grep("Y.pred",names(pred.upd[,"50%"]))

78 y.pred<-pred.upd[y.ind,"50%"]

79 out<-table(hccCancerPanel$Tissue,y.pred)

80 1-sum(diag(out))/sum(out)

81

82 #with informative priors

83 rm(list=ls()[ls()=="out"])

84 info.inits1<-list(tau1=alpha.0[1],beta=c(rep(0,dim(x.select)[2])),

Diff=alpha.0[2]-alpha.0[1])

85 info.inits2<-list(tau1=-1,beta=c(rnorm(dim(x.select)[2],0,0.01)),Diff

=2)

86 info.inits3<-list(tau1=-2,beta=c(rnorm(dim(x.select)[2],0,0.001)),

Diff=4)

87 info.inits<-list(info.inits1,info.inits2,info.inits3)

88 info.data<-list(Y=hccCancerPanel$Tissue,X=x.select,N=length(

hccCancerPanel$Tissue),nb=dim(x.select)[2],k=k,a=alpha.0[1])

89 info.params<-c("tau1","Diff","beta","Y.pred")

90 info.jags <- jags(data=info.data, inits=info.inits, info.params,

91 n.iter=2000, model.file="Reg_pred_info.txt",n.chains=3)

92 info.upd <- autojags(info.jags)

93 y.ind<-grep("Y.pred",names(info.upd$BUGSoutput$summary[,"50%"]))

94 y.pred<-info.upd$BUGSoutput$summary[y.ind,"50%"]

95 out<-table(hccCancerPanel$Tissue,y.pred)
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96 1-sum(diag(out))/sum(out)

97

98

99 #refit a penalized cumulative logit model with only selected features

-------------------------------

100 x.select<-scale(as.matrix(hccCancerPanel[,-1]),center=TRUE,scale=TRUE

)[,sig.ind]

101

102 library(rjags)

103 library(R2jags)

104 #non-informative priors

105 k<-length(unique(hccCancerPanel$Tissue))

106 pi.0 <- table(hccCancerPanel$Tissue)/length(hccCancerPanel$Tissue)

107 alpha.0 <- log(cumsum(pi.0)/(1 - cumsum(pi.0)))[1:(k - 1)]

108 pred.inits1<-list(tau=alpha.0,beta=c(rep(0,dim(x.select)[2])))

109 pred.inits2<-list(tau=c(-1,1),beta=c(rnorm(dim(x.select)[2],0,0.001))

)

110 pred.inits3<-list(tau=c(-2,2),beta=c(rnorm(dim(x.select)[2],0,0.01)))

111 pred.inits<-list(pred.inits1,pred.inits2,pred.inits3)

112 pred.params<-c("tau","beta","Y.pred")

113 pred.data<-list(Y=hccCancerPanel$Tissue,X=x.select,N=length(

hccCancerPanel$Tissue),nb=dim(x.select)[2],k=k)

114 pred.jags <- jags(data=pred.data, inits=pred.inits, pred.params,
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115 n.iter=2000, model.file="DE_pred.txt",n.chains=3)

116 pred.upd <- autojags(pred.jags)$BUGSoutput$summary

117

118 y.ind<-grep("Y.pred",names(pred.upd[,"50%"]))

119 y.pred<-pred.upd[y.ind,"50%"]

120 out<-table(hccCancerPanel$Tissue,y.pred)

121 1-sum(diag(out))/sum(out)

122

123 #informative priors

124 rm(list=ls()[ls()=="out"])

125 info.inits1<-list(tau1=alpha.0[1],beta=c(rep(0,dim(x.select)[2])),

Diff=alpha.0[2]-alpha.0[1])

126 info.inits2<-list(tau1=-1,beta=c(rnorm(dim(x.select)[2],0,0.01)),Diff

=2)

127 info.inits3<-list(tau1=-2,beta=c(rnorm(dim(x.select)[2],0,0.001)),

Diff=4)

128 info.inits<-list(info.inits1,info.inits2,info.inits3)

129 info.data<-list(Y=hccCancerPanel$Tissue,X=x.select,N=length(

hccCancerPanel$Tissue),nb=dim(x.select)[2],k=k,a=alpha.0[1])

130 info.params<-c("tau1","Diff","beta","Y.pred")

131 info.jags <- jags(data=info.data, inits=info.inits, info.params,

132 n.iter=2000, model.file="DE_pred_info.txt",n.chains=3)

133 info.upd <- autojags(info.jags)
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134 y.ind<-grep("Y.pred",names(info.upd$BUGSoutput$summary[,"50%"]))

135 y.pred<-info.upd$BUGSoutput$summary[y.ind,"50%"]

136 out<-table(hccCancerPanel$Tissue,y.pred)

137 1-sum(diag(out))/sum(out)

138

139

140 #Cross-validation

---------------------------------------------------------

141 #noninf0

142 pred.noninfo<- function(x, y, nit,penal){

143 k<-length(unique(y[!is.na(y)]))

144 p<-dim(x)[2]

145 pi.0 <- table(y[!is.na(y)])/length(y[!is.na(y)])

146 alpha.0 <- log(cumsum(pi.0)/(1 - cumsum(pi.0)))[1:(k - 1)]

147 inits1<-list(tau=alpha.0,beta=c(rep(0,p)))

148 inits2<-list(tau=c(-1,1),beta=c(rnorm(p,0,0.001)))

149 inits3<-list(tau=c(-2,2),beta=c(rnorm(p,0,0.01)))

150 inits<-list(inits1,inits2,inits3)

151 params<-c("tau","beta","Y.pred","Y")

