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Clustered data often feature nested structures and repeated measures. If coupled with binary 

outcomes and large samples (>10,000), this complexity can lead to non-convergence 

problems for the desired model especially if random effects are used to account for the 

clustering. One way to bypass the convergence problem is to split the dataset into small 
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enough sub-samples for which the desired model convergences, and then recombine results 

from those sub-samples through meta-analysis. We consider two ways to generate sub-

samples: the K independent samples approach where the data are split into k mutually-

exclusive sub-samples, and the cluster-based approach where naturally existing clusters 

serve as sub-samples. Estimates or test statistics from either of these sub-sampling 

approaches can then be recombined using a univariate or multivariate meta-analytic 

approach. We also provide an innovative approach for simulating clustered and dependent 

binary data by simulating parameter templates that yield the desired cluster behavior. This 

approach is used to conduct simulation studies comparing the performance of the K 

independent samples and cluster-based approaches to generating sub-samples, the results 

from which are combined either with univariate and multivariate meta-analytic techniques. 

These studies show that using natural clusters leaded to lower biased test statistics when 

the number of clusters and treatment effect were large, as compared to the K independent 

samples approach for both the univariate and multivariate meta-analytic approaches. And 

the independent samples approach was preferred when the number of clusters and 

treatment effect were small. We also apply these methods to data on cancer screening 

behaviors obtained from electronic health records of n=15,652 individuals and showed that 

these estimated results support the conclusions from the simulation studies.  

KEY WORDS: 

Non-Convergence; Clustered Design; Random Effects; Meta-Analysis 
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Chapter 1 Introduction 

 

 

 

 

1.1 Working Problem 

Data are often collected from a number of different naturally existing groups, which are 

called clusters. Observations within these clusters are often more similar than are 

observations from different clusters. Clustered data can also feature nested random 

effects and repeated measures. For example, repeated measures are naturally clustered 

within individuals. Data from a study by Krist et al [1] exhibits a hierarchical nested 

cluster structure, where observations are nested within patients who are nested within 

physicians, who in turn are nested within practices. These cluster effects cannot be 

ignored in statistical analysis, since treatment effect may very across clusters and 

assuming independence of subjects within clusters is not valid [2][3]. If we omit cluster 

effects, we are omitting potential source of variability and overstate the power of the 

test[4][5]. The relatedness of clustered data is often measured by the intracluster correlation 

coefficient (ICC) [6], comparing the variance within clusters with the variance between 

clusters [7]. 

 

Mixed models are often used for analyzing clustered data, where clusters are modeled as 

random effects.  If coupled with binary outcomes and large samples (>10,000) in addition 
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to repeated measures and nested clusters, this complexity can lead to non-convergence 

problems for the desired model. One possible explanation for the non-convergence issue 

is that the estimates for the three components of parameters (including fixed effects, 

random effects for clusters, and random effects for repeated measures) cannot be reached 

at the same time within the maximum number of iterations. To work around this 

computational challenge for the complicated and large data, we also tried to use 

HPMIXED [8] procedure and HPGLIMMIX [9] macro in SAS (version 9.4, Cary, NC, 

USA), and varied options for model estimation including the number of iterations, 

estimation method (ML, REML, QLS, etc.), and the convergence criterion. None of them 

could solve the non-convergence problem. At this point, some may be tempted to 

reconfigure the random cluster effects as fixed effects, a change which often allows the 

model to converge. However, this switch from random to fixed effects is not without 

consequences. When clusters are treated as fixed effects, only effects that vary within 

clusters can be estimated, while effects that vary among clusters can no longer be 

estimated [10]. Moreover, the model can become more complicated since these switched 

“fixed effects” are often categorical with multiple levels and could make the model 

difficult to estimate, interpret or test. Another approach is to fit a simpler model by 

omitting particular random effects. Naturally, this option could omit important 

information on the study design and lead to smaller standard errors, and biased estimates 

and effect sizes, all of which can lead to incorrect interpretation of associations between 

variables [4][5].  
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Rather than consider these less-than-desirable approaches, one could attempt to work 

around the non-convergence issue in order to fit the desired model. While still 

incorporating the desired hierarchical random structure, one way to bypass the 

convergence problem is to make the analyzing dataset small enough to ensure the 

convergence of the desired model. We could split the overall database into smaller 

components that are analyzable by the desired model, and then recombine results from 

those components through meta-analysis. It has been shown that results of meta-analyses 

of smaller trials are usually compatible with results from larger trials, though this 

compatibility can be compromised when treatment effect variability between different 

trials is not considered [11][12]. If we could appropriately split the overall dataset into 

smaller independent subsets, the variability of treatment effect among the overall 

database the smaller subsets would not be an issue due to subset independence of subsets 

and similarities between the subsets and the entire dataset. Therefore using meta-analytic 

approaches may produce reliable results in this situation. 

 

1.2 Motivating Example 

The motivating example for this research is from a study of an electronic medical record 

software program (My Preventive Care, or MPC) developed by Krist et al [1]. This 

program alerts patients when they are overdue for certain cancer screenings, such as 

prostate examinations in men and breast examinations in women. The MPC program was 

implemented at the practice level, and patients decided whether or not they wanted to 

register for and use the portal. Of interest was to determine whether MPC users were 

more likely to change their cancer screening behavior as compared to MPC non-users. 
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Using colon cancer screening as an example, a patient’s status with respect to whether or 

not they had received any form of colon cancer screening at the most recent visit 

preceding the implementation of MPC into their practice, and this status was again 

updated one month, three months, and six months following that implementation.  

 

A hierarchical linear mixed model was fit including the repeated-measure binary outcome 

(patient underwent colon cancer screening or they did not), fixed effects for time (four 

levels: baseline, one, three and six months), group (registered for MPC or no), and their 

interaction, as well as random effects for primary care physicians and practices, where 

the physicians are in turn nested with one of eight practices. It was this three-level nested 

design (patients within physicians within practices) that was desired, and was fit using the 

GLIMMIX procedure in SAS   to test hypotheses of whether there were differences in the 

change in colon cancer screening rates between MPC program users and non-users from 

baseline to each of one, three and six months. Fitting the data to all n=110,029 subjects, 

the desired model did not converge.  

In this case, we did not want to omit physician- and practice- level variability, as the 

changes in screening rates are likely to vary by practice. Nor did we want to include these 

as fixed effects, as there are too many levels, and the resulting model would lack 

parsimony. So our proposed idea to work around the non-convergence issue is to split the 

overall database into subsets that are analyzable by the desired model, and then 

recombine results from those subsets through meta-analytic approaches. 
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1.3 Approaches for Sub-Sample Generation 

We consider two ways of splitting the overall dataset into more manageable subsets. First 

we split data into K independent, mutually-exclusive sub-samples, what we call the K 

independent samples approach, where the desired model is fit on each of the new sub-

samples. The K independent, mutually-exclusive sub-samples are created by sampling 

without replacement for k-1 times. We sample out N/k subjects each time, where N is the 

total number of subjects in the overall database. The sampling process is balanced by 

group and cluster effects, so each sub-sample would have the same cluster structures and 

group allocation with the overall database. And the model fit to each sub-sample is the 

same desired model fit to the whole dataset. The sampling process can be easily 

implemented by statistical software. In this research, we use the SURVEYSELECT 

procedure [8] in SAS with the sampling method of simple random sampling and 

stratification of non-overlapping group and cluster effects.  

 

The second proposal is to use natural existing clusters as sub-samples, where 

simplifications of the desired models – ignoring the clustering measure – are fit to each of 

the separate clusters. For example, the data from the study by Krist et al. [1] have nested 

cluster structures, where patients are nested within physicians and physicians are nested 

within practices. We used practices as the natural existing clusters as sub-samples in this 

data example.  
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Both splitting approaches have advantages and disadvantages. The cluster-based 

approach may not capture all inter-cluster variation when clusters vary in sizes. In 

addition, some clusters may be so large that the desired model would still not converge. 

In these circumstances, the K independent samples approach may be preferred. However, 

the K independent samples may be considered as arbitrary created. We did not try to pick 

different K independent samples or consider using boot-strapping due to increased 

computational time, the estimation process already takes a considerable amount of time 

for one sample.  

 

1.4 Meta-Analytic Approaches 

Test statistics from either of these sub-sampling approaches can then be recombined 

using random-effect-based meta-analytic approaches [13]. Meta-analysis is a statistical 

approach to combine results from different studies that are conducted to answer similar 

research questions [14]. It was first introduced by the British statistician Karl Pearson 

[15][16], who combined results from several studies of typhoid inoculation.  In 1976, Gene 

Glass coined the term ‘meta-analysis’ to refer to integrate findings from individual 

studies [16][17]. Two common assumptions for meta-analysis are that the studies are 

independent and that the results and outcomes from studies are exchangeable [18][19]. 

Although we only have data from one study, the sub-samples created by either of the two 

approaches mentioned above should be viewed as independent and similar to the whole 

study. Thus they could be considered to have exchangeable outcomes and therefore 

satisfy the underlying assumptions of meta-analysis.  We considered two meta-analytic 

approaches: a univariate meta-analytic approach and a multivariate meta-analytic 
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approach. Univariate meta-analysis is taking one test statistic and one standard error from 

each sample and combining them into one single estimate and standard error, while the 

multivariate approach takes multiple test statistics and multiple standard errors from each 

sample and combining them into a vector of estimates and their corresponding covariance 

structure.  

 

The univariate meta-analytic approach we used in this research is a two-step random-

effect estimate [13] starting with the DerSimonian and Laird approach [20]. Given the test 

statistics, 𝑦1, … , 𝑦𝑘, (k is the number of sub-samples) and the sampling variances 

𝜎1
2, … , 𝜎𝑘

2, we need to calculate an estimate of the inter-study (or inter-cluster) variance 

𝜏2 and then estimate the overall effect μ and its standard error. Suppose 𝑠1
2, … , 𝑠𝑘

2 and 𝑡2 

are the estimates of 𝜎1
2, … , 𝜎𝑘

2 and 𝜏2, a weighted estimator of μ and its standard error 

(SE) can be expressed as: 

𝑚𝑤 =
∑ 𝑤𝑖𝑦𝑖𝑖

∑ 𝑤𝑖𝑖
 ,   SE(𝑚𝑤) =

1

(∑ 𝑤𝑖𝑖 )
1
2

 , where 𝑤𝑖 =
1

𝑡2+𝑠𝑖
2 .                   (1) 

The expression for the standard error in Equation (1) is an underestimate of the true 

standard error of 𝑚𝑤 [13].  The first-step DerSimonian and Laird estimate for  𝜏2 [20] is  

𝑡2(𝐷𝐿) = max {0,
[∑ 𝑤𝑖0(𝑦𝑖−𝑦𝑤(0))2

𝑖 ]−(𝑘−1)

[∑ 𝑤𝑖0−∑ 𝑤𝑖0
2 / ∑ 𝑤𝑖0𝑖𝑖𝑖 ]

},                                (2) 

where 𝑦𝑤(0)= ∑ 𝑤𝑖0𝑦𝑖/ ∑ 𝑤𝑖0𝑖𝑖 , and 𝑤𝑖0 = 1/𝑠𝑖
2. Substituting 𝑡2(𝐷𝐿) for 𝑡2 in Equation 

(1) yields the corresponding DerSimonian and Laird estimate, 𝑚𝑤(𝐷𝐿) and its standard 
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error SE(𝑚𝑤(𝐷𝐿)). Then substitute 𝑤𝑖0 and 𝑦𝑤(0) with 𝑤𝑖𝐷 = 1/(𝑡2(𝐷𝐿) + 𝑠𝑖
2) 

and 𝑚𝑤(𝐷𝐿) respectively, we will get the two-step estimate, 𝑡2(𝐷𝐿2), where 

𝑡2(𝐷𝐿2) = max {0,
[∑ 𝑤𝑖𝐷(𝑦𝑖−𝑚𝑤(𝐷𝐿))2

𝑖 ]−[∑ 𝑤𝑖𝐷𝑠𝑖
2−∑ 𝑤𝑖𝐷

2 𝑠𝑖
2/𝑖𝑖 ∑ 𝑤𝑖𝐷𝑖 ]

[∑ 𝑤𝑖𝐷−∑ 𝑤𝑖𝐷
2 / ∑ 𝑤𝑖𝐷𝑖𝑖𝑖 ]

}              (3) 

Substituting 𝑡2(𝐷𝐿2) for 𝑡2 in Equation (1) yields the corresponding two-step estimate 

by DerSimonian and Kacker [13] 𝑚𝑤(𝐷𝐿2) for μ and its approximate standard error, 

SE(𝑚𝑤(𝐷𝐿2)). 

 

Other than taking one test statistic and one standard error from each sub-sample, we also 

want to consider extracting more available information from each sub-sample. By 

combining multiple test statistics and multiple standard errors from each sample through 

multivariate meta-analytic approach, we may capture more inter-study variability and 

have more accurate results.  

 

The multivariate meta-analytic approach we used in this research is developed by 

Houwelingen et al. [21]. Instead of using one observed effect from each sub-sample, we 

use multiple observed effects from each sub-sample and combine them into a vector of 

overall effect. Given a vector of observed effects from each sub-sample, 𝒚𝟏, … , 𝒚𝒌, (k is 

the number of sub-samples) and the corresponding sampling variances 𝒔𝟏
𝟐, … , 𝒔𝒌

𝟐, we need 

to estimate the overall effect 𝛍 and the between sub-samples covariance parameters. The 

random effect model is: 

𝒚𝒊~𝑁(𝛍, Σ + 𝐶𝑖) 
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with 𝒚𝒊 the vector of observed effect from sub-sample i , 𝐶𝑖 the diagonal matrix with the 

vector of 𝒔𝒊
𝟐, Σ the between sub-samples covariance matrix of the observed effects. 

Maximum likelihood estimation for this model can be carried out by linear mixed-effect 

models. This multivariate meta-analytic approach is applicable for large enough number 

of sub-samples, which is for cluster-based approach and K independent samples approach 

with large k. 

 

1.5 Simulating Data 

In order to evaluate the efficiency of our proposed approach, we need to conduct 

simulation studies in various situations. The type of data we are focusing on are clustered 

dependent and binary data. There are methods existing to simulate dependent binary data, 

so we need to extend these methods to incorporate clustered random effect structures. 

 

Emrich and Piedmonte [22] developed a gold-standard method for simulating dependent 

binary outcomes based on the multivariate normal distribution. Kang and Jung [23] and 

Haynes, Sabo and Chaganty [24] introduced an approach based on the multinominal 

distribution of all possible combinations of the binary outcomes. We extend the 

multivariate normal- and multinomial sampling-based approaches for simulating 

dependent binary outcomes to also incorporate a desired cluster structure. This extension 

requires probabilistically generating parametric simulation templates for each of the 

desired cluster levels or combinations. Several simple probability distributions are used to 

exemplify the process of establishing the cluster-specific parameters and effect sizes, 
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including the normal, uniform and beta distributions. In this research, we incorporated 

one level of cluster structure. However, this approach extends naturally to more 

complicated scenarios, including cases of two or more clustering factors, or even nested 

factors. The unifying theme is that data are simulated uniquely for each combination of 

clusters. Further, we have discretion in selecting how those factors or levels affect the 

particular probability distribution and parameters used to simulate the simulation 

template for each cluster. The dependence levels between the binary outcomes can also 

be made to be cluster or level dependent, provided a distribution is selected that offers 

control in selecting the desired dependence while also ensuring the proper support. 

 

1.6 Outline of Dissertation 

The rest of this dissertation is outlined as follows. The method of simulating clustered 

dependent binary outcomes is described and examined in Chapter 2. We explain the 

procedures for splitting the existing database to ensure model convergence, and the meta-

analytic approaches for recombining those sub-samples in Chapter 3. Chapter 4 focuses 

on the performance of multivariate meta-analytic approaches applied to the same settings 

in Chapter 3. A brief discussion follows in Chapter 5. 
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Chapter 2 Simulating Clustered Dependent Binary 

Data 

 

 

 

 

2.1 Introduction 

Methods for simulating dependent binary outcomes are often required for the assessment 

of statistical methodologies suitable for repeated measure study designs with 

dichotomous outcomes. Such simulation techniques can also be useful in determining 

required sample sizes for longitudinal study designs featuring binary measurements. 

Emrich and Piedmonte [22] developed a gold-standard method for simulating dependent 

binary outcomes based on the multivariate normal distribution. Kang and Jung [23] 

introduced an approach based on the multinominal distribution of all possible 

combinations of the binary outcomes. Both of these approaches were extended to account 

for modeling dependencies with odds ratios in Sabo et al. [24]. 

 

While useful for repeated-measures or multiple-outcome studies, these methods require 

expansion if they are to be used in more complicated situations. For instance, certain 

research studies feature inherent clustering, where groups of subjects exist in natural 

clusters or groups. Examples include studies of school-age children attending various 

classrooms or schools [25], or primary care patients who attend one of several primary 
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care facilities [1], the latter of which also features patients nested within primary care 

physicians, who are in turn nested within primary care practices that are nested within 

larger health care systems. The previously mentioned simulation approaches cannot 

incorporate this type of complexity without amendment and are unsuitable as currently 

constructed to simulate clustered repeated measure data that would mimic such a 

scenario. 

 

In this Chapter, we extend the multivariate normal- and multinomial sampling-based 

approaches for simulating dependent binary outcomes to also incorporate a desired 

cluster structure. This extension requires probabilistically generating parametric 

simulation templates for each of the desired cluster levels or combinations. Several 

simple probability distributions are used to exemplify the process of establishing the 

cluster-specific parameters and effect sizes, including the normal, uniform and beta 

distributions. The rest of this Chapter is outlined as follows. The two simulation methods 

are briefly described in the next Section, and are extended to account for a desired cluster 

structure. The performance of these extensions are then examined through simulation 

studies. A brief discussion concludes this Chapter. 

 

2.2  Materials and Methods 

2.2.1 Simulation Methodologies: Multivariate Normal Approach 

The simulation approach by Emrich and Piedmonte [22] utilizes the multivariate normal 

distribution to generate vectors exhibiting desired dependence levels, which are then 
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categorized into binary observations. The process begins by using the desired pairwise 

correlations 𝜌𝑖𝑗  between binary measures 𝑌𝑖 and  𝑌𝑗 with marginal probabilities 𝑝𝑖 =

𝑃(𝑌𝑖 = 1) and 𝑝𝑗 = 𝑃(𝑌𝑗 = 1) to solve for a bivariate correlation 𝑟𝑖𝑗 using the bivariate 

normal cumulative distribution function (CDF) 

Φ[𝑧(𝑝𝑖), 𝑧(𝑝𝑗), 𝑟𝑖𝑗] = 𝜌𝑖𝑗(𝑝𝑖𝑞𝑖𝑝𝑗𝑞𝑗)
1/2

+ 𝑝𝑖𝑝𝑗,                                 (4) 

where 𝑧(𝑝) is the 𝑝𝑡ℎ percentile of the standard normal distribution and q = 1 - p. Odds 

ratios could be used in place of correlations by replacing the right-hand side of Equation 

(4) with the Plackett copula [26] 𝐶(𝑝𝑖, 𝑝𝑗 , 𝜓𝑖𝑗), where 𝜓𝑖𝑗 is the desired odds ratio, as 

shown in Sabo et al.[24]. The values 𝑟𝑖𝑗 ∀ 𝑖 ≠ 𝑗 are then placed into a correlation matrix 𝐑 

and used to simulate a 𝑘 × 1 multivariate normal vector 𝑧 = (𝑧1, … , 𝑧𝑘)𝑇~ 𝑀𝑉𝑁(0, 𝐑). 

Binary observations are then created by classifying each element of  𝑧 by letting 𝑌𝑖 = 1 

if 𝑧𝑖 ≤ 𝑧(𝑝𝑖) and 𝑌𝑖 = 0 otherwise. This process can be repeated by generating and 

classifying 𝑛 such vectors to create the desired simulated sample. 

 

2.2.2 Simulation Methodologies: Multinomial Approach 

The multinomial-based simulation method introduced by Kang and Jung [23] uses a 

multinomial distribution of all possible combinations of dependent binary outcomes, 

which can be created through the joint and marginal probabilities, along with the desired 

correlation. Given a desired correlation 𝜌𝑖𝑗 between binary variables 𝑌𝑖 and 𝑌𝑗 with 

desired marginal probabilities 𝑝𝑖 and 𝑝𝑗, we first calculate the joint probability 𝑝𝑖𝑗 using 

the following expression. 
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𝑝𝑖𝑗 = 𝑝𝑖𝑝𝑗 + 𝜌𝑖𝑗√𝑝𝑖𝑞𝑖√𝑝𝑗𝑞𝑗.                                          (5) 

Note that if odds ratios are used instead of correlations, then 𝑝𝑖𝑗 can be solved for by 

inserting the desired odds ratio 𝜓𝑖𝑗 and marginal probabilities 𝑝𝑖 and 𝑝𝑗 into the Plackett 

copula, as described in Sabo et al. [24]. Note that whether correlations or odds ratios are 

used to model dependence, the remainder of the multinomial-based approach is identical 

after the pair-wise joint probabilities 𝑝𝑖𝑗 are calculated. 

 

If three or more dependent binary measures are to be simulated, then higher order joint 

probabilities must be calculated. Let 𝑝𝑖𝑗𝑘 represent the joint probability 𝑃(𝑌𝑖 = 1, 𝑌𝑗 =

1, 𝑌𝑘 = 1), which is not uniquely defined by the marginal probabilities and the 

correlation. As shown in Chaganty and Joe [27], the minimum and maximum 𝑝𝑖𝑗𝑘 are 

defined as follows, 

𝑝𝑖𝑗𝑘,𝐿 = 𝑚𝑎𝑥{0, 𝑝𝑖𝑗 + 𝑝𝑖𝑘 − 𝑝𝑖, 𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 𝑝𝑗 , 𝑝𝑖𝑘 + 𝑝𝑗𝑘 − 𝑝𝑘}                           (6) 

𝑝𝑖𝑗𝑘,𝑈 = 𝑚𝑎𝑥{𝑝𝑖, 𝑝𝑗, 𝑝𝑘, 1 − 𝑝𝑖 − 𝑝𝑗 − 𝑝𝑘 + 𝑝𝑖𝑗 + 𝑝𝑖𝑘 + 𝑝𝑗𝑘} 

where any value 𝑝𝑖𝑗𝑘 ∈ [𝑝𝑖𝑗𝑘,𝐿 , 𝑝𝑖𝑗𝑘,𝑈] leads to a valid probability density function with 

the desired marginal probabilities and dependence level. Though any value in this range 

is appropriate, we take the midpoint 𝑝𝑖𝑗𝑘 = (𝑝𝑖𝑗𝑘,𝐿 + 𝑝𝑖𝑗𝑘,𝑈)/2. Higher order joint 

probabilities in cases of four or more dependent binary observations can be determined in 

a similar manner, though the calculations become more tedious as the number of 

observations increases. 
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These quantities are used to calculate the multinomial probability density function (PDF) 

of all combinations of outcomes, which for the two-variable case are shown in the first 

two columns of Table 1. The CDF is created by progressively summing the values of the 

PDF, where the subscripts on 𝑃 indicate whether each binary outcome is successful, with 

1 for success and 0 for failure. For example, 𝑃01 = 𝑃(𝑌1 = 0, 𝑌2 = 1). After the CDF is 

determined, a random number 𝑢~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0, 1] is simulated, and the simulated 

observations are generated based on the decision rules based on the CDF, as shown in the 

last two columns of Table 1. For example, if 𝑃11 < 𝑢 ≤ 𝑃11 + 𝑃10, then the observation is 

recorded as 𝑌1 = 1 and 𝑌2 = 0, or simply as 10. This process can be repeated to generate 

a sample of 𝑛 dependent binary outcomes. A similar approach – outlined in Kang and 

Jung [23] and in Haynes et al. [28] – can be used in cases of three or more dependent binary 

outcomes.  

 

Table 1 Two-Variable PDF, CDF and Decision Rules for Multinomial Approach 

PDF CDF Decision Rule and Simulated Outcome 

𝑃11 = 𝑝12 𝑃11 𝑈 ≤ 𝑃11 11 

𝑃10 = 𝑝1 − 𝑝12 𝑃11 + 𝑃10 𝑃11 < 𝑈 ≤ 𝑃11 + 𝑃10 10 

𝑃01 = 𝑝2 − 𝑝12 𝑃11 + 𝑃10 + 𝑃01 𝑃11 + 𝑃10 < 𝑈 ≤ 𝑃11 + 𝑃10 + 𝑃01 01 

𝑃00 = 1 − 𝑝1 − 𝑝2 + 𝑝12 𝑃11 + 𝑃10 + 𝑃01 + 𝑃00 𝑈 > 𝑃11 + 𝑃10 + 𝑃01 00 
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2.2.3 Accounting for Random Effects by Generating the Simulation Templates 

For the two simulation approaches discussed in Section 2.2.1 and 2.2.2, we simulate a set 

of binary data representative of a single population by repeating either process 𝑛 times 

using a single simulation template, which consists of all desired marginal probabilities 

𝑝𝑖, 𝑖 = 1, … , 𝑘 and pairwise correlations 𝜌𝑖𝑗 (or odds ratios 𝜓𝑖𝑗). To generate two or more 

groups of simulated binary observations, where groups are differentiated by either 

different marginal probabilities, dependencies, or both, the simulation approach is 

repeated separately for each group with the desired simulation template. 

Expanding the multivariate- and multinomial-based approaches to account for random 

effects (say from clustering) requires only a simple extension of the process used when 

simulating binary observations for multiple groups. As a motivating example, let's 

assume we want to simulate 𝑀 clusters of 𝑛 samples of two correlated binary measures. 

Let's further assume that those two measures have marginal probabilities that vary across 

the 𝑀 clusters in such a way that the averages are 𝑝1 = 𝜋1 and 𝑝2 = 𝜋2 and the 

corresponding cluster variances for those rates are 𝜎1 and 𝜎2. 

 

First we assume that the marginal probability for each binary measure has some 

probability distribution 𝑝𝑖~𝑓(𝜃𝑖), where 𝑓(∘) is some probability mass or density 

function and 𝜃 is some parameter (possibly vector-valued) selected such that 𝐸(𝑝𝑖) =

∫ 𝑝𝑖𝑓(𝜃𝑖) 𝑑𝑦 = 𝜋𝑖 and 𝑉(𝑝𝑖) = ∫(𝑝𝑖 − 𝐸(𝑝𝑖))
2

𝑓(𝜃𝑖)𝑑𝑦 = 𝜎𝑖 for group 𝑖 = 1, 2. If we 

desire 𝑀 clusters of simulated observations, then we simulate 𝑀 marginal probabilities 

𝑝1,𝑚 and 𝑝2,𝑚 from 𝑓(𝜃1) and 𝑓(𝜃2), respectively, for 𝑚 = 1, … , 𝑀. For cluster 𝑚, we 
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simulate the desired number of dependent binary observations using 𝑝1,𝑚 and 𝑝2,𝑚 and 

the desired dependence level 𝜌12 (or 𝜓12). This process is repeated for 𝑚 = 1, … , 𝑀, and 

the resulting 𝑀 clusters of simulated data will on average exhibit a distribution of 

marginal probabilities centered around 𝜋1 and 𝜋2, though the cluster-specific marginal 

means will vary according to 𝜎1 and 𝜎2, thus achieving the desired level of clustering. 

 

In the previous scenario, the marginal probabilities were given probability distributions 

and themselves simulated 𝑀 times to achieve a clustering effect. An equivalent approach 

would be to simulate 𝑝1~𝑓(𝜃1) probabilistically to achieve a desired mean and variance 

for the first marginal mean across clusters, and then simulate some 𝛿~𝑔(𝛾) and 

define 𝑝2 = 𝑝1 + 𝛿, where 𝑔(∘) is some probability distribution not necessarily of the 

same form as 𝑓(∘), and 𝛾 is some parameter (possibly vector-valued) such that 𝐸(𝛿) =

∫ 𝛿𝑔(𝛾)𝑑𝛿 yields the desired difference between 𝑝1 and 𝑝2 with some desired cluster 

variability 𝑉(𝛿) = ∫(𝛿 − 𝐸(𝛿))
2

𝑔(𝛾)𝑑𝛿. 

 

This approach extends naturally to more complicated scenarios, including cases of two or 

more clustering factors, or even nested factors. The unifying theme is that data are 

simulated uniquely for each combination of clusters, mainly through parametric 

templates that are probabilistically generated for each combination. For example, in the 

case of hierarchical clustering, where one factor is nested within the levels of another, the 

parameters 𝜃𝑖 used to simulate the parameter values used to simulate data for each cluster 

can itself be probabilistically determined. Further, the researcher has much discretion in 
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selecting how those factors or levels affect the particular probability distribution and 

parameters used to simulate the simulation template for each cluster. The dependence 

levels between the binary outcomes can also be made to be cluster- or level-dependent, 

provided a distribution is selected that offers control in selecting the desired dependence 

while also ensuring the proper support. 