152 pred.data<-list(Y=y,X=x,N=length(y),nb=p,k=k)

153 pred.jags <- jags(data=pred.data, inits=inits, params,

154 n.iter=nit, model.file=penal,n.chains=3)

155 pred.upd <- autojags(pred.jags)$BUGSoutput$summary
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156 return(pred.upd)

157 }

158

159 y.cv<-numeric()

160 for (i in 1:56){

161 x<-x.select

162 y<-hccCancerPanel$Tissue

163 y[i]<-NA

164 pred.upd<-pred.noninfo(x=x.select,y=y,nit=1000,penal="DE_pred.txt") #

change to Reg_red to let beta ~ N

165 y.cv[i]<-pred.upd[i,"50%"]

166 }

167 out<-table(hccCancerPanel$Tissue,y.cv)

168 1-sum(diag(out))/sum(out)

169 rm(list=ls()[ls()=="out"])

170 rm(list=ls()[ls()=="y.cv"])

171 #Cross-validation

---------------------------------------------------------

172 #inf0

173 pred.info<- function(x, y, nit,penal){

174 k<-length(unique(y[!is.na(y)]))

175 p<-dim(x)[2]

176 pi.0 <- table(y[!is.na(y)])/length(y[!is.na(y)])
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177 alpha.0 <- log(cumsum(pi.0)/(1 - cumsum(pi.0)))[1:(k - 1)]

178 inits1<-list(tau1=alpha.0[1],beta=c(rep(0,p)),Diff=alpha.0[2]-alpha

.0[1])

179 inits2<-list(tau1=-1,beta=c(rnorm(p,0,0.01)),Diff=2)

180 inits3<-list(tau1=-2,beta=c(rnorm(p,0,0.001)),Diff=4)

181 inits<-list(inits1,inits2,inits3)

182 info.data<-list(Y=y,X=x,N=length(y),nb=p,k=k,a=alpha.0[1])

183 params<-c("tau1","Diff","beta","Y.pred","Y")

184 info.jags <- jags(data=info.data, inits=inits, params,

185 n.iter=nit, model.file=penal,n.chains=3)

186 info.upd <- autojags(info.jags)$BUGSoutput$summary

187 return(info.upd)

188 }

189

190 y.cv<-numeric()

191 for (i in 1:56){

192 x<-x.select

193 y<-hccCancerPanel$Tissue

194 y[i]<-NA

195 pred.upd<-pred.info(x=x.select,y=y,nit=1000,penal="DE_pred_info.txt")

#change to Reg_pred_info to let beta ~ N

196 y.cv[i]<-pred.upd[i+1,"50%"]

197 }

177



198 out<-table(hccCancerPanel$Tissue,y.cv)

199 1-sum(diag(out))/sum(out)

B.3 Bayesian model files

Penalized Bayesian cumulative logit model with non-informative priors,

corresponding to equation (3.2) (Non info model.txt)

1 model{

2 for(i in 1:N){

3 mu[i] <- inprod(X[i,],bgamma[])

4 logit(Q[i,1]) <- tau[1]+mu[i]

5 p[i,1] <- Q[i,1]

6 for(j in 2:(k-1)){

7 logit(Q[i,j]) <- tau[j]+mu[i]

8 p[i,j] <- Q[i,j] - Q[i,j-1]

9 }

10 p[i,k] <- 1 - Q[i,(k-1)]

11 Y[i] ~ dcat(p[i,1:k])

12 }

13 tt <- lambda * v

14 for (b in 1:nb){

15 beta[b] ~ ddexp(0,tt)}

16 lambda ~ dgamma(1,1)
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17 v ~ dgamma (0.0001,0.0001)

18 for (j in 1:nb){

19 bgamma[j] <- beta[j] * gamma[j]

20 gamma[j] ~ dbern(0.5)

21 }

22 tau[1] ~ dnorm(0,0.001)T(-6.9,6.9)

23 tau[2] ~ dnorm(0,0.001)T(tau[1],6.9)

24 }

Non info model2.txt

1 model{

2

3 for(i in 1:N){

4 mu[i] <- inprod(X[i,],bgamma[])

5 logit(Q[i,1]) <- tau[1]+mu[i]

6 p[i,1] <- Q[i,1]

7 for(j in 2:(k-1)){

8 logit(Q[i,j]) <- tau[j]+mu[i]

9 p[i,j] <- Q[i,j] - Q[i,j-1]

10 }

11

12 p[i,k] <- 1 - Q[i,(k-1)]

13
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14 Y[i] ~ dcat(p[i,1:k])

15 }

16

17

18 tt <- lambda * v

19 for (b in 1:nb){

20 beta[b] ~ ddexp(0,tt)}

21

22 lambda ~ dgamma(0.025,0.05)

23 v ~ dgamma (0.0001,0.0001)

24

25 for (j in 1:nb){

26

27 bgamma[j] <- beta[j] * gamma[j]

28 gamma[j] ~ dbern(0.5)

29 }

30

31 tau[1] ~ dnorm(0,0.001)T(-6.9,6.9)

32 tau[2] ~ dnorm(0,0.001)T(tau[1],6.9)

33

34

35 }
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Penalized Bayesian cumulative logit model with informative priors, cor-

responding to equation (3.3) (info model.txt)

1 model{

2

3 for(i in 1:N){

4 mu[i] <- inprod(X[i,],bgamma[])

5 logit(Q[i,1]) <- tau1+mu[i]

6 p[i,1] <- Q[i,1]

7 for(j in 2:(k-1)){

8 logit(Q[i,j]) <- tau2+mu[i]