 

2.2.4 Distribution Examples 

We will consider three examples of distributions that can be used in this simulation 

process, understanding that there are alternative and potentially more suitable options 

available. The only requirement is that the support of the distribution must either be equal 

to [0, 1], be a proper subset of [0, 1], or have a reasonably low probability of occurring 

outside [0, 1]. A simple choice would be to simulate the marginal probabilities from a 

uniform distribution such that 𝑝𝑖,𝑚~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[𝜃𝑖1, 𝜃𝑖2] for 𝑚 = 1, … , 𝑀 clusters and 𝑖 =

1, … , 𝑘 binary outcomes, where the midpoint of 𝜃𝑖1 and 𝜃𝑖2 yields the desired marginal 

mean 𝜋𝑖. In this case the inter-cluster variability in marginal probabilities can be 

controlled by increasing or decreasing the difference 𝜃𝑖2 − 𝜃𝑖1, making it wider for 

greater variability and narrower for less variability. In this case the Uniform parameters 

can be selected such that 𝑝𝑖,𝑚 ∈ [0, 1] ∀ 𝑖, 𝑚. 

 

Another example would be to simulate the marginal probabilities from a beta distribution 

such that 𝑝𝑖,𝑚~𝐵𝑒𝑡𝑎[𝛼𝑖 , 𝛽𝑖] for 𝑚 = 1, … , 𝑀 clusters and 𝑖 = 1, … , 𝑘 binary outcomes, 

where shape parameters 𝛼𝑖 and 𝛽𝑖 are selected so that the mode is equal to the desired 
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marginal probability (i.e. (𝛼𝑖 − 1)(𝛼𝑖 + 𝛽𝑖 − 2) = 𝜋𝑖). We use mode instead of mean for 

the Beta distribution because we also want to investigate whether using mode has more 

accurate or biased results than using mean. There are infinite pairings of the shape 

parameters that give the same mode, so the inter-cluster variability in the marginal 

probabilities is controlled by making both 𝛼𝑖 and 𝛽𝑖 larger (for less variability) or smaller 

(for more variability). Since the support of the distribution matches that of proportions 

and probabilities, we are assured that 𝑝𝑖,𝑚 ∈ [0, 1] ∀ 𝑖, 𝑚. 

The final example we consider is to simulate marginal probabilities from a normal 

distribution with low variance such that 𝑝𝑖,𝑚~𝑁𝑜𝑟𝑚𝑎𝑙(𝜋𝑖 , 𝜎𝑖
2), where 𝜋𝑖 is the desired 

𝑖𝑡ℎ marginal probability and 𝜎𝑖
2 is the desired inter-cluster variation. While this choice of 

distribution has infinite support, the variance 𝜎𝑖
2 can be made small enough to all but 

ensure values are greater than 0 and less than 1 while simultaneously providing the 

desired variability. The simulations can also be truncated so that 𝑝 = 0.001 if the 

simulated value is less than 0 and 𝑝 = 0.999 if it is greater than 1. Using the normal 

distribution also has the advantage of providing more direct control of the inter-cluster 

variability in marginal proportions as compared to the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 and 𝐵𝑒𝑡𝑎 distributions. 

 

2.2.5 Extension to Existing Approaches 

For the multivariate normal-based approach, the simulated marginal probabilities 

𝑝1,𝑚, … , 𝑝𝑘,𝑚 for clusters 𝑚 = 1, … , 𝑀 are matched with the desired dependence levels 

𝜌𝑖𝑗 (or 𝜓𝑖𝑗) and are used in Equation 1 separately for each cluster. At this point, the 

process continues as stated in Section 2.1. Likewise, for the multinomial-based approach, 
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the simulated marginal probabilities are matched with the desired dependence levels and 

used to determine the joint pairwise probabilities in Equation 2. Thereafter, the 

multinomial approach continues as stated in Section 2.3. 

 

2.3 Results and Discussion 

2.3.1 Simulation Study 

Here the performance of the multivariate normal and multinomial approaches to 

simulating dependent binary data with random effects is examined through simulation 

studies. The first case illustrates the simple situation where we simulate 𝑘 = 2 dependent 

binary outcomes over 𝑀 = 20 clusters. A second case looks at the situation where we 

simulate 𝑘 = 2 dependent binary outcomes over 𝑀 = 20 clusters, each consisting of both 

treatment and control subjects. For each case we assume the correlation between the two 

outcomes is 𝜌12 = 0.2, irrespective of group and cluster. Sample size was fixed at 𝑛 =

100 subjects per cluster. For both cases we also investigate the use of the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚, 

𝐵𝑒𝑡𝑎 and 𝑁𝑜𝑟𝑚𝑎𝑙 distributions for generating the simulation templates and 

incorporating the cluster-level variability. A total of 500 data sets were created for each 

combination of distribution and simulation method, and are used to estimate the average 

overall marginal probability for each measure, the standard deviation and distribution of 

those means, the average effect size (and standard deviation) for the case-specific 

hypothesis test, the empirical power for the case-specific hypothesis test, the mean and 

distribution of the inter-cluster variability, the mean estimated correlation, and the 

percentage of data sets for which the desired model converged. SAS (version 9.4, Cary, 
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NC, USA) was used to simulate data and fit generalized linear mixed models using the 

IML and GLIMMIX procedures, respectively. 

 

2.3.2 Case One: Clustered, One-Group, Repeated-Measure Study 

In this case we simulate 𝑘 = 2 binary outcomes over 𝑀 = 20 clusters, where the global 

marginal probabilities for the two outcomes are 𝑝1 = 0.25 and 𝑝2 = 0.45, indicating that 

the rate of our simulated outcome increases by 0.20 after some time (possibly after an 

intervention). To incorporate inter-cluster variance we simulate the marginal probabilities 

according to the specifications listed in Table 2. Here we see that: the midpoints of the 

two 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 distributions are (0.15 + 0.35)/2 = 0.25 and (0.34 + 0.55)/2 = 0.45, 

respectively; the modes of the two Beta distributions are (11 − 1)/(11 + 31 − 2) =

10/40 = 0.25 and (10 − 1)/(10 + 12 − 2) = 9/20 = 0.45, respectively; and the 

means of the two normal distributions are 0.25 and 0.45; in each case matching the target 

levels. These values also imply that the inter-cluster variability in the marginal means is 

0.0033 for both measures with the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 distribution, 0.0045 and 0.0178 for the 

𝐵𝑒𝑡𝑎 distribution, and 0.01 for both measures with the 𝑁𝑜𝑟𝑚𝑎𝑙 Distribution. The 

intended model is fit with a fixed two-level “time” effect, a cluster-level random effect to 

account for the inter-cluster variation, and a subject-level random effect to account for the 

correlation between the measures. The null hypothesis is no difference over time 

(i.e. 𝐻0: 𝑝1 = 𝑝2) against a two-sided alternative. 
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Table 2  Simulation Template for Case One 

 Marginal Distribution 

Time Mean Uniform Beta Normal 

1 𝑝1 𝑈[0.15, 0.35] 𝐵𝑒𝑡𝑎(11, 31) 𝑁(0.25, 0.12) 

2 𝑝2 𝑈[0.35, 0.55] 𝐵𝑒𝑡𝑎(10,12) 𝑁(0.45, 0.12) 

 

The aggregate results over the 500 simulations for Case One are found in Table 3. Here 

we see that both the MS and MVN simulation approaches were accurate in reproducing 

the marginal proportions 𝑝1 and 𝑝2, as well as the difference 𝛿 = 𝑝2 − 𝑝1. We see that 

the MS and MVN approaches everywhere provided similar estimates and standard errors. 

The variability of these estimates is low and is also comparable between approaches. The 

cluster random effects averaged over all simulations are also provided; note these will not 

necessarily correspond to the theoretical inter-cluster variances stated earlier as these are 

model-derived and based on linked expectations in the generalized linear mixed model 

framework. The target correlation (𝜌 = 0.2) was also achieved by both methods, with 

reasonably small variance. The MS approach produced data sets that converged at least 

99.0%, while the MVN approach always converged.  The empirical powers for testing 

the null hypothesis of no difference in change over time between the two groups for the 

both the multivariate normal and multinomial approaches were > 99.9% for each of the 

three distributions (not shown in Table 3). 
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Table 3  Simulation Results for Case One 

Dist. Approach 
𝑝1  

(SE) 
𝑝2  

(SE) 

𝑝2 −
𝑝1  

(SE) 

Cluster 

Random 

Effect (SE) 

�̂�  
(SE) 

% 

Converged 

Uniform MS 0.248 

(0.015) 

0.449 

(0.015) 

0.201 

(0.023) 

0.034 

(0.020) 

0.192 

(0.021) 
99.0% 

 MVN 0.250 

(0.016) 

0.449 

(0.017) 

0.199 

(0.022) 

0.033 

(0.018) 

0.191 

(0.023) 
100% 

Beta MS 0.257 

(0.017) 

0.453 

(0.025) 

0.196 

(0.030) 

0.075 

(0.035) 

0.181 

(0.023) 
99.8% 

 MVN 0.261 

(0.019) 

0.457 

(0.026) 

0.196 

(0.031) 

0.076 

(0.033) 

0.180 

(0.022) 
100% 

Normal MS 0.247 

(0.026) 

0.447 

(0.024) 

0.201 

(0.034) 

0.102 

(0.044) 

0.170 

(0.025) 
100% 

 MVN 0.247 

(0.025) 

0.450 

(0.020) 

0.203 

(0.035) 

0.100 

(0.045) 

0.170 

(0.023) 
100% 

 

The Beta distribution had more biased results than the other two distributions due to the 

use of mode being the mean marginal probabilities. Thus, we should use distribution 

mean as the mean marginal probabilities instead of mode. The inter-cluster variability 

estimates using the Normal distribution to generate the simulation template were �̂�𝐼𝐶
2 =

0.102 for the MS approach and �̂�𝐼𝐶
2 = 0.100 for the MVN approach. If these levels are 

deemed too large, then the variance assumed in the simulation template (here 𝜎 = 0.1) 

can be lowered. Likewise, the inter-cluster variability can be increased or decreased using 

the Uniform distribution by either increasing or decreasing the range about the desired 

proportions. While the process for the Beta distribution requires solving one equation for 

two unknowns (such that the given scale and shape parameters provided a desired mode), 

their sum can be increased or decreased to either decrease or increase the desired intra-

cluster variability. 
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2.3.3 Case Two: Clustered, Two-Group, Repeated-Measure Study 

In this case we simulate 𝑘 = 2 binary outcomes over 𝑚 = 20 clusters, where subjects in 

half the clusters belong to a treatment group and where subjects in the other half of the 

clusters belong to a control group. Assuming an effective treatment, the global marginal 

probabilities for the two outcomes in the treatment group are 𝑝11 = 0.25 and𝑝12 = 0.45, 

while for an ineffective control the global marginal probabilities are 𝑝21 = 𝑝22 = 0.25; 

these values indicate that the difference in the changes over “time” is (𝑝12 − 𝑝11) −

 (𝑝22 − 𝑝21) = 0.20. To incorporate inter-cluster variance we simulate the marginal 

probabilities according to the specifications listed in Table 4. As in the previous case, we 

can easily show that that each distribution obtains the target marginal probability for that 

Group and time. The inter-cluster variabilities are similar to what was described before. 

The intended model is fit with a fixed two-level “time” effect, a fixed two-level “group” 

effect, a group-time interaction, a cluster-level random effect to account for the inter-

cluster variation, and a subject-level random effect to account for the correlation between 

the measures. The null hypothesis is no difference in change over time between the two 

groups (i.e. 𝐻0: (𝑝12 − 𝑝11) =  (𝑝22 − 𝑝21)) against a two-sided alternative. 

Table 4  Simulation Template for Case Two 

  Marginal Distribution 

Group Time Mean Uniform Beta Normal 

Treatment 1 𝑝11 𝑈[0.15, 0.35] 𝐵𝑒𝑡𝑎(11, 31) 𝑁(0.25, 0.12) 

 2 𝑝12 𝑈[0.35, 0.55] 𝐵𝑒𝑡𝑎(10, 12) 𝑁(0.45, 0.12) 

Control 1 𝑝21 𝑈[0.15, 0.35] 𝐵𝑒𝑡𝑎(11,31) 𝑁(0.25, 0.12) 

 2 𝑝22 𝑈[0.15, 0.35] 𝐵𝑒𝑡𝑎(11,31) 𝑁(0.25, 0.12) 
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The aggregate results over the 500 simulations for Case Two are found in Table 5. Here 

we see again that both approaches were effective in estimating the marginal means as 

well as the desired difference in the change in proportions over time (𝛿 = 0.2), and the 

efficiencies of these estimates were similar for both methods. The estimated inter-cluster 

variance and the correlation between the repeated measure outcomes were similar 

between the MS and MVN approaches, while the estimated correlations were also close 

to the desired level (𝜌 = 0.2). At least 98.8% of the data sets generated by the MS 

approach allowed models to converge, and at least 99.9% of the MVN-derived data sets 

allowed model convergence. The empirical powers for the testing the null hypothesis of 

no difference in change over time between the two groups for the multinomial approach 

were > 99.9% (Uniform), 99.2% (Beta) and 96.8% (Normal), and were > 99.9% 

(Uniform), 99.2% (Beta) and 96.6% (No 

rmal) for the multivariate normal approach (not shown in Table 5). 

Table 5  Simulation Results for Case Two 

  Uniform Beta Normal 

 
MS 

Approach 

MVN 

Approach 

MS 

Approach 

MVN 

Approach 

MS 

Approach 

MVN 

Approach 

𝑝11 
0.247 

(0.022) 

0.246 

(0.023) 

0.260 

(0.026) 

0.259 

(0.024) 

0.248 

(0.036) 

0.246 

(0.034) 

𝑝12 
0.450 

(0.024) 

0.452 

(0.023) 

0.452 

(0.036) 

0.452 

(0.037) 

0.449 

(0.036) 

0.450 

(0.035) 

𝑝21 
0.248 

(0.023) 

0.247 

(0.022) 

0.259 

(0.025) 

0.260 

(0.026) 

0.243 

(0.035) 

0.244 

(0.035) 

𝑝22 
0.249 

(0.024) 

0.248 

(0.023) 

0.261 

(0.025) 

0.258 

(0.026) 

0.245 

(0.034) 

0.246 

(0.033) 

(𝑝12 − 𝑝11)
− (𝑝22 − 𝑝21) 

0.203 

(0.044) 

0.204 

(0.044) 

0.190 

(0.054) 

0.195 

(0.058) 

0.199 

(0.065) 

0.200 

(0.066) 

Cluster * 0.034 

(0.020) 

0.034 

(0.020) 

0.060 

(0.032) 

0.063 

(0.030) 

0.115 

(0.055) 

0.114 

(0.057) 

�̂� 
0.192 

(0.023) 

0.192 

(0.023) 

0.186 

(0.025) 

0.183 

(0.024) 

0.169 

(0.026) 

0.167 

(0.025) 

 % Conv. 98.8% 100% 99.8% 100% 100% 100% 

    * R.E. stands for random effect 
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2.4 Conclusion 

We extended both the multinominal sampling approach and the multivariate normal 

approaches to simulating dependent binary data to account for desired random effect 

structures. The extensions for both methods are simple to implement and offer control of 

marginal probabilities, dependence between outcomes, and intra-cluster variability. 

Rather than being assigned constant values, the desired marginal probabilities are 

sampled from specified probability distributions, where a separate simulation template is 

simulated for each cluster. Simulation studies show that our extension to both approaches 

yields data that achieve the desired marginal probabilities with relatively low variability, 

and also exhibits the desired correlation between the binary repeated measures. The 

parameters for the distributions used in the simulation template can also be adjusted to 

achieve a desired inter-cluster variability. 

 

One limitation in the presentation of this research is that the simulation templates used 

here are not exhaustive. In both examples offered we only considered cases of two 

repeated measures and we presented a limited selection of marginal means and 

correlations. However, extending this approach to account for more repeated measures or 

alternative simulation templates is straightforward. We also did not consider more 

complicated random effect structures, though the underlying principle remains the same: 

randomly generate a simulation template for each cluster or combination of clusters. This 

general idea can be applied to other simulation approaches for simulating dependent 

binary data (e.g., Qaqish [29]), and in principle can be adapted in simulation 

methodologies for other types of dependent outcomes. 
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An important statistical role in the preparation of clustered study designs is determining 

the sample size required to find a desired effect size. While equations or numerical 

procedures for estimating a required sample size are available for some situations (e.g., 

Donner, Birkett and Buck [30]), more complicated situations involving repeated measures 

and intricate clustering may require a simulation-based approach. Simulation templates 

can be designed to match the desired effect size and clustering structure, and empirical 

power can be estimated by repeatedly simulating such data. In a similar manner, new 

statistical methodologies suitable for repeated binary outcomes in clustered settings can 

be numerically assessed and compared with alternative procedures. Data can be simulated 

from a desired template and analyzed by the methodologies under consideration, and key 

features from that analysis (e.g., means, test statistics, confidence intervals, and 

hypothesis testing decisions) can be aggregated over repeated simulations and compared 

between competing models. 
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Chapter 3 Using Univariate Meta-Analytic Approach 

for Analyzing Clustered Dependent Binary Data 

 

 

 

 

3.1 Introduction 

As we discussed in Chapter 1, the complex mixed models for analyzing clustered 

dependent binary data with large sample sizes may have non-convergence problem. Other 

than changing random effects into fixed effects or removing particular random effect, or 

solving the non-convergence problem directly, we figure out a way of “splitting and 

recombining” to analyze such type of data. That is to split the whole database into small 

subsets that are analyzable by the desired model and recombine results from subsets by 

meta-analytic approaches.   

 

We consider two ways of splitting the overall dataset into more manageable subsets. First 

we split data into k independent, mutually-exclusive sub-samples, what we call the 

independent samples approach, where the desired model is fit on each of the new 

subsamples. The second proposal is to use natural existing clusters as sub-samples, where 

simplifications of the desired models – ignoring the clustering measure – are fit to each of 

the separate clusters. Estimates or test statistics from either of these sub-sampling 

approaches can then be recombined using random-effect-based meta-analytic approaches 
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[13]. In the first approach the clustering is taken into account by the model fit to each sub-

sample, while in the second approach the clustering is taken into account by the meta-

analysis. 

 

The rest of this Chapter is outlined as follows. The sub-sample generating approaches and 

meta-analytic approach we used are presented in Section 3.2. These approaches are 

examined through simulation studies in Section 3.3 and an example of data on cancer 

screening behaviors in Section 3.4. A brief discussion follows in Section 3.5.  

 

3.2 Method 

3.2.1 Approaches for Creating Sub-Samples 

We consider two ways of splitting the overall database into smaller components 

analyzable by desired model, which are called the independent samples approach and the 

cluster-based approach. 

  

3.2.1.1 Independent Samples Approach 

The k independent, mutually exclusive sub-samples are sampled from the overall 

database without replacement k-1 times. Each time we sample out a sub-sample 

containing N/k subjects, where N is the total number of subjects in the overall database, 

and the remaining dataset will be the database for next sampling. We utilize the 

SURVEYSELECT procedure in SAS for sampling, which provides methods to select 
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probability-based random samples [8]. And we use the simple random sampling method 

with stratification of non-overlapping group and cluster effects. Running 

SURVEYSELECT procedure k-1 times, we will get the k independent mutually 

exclusive sub-samples.  

 

Then each sub-sample is fitted by the desired model, which is the same model we applied 

to the overall database with non-convergence problem. If any of the k independent sub-

samples cannot converge, we need to increase k to k+1 to get smaller sub-samples with 

higher chance to converge. If all k sub-samples can converge, we take one test statistic of 

the primary research question and one standard error out of each sub-sample, which is 

used as an observed effect for the meta-analysis, described in Section 3.2.2. 

 

3.2.1.2 Cluster-Based Approach 

The cluster-based approach uses the natural existing clusters as sub-samples. If there are 

nested cluster structures in the dataset, we use the root clusters as sub-samples. For 

example, if the data has nested cluster design of patients within physicians within 

practices, practices will be used as sub-samples.  

 

A simplified desired model – ignoring the clustering measure – is fit to each of the 

separate clusters. Though the model will not account for some amount of clustering, it 

will not be ignored in this case and is estimated by the meta-analytic approach when 

combining results from sub-samples, described in the next section. 
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3.2.2  Meta-analytic Approach 

The meta-analytic approach we used in this research is the two-step estimate [13] which is 

based off of the DerSimonian and Laird estimate [20], as described in Chapter 1.4. Given 

the test statistics obtained from sub-samples, 𝑦1, … , 𝑦𝑘, (k is the number of sub-samples) 

and the sampling variances 𝜎1
2, … , 𝜎𝑘

2, we need to estimate the inter-study (or inter-

cluster) variance 𝜏2 and then estimate the overall test statistic μ and its standard error.  

 

Supposing 𝑠1
2, … , 𝑠𝑘

2 and 𝑡2 are the estimates of 𝜎1
2, … , 𝜎𝑘

2 and 𝜏2, a weighted estimator of 

μ and its standard error (SE) can be expressed as: 

𝑚𝑤 =
∑ 𝑤𝑖𝑦𝑖𝑖

∑ 𝑤𝑖𝑖
 ,   SE(𝑚𝑤) =

1

(∑ 𝑤𝑖𝑖 )
1
2

 , where 𝑤𝑖 =
1

𝑡2+𝑠𝑖
2 .                  (7) 

Note that the expression for the standard error in Equation (7) is an underestimate of the 

true standard error of 𝑚𝑤 [13]. The DerSimonian and Laird estimate for  𝜏2 [20] is  

𝑡2(𝐷𝐿) = max {0,
[∑ 𝑤𝑖0(𝑦𝑖−𝑦𝑤(0))2

𝑖 ]−(𝑘−1)

[∑ 𝑤𝑖0−∑ 𝑤𝑖0
2 / ∑ 𝑤𝑖0𝑖𝑖𝑖 ]

},                               (8) 

where 𝑦𝑤(0)= ∑ 𝑤𝑖0𝑦𝑖/ ∑ 𝑤𝑖0𝑖𝑖 , and 𝑤𝑖0 = 1/𝑠𝑖
2. Substituting 𝑡2(𝐷𝐿) for 𝑡2 in Equation 

(7) yields the corresponding DerSimonian and Laird estimate, 𝑚𝑤(𝐷𝐿) and its standard 

error SE(𝑚𝑤(𝐷𝐿)). Then we substitute 𝑤𝑖0 and 𝑦𝑤(0) with 𝑤𝑖𝐷 = 1/(𝑡2(𝐷𝐿) + 𝑠𝑖
2) 

and 𝑚𝑤(𝐷𝐿) respectively, we will get the two-step estimate, 𝑡2(𝐷𝐿2), where 

𝑡2(𝐷𝐿2) = max {0,
[∑ 𝑤𝑖𝐷(𝑦𝑖−𝑚𝑤(𝐷𝐿))2

𝑖 ]−[∑ 𝑤𝑖𝐷𝑠𝑖
2−∑ 𝑤𝑖𝐷

2 𝑠𝑖
2/𝑖𝑖 ∑ 𝑤𝑖𝐷𝑖 ]

[∑ 𝑤𝑖𝐷−∑ 𝑤𝑖𝐷
2 / ∑ 𝑤𝑖𝐷𝑖𝑖𝑖 ]

}            (9) 
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Substituting 𝑡2(𝐷𝐿2) for 𝑡2 in Equation (7) yields the corresponding two-step estimate 

𝑚𝑤(𝐷𝐿2) for μ and its approximate standard error, SE(𝑚𝑤(𝐷𝐿2)). The hypothesis test 

we are interested in will be conducted through a Wald test: 

𝑚𝑤(𝐷𝐿2)

SE(𝑚𝑤(𝐷𝐿2))
~𝑁(0, 1) under the null hypothesis 

 

3.2.3  Hierarchical dependence 

In the random-effect meta-analysis model, a traditional assumption is made that sampling 

error within sub-samples 𝜀~𝑁(0, 𝐕) and the inter-cluster variation 𝛿~𝑁(0, 𝜏2𝐈) are 

independent so that 

𝒚~𝑁𝑘(μ𝟏𝒌, 𝐕 + 𝜏2𝐈)                                              (10) 

where 𝒚 is a vector of k test statistics, 𝐕 is the sampling variance matrix of 𝜀, which is a 

diagonal matrix with diagonal elements equal to the squared standard errors of the test 

statistics, 𝐈 is the identity matrix, and 𝜏2 is the inter-cluster variance. However, an 

alternative hierarchical dependence structure may be considered [31]. For our k 

independent sub-samples approach, one may question about hierarchical dependence 

across sub-samples. Although these sub-samples are generated without replacement and 

are “independent” in the sense that subsets are independent, they may also be viewed as 

not being independent because they contain information from the same clusters between 

them. Therefore, we want to examine whether hierarchical dependence exists among the 

k independent sub-samples we created. 
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The hierarchical dependence between sub-samples can be modeled [31]  

𝒚~𝑁𝑘(μ𝟏𝒌, 𝐕 + 𝜏2𝐈 + 𝜂𝐌)                                          (11) 

where 𝜂 is the between-cluster covariance parameter and 𝐌 = 𝐉 − 𝐈 is a matrix with of 0s 

on the diagonal and 1s on the off-diagonal and other elements are as described in formula 

(10). Estimation of μ and 𝜏2, and 𝜂 is an iterative approach based on the method of 

moments [31] similar to that in DerSimonian and Laird [20]. Starting with 𝜏2 and 𝜂 

initialized to zero, the iterative process is based on evaluating the residual sum of squares 

(RSS) of model (11) and its expectation. If the estimate of 𝜂 is relatively small in 

magnitude and estimates of μ and 𝜏2are similar to those without consideration of 

dependence across sub-samples, it suggests that we could ignore this hierarchical 

dependence across sub-samples when using k independent sub-samples based splitting 

approach. 

 

3.3 Simulation Study 

The performance of our proposed approach to work around the non-converging issue is 

examined through a simulation study. Clustered dependent binary data are simulated by 

using cluster-based templates [32] to simulate dependent binary data based on a 

multivariate normal approach [22]. We use a normal distribution with small variance to 

simulate cluster-level proportions for the simulation template. Using these proportions, 

we simulate dependent binary data using the multivariate normal sampling approach by 

Emrich and Piedmonte [22]. In this way, the simulated binary data will have cluster effect 

and repeated-measure structure at the same time.  
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We simulate 2 binary outcomes over M clusters, where the global marginal probabilities 

for the two outcomes are 𝑝1 = 𝜋1 and 𝑝2 = 𝜋2. To incorporate inter-cluster variability we 

simulate the marginal probabilities from 𝑝𝑖,𝑚~𝑁𝑜𝑟𝑚𝑎𝑙(𝜋𝑖, 𝜎𝑖
2) for 𝑚 = 1, … , 𝑀 clusters 

and 𝑖 = 1,2 binary outcomes. The desired inter-cluster variation 𝜎𝑖 we considered is 0.1. 

These marginal probabilities for clusters will be truncated so that 𝑝 = 0.001 if the 

simulated value is less than 0 and 𝑝 = 0.999 if it is greater than 1.  

 

The first case illustrates the simple situation where we simulate 2 dependent binary 

outcomes (representing outcomes, for instance, measured before and after some 

intervention) over 20 clusters. The marginal probabilities for the two outcomes are 𝑝1 =

0.25 and 𝑝2 = 0.45, giving an effect size of 0.2. To incorporate inter-cluster variance we 

simulate the cluster specific marginal probabilities from 𝑁(0.25, 0.01) and 𝑁(0.45, 0.01) 

for the two outcomes respectively. We consider a balanced cluster sample size fixed at 

𝑛 = 5000. We also simulate an unbalanced cluster sample size where 𝑛 is sampled from 

a normal distribution 𝑁(5000, 1002). The generalized linear mixed model fitted to the K 

independent sub-samples includes a fixed effect for time and random effects for repeated 

measures and cluster. For the cluster-based approach, the only difference in the model is 

without cluster random effect. Link function is logit link since we have binary data. 

 

The second case is an extension of the first case to a more complicated situation with two 

groups (treatment and control) and two time points. Assuming an effective treatment, the 

global marginal probabilities for the two treatment group outcomes are 𝑝11 = 0.25 
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and 𝑝12 = 0.45, while for an ineffective control the global marginal probabilities 

are 𝑝21 = 𝑝22 = 0.25; these values indicate that the difference in the change over “time” 

is (𝑝12 − 𝑝11) −  (𝑝22 − 𝑝21) = 0.20. In this case we also vary the number of clusters 

between 10, 20 and 40, and also consider other marginal probability values for the second 

outcome in the treatment group (0.35 and 0.25), which respectively yield overall effect 

sizes of 0.1 and 0.0. To incorporate inter-cluster variance we simulate the marginal 

probabilities from normal distribution with mean denoted as previous 𝜋𝑖′𝑠 and variance 

0.01 for all probabilities except for 𝑝12 with an inter-cluster variance of 0.04. For each 

case we assume that the correlation between the two outcomes is 𝜌12 = 0.2, irrespective 

of group and cluster. The generalized linear mixed model fitted to the K independent sub-

samples includes fixed effects for time, group, and an interaction between time and 

group, and random effects for repeated measures and cluster. Again, the cluster-based 

approach does not have cluster random effect. And the link function is logit link.  