9 p[i,j] <- Q[i,j] - Q[i,j-1]

10 }

11

12 p[i,k] <- 1 - Q[i,(k-1)]

13

14 Y[i] ~ dcat(p[i,1:k])

15 }

16

17 tt <- lambda * v

18 for (b in 1:nb){

19 beta[b] ~ ddexp(0,tt)}

20

21 lambda ~ dgamma(1,1)
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22 v ~ dgamma (0.0001,0.0001)

23

24 for (j in 1:nb){

25

26 bgamma[j] <- beta[j] * gamma[j]

27 gamma[j] ~ dbern(0.5)

28

29 }

30

31 tau1 ~ dnorm(a,0.001)T(-6.9,6.9)

32 Diff ~ dgamma(1.4,1)

33 tau2 <- tau1 + Diff

34

35

36 }

Penalized Bayesian cumulative logit model with non-informative priors(DE pred.txt)

1 model{

2

3 for(i in 1:N){

4

5 mu[i] <- inprod(X[i,],beta[])

6
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7 logit(Q[i,1]) <- tau[1]+mu[i]

8 p[i,1] <- Q[i,1]

9 for(j in 2:(k-1)){

10 logit(Q[i,j]) <- tau[j]+mu[i]

11 p[i,j] <- Q[i,j] - Q[i,j-1]

12 }

13

14 p[i,k] <- 1 - Q[i,(k-1)]

15

16 Y[i] ~ dcat(p[i,1:k])

17 Y.pred[i] ~ dcat(p[i,1:k])

18 }

19

20 tt <- lambda * v

21 for (b in 1:nb){

22 beta[b] ~ ddexp(0,tt)}

23

24 lambda ~ dgamma(1,1)

25 v ~ dgamma (0.0001,0.0001)

26

27 tau[1] ~ dnorm(0,0.001)T(-6.9,6.9)

28 tau[2] ~ dnorm(0,0.001)T(tau[1],6.9)

29
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30

31 }

Penalized Bayesian cumulative logit model with informative priors (DE pred info.txt)

1 model{

2

3 for(i in 1:N){

4

5 mu[i] <- inprod(X[i,],beta[])

6

7

8 logit(Q[i,1]) <- tau1+mu[i]

9 p[i,1] <- Q[i,1]

10 for(j in 2:(k-1)){

11 logit(Q[i,j]) <- tau2+mu[i]

12 p[i,j] <- Q[i,j] - Q[i,j-1]

13 }

14

15 p[i,k] <- 1 - Q[i,(k-1)]

16

17 Y[i] ~ dcat(p[i,1:k])

18 Y.pred[i] ~ dcat(p[i,1:k])

19 }
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20

21

22 tt <- lambda * v

23 for (b in 1:nb){

24 beta[b] ~ ddexp(0,tt)}

25

26 lambda ~ dgamma(1,1)

27 v ~ dgamma (0.0001,0.0001)

28

29

30 tau1 ~ dnorm(a,0.001)T(-6.9,6.9)

31 Diff ~ dgamma(1.2,1)

32 tau2 <- tau1 + Diff

33

34

35 }

Non-penalized Bayesian cumulative logit model with non-informative pri-

ors(Reg pred.txt)

1 model{

2 for(i in 1:N){

3 mu[i] <- inprod(X[i,],beta[])

4 logit(Q[i,1]) <- tau[1]+mu[i]
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5 p[i,1] <- Q[i,1]

6 for(j in 2:(k-1)){

7 logit(Q[i,j]) <- tau[j]+mu[i]

8 p[i,j] <- Q[i,j] - Q[i,j-1]

9 }

10

11 p[i,k] <- 1 - Q[i,(k-1)]

12

13 Y[i] ~ dcat(p[i,1:k])

14 Y.pred[i] ~ dcat(p[i,1:k])

15 }

16

17 for (b in 1:nb){

18 beta[b] ~ dnorm(0,0.001)}

19

20 tau[1] ~ dnorm(0,0.001)T(-6.9,6.9)

21 tau[2] ~ dnorm(0,0.001)T(tau[1],6.9)

22

23 }

Non-penalized Bayesian cumulative logit model with informative priors(Reg pred info.txt)

1 model{

2 for(i in 1:N){
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3 mu[i] <- inprod(X[i,],beta[])

4 logit(Q[i,1]) <- tau1+mu[i]

5 p[i,1] <- Q[i,1]

6 for(j in 2:(k-1)){

7 logit(Q[i,j]) <- tau2+mu[i]

8 p[i,j] <- Q[i,j] - Q[i,j-1]

9 }

10

11 p[i,k] <- 1 - Q[i,(k-1)]

12

13 Y[i] ~ dcat(p[i,1:k])

14 Y.pred[i] ~ dcat(p[i,1:k])

15 }

16

17

18 for (b in 1:nb){

19 beta[b] ~ dnorm(0,0.001)}

20

21 tau1 ~ dnorm(a,0.001)T(-6.9,6.9)

22 Diff ~ dgamma(1.2,1)

23 tau2 <- tau1 + Diff

24

25 }
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Appendix C

Chapter 3 appendix

C.1 Filtering code

1 #############----------------

2 #Four univariate feature selection methods

3 #############----------------

4 library("survival")

5 library(bootstrap)

6 library(VGAM)

7 AML<-read.csv("AMLdata.csv")

8 attach(AML)

9 censor<-ifelse(vital.status=="A",1,0)

10 AML.feature<-AML[,4:252]

11 delta<-1-censor
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12

13

14 #Cox PH-------------------------------------------------

15 AML.feature<-AML[,4:252]

16 p1a.pvalue<-numeric()