 

A total of 1000 data sets were simulated for each case and are used to estimate the 

average overall inter-cluster variance, effect size (and standard error) for the case-specific 

hypothesis test, and the empirical power for the case-specific hypothesis test. The 

hypothesis test for the first case we are interested in is whether there are change in rates 

from time 1 to time 2, and for the second case is whether there is a difference in the 

change in rates between two groups from time 1 to time 2. For all cases, we split the 

overall dataset into 𝑘 = 2, … ,6 independent sub-samples for the k independent samples 

approach and use the 20 clusters as sub-samples for the cluster-based approach. The k 

independent samples approach is also examined for existence of hierarchical dependence 
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for all cases. SAS was used to simulate data, split data, fit generalized linear mixed 

models, and do meta-analysis through the IML and GLIMMIX procedures [8]. The 

estimation method used in GLIMMIX procedure is the Maximum Likelihood with 

Laplace Approximation (MSPL). 

 

3.3.1 Simulation Studies 

3.3.1.1 Case One: 20 Clusters, Balanced/Unbalanced, One-Group Data 

The aggregate results over the 1000 simulations for Case One with/without considering 

possible dependence between sub-samples are found in Table 6 and Table 7, respectively. 

All tests correctly rejected the null hypothesis that there are no change in rates from time 

1 to time 2, which was due to the large sample sizes we are assuming. The true test 

statistic of change in rates from time 1 to time 2, which is the parameter for time effect, is 

0.9 given the marginal probabilities for the two outcomes are 𝑝1 = 0.25 and 𝑝2 = 0.45. 

The estimates of test statistics from both splitting approaches were higher than 0.9, and 

using natural clusters leaded to higher test statistic and standard error than independent 

samples approach. Therefore, the independent samples approach worked better than the 

natural existing cluster approach. The inter-cluster variances estimated by the 

independent samples approach were relatively small for all K values. The test statistics 

and standard errors stayed stable without showing a clear trend of change.  . Comparing 

Table 6 and Table 7, we can see that estimates of hierarchical dependence across sub-

samples for the independent samples approach were relatively small and all other 

estimates remained similar. Dependence between sub-samples can be ignored in this 

case. 
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Table 6  Simulation results for Case One without considering dependence across samples 

K 

Balanced Cluster size Unbalanced Cluster Size 

𝜏2 
Test 

Statistic 
SE 

Proportion of 

𝜏2 
Test 

Statistic 
SE 

Proportion of 

p-value<.05 p-value<.05 

2 5.28E-05 0.9290  0.0105  1 3.40E-05 0.9291  0.0096  1 

3 6.01E-05 0.9289  0.0098  1 8.92E-05 0.9290  0.0102  1 

4 1.10E-04 0.9289  0.0102  1 6.32E-05 0.9289  0.0096  1 

5 8.94E-05 0.9287  0.0096  1 8.48E-05 0.9288  0.0098  1 

6 8.25E-05 0.9288  0.0097  1 6.23E-05 0.9287  0.0095  1 

cluster(20) 0.6952 1.0081  0.1781  1 0.6893 1.0071  0.1776  1 

 

 

Table 7  Simulation results for Case one after incorporating dependence across sub-

samples for the independent samples approach 

K 

Balanced Cluster size Unbalanced Cluster Size 

𝜂 𝜏2
 

Test 

Statistic 

SE 

Proportion of  

𝜂 𝜏2
 

Test 

Statistic 

SE 

Proportion of  

p-value<.05 p-value<.05 

2 2.20E-17 5.28E-05 0.9290  0.0105  1 -1.35E-17 3.39E-05 0.9291  0.0096  1 

3 -1.90E-08 6.01E-05 0.9289  0.0098  1 -2.01E-08 8.92E-05 0.9290  0.0102  1 

4 -5.76E-08 1.10E-04 0.9289  0.0102  1 -3.51E-08 6.32E-05 0.9289  0.0096  1 

5 4.73E-08 8.25E-05 0.9288  0.0097  1 -1.41E-07 8.47E-05 0.9288  0.0097  1 

6 -1.85E-07 8.93E-05 0.9287  0.0096  1 -4.35E-08 6.22E-05 0.9287  0.0095  1 
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3.3.1.2 Case Two: 20 Clusters, Balanced/Unbalanced, Two-Group Data 

The aggregate results over the 1000 simulations for Case Two including 2 groups 

with/without considering possible dependence between sub-samples are shown in Table 8 

and Table 9, respectively. For the independent samples approach, all tests correctly 

rejected the null hypothesis that there are no difference in change in rates from time 1 to 

time 2 between treatment and control groups, while the cluster-based approach only had 

~70% power for the corresponding test. Similarly to Case One, using the natural existing 

clusters leaded to larger standard errors of the requisite test statistic. The true test statistic 

of difference between the two groups in change in rates from time 1 to time 2, which is 

the parameter for the interaction term in the model, is 0.9 given the marginal probabilities 

are 𝑝11 = 0.25 and 𝑝12 = 0.45 for the treatment group, and 𝑝21 = 𝑝22 = 0.25 for the 

control group. Test statistic produced by the cluster-based approach had smaller bias than 

the independent samples approach, given the true test statistic of 0.9. The inter-cluster 

variances produced by the independent samples approach were all around 3E-04 ~ 4E-04.  

Again we do not need to consider dependence across sub-samples for k independent 

approach in this case as well since Table 8 and 9 presented similar estimates. 
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Table 8  Simulation results for Case Two without considering dependence across samples 

K 

Balanced Cluster size Unbalanced Cluster Size 

𝜏2 
Test 

Statistic 
SE 

Proportion of 

𝜏2 
Test 

Statistic 
SE 

Proportion of 

p-value<.05 p-value<.05 

2 3.39E-04 0.9219  0.0226  1 3.62E-04 0.9593  0.0206  1 

3 3.91E-04 0.9408  0.0214  1 4.33E-04 0.9490  0.0208  1 

4 3.53E-04 0.9407  0.0209  1 3.55E-04 0.9173  0.0209  1 

5 3.69E-04 0.9405  0.0206  1 4.54E-04 0.9530  0.0209  1 

6 3.54E-04 0.9404  0.0202  1 3.54E-04 0.9449  0.0203  1 

cluster(20) 2.6798 0.8927  0.3534  0.66 2.5828 0.9043  0.3490  0.69 

 

Table 9  Simulation results for Case Two after incorporating dependence across sub-

samples for the independent samples approach 

k 

Balanced Cluster size Unbalanced Cluster Size 

𝜂 𝜏2
 

Test 

Statistic 

SE 

Proportion of  

𝜂 𝜏2
 

Test 

Statistic 

SE 

Proportion of  

p-value<.05 p-value<.05 

2 9.99E-18 3.39E-04 0.9219  0.0226  1 3.98E-18 3.62E-04 0.9593  0.0206  1 

3 6.16E-07 3.91E-04 0.9408  0.0214  1 -2.28E-07 4.33E-04 0.9490  0.0208  1 

4 4.30E-07 3.53E-04 0.9407  0.0209  1 8.76E-08 3.56E-04 0.9173  0.0209  1 

5 -1.75E-07 3.69E-04 0.9405  0.0206  1 -7.95E-07 4.63E-04 0.9530  0.0209  1 

6 4.86E-07 3.54E-04 0.9404  0.0202  1 1.05E-06 3.51E-04 0.9463  0.0203  1 

 

3.3.1.3 Case Three: Varying Other Study Parameters 

We also performed simulations to investigate the effect of other factors which may affect 

the usefulness of these approaches. Based on the second case of two groups, two time 

points, 20 clusters, and unbalanced cluster size, we (1) change the number of clusters to 

10; (2) change the number of clusters to 40; (3) lower the effect size between the two 
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treatment group outcomes change to 0.1 (𝑝11 = 0.25, 𝑝12 = 0.35); and (4) reduce the 

effect size for the treatment group entirely by setting 𝑝11 =  𝑝12 = 0.25. 

 

The aggregate results for 1000 simulated datasets for Case Two with the change of 10 

and 40 unbalanced clusters are shown in Table 10 and Table 11, respectively. Compared 

to the results of Case Two in Table 8, we can see that for the independent samples 

approach, the standard errors of the hypothesis test decreased from ~0.03 to ~0.01 and the 

bias in test statistics (the true test statistic was the same with previous case since all 

marginal probabilities did not change) increased as the number of clusters increases from 

10 to 40, although all tests were correctly significant. The cluster-based approach still had 

larger standard errors and lower bias in test statistic compared to the independent samples 

approach. However, as the number of clusters increased from 10 to 40, the standard 

errors decreased from 0.4883 to 0.2500 and the power of the tests increased from 53% to 

91%. Therefore, the performance of the cluster-based approach increased as the number 

of clusters increases (the total sample sizes). 

Table 10  Simulation results for Case Two with 10 unbalanced clusters 

K 

not consider dependence across sub-samples consider dependence across sub-samples 

𝜏2
 

Test 

Statistic 

SE 

Proportion of 

𝜂 𝜏2
 

Test 

Statistic 

SE 

Proportion of  

p-value<.05 p-value<.05 

2 4.83E-04 0.9244  0.0300  1 2.62E-17 4.83E-04 0.9244  0.0300  1 

3 6.46E-04 0.9264  0.0299  1 -5.57E-07 6.45E-04 0.9264  0.0299  1 

4 7.81E-04 0.9338  0.0296  1 5.82E-07 7.82E-04 0.9338  0.0296  1 

5 1.13E-03 0.9379 0.0301 1 1.04E-06 1.13E-03 0.9379  0.0302  1 

6 9.40E-04 0.9351 0.0291 1 -3.00E-06 9.29E-04 0.9373  0.0291  1 

cluster (10) 2.7215 0.8977 0.4883 0.53           
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Table 11  Simulation results for Case Two with 40 unbalanced clusters 

K 

not consider dependence across sub-samples consider dependence across sub-samples 

𝜏2
 

Test 

Statistic 

SE 

Proportion of 

𝜂 𝜏2
 

Test 

Statistic 

SE 

Proportion of  

p-value<.05 p-value<.05 

2 1.25E-04 0.9323  0.0150  1 -4.82E-18 1.25E-04 0.9323  0.0150  1 

3 1.26E-04 0.9399  0.0146  1 2.18E-07 1.26E-04 0.9399  0.0146  1 

4 2.19E-04 0.9765  0.0151  1 8.41E-08 2.19E-04 0.9764  0.0151  1 

5 1.86E-04 0.9414  0.0145  1 -2.86E-07 1.09E-03 0.9414  0.0145  1 

6 1.66E-04 0.9525  0.0142  1 6.57E-07 4.90E-04 0.9528  0.0152  1 

cluster (40) 2.5989 0.9050  0.2500  0.91           

 

Table 12 and Table 13 show the aggregate results over 1000 simulation datasets for Case 

Two with the change of global marginal probability for treatment group outcome of time 

2 to 𝑝12 = 0.35 and 𝑝12 = 0.25, respectively. Although we reduce the effect size in the 

treatment group to 𝑝12 − 𝑝11 = 0.35 − 0.25 = 0.1, the power of the corresponding tests 

was still high (about 96%) for the independent samples approach, while the power for the 

cluster-based approach decreased to 21%. The true test statistic is 0.48 in this case given 

the desired marginal probabilities for the two groups and time points. The independent 

samples approach had lower bias in test statistics and smaller standard errors than the 

cluster-based approach. And for ineffective treatment group which is the case shown in 

Table 13, the empirical error rate for the cluster-based approach was 22%, while the error 

rate was below 10% for the independent samples approach. The true test statistic is 0 

given all the desired marginal probabilities are 0.25. Same with the less effective 

treatment case, the independent samples approach had smaller bias in test statistics and 

smaller standard errors than the cluster-based approach. Therefore, in the situation of 
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small number of clusters and small effect size, the independent samples approach worked 

better than the cluster-based approach.  

 

Table 12  Simulation results for Case Two with treatment effect size of 0.1 

k 

not consider dependence across sub-samples consider dependence across sub-samples 

𝜏2
 

Test 

Statistic 

SE 

Proportion of 

𝜂 𝜏2
 

Test 

Statistic 

SE 

Proportion of  

p-value<.05 p-value<.05 

2 2.17E-04 0.5386  0.0209  0.97  3.03E-18 2.17E-04 0.5386  0.0209  0.97  

3 4.77E-04 0.5165  0.0222  0.95  2.22E-08 4.69E-04 0.5156  0.0221  0.95  

4 4.95E-04 0.5299  0.0217  0.96  2.01E-07 4.95E-04 0.5299  0.0217  0.96  

5 3.73E-04 0.5129  0.0207 0.97 -7.72E-07 3.72E-04 0.5129  0.0207  0.97  

6 3.14E-04 0.5193 0.0202 0.97 6.84E-07 3.42E-04 0.5211  0.0203  0.97  

cluster (20) 3.2686 0.2597 0.3937 0.21           

 

 

Table 13  Simulation results for Case Two with treatment effect size of 0 

k 

not consider dependence across sub-samples consider dependence across sub-samples 

𝜏2
 

Test 

Statistic 

SE 

Proportion of 

𝜂 𝜏2
 

Test 

Statistic 

SE 

Proportion of  

p-value<.05 p-value<.05 

2 2.42E-04 0.0856  0.0217  0.03  -5.28E-19 2.42E-04 0.0856  0.0217  0.0 

3 4.27E-04 0.0916  0.0221  0.08  -4.48E-07 4.27E-04 0.0916  0.0221  0.08  

4 5.46E-04 0.0452  0.0222  0.07  -3.02E-07 5.46E-04 0.0452  0.0222  0.07  

5 3.52E-04 0.0716 0.0209 0.08 -7.64E-07 3.51E-04 0.0716  0.0209  0.08 

6 2.95E-04 0.0660 0.0204 0.03 -9.27E-06 7.27E-04 0.0682  0.0211  0.09 

cluster (20) 4.2935 -0.4824 0.4580  0.22           
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3.4 Analysis of Cancer Screening Data  

We also examined our approach on the motivating example data. As described in Section 

1.2, data are from a study of an electronic medical record software program (My 

Preventive Care, or MPC) by Krist et al [1]. The MPC program was implemented at the 

practice level, and patients decided whether or not they wanted to register for and use the 

portal. We were interested in determine whether MPC users were more likely to change 

their cancer screening behavior as compared to MPC non-users. Using colon cancer 

screening as an example, the outcome was a patient’s status with respect to whether or 

not they had received any form of colon cancer screening, measured at the most recent 

visit preceding the implementation of MPC into their practice and then updated one 

month, three months, and six months following that implementation.  

 

A hierarchical linear mixed model was fit including the repeated-measure binary outcome 

(patient underwent colon cancer screening or they did not), fixed effects for time (four 

levels: baseline, one, three and six months), group (registered for MPC or not), and their 

interaction, as well as random effects for primary care physicians, who are in turn nested 

with one of eight practices. It was this three-level nested design (patients within 

physicians within practices) that was desired, and was fit using the GLIMMIX procedure 

in SAS to test hypotheses of whether there were differences in change of colon cancer 

screening rates between MPC program users and non-users from baseline to each of one, 

three and six months. Fitting the data to all n=110,029 subjects, the desired model did not 

converge. We chose a subset of the study with n=15,652 subjects where the desired 

model did converge as the overall database in this example. We split the overall database 
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into 𝑘 = 2, … , 8 independent sub-samples using the k independent samples approach and 

used the 8 practices as sub-samples for the cluster-based approach. 

 

The original test results of differences of change in rates of colon cancer screening 

between users and non-users from baseline to month 1, 3, and 6 using the whole dataset 

are found in Table 14. Here we see that all the changes were significantly different 

between users and non-users using the whole dataset.  

Table 14  The tests of differences of change in rates of colon cancer screening between 

users and non-users from baseline to month 1, 3, and 6 using the whole dataset 

User/Non-User Test Statistic SE p-value 

Baseline to Month1 0.1741 0.0317 <.0001* 

Baseline to Month3 0.1698 0.0429 0.0001* 

Baseline to Month6 0.1235 0.0504 0.0130* 

* Z-statistic is significant at level α = 0.05 (Here use z-statistic instead of t-statistic given in SAS output 

because we want to make it comparable to the results for sub-samples) 

 

Table 15 shows the results of the same tests but applied to the sub-samples we created 

and recombined by meta-analysis. Estimates of inter-cluster variances, test statistics, 

standard errors and p-values shown in Table 15 are also plotted in Figure 1 through 

Figure 3. The test results of the whole dataset in Table 16 are also plotted at 𝑘 = 1. 

Compared to results of the whole dataset shown in Table 16, we can see that 𝑘 = 2 gave 

the most similar estimates, standard errors and p-values to those from the whole dataset. 

All test statistics for change from baseline to month 1 and month 3 were significant for 

the independent samples approach. And for change from baseline to month 6, 𝑘 =

4 and 8 yielded non-significant results. From Figures 1 through 3, we can see that smaller 
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k gave more similar results to the whole dataset and there was a trend of decreasing in 

test statistics, and a trend of increasing in both inter-cluster variance and standard error as 

𝑘 increases. For the natural existing clusters approach (here based on the study practices), 

smaller test statistics and larger standard errors leaded to non-significant results which 

were different from those found using the whole dataset. Therefore, the natural existing 

cluster-based approach did not perform as well as the independent samples approach, and 

the smallest possible number of independent sub-samples, which was 2 in this situation, 

worked the best among all choices. The results were also consistent with the results in our 

simulation studies with small number of clusters and small treatment effect size, 

 

Table 15  Estimates of inter-cluster variance and the overall differences of change 

between users and non-users using sub-samples by univariate meta-analytic approach 

User/Non-User 

k=2 k=3 

𝜏2 Test Statistic SE p-value 𝜏2 Test Statistic SE p-value 

baseline to month1 0 0.1743 0.0315 <.0001* 0.0035 0.1717 0.0465 0.0002* 

baseline to month3 0 0.1689 0.0425 0.0001* 0 0.169 0.0426 0.0001* 

baseline to month6 0 0.1232 0.05 0.0137* 0 0.1206 0.0501 0.0161* 

User/Non-User 

k=4 k=5 

𝜏2 Test Statistic SE p-value 𝜏2 Test Statistic SE p-value 

baseline to month1 0 0.174 0.0312 <.0001* 0.0047  0.2051  0.0435  <.0001* 

baseline to month3 0.0038 0.1686 0.0523 0.0013* 0.0034  0.2065  0.0489  <.0002* 

baseline to month6 0.0048 0.1224 0.0605 0.0711 0.0100  0.1583  0.0662  0.0168* 

User/Non-User 

k=6 k=7 

𝜏2 Test Statistic SE p-value 𝜏2 Test Statistic SE p-value 

baseline to month1 0.0060  0.1785  0.0434  <.0001* 0.0004  0.1787  0.0298  <.0001* 

baseline to month3 0.0048  0.1740  0.0489  0.0004* 0 0.1658  0.0390  <.0001* 

baseline to month6 0.0042  0.1225  0.0536  0.0222* 0 0.0920  0.0456  0.0437* 
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User/Non-User 

k=8 8 practices 

𝜏2 Test Statistic SE p-value 𝜏2 Test Statistic SE p-value 

baseline to month1 0.0162  0.1793  0.0542  0.0009* 0.0203 0.0842  0.0619  0.1737 

baseline to month3 0.0122  0.1635  0.0559  0.0035* 0.0138 0.0976  0.0627  0.1197 

baseline to month6 0.0213  0.1217  0.0701  0.0823 0.0064 0.1073  0.0604  0.0758 

* Z-statistic is significant at level α = 0.05 

 

 

 

 

Figure 1  Plot of inter-cluster variances for the whole dataset* and sub-samples created 

by the k independent samples approach 

 

*k = 1 corresponds to the whole dataset and inter-cluster variance for the whole dataset is 0. 
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Figure 2 Plot of estimates of test statistics for the whole dataset* and sub-samples created 

by the k independent samples approach 

 

*k = 1 corresponds to the whole dataset 

 

Figure 3  Plot of standard errors of test statistics for the whole dataset* and sub-samples 

created by the k independent samples approach 

 

*k = 1 corresponds to the whole dataset 
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We also present results after incorporating dependence between sub-samples for the 

independent samples approach in Table 16. The estimates of dependence across sub-

samples 𝜂 were small and the test statistics and standard errors were stable compared to 

those without considering dependence across samples for small k values. The test results 

comparing change from baseline to month 6 did begin to change unpredictably for larger 

values of k, beginning with k=5, suggesting the dependence estimates become more 

unstable for smaller cluster sizes and may adversely affect the results. For small k values, 

there was no need to consider dependence between sub-samples. From the results listed 

in Tables 14 through 16, we conclude that smallest k works best for our motivating 

example, which supports the conclusion of our simulation studies.  

 

Table 16  Test results after incorporating dependence across sub-samples for the 

independent samples approach 

User/Non-User 
k=2 

𝜂 𝜏2 Test Statistic SE p-value 

baseline to month1 0 0 0.1743 0.0314 <.0001* 

baseline to month3 0 0 0.1689 0.0425 0.0001* 

baseline to month6 0 0 0.1232 0.05 0.0137* 

User/Non-User 
k=3 

𝜂 𝜏2 Test Statistic SE p-value 

baseline to month1 -0.0002 0.0033 0.1717 0.0447 0.0001* 

baseline to month3 0.0001 4.70E-05 0.169 0.0432 0.0001* 

baseline to month6 0.0055 0.0055 0.1206 0.0893 0.0177* 

User/Non-User 
k=4 

𝜂 𝜏2 Test Statistic SE p-value 

baseline to month1 0.0001 0.0001 0.1741 0.0331 <.0001* 

baseline to month3 0.0002 0.0004 0.1686 0.0545 0.0020* 

baseline to month6 0.0003 0.005 0.1224 0.0626 0.0507 
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User/Non-User 
k=5 

𝜂 𝜏2 Test Statistic SE p-value 

baseline to month1 0.0003 0.0050 0.2051 0.0471 <.0001* 

baseline to month3 0.0004 0.0039 0.2066 0.0530 <.0001* 

baseline to month6 -0.0008 0.0093 0.1583 0.0601 0.0084* 

User/Non-User 
k=6 

𝜂 𝜏2 Test Statistic SE p-value 

baseline to month1 0.0000 0.0061 0.1785 0.0439 <.0001* 

baseline to month3 -0.0004 0.0044 0.1740 0.0447 <.0001* 

baseline to month6 -0.0004 0.0038 0.1226 0.0495 0.0132* 

User/Non-User 
k=7 

𝜂 𝜏2 Test Statistic SE p-value 

baseline to month1 2.71E-06 0.0004 0.1787 0.0299 <.0001* 

baseline to month3 0 0 0.1658 0.0390 <.0001* 

baseline to month6 0.0011 0.0011 0.0920 0.0566 0.1039 

User/Non-User 
k=8 

𝜂 𝜏2 Test Statistic SE p-value 

baseline to month1 -0.0003 0.0159 0.1793 0.0514 0.0005* 

baseline to month3 -3.39E-06 0.0122 0.1635 0.0559 0.0034* 

baseline to month6 -0.0011 0.0202 0.1217 0.0617 0.0485* 

 

 

3.5  Discussion 

We offered an alternative approach to obtaining estimates when a desired model of 

clustered and dependent binary data does not converge. The idea is to split data into 

subsets that are analyzable by the desired model, and recombine results from subsets by 

meta-analytic approach. The two splitting methods we discussed in this paper are creating 

k independent sub-samples and using the natural existing clusters as sub-samples. Both 
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results from simulation studies and data on cancer screening show that we should avoid 

using natural existing clusters if we could use the k independent samples approach when 

the number of clusters and the treatment effect size are small. The smallest possible 

number of independent sub-samples (that is each sub-sample has converging result by the 

desired model) works best for the independent samples approach.. However, we suggest 

using the independent samples approach when the number of clusters and the treatment 

effect size are large due to the small bias in test statistics and high power of tests. 

Dependence between sub-samples by the k independent samples approach can be 

ignored. 

 

One limitation in the presentation of this research is that the number of k independent 

sub-samples used here is not exhaustive. We only considered the number of independent 

samples up to 8. However, extending this approach to larger number of independent 

samples is straightforward. We have shown that the smallest possible number of 

independent sub-samples works best if the independent samples approach is preferred, 

therefore increasing the number of k should not alter our conclusion. Another limitation 

is that we only consider the meta-analytic approach by DerSimonian and Laird, which 

can be considered as a univariate meta-analysis. Rather than combining all sub-samples’ 

results into one estimate and one standard error, there is also multivariate meta-analytic 

approach [21] combining sub-samples’ results into multiple estimates and standard errors. 

The multivariate meta-analysis may work better than univariate meta-analysis since it 

uses more information from each of the sub-samples, though there may be a trade-off due 

to increased complexity of the meta-analytic model. However, this multivariate meta-
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analysis may only be applicable to the natural existing cluster approach because the 

sample size of multivariate meta-analysis (k) will be too small to give valid inferences for 

the k independent samples approach. We will compare the results of univariate and 

multivariate meta-analytic approaches in Chapter 4. 

 

Another limitation of this research is that we did not consider repeating the independent 

sample process by creating different sub-samples sets and re-estimating the meta-analysis 

outcomes for the independent samples approach. This in effect would create a process 

where the meta-analytic results would be re-estimated for each bootstrap sample, which 

can then be appropriately summarized. We didn’t consider the bootstrap process due to 

long computational time. Since creating one independent sub-samples set worked well at 

providing stable estimates and low inter-cluster variance, we did not consider repeating 

the independent sample process in this research. We will evaluate the performance of 

repeating process in our future work. 
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Chapter 4 Using Multivariate Meta-Analytic Approach 

for Analyzing Clustered Dependent Binary Data 

 

 

 

4.1 Introduction 

In our previous Chapter, we have shown that splitting the overall database into smaller 

components by either the K independent samples approach or the cluster-based approach 

and recombining results using univariate meta-analysis approach, can allow us to fit a 

desired model for clustered dependent binary data when that model won’t converge on 

the entire dataset. In this approach the univariate meta-analysis was calculated on the 

single test statistic (and standard error) of interest.  However, we can also try a 

multivariate meta-analytic approach incorporating multiple test statistics and covariance 

estimates from each sub-sample to combine into a vector of test statistics and standard 

errors. Through multivariate meta-analysis, we could base inferences based on more 

information and thus achieve more accurate results, though there may be a trade-off 

based the increased number of parameters. We want to determine whether multivariate 

meta-analytic approach could be incorporated in our approach and analyze how it 

performs when compared to univariate meta-analytic approach. 

 

Multivariate meta-analysis is the synthesis analysis of estimates of several related 

parameters over several studies [33]. These related parameters often refer to multiple 
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outcomes within one study or to multiple comparisons between more than two groups [34]. 

For our purposes, since we are focusing on the clustered dependent binary measurements 

of a common outcome across treatment groups, we could parse at information from an 

overall test statistic by focusing on change with groups. These group-level estimates, 

along with the corresponding covariance structure, could then be captured within each 

sub-sample, and then combined using multivariate meta-analysis.  

 

To work around the non-convergence issue of clustered dependent binary data, we are 

splitting the overall database by the same approaches mentioned in chapter 3, which are 

the K independent samples approach and clustered based approach. We then estimate 

group-specific statistics and their covariance, and recombine this information from the 

random-effect-based multivariate meta-analytic approach [21]. The rest of this chapter is 

outlined as follows. Section 4.2 presents the sub-sample-generating approaches and the 

multivariate meta-analytic approach we used in this research. These approaches are 

examined in Section 4.3 and Section 4.4 through the same simulation studies and cancer 

screening behaviors data used in Chapter 3, respectively. A brief discussion follows in 

Section 4.5. 
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4.2 Method 

4.2.1 Splitting Approaches 

We utilize the same sub-sample generating approaches presented in Chapter 3 to split the 

overall database into smaller subsets. They are the K independent samples approach and 

the cluster-based approach.  

 

4.2.1.1 K Independent Samples Approach 

The k independent, mutually exclusive sub-samples are created by a process of sampling 

without replacement for k-1 times with the kth sub-sample consisting of the remaining 

N/k subjects, where N is the total number of subjects. Each time we select a sub-sample 

containing N/k subjects without replacement, and the remaining dataset will constitute 

the subject pool for the next sampling.  

 

Sub-samples are generated through the SURVEYSELECT procedure in SAS, which 

provides methods to select probability-based random samples [8]. We use the simple 

random sampling method with stratification of non-overlapping group and cluster effects. 

Running SURVEYSELECT procedure k-1 times, we obtain the K independent mutually 

exclusive sub-samples.  