17 for (i in 1:dim(AML.feature)[2]){

18 fit<-coxph(Surv(Overall_Survival,delta)~AML.feature[,i])

19 #fit<-coxph(Surv(Overall_Survival)~AML.feature[,i])

20 p1a.pvalue[i]<-summary(fit)$waldtest["pvalue"]

21 }

22 sig.a<-colnames(AML.feature)[which(p1a.pvalue<=0.1)]

23

24

25

26

27 #Spearman rank test--------------------------------------

28 p1b.pvalue<-numeric()

29 for (i in 1:dim(AML.feature)[2]){

30 p1b.pvalue[i]<-cor.test(Overall_Survival,AML.feature[,i],method="

spearman")$p.value

31 }

32 sig.b<-colnames(AML.feature)[which(p1b.pvalue<=0.1)]

33
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34

35 #IC-------------------------------------------------------

36 AML.feature$AHD<-as.numeric(AML.feature$AHD)

37 var.class<-lapply(AML.feature,class)

38 cat.feature<-AML.feature[,var.class=="integer"]

39 numeric.feature<-AML.feature[,var.class=="numeric"]

40 kmean.feature<-data.frame(cat.feature,apply(numeric.feature,2,

function(x) kmeans(x,3)$cluster))

41

42 #function that caculates important score

43 Ic.fun<-function(var,surv){

44 Yk_hat<-aggregate(surv, by=list(var),FUN=mean)$x

45 n_k<-aggregate(surv, by=list(var),FUN=length)$x

46 Ic<-sum((n_k^2)*((Yk_hat-mean(surv))^2))/TSS

47 return(Ic)

48 }

49 TSS<-sum((Overall_Survival-mean(Overall_Survival))^2)

50

51 Ic.obs<-numeric()

52 for (i in 1:dim(kmean.feature)[2]){

53 Ic.obs[i]<-Ic.fun(kmean.feature[,i],surv=Overall_Survival)

54 }

55
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56 #bootstrap

57 subject<-1:dim(kmean.feature)[1]

58 Ic.matrix<-matrix(nr=dim(kmean.feature)[2],nc=1000)

59 for (i in 1:dim(kmean.feature)[2]){

60 var<-data.frame(Overall_Survival,kmean.feature[,i])

61 var2<-var[order(var[,2]),]

62 set.seed(1234)

63 for (b in 1:1000) {

64 bootsample<-sample(subject, replace=TRUE)

65 Surb<-var2[,1][bootsample]

66 #slope[b]<-lm(Surb ~ var2[,2])$coef[2] #mean=0 :)

67 #test.p[b]<-anova(lm(Surb ~ var2[,2]))[1,5] #uniform dist :)

68 Ic.matrix[i,b]<-Ic.fun(var2[,2],surv=Surb)

69 }

70 }

71

72

73 p1c.pvalue<-numeric()

74 for (i in 1:dim(kmean.feature)[2]){

75 Ic.ind<-ifelse(Ic.matrix[i,] > Ic.obs[i], 1, 0)

76 p1c.pvalue[i]<-sum(Ic.ind)/length(Ic.ind)

77 }

78 sig.c<-colnames(kmean.feature)[which(p1c.pvalue<=0.1)]
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79

80 hist(Ic.matrix[,2],breaks=100,main="Prior AML")

81 abline(v=Ic.obs[2],col="red")

82 kmean.feature[,1:5]

83

84 #Id---------------------------------------------------------------

85

86 #function that calculate Id

87 Id_fun<-function(surv,var){

88 y<-ifelse(surv<=52,1,ifelse(surv<=104,2,3))

89 k<-length(unique(var))

90 Fmatrix<-matrix(nr=k,nc=3)

91 sumG<-numeric()

92 for (i in 1:k){

93 Fmatrix[i,]<-cumsum(table(factor(y[var==i],levels = c(1:3))))/sum(

table(y[var==i]))

94 sumG[i]<-sum(Fmatrix[i,]*(1-Fmatrix[i,]))

95 }

96 sum(sumG)

97 }

98

99 #change binary variable from 0,1 to 1,2 to enable the function

100 kmean.feature2<-kmean.feature
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101 kmean.feature2[,1:6][kmean.feature2[,1:6]==1]<-2

102 kmean.feature2[,1:6][kmean.feature2[,1:6]==0]<-1

103

104 #observed Id for each x

105 Id.obs<-numeric()

106 for (i in 1:dim(kmean.feature2)[2]){

107 Id.obs[i]<-Id_fun(var=kmean.feature2[,i],surv=Overall_Survival)

108 }

109

110 #bootstrap

111 subject<-1:dim(kmean.feature2)[1]

112 Id.matrix<-matrix(nr=dim(kmean.feature2)[2],nc=1000)

113 for (i in 1:dim(kmean.feature2)[2]){

114 var<-data.frame(Overall_Survival,kmean.feature2[,i])

115 var2<-var[order(var[,2]),]

116 set.seed(1234)

117 for (b in 1:1000) {

118 bootsample<-sample(subject, replace=TRUE)

119 Surb<-var2[,1][bootsample]

120 Id.matrix[i,b]<-Id_fun(surv=Surb,var=var2[,2])

121 }

122 }

123
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124 p1d.pvalue<-numeric()

125 for (i in 1:dim(kmean.feature)[2]){

126 Id.ind<-ifelse(Id.matrix[i,] < Id.obs[i], 1 , 0)

127 p1d.pvalue[i]<-sum(Id.ind)/length(Id.ind)