 

Then we fit the desired model on each sub-sample. The desired model is the same model 

applied to the overall database that originally featured the non-convergence problem, 



57 
 

including all fixed and clustering random effects, and also accounting for repeated 

measurements. If any of the K independent sub-samples cannot converge, we need to 

increase K to k+1 to get smaller sub-samples with higher chance to converge. If all K 

sub-samples converge, we take the estimators of test statistics and standard errors out of 

each sub-sample, which are used as observed effects for the meta-analysis. Since we are 

focusing on binary outcomes with repeated measures and two treatment groups in this 

chapter, the estimators we obtain from each sub-sample are the group-specific test 

statistic and standard error of the change in rates over time on the log-odds scale.  

 

4.2.1.2 Cluster-Based Approach 

The cluster-based approach splits the overall dataset based on the natural existing 

clusters. Each sub-sample then contains subjects from the same cluster. If there are nested 

cluster structures in the dataset (e.g., patients within physicians within practices), we use 

the root clusters as sub-samples (e.g., practices).  

 

The model fit to each sub-sample/cluster is the desired model without the random effect 

of the clustering measure used to split the dataset. Although this clustering effect is 

ignored temporally during this phase, it will be estimated by the meta-analytic approach 

described in next section. The estimators we are taking out of each sub-sample are the 

same with those from the K independent samples approach, which are the group-specific 

test statistic and standard error of change in rates over time. 
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4.2.2  Multivariate Meta-Analytic Approach 

4.2.2.1 Multivariate Meta-Analysis 

We utilize the random-effect based multivariate meta-analytic approach [21] to recombine 

estimates from our sub-samples. Suppose we have 𝑘 studies and 𝑚 effect size estimators 

from each study. The observed effect size estimators are 𝒚𝟏, … , 𝒚𝒌, and their 

corresponding variances are 𝒔𝟏
𝟐, … , 𝒔𝒌

𝟐, where 𝒚𝒊 and 𝒔𝒊
𝟐 are both 𝑚 × 1 vectors for 

study 𝑖 = 1, … , 𝑘.  

The random-effect model for the multivariate meta-analysis [21] is: 

𝒚𝒊~𝑁𝑚(𝝁, 𝑉𝑖 + Σ), 

where 𝝁 is a 𝑚 × 1 vector representing the overall effect size, 𝑉𝑖 is the diagonal matrix 

with diagonal elements equal to the vector of 𝒔𝒊
𝟐 representing the within study variances, 

Σ is the between study covariance matrix of the observed effect. Given estimators 

of 𝒚𝒊 and 𝑉𝑖, we need only estimate 𝝁 and Σ. Maximum likelihood estimation for this 

model can be carried out by linear mixed-effect models. Since the sample size of this 

model formulation is the number of sub-samples generated, this model may not be 

appropriate when the number of sub-samples is small.  

 

4.2.2.2 Multivariate Meta-Analysis applied in our case 

We are focusing on clustered dependent binary data in this research. Suppose we have 

two repeated (time 1, time 2) binary outcomes with two treatment groups (treatment, 

control). The hypothesis test we are interested in is whether there are differences between 
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the two groups in change of outcome rates from time 1 to time 2. Rather than taking the 

overall test statistic and standard error of this hypothesis test (as done in the previous 

Chapter), here we take the two test statistics and corresponding standard errors of the 

change in rates on the log-odds scale from time 1 to time 2 for the treatment group and 

the control group separately. Let 𝑦𝑇,𝑖 denote the test statistic of change of outcome rates 

from time 1 and time 2 for treatment group of sub-sample 𝑖, and 𝑦𝐶,𝑖 denote the same test 

statistic for control group of sub-sample 𝑖, 𝑖 = 1, … , 𝑘. The corresponding standard errors 

for 𝑦𝑇,𝑖 and 𝑦𝐶,𝑖 are 𝑠𝑇,𝑖 and 𝑠𝐶,𝑖. The resulting random-effect model for multivariate 

meta-analysis in our case is: 

(
𝑦𝑇,𝑖

𝑦𝐶,𝑖
) ~𝑁2 ((

𝜇𝑇

𝜇𝐶
) , 𝑉𝑖 + Σ), with 𝑉𝑖 = (

𝑠𝑇,𝑖
2 0

0 𝑠𝐶,𝑖
2 ) 

where 𝜇𝑇 and 𝜇𝐶 are the overall test statistics for treatment group and control group, 

and Σ is the between-sub-sample covariance matrix. 𝑦𝑇,𝑖, 𝑦𝐶,𝑖, 𝑠𝑇,𝑖, and 𝑠𝐶,𝑖 are the 

estimators taken from results of sub-sample 𝑖 fitted by the desired model without 

considering the root cluster random effect. Given the 𝑘 sets of (𝑦𝑇,𝑖, 𝑦𝐶,𝑖, 𝑠𝑇,𝑖, 𝑠𝐶,𝑖), we 

need to estimate 𝜇𝑇, 𝜇𝐶, and Σ. Maximum likelihood estimation for this mixed model can 

be carried out by the MIXED procedure in SAS. However, the number of sub-samples 𝑘, 

which is the sample size in this analysis, should be large enough to get appropriate 

estimators. 

 

The differences between the two groups in change of outcome rates from time 1 to time 2 

can then be estimated through conducting a hypothesis test of the difference between 𝜇𝑇 
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and 𝜇𝐶 after the model is fitted. Let �̂� = (𝜇�̂� , 𝜇�̂�  )𝑇represent the vector of estimated 

overall test statistic on log-odds scale for treatment group and control group and Φ̂ =

(
var(𝜇�̂�) cov(𝜇�̂� , 𝜇�̂�  )

cov(𝜇�̂� , 𝜇�̂�  ) var(𝜇�̂�)
) represent the estimated covariance matrix for �̂�. The null 

hypothesis is that there is no difference between the two groups in change of log-odds 

ratios from time 1 to time 2 (𝐻0: 𝑳𝑇𝝁 = [1 −1][𝜇𝑇 𝜇𝐶]𝑇 = 𝜇𝑇 − 𝜇𝐶 = 0). We can 

conduct a Wald hypothesis of 𝑳𝑇�̂�: 

𝑳𝑇�̂�

(𝑳𝑇�̂�𝑳)
1/2 ~𝑁(0,1) under 𝐻0 

The test statistic 𝑳𝑇�̂� and its standard error (𝑳𝑇Φ̂𝑳)
1/2

will be comparable to those of the 

same test generated by the univariate meta-analytic approach shown in Chapter 3. 

And 𝑳𝑇Σ̂𝑳, where Σ̂ is the estimated between-sub-sample variance matrix, represents the 

inter-study variance and is also comparable to inter-cluster variance estimator �̂�2produced 

by the univariate meta-analytic approach. 

 

4.3 Simulation Study 

The performance of using the multivariate meta-analytic approach is examined using the 

same parameter templates from the simulation studies conducted in Chapter 3, i.e. using 

the same 1000 simulation data sets and the same subsets generated by the K independent 

samples approach and the cluster-based approach. However, small k values from the K 

independent samples approach do not work for multivariate meta-analysis. The number 

of sub-samples k we considered for simulation studies in this Chapter are 5 and 6, 

excluding 2, 3, and 4 which are presented in Chapter 3 by univariate meta-analysis. Due 
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to poor performance in the previous Chapter, we do not consider dependence across sub-

samples for the K independent approach. 

 

The first case is the simple situation with one group and two time points over 20 clusters. 

The marginal probabilities for the two outcomes are 𝑝11 = 0.25 and 𝑝12 = 0.45, giving 

an effect size of 0.2. The cluster sample size has a balanced case where n is fixed at 5000 

and also an unbalanced case where n is sampled from a normal 

distribution 𝑁(5000, 1002). The hypothesis test for the first case we are interested in is 

whether there are change in rates over time. Since there is only one group in this case, the 

time-specific mean log-odds ratios will be used as the input test statistic for the 

multivariate meta-analysis. The mixed linear model fitted to sub-samples remain the 

same as described in Chapter 3, including time as fixed effect, repeated measures and 

clusters as random effects (for cluster-based approach there will not be cluster random 

effect). We use logit link function because of binary data.  

 

The second case extends the first case with two groups (treatment and control) and two 

time points over 20 clusters. Again the cluster sample size has a balanced case where n is 

fixed at 5000 and also an unbalanced case where n is sampled from a normal 

distribution 𝑁(5000, 1002). The global marginal probabilities are 𝑝11 = 0.25 and 𝑝12 =

0.45 for the two treatment outcomes and are  𝑝21 = 𝑝22 = 0.25 for the two control 

outcomes, indicating the difference between the two groups in the change over “time 

is (𝑝12 − 𝑝11) −  (𝑝22 − 𝑝21) = 0.20. In this case we also vary the number of clusters 
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between 10, 20 and 40, and also consider other marginal probability values for the second 

outcome in the treatment group (0.35 and 0.25), which respectively yield overall effect 

sizes of 0.1 and 0.0. The hypothesis test for this two-group case is whether there is a 

difference in the change in rates between the two groups over time. Therefore, the group-

specific log-odds ratios of change over time will be used as the input test statistic for the 

multivariate meta-analysis. The mixed linear model fitted to each sub-sample is the same 

with the first case except for including fixed effects for group and an interaction between 

time and group. Link function is the same as well.  

 

4.3.1 Simulation Studies 

4.3.1.1 Case One: 20 Clusters, Balanced/Unbalanced, One-Group Data 

The aggregate results over the 1000 simulations for Case One with balanced and 

unbalanced clusters using multivariate meta-analytic approach are shown in Table 17 and 

Table 18, respectively. The results using univariate meta-analytic approach shown in 

Chapter 3 are also provided for a comparison purpose (the univariate results are provided 

alongside all the multivariate results in Section 3.1). Here  𝜎11 ,  𝜎12 , and 𝜎22  are the 

covariance parameters for the between sub-sample covariance  matrix Σ = [
𝜎11 𝜎12

𝜎12 𝜎22
]. The 

inter-cluster variance 𝜏2 for the multivariate meta-analytic approach is calculated by 𝜏2 =

 𝑪𝑇Σ𝑪 = [1 −1] [
𝜎11 𝜎12

𝜎12 𝜎22
] [

1
−1

] = 𝜎11 + 𝜎22 − 2𝜎12.  

 

From Table 17 and Table 18, we can see that for the K independent samples approach, 

multivariate meta-analysis had relatively larger  𝜏2  standard errors compared to the 
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univariate meta-analysis. The true test statistic is still 0.9, both meta-analytic approaches 

had about 0.03 bias. This may be due to the relatively low convergence rate of multivariate 

meta-analysis (around 10% to 20%) applied to this one-group data (convergence rates were 

nearly 100% for all other cases of simulation studies). However, for the cluster-based 

approach, the multivariate approach had slightly smaller 𝜏2, test statistics, and standard 

errors than the univariate approach. The bias in test statistic was small (below 0.01). The 

convergence rate of multivariate meta-analysis for the cluster-based approach was 100%. 

All tests correctly rejected the null hypothesis that there is no change over time due to the 

large sample sizes we are assuming. 

 

 

Table 17  Case One with 20 balanced clusters using multivariate and univariate meta-

analytic approaches 

Meta-Analysis k 𝜏2 Test Statistic SE 
proportion of  

p-value<.05 
𝜎11 𝜎12 𝜎22 

Multivariate  

5 9.79E-04 0.8673  0.0140  1 0 2.12E-03 0 

6 4.54E-03 0.8725  0.0317  1 0 3.68E-04 0 

Cluster (20) 0.6720 1.0076  0.1745  1 0.507 3.91E-03 0.173 

Univariate 

5 8.94E-05 0.9287  0.0096  1       

6 8.25E-05 0.9288  0.0097  1    

Cluster (20) 0.6952  1.0081  0.1781  1       

 

 

 

 

Table 18  Case One with 20 unbalanced clusters using multivariate and univariate 

meta-analytic approaches 

Meta-Analysis k 𝜏2 Test Statistic SE 
proportion of  

p-value<.05 
𝜎11 𝜎12 𝜎22 
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Multivariate  

5 5.51E-03 0.9160  0.0413  1 0 -9.96E-04 0 

6 4.60E-03 0.8930  0.0307  1 0 7.86E-04 0 

Cluster (20) 0.6661 1.0064  0.1740  1 0.503 4.58E-03 0.172 

Univariate 

5 8.48E-05 0.9288  0.0098  1       

6 6.23E-05 0.9287  0.0095  1    

Cluster (20) 0.6893  1.0071  0.1776  1       

 

4.3.1.2 Case Two: 20 Clusters, Balanced/Unbalanced, Two-Group Data 

The aggregate results over the 1000 simulations for Case Two including 2 groups with 

balanced and unbalanced clusters using multivariate and univariate meta-analytic 

approaches are shown in Table 19 and Table 20, respectively. For the K independent 

samples approach, the multivariate meta-analysis gave larger 𝜏2 and slightly smaller 

standard errors than the univariate meta-analysis, and all tests correctly rejected the null 

hypothesis that there is no difference between the two groups in change over time. For 

the cluster-based approach, the multivariate meta-analysis gave smaller 𝜏2 and standard 

errors compared to the univariate meta-analysis. The power for the hypothesis test was 

almost the same for both meta-analyses (about 70%). Compared to the true test statistic 

0.9, the cluster-based approach had lower bias in test statistic than the independent 

samples approach. 

 

 

Table 19  Case Two with 20 balanced clusters using multivariate and univariate meta-

analytic approaches 

 Meta-

Analysis 
k 𝜏2 

Test 

Statistic 
SE 

proportion of  

p-value<.05 
𝜎11 𝜎12 𝜎22 

Multivariate 
5 5.34E-04 0.9474  0.0191  1 3.78E-04 7.76E-05 3.11E-04 

6 4.91E-04 0.9483  0.0197  1 2.62E-04 1.31E-06 2.31E-04 
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Cluster 

(20) 
2.5666 0.8917  0.3458  0.67  1.80 0.14 1.04 

Univariate 

5 3.69E-04 0.9405  0.0206  1       

6 3.54E-04 0.9404  0.0202  1    

Cluster 

(20) 
2.6798  0.8927  0.3534  0.66        

 

Table 20  Case Two with 20 balanced clusters using multivariate and univariate meta-

analytic approaches 

Meta-Analysis k 𝜏2 Test Statistic SE 
proportion of  

p-value<.05 
𝜎11 𝜎12 𝜎22 

Multivariate 

5 6.71E-04 0.9557  0.0204  1 2.11E-04 -1.09E-04 2.43E-04 

6 4.30E-04 0.9405  0.0196  1 1.54E-04 6.04E-05 3.97E-04 

Cluster (20) 2.4706  0.9044  0.3410  0.70  1.72 1.18E-01 0.99 

Univariate 

5 4.54E-04 0.9530  0.0209  1       

6 3.54E-04 0.9449  0.0203  1    

Cluster (20) 2.5828  0.9043  0.3490  0.69        

 

 

4.3.1.3 Case Three: Varying Other Study Parameters 

Tables 21 and Table 22 show the aggregate results for 1000 simulated datasets for Case 

Two with 10 and 40 unbalanced clusters, respectively. In both cases for both the K 

independent samples approach and the cluster-based approach, the multivariate meta-

analysis gave smaller 𝜏2  and standard errors compared to the univariate meta-analysis, 

which was similar to the results for 20 clusters shown in Table 20. Compared to the true 

test statistic 0.9, the independent samples approach had larger bias in test statistic than the 

cluster-based approach, and the bias increased as the number of cluster increased. For the 

cluster-based approach, the power for the hypothesis test decreased to about 50% for both 

meta-analysis approaches. However, if the number of clusters increased to 40, the power 

for the hypothesis test increased to 91% due to the larger total sample sizes in this 
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simulation study.  Multivariate and univariate meta-analysis gave similar estimates of 𝜏2, 

test statistics, and standard errors in this situation, and the standard errors were relatively 

smaller than those in the cases of 10 and 20 clusters. Based on Table 20 through 22, we 

conclude that the performance of multivariate meta-analysis and univariate meta-analysis 

for the cluster-based approach increased as the total sample size (number of clusters) 

increased. And we recommend the cluster-based approach over the independent samples 

approach for the situation with large number of clusters and large treatment effect size. 