128 }

129 sig.d<-colnames(kmean.feature2)[which(p1d.pvalue<=0.1)]

130

131 table(sig.c%in%sig.d)

132

133

134 #############---------------------------------------------

135 Multivariable predictive model using only significant features after

filtering

136 #############---------------------------------------------

137 y<-ifelse(Overall_Survival<=52,1,ifelse(Overall_Survival<=104,2,3))

138 method1.data<-data.frame(AML.feature[,which(p1a.pvalue<=0.1)])

139 method2.data<-data.frame(AML.feature[,which(p1b.pvalue<=0.1)])

140 method3.data<-data.frame(AML.feature[,colnames(AML.feature)%in%sig.c

==TRUE])

141 method4.data<-data.frame(AML.feature[,colnames(AML.feature)%in%sig.d

==TRUE])

142

143 #FCR------------------------------------------------------
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144 #forward continuation ratio model is used for prediction

145 fit.vglm1<-vglm(y~.,data=method1.data, family=sratio(parallel=T,

reverse=F),link=cloglog)

146 vglm.pi<-predict(fit.vglm1,type="response")

147 apply(vglm.pi,2,range)

148 vglm.class<-apply(vglm.pi,1,which.max)

149

150 #resubsitution error

151 out1<-table(factor(y,level=c(1:3)), factor(vglm.class,level=c(1:3)))

152 (sum(out1)-sum(diag(out1)))/sum(out1)

153

154 #leave one cross validation

155 #the function below taking predictors x data.frame, and will return

misclassification rate (CV_error)

156 LOOC.vglm<-function(x){

157 cv.fit<-function(x,y){vglm(y~.,data=data.frame(x), family=sratio(

parallel=T,reverse=F),link=cloglog)}

158 cv.predict<-function(fit,x){apply(predict(fit,newdata=x,type="

response"),1,which.max)}

159 u <- vector("list", length(y))

160 cv.result <- rep(NA,length(y) )

161 for (j in 1:length(y)) {

162 u <- cv.fit(x[-j, ], y[-j])
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163 cv.result[j] <- cv.predict(u, x[j,])

164 }

165 out.cv<-table(factor(cv.result,level=c(1:3)),factor(y,level=c(1:3)))

166 (sum(out.cv)-sum(diag(out.cv)))/sum(out.cv)

167 }

168 LOOC.vglm(method1.data)

169

170 #

--------------------------------------------------------------------------------

171 fit.vglm2<-vglm(y~.,data=method2.data,family=sratio(parallel=T,

reverse=F),link=cloglog)

172 vglm.pi<-predict(fit.vglm2,type="response")

173 vglm.class<-apply(vglm.pi,1,which.max)

174

175 #resubsitution error

176 out2<-table(factor(y,level=c(1:3)), factor(vglm.class,level=c(1:3)))

177 (sum(out2)-sum(diag(out2)))/sum(out2)

178

179 #leave one cross validation

180 LOOC.vglm(method2.data)

181
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182 #

--------------------------------------------------------------------------------

183 fit.vglm3<-vglm(y~.,data=method3.data,family=sratio(parallel=T,

reverse=F),link=cloglog)

184 vglm.pi<-predict(fit.vglm3,type="response")

185 vglm.class<-apply(vglm.pi,1,which.max)

186

187 #resubsitution error

188 out3<-table(factor(y,level=c(1:3)), factor(vglm.class,level=c(1:3)))

189 (sum(out3)-sum(diag(out3)))/sum(out3)

190 #CV

191 LOOC.vglm(method3.data)

192

193 #

--------------------------------------------------------------------------------

194 fit.vglm4<-vglm(y~.,data=method4.data,family=sratio(parallel=T,

reverse=F),link=cloglog)

195 vglm.pi<-predict(fit.vglm4,type="response")

196 vglm.class<-apply(vglm.pi,1,which.max)

197

198 #resubsitution error
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199 out4<-table(factor(y,level=c(1:3)), factor(vglm.class,level=c(1:3)))

200 (sum(out4)-sum(diag(out4)))/sum(out4)

201 #CV

202 LOOC.vglm(method4.data)

203

204

205 #Cox PH multivariable----------------------------------------

206 #Misclassification rate

207 #

-----------------------------------------------------------------------------------

208 #Fit cox model

209 fit.cox1<-coxph(Surv(Overall_Survival,delta)~.,data=method1.data,ties

="breslow")

210

211 #survival.rate is a matrix contains the probability of people die

within three intervals (<55, 55-144,>144)

212 # Col1=dealth rate for <=55, Col2=55-144, ...

213 # Row1=patient 1,...

214

215 survival.rate<-matrix(nc=3,nr=dim(method1.data)[1])

216 for (i in 1:dim(method1.data)[1]){
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217 summary.cox1<-summary(survfit(fit.cox1,newdata=method1.data[i,])) #

survfit function will create predicted survival curve for ith

observation

218 survival.rate[i,1]<-ifelse(length(summary.cox1$surv[summary.cox1$time

<=52])>0,diff(range(summary.cox1$surv[summary.cox1$time<=52])),0)

219 survival.rate[i,2]<-ifelse(length(summary.cox1$surv[summary.cox1$time

<=104 & summary.cox1$time >52])>0,diff(range(summary.cox1$surv[

summary.cox1$time<=104 & summary.cox1$time >52])),0)

220 survival.rate[i,3]<-1-survival.rate[i,1]-survival.rate[i,2]

221 }

222 cox.y1<-apply(survival.rate,1,which.max)

223 cox1.table<-table(factor(cox.y1,level=c(1,2,3)),factor(y,level=c

(1,2,3))) #nice

224 cox1.table

225 (sum(cox1.table)-sum(diag(cox1.table)))/sum(cox1.table)

226

227

228 fit.cox2<-coxph(Surv(Overall_Survival,delta)~.,data=method2.data,ties

="breslow")

229 survival.rate2<-matrix(nc=3,nr=dim(method1.data)[1])

230 for (i in 1:dim(method1.data)[1]){

231 summary.cox2<-summary(survfit(fit.cox2,newdata=method2.data[i,]))
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232 survival.rate2[i,1]<-ifelse(length(summary.cox2$surv[summary.cox2$

time<=52])>0,diff(range(summary.cox2$surv[summary.cox2$time<=52]))

,0)

233 survival.rate2[i,2]<-ifelse(length(summary.cox2$surv[summary.cox2$

time<=104 & summary.cox2$time >52])>0,diff(range(summary.cox2$surv

[summary.cox2$time<=104 & summary.cox2$time >52])),0)

234 survival.rate2[i,3]<-1-survival.rate2[i,1]-survival.rate2[i,2]

235 }

236 cox.y2<-apply(survival.rate2,1,which.max)

237 cox2.table<-table(factor(cox.y2,level=c(1,2,3)),factor(y,level=c

(1,2,3)))

238 cox2.table

239 (sum(cox2.table)-sum(diag(cox2.table)))/sum(cox2.table)

240

241

242 fit.cox3<-coxph(Surv(Overall_Survival,delta)~.,data=method3.data,ties

="breslow")

243 survival.rate3<-matrix(nc=3,nr=dim(method1.data)[1])

244 for (i in 1:dim(method1.data)[1]){

245 summary.cox3<-summary(survfit(fit.cox3,newdata=method3.data[i,]))

246 survival.rate3[i,1]<-ifelse(length(summary.cox3$surv[summary.cox3$

time<=52])>0,diff(range(summary.cox3$surv[summary.cox3$time<=52]))

,0)
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247 survival.rate3[i,2]<-ifelse(length(summary.cox3$surv[summary.cox3$

time<=104 & summary.cox3$time >52])>0,diff(range(summary.cox3$surv

[summary.cox3$time<=104 & summary.cox3$time >52])),0)

248 survival.rate3[i,3]<-1-survival.rate3[i,1]-survival.rate3[i,2]

249 }

250 cox.y3<-apply(survival.rate3,1,which.max)

251 cox3.table<-table(factor(cox.y3,level=c(1,2,3)),factor(y,level=c

(1,2,3)))

252 cox3.table

253 (sum(cox3.table)-sum(diag(cox3.table)))/sum(cox3.table)

254

255

256 fit.cox4<-coxph(Surv(Overall_Survival,delta)~.,data=method4.data,ties

="breslow")

257 survival.rate4<-matrix(nc=3,nr=dim(method1.data)[1])

258 for (i in 1:dim(method1.data)[1]){

259 summary.cox4<-summary(survfit(fit.cox4,newdata=method4.data[i,]))

260 survival.rate4[i,1]<-ifelse(length(summary.cox4$surv[summary.cox4$

time<=52])>0,diff(range(summary.cox4$surv[summary.cox4$time<=52]))

,0)

261 survival.rate4[i,2]<-ifelse(length(summary.cox4$surv[summary.cox4$

time<=104 & summary.cox4$time >52])>0,diff(range(summary.cox4$surv

[summary.cox4$time<=104 & summary.cox4$time >52])),0)
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262 survival.rate4[i,3]<-1-survival.rate4[i,1]-survival.rate4[i,2]

263 }

264 cox.y4<-apply(survival.rate4,1,which.max)

265 cox4.table<-table(factor(cox.y4,level=c(1,2,3)),factor(y,level=c

(1,2,3)))

266 cox4.table

267 (sum(cox4.table)-sum(diag(cox4.table)))/sum(cox4.table)

268

269 #cross validation

270 #

-------------------------------------------------------------------------------------------

271 #leave one cross validation

272 #the function below taking data need to be predicted, and will return

misclassification rate (CV_error)

273

274 LOOC.cox<-function(data){

275

276 #cox.pr function take x=coxph object, and y=new data and produce

predicted

277 cox.pr<-function(x,y){

278 summ.cox<-summary(survfit(x,newdata=y))

279 surv.vec<-numeric()
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280 surv.vec[1]<-ifelse(length(summ.cox$surv[summ.cox$time<=52])>0,diff(

range(summ.cox$surv[summ.cox$time<=52])),0)

281 surv.vec[2]<-ifelse(length(summ.cox$surv[summ.cox$time<=104 & summ.

cox$time >52])>0,diff(range(summ.cox$surv[summ.cox$time<=104 &

summ.cox$time >52])),0)

282 surv.vec[3]<-1-surv.vec[1]-surv.vec[2]

283 cox.y<-which.max(surv.vec)

284 cox.y

285 }

286

287 u<-numeric()

288 for (i in 1:dim(data)[1]){

289 fit.cox1<-coxph(Surv(Overall_Survival[-i],delta[-i])~.,data=data[-i

,])

290 u[i]<-cox.pr(fit.cox1,data[i,])

291 }

292

293 out.cv<-table(factor(u,level=c(1:3)),factor(y,level=c(1:3)))

294 (sum(out.cv)-sum(diag(out.cv)))/sum(out.cv)

295 }

296

297 LOOC.cox(method1.data)

298 LOOC.cox(method2.data)
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299 LOOC.cox(method3.data)

300 LOOC.cox(method4.data)

C.2 Coxpath and GMIFS-FCR code

1 ##########-------------------------------------------------

2 ##Coxpath

3 ##########--------------------------------------------

4 AML<-read.csv("AMLdata.csv")

5 attach(AML)

6 censor<-ifelse(vital.status=="A",1,0)

7 delta<-1-censor

8 AML.feature<-AML[,4:252]

9

10 ### RE-SUBSTITUTION ERROR

---------------------------------------------------------

11 #fit coxpath LASSO regression

12 library(glmpath)

13 fit.path1<-coxpath(list(x=as.matrix(AML.feature),time=Overall_

Survival,status=delta))

14 summary.coxpath1<-summary(fit.path1)

15 step1<-as.numeric(gsub("Step ","", rownames(summary.coxpath1)[which.

min(summary.coxpath1$AIC)] ) )

16 step1
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17 #obtain coefficient

18 #fit.path1$b.corrector will return the a matrix of coefficient

obtained in corrector step

19 #The coef obtained from $b.corrector is same as obtained from predict

.path

20 path.coef<-fit.path1$b.corrector[step1,]

21

22 #obtain cumulative hazards

23 #since predict.coxpath(type="coxph") did not converge, I hardcode

hazard function and predicted survival curve

24 #aalen will return Aalen’s estimates of the cumulative hazard

25

26 aalen <- function(x,time,delta,beta){

27 event <- delta == 1

28 new.x<-scale(x,center=TRUE,scale=FALSE)

29 path.coef<-beta

30 risk<-exp(new.x%*%path.coef)

31 dt <- unique(time[event])

32 ct <- unique(time[event==FALSE])

33 ct.dt<-data.frame()

34 for(i in 1:length(ct)){

35 ct.dt[i,1]<-ct[i]

36 diff<-ct[i]-dt
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37 ct.dt[i,2]<-(dt[diff>=0])[which.min(diff[diff>=0])]

38 }

39 colnames(ct.dt)<-c("cen.time","corres.time")

40 k <- length(dt)

41 lambda <- rep(0,k)

42 for(i in 1:k) {

43 lambda[i] <- sum(event[time==dt[i]])/sum(risk[time >= dt[i]])

44 }

45 result<-data.frame(time=dt, lambda=lambda)

46 result2<-result[order(result$time),]

47 new.result<-transform(result2,lambda.cum=cumsum(lambda))

48

49 #data.frame contained censored time and its lambda.cum

50 censor.haz<-merge(new.result,ct.dt,by.x="time",by.y="corres.time",all

.y=TRUE)

51 new.censor.haz<-transform(censor.haz,time=cen.time)

52 cum.haz<-rbind(new.result,new.censor.haz[,-4])

53 z0<-colMeans(x)

54 bz0<-sum(z0*path.coef)

55 cum.haz.data<-transform(cum.haz,lambda.cum.base=lambda.cum*exp(-bz0))

56 cum.haz.data[order(cum.haz$time),]

57 }

58
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59 x<-as.matrix(AML.feature)

60 cum.haz<-aalen(x,time=Overall_Survival,delta=delta,beta=path.coef)

61 exp.xb<-exp(as.matrix(AML.feature)%*%path.coef)

62 survival.rate.path<-matrix(nc=3,nr=dim(AML.feature)[1])

63 for(i in 1:length(exp.xb)){

64 pred.surv<-data.frame(surv=exp(-cum.haz$lambda.cum.base*exp.xb[i]),

time=cum.haz$time)

65 survival.rate.path[i,1]<-ifelse(length(pred.surv$surv[pred.surv$time

<=52])>0,diff(range(pred.surv$surv[pred.surv$time<=52])),0)

66 survival.rate.path[i,2]<-ifelse(length(pred.surv$surv[pred.surv$time

<=104 & pred.surv$time >52])>0,diff(range(pred.surv$surv[pred.surv

$time<=104 & pred.surv$time >52])),0)

67 survival.rate.path[i,3]<-1-survival.rate.path[i,1]-survival.rate.path

[i,2]

68 }

69

70 cox.path.y<-apply(survival.rate.path,1,which.max)

71 y<-ifelse(Overall_Survival<=52,1,ifelse(Overall_Survival<=104,2,3))

72 cox.path.table<-table(factor(cox.path.y,level=c(1,2,3)),factor(y,

level=c(1,2,3)))

73 (sum(cox.path.table)-sum(diag(cox.path.table)))/sum(cox.path.table)

74
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75 ### CV ERROR

------------------------------------------------------------

76 ## Parallel coding was used to speed up the CV process

77 ## Parallel version using doSNOW, foreach, and itertools packages

78 library(doSNOW)

79 library(itertools)

80 machines <- rep("localhost", each=4)

81 cl <- makeCluster(machines, type="SOCK", outfile="test.txt")

82 registerDoSNOW(cl)

83

84 system.time({

85 iter <- isplitIndices(nrow(AML.feature), chunks=nrow(AML.feature))

86 nfold.class <- foreach(i=iter,

87 .combine=c, .packages="glmpath") %dopar% {

88 fit <- coxpath(list(x=as.matrix(AML.

feature[-i,]),time=AML$Overall_Survival

[-i],status=delta[-i]))

89 summary.fit<-summary(fit)

90 model.select<-as.numeric(gsub("Step ","",rownames(summary.

fit)[which.min(summary.fit$AIC)]))

91

92

93 path.coef.cv<-fit$b.corrector[model.select,]
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94 cum.haz<-aalen(x=as.matrix(AML.feature[-i,]),time=AML$

Overall_Survival[-i],delta=delta[-i],path.coef.cv)

95 exp.xb<-exp(sum(AML.feature[i,]*path.coef.

cv))

96 pred.surv<-data.frame(surv=exp(-cum.haz$

lambda.cum*exp.xb),time=cum.haz$time)

97

98 survival.rate.path<-numeric()

99 survival.rate.path[1]<-ifelse(length(pred.surv$surv[pred.

surv$time<=52])>0,diff(range(pred.surv$surv[pred.surv$

time<=52])),0)

100 survival.rate.path[2]<-ifelse(length(pred.surv$surv[pred.

surv$time<=104 & pred.surv$time >52])>0,diff(range(pred.

surv$surv[pred.surv$time<=104 & pred.surv$time >52])),0)

101 survival.rate.path[3]<-1-survival.rate.path[1]-survival.rate

.path[2]

102 cox.path.y<-which.max(survival.rate.path)

103 return(cox.path.y)

104 }

105 })

106

107 stopCluster(cl)

108 y<-ifelse(Overall_Survival<=52,1,ifelse(Overall_Survival<=104,2,3))
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109 cox.path.table<-table(factor(nfold.class,level=c(1,2,3)),factor(y,

level=c(1,2,3)))

110 (sum(cox.path.table)-sum(diag(cox.path.table)))/sum(cox.path.table) #

CV Error

111

112

113

114 ##############---------------------------------------

115 ##ordinalgmifs

116 ##############---------------------------------------

117 #Kyle Ferber codes for censoring------------------

118 G<-function(z){

119 1-exp(-exp(z))

120 }

121 ### Forward Continuation Ratio GMIFS function ###

122 forwardcr.stepwise<-function(x,y,censor=NULL,tol=1e-5, epsilon=0.001,

scale=FALSE) {

123 Detail content is written by Kyle Ferber, not disclosed in this

thesis

124 }

125

126 ### Function to update alpha ###

127 ForwardCR.fn<-function(par, x, y, censor=NULL, beta) {
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128 Detail content is written by Kyle Ferber, not disclosed in this

thesis

129 }

130

131 ### Function to predict class ###

132 predict.forwardCR<-function(fit,newx,model.select=NA) {

133 Detail content is written by Kyle Ferber, not disclosed in this

thesis

134 }

135

136

137 ### Function to predict cv class ###

138 predict.forwardCR.cv<-function(fit,newx,model.select=NA) {

139 x<-fit$x

140 y<-fit$y

141 if (is.na(model.select)) model.select=dim(fit$beta)[1]

142 beta<-fit$beta[model.select,]

143 alpha<-fit$alpha[model.select,]

144 k<-length(unique(y))

145 newx<-as.matrix(newx)

146 if (identical(newx,x)) {

147 if (fit$scale) {

148 newx<-scale(newx,center=TRUE,scale=TRUE)
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149 }

150 } else if (fit$scale) {

151 newx<-rbind(x,newx)

152 newx<-scale(newx,center=TRUE,scale=TRUE)

153 newx<-matrix(newx[-(1:dim(x)[1]),],ncol=dim(x)[2])

154 }

155 levels<-sort(unique(y))

156 Xb<-newx%*%beta

157 pi <- matrix(0, nrow = dim(newx)[1], ncol = k)

158 pi[,1]<-G(alpha[1]+Xb)

159 pi[,2]<-G(alpha[2]+Xb)*(1-pi[,1])

160 if (k>3) {

161 for (i in 3:(k-1)) {

162 pi[,i]<-G(alpha[i]+Xb)*(1-matrix(apply(pi[,1:(i-1)],1,sum),nrow=

nrow(pi),byrow=T))

163 }

164 }

165 pi[,k]<-1-matrix(sum(pi[,1:(k-1)]),nrow=nrow(pi),byrow=T)

166 class<-levels[apply(pi,1,which.max)]

167 list(predicted=pi,class=class)

168 }

169
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170 #

----------------------------------------------------------------------------------------------------

171 y<-ifelse(Overall_Survival<=52,1,ifelse(Overall_Survival<=104,2,3))

172

173 fit.fcr.survival.over<-forwardcr.stepwise(x=AML.feature, censor=

censor, y=y, scale=TRUE, epsilon=0.01)

174 #fit.class.over<-predict.forwardCR(fit.fcr.survival.over,newx=AML.

feature)

175 fit.class.over<-predict.forwardCR(fit.fcr.survival.over,newx=AML.

feature,model.select=245)

176 censor.table.over<-table(factor(fit.class.over$class,level=c(1:3)),

factor(y,level=c(1:3)))

177 (sum(censor.table.over)-sum(diag(censor.table.over)))/sum(censor.

table.over)

178 AIC.model<-fit.fcr.survival.over$beta[fit.fcr.survival.over$model.

select,]

179 length(AIC.model[AIC.model!=0])

180 AIC.model[AIC.model!=0]

181

182 fit.class.cv<-numeric()

183 for (i in 1:dim(AML.feature)[1]){
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184 fit<-forwardcr.stepwise(x=AML.feature[-i,], censor=censor[-i], y=y[-i

], scale=TRUE, epsilon=0.01)

185 fit.class.cv[i]<-predict.forwardCR.cv(fit,newx=AML.feature[i,],model.

select=fit$model.select)$class

186 }

187

188 out.cv<-table(factor(fit.class.cv,level=c(1:3)),factor(y,level=c(1:3)

))

189 (sum(out.cv)-sum(diag(out.cv)))/sum(out.cv)
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