 

Table 21  Case Two with 10 unbalanced clusters using multivariate and univariate 

meta-analytic approaches 

 Meta-

Analysis 
k 𝜏2 

Test 

Statistic 
SE 

proportion of  

p-value<.05 
𝜎11 𝜎12 𝜎22 

Multivariate 

5 1.44E-03 0.9330  0.0291  0.99  6.57E-04 -8.18E-05 6.17E-04 

6 3.14E-04 0.9367  0.0259  1 4.84E-04 3.09E-04 4.48E-04 

Cluster (10) 2.4731  0.8983  0.4650  0.54  1.50 8.63E-03 9.89E-01 

Univariate 

5 1.13E-03 0.9379  0.0301  1       

6 9.40E-04 0.9351  0.0291  1    

Cluster (10) 2.7215  0.8977  0.4883  0.53        

 

 

 

 

 

Table 22  Case Two with 40 unbalanced clusters using multivariate and univariate 

meta-analytic approaches 

 Meta-

Analysis 
K 𝜏2 

Test 

Statistic 
SE 

proportion of  

p-value<.05 
𝜎11 𝜎12 𝜎22 

Multivariate 
5 3.74E-04 0.9351  0.0148  1 1.22E-04 -4.92E-05 1.54E-04 

6 2.79E-04 0.9530  0.0142  1 1.65E-04 -3.07E-06 1.08E-04 
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Cluster (40) 2.5163  0.9055  0.2459  0.91  1.74 8.21E-02 9.37E-01 

Univariate 

5 1.86E-04 0.9414  0.0145  1       

6 1.66E-04 0.9525  0.0142  1    

Cluster (40) 2.5989  0.9050  0.2500  0.91        

 

Table 23 and Table 24 show the aggregate results for 1000 simulated datasets for Case 

Two with treatment effect sizes of 0.1 and 0, respectively. The multivariate meta-analysis 

and univariate meta-analysis behaved similarly in both cases. The power of the 

hypothesis test for the cluster-based approach was relatively low (about 20%) compared 

to the power for the K independent samples approach if the treatment was less effective 

(effect size 0.1). When the effect size between treatment groups was 0.0 (reflecting an 

ineffective treatment), the empirical error rates were all low, with the multivariate and 

univariate K samples approaches having ~10% error, and with the univariate and 

multivariate cluster-based approaches having ~20% error. When comes to the test 

statistics, the independent samples approach had lower bias than the cluster-based 

approach, compared to the true test statistic of 0.48 for treatment effect size of 0.1 and 0 

for treatment effect size of 0. 

 

In conclusion, the K independent samples approach seems to be out-performing the 

cluster-based approach when the number of clusters and treatment effect size are small. 

However, the cluster-based approach is better when the number of clusters and treatment 

effect size are large with respect to the low bias in test statistics. For both the K 

independent samples and the cluster-based approaches, the multivariate meta-analytic 

approach performs similarly with univariate meta-analytic approach when using large k 
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values, though the univariate approaches were better for small numbers of clusters and in 

the simple one-group, two-time point case.  

 

Table 23  Case Two with 20 unbalanced clusters and a treatment effect size of 0.1 

using multivariate and univariate meta-analytic approaches 

Meta-Analysis k 𝜏2 Test Statistic SE 
proportion of  

p-value<.05 
𝜎11 𝜎12 𝜎22 

Multivariate 

5 7.62E-04 0.5128  0.0208  0.95  2.22E-04 -8.10E-05 3.77E-04 

6 2.97E-04 0.5149  0.0192  0.97  1.57E-04 7.33E-05 2.86E-04 

Cluster (20) 3.1500  0.2617  0.3858  0.22  2.26 4.83E-02 9.86E-01 

Univariate 

5 3.73E-04 0.5129  0.0207  0.97        

6 3.14E-04 0.5193  0.0202  0.97     

Cluster (20) 3.2686  0.2597  0.3937  0.21        

 

Table 24  Case Two with 20 unbalanced clusters and an ineffective treatment effect 

using multivariate and univariate meta-analytic approaches 

Meta-Analysis k 𝜏2 Test Statistic SE 
Proportion of  

p-value<.05 
𝜎11 𝜎12 𝜎22 

Multivariate 

5 1.03E-03 0.0715  0.0220  0.09  1.40E-04 -1.95E-04 5.02E-04 

6 2.06E-04 0.0660  0.0190  0.08  1.27E-04 1.27E-04 3.33E-04 

Cluster (20) 4.1420  -0.4779  0.4495  0.21  3.10 -2.39E-02 9.93E-01 

Univariate 

5 3.52E-04 0.0716  0.0209  0.08        

6 2.95E-04 0.0660  0.0204  0.09     

Cluster (20) 4.2935  -0.4824  0.4580  0.22        

 

 

 

4.4 Analysis of Cancer Screening Data 

Here we apply the multivariate meta-analytic approach to the colon cancer screening data 

[1] used in Chapter 3. There are two treatment groups (the MPC program users and non-
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users), 4 repeated measurements at baseline, one month, three months, and six months, 

and nested cluster structures (patients within physicians within practices) in the data.   

 

The same hierarchical linear mixed model was fit including the repeated-measure binary 

outcome (patient underwent colon cancer screening or they did not), fixed effects for 

time, group, and their interaction, as well as random effects for primary care physicians, 

who are in turn nested with one of eight practices. This model was fit using the 

GLIMMIX procedure in SAS to test whether there were differences in the change in 

colon cancer screening rates between MPC program users and non-users from baseline to 

each of one, three and six months. The group-specific test statistic of change of colon 

cancer screening rates are used as observed effects for multivariate meta-analysis. We 

chose a subset of the study with n=15,652 subjects where the desired model did converge 

as the overall database in this example. We split the overall database into large k from 5 

to 8 independent sub-samples using the k independent samples approach and used the 8 

practices as 8 sub-samples for the cluster-based approach.  

 

Table 25 shows the test results of differences in change in log-odds between users and 

non-users from baseline to month 1, 3, and 6 applied to the sub-samples we created and 

recombined by multivariate meta-analytic approach. The results of the same tests by 

univariate meta-analytic approach are also provided for comparison purpose. For the 

independent samples approach, all test statistics were correctly significant except for 𝑘 =

8 from baseline to month 6 using univariate meta-analytic approach. The estimated inter-
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cluster variances 𝜏2 and the standard errors of the test statistic by multivariate meta-

analysis were slightly lower than those by univariate meta-analysis, resulting in lower p-

values of the hypothesis test. For the cluster-based approach, all test statistics were not 

significant, which did not match the results of whole dataset presented in Table 25 in 

Chapter 3. The inter-cluster variances and the standard errors from multivariate meta-

analysis were slightly larger than those by univariate meta-analysis, resulting in larger p-

values of the hypothesis test. However, since all tests were not significant, we conclude 

that the clustered based approach did not perform as well as the K independent samples 

approach when results were combined by either the univariate or multivariate meta-

analysis. Compared to the results from the whole dataset, multivariate meta-analysis for 

large k values behaved similarly with, or at least as well as univariate meta-analysis, 

although there was one test was incorrectly non-significant.  

 

 

 

 

 

Table 25  Test results applied to cancer screening data by multivariate and univariate 

meta-analytic approaches 

k 
User/Non-

User 

Multivariate Univariate 

 𝜏2 
Test 

Statistic 
SE p-value 𝜎11 𝜎12 𝜎22 𝜏2 

Test 

Statistic 
SE p-value 

k=5 
baseline to 

month1 
0.0029 0.2048  0.0390  <.0001* 4.33E-03 7.07E-04 0 0.0047 0.2051  0.0435  <.0001* 
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baseline to 

month3 
0.0018 0.2060  0.0452  <.0001* 3.62E-03 9.20E-04 0 0.0034 0.2065  0.0489  <.0002* 

baseline to 

month6 
0.0037 0.1549  0.0555  0.0053* 5.08E-03 6.75E-04 0 0.0100 0.1583  0.0662  0.0168* 

k=6 

baseline to 

month1 
0.0045 0.1804  0.0403  <.0001* 4.28E-03 -1.00E-04 0 0.0060 0.1785  0.0434  <.0001* 

baseline to 

month3 
0.0012 0.1749  0.0420  <.0001* 4.22E-03 2.27E-03 1.47E-03 0.0048 0.1740  0.0489  0.0004* 

baseline to 

month6 
0 0.1242  0.0459  0.0068* 0 1.13E-04 0 0.0042 0.1225  0.0536  0.0222* 

k=7 

baseline to 

month1 
0.0003 0.1755  0.0297  <.0001* 0 -1.10E-04 1.20E-04 0.0004 0.1787  0.0298  <.0001* 

baseline to 

month3 
0 0.1663  0.0380  <.0001* 0 2.48E-04 0 0 0.1658  0.0390  <.0001* 

baseline to 

month6 
0 0.1018  0.0388  0.0087* 0 1.85E-03 2.64E-04 0 0.0920  0.0456  0.0437* 

k=8 

baseline to 

month1 
0.0127 0.1836  0.0497  0.0002* 1.52E-02 1.34E-03 1.69E-04 0.0162 0.1793  0.0542  0.0009* 

baseline to 

month3 
0.0093 0.1642  0.0524  0.0017* 9.27E-03 6.45E-04 1.28E-03 0.0122 0.1635  0.0559  0.0035* 

baseline to 

month6 
0.0149 0.1252  0.0639  0.0499* 1.93E-02 3.41E-03 2.44E-03 0.0213 0.1217  0.0701  0.0823 

Cluster  

(8) 

baseline to 

month1 
0.0224 0.0834  0.0637  0.1908 4.02E-02 1.37E-02 9.68E-03 0.0203 0.0842  0.0619  0.1737 

baseline to 

month3 
0.0220 0.0797  0.0696  0.2523 2.86E-02 3.30E-03 6.80E-05 0.0138 0.0976  0.0627  0.1197 

baseline to 

month6 
0.0066 0.0910  0.0601  0.1299 1.09E-02 3.11E-03 1.83E-03 0.0064 0.1073  0.0604  0.0758 

 

 

4.5 Discussion 

To work around the non-convergence issue for clustered dependent binary data, we split 

data into subsets either by the K independent samples approach or the cluster-based 

approach and recombine results from subsets by a meta-analytic approach. We have 

shown the efficiency of using univariate meta-analytic approach in Chapter 3, and we 

also investigated the performance of using multivariate meta-analytic approach to 

recombine results from subsets in this Chapter. Both results from simulation studies and 

data on cancer screening showed that multivariate meta-analytic approach behaved 

similarly with univariate meta-analytic approach. We recommend using the independent 

samples approach over the cluster-based approach when the number of clusters and 

treatment effect size are small, and in this case the smallest possible number of K works 
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best. However, the cluster-based approach is preferred if data has large number of 

clusters and treatment effect size.  

 

One limitation in the presentation of this research is that multivariate meta-analysis is 

only suitable for large k values. We only considered the number of independent sub-

samples 𝑘 ≥ 5 in this research. However, if k is small, using univariate meta-analytic 

approach is more straightforward than using multivariate meta-analytic approach since 

we have already shown that the smallest possible number of independent sub-samples 

works best if we use univariate meta-analysis. If k is small, our suggestion is to use the K 

independent samples approach to split data and recombine by univariate meta-analytic 

approach. 

 

Another limitation in this research is that the independent sub-samples are generated 

arbitrarily for the independent samples approach, as described in Chapter 3. We did not 

consider repeating the independent sample generation process by creating different sub-

samples sets and re-estimating the meta-analysis outcomes due to long computational 

time. This actually affects the multivariate meta-analysis success rate because we use a 

mixed model to do multivariate meta-analysis and these mixed model’s convergence 

depends on the data which is the sets of sub-samples when the sample size is so small. 

We will evaluate the performance of bootstrapping the sets of independent sub-samples 

as well as increasing the number of independent sub-samples k in our future work. 
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Chapter 5 Discussion 

 

 

 

We provided an innovative idea to work around the non-convergence issue of using 

mixed models to analyze large, clustered dependent binary data. This approach splits the 

overall database into smaller components that are analyzable by the desired model and 

recombines the separate results through meta-analytic approaches. We showed several 

ways to split the data, either by generating K independent samples or by using the 

naturally existing clusters. We also investigated using either the univariate or multivariate 

meta-analytic approaches. For both meta-analytic approaches, splitting the data into 

independent samples worked better than using the natural clusters if data have small 

number of clusters and treatment effect size. And we recommend to use the smallest 

possible number of sub-samples for the K independent samples approach in this case, 

with respect to the most similar estimates with results from the whole dataset. If data 

have large number of clusters and treatment effect size, then the cluster-based approach is 

preferred. 

  

There are several limitations in the presentation of this research. Firstly, this approach is 

only applicable to data with large sample size (n ≫ 1000). However, non-convergence 

issue is rarely found in data with small sample size. If a desired model does not converge 

for a “small” data, we do not recommend our approach, and researchers should consider 
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other ways to work around this issue. We also only focused on binary outcomes in our 

research. The approaches here could be applied to cases with continuous outcomes where 

the desired model does not converge, though their effectiveness will need to be 

investigated. In addition, our simulation template was not exhaustive with respect to the 

number of repeated measures, clustering or nesting types, and the number of treatment 

groups. We will consider varying these factors in our simulation templates to evaluate the 

performance of our approach in future work. 

 

Another limitation in our research is that we did not consider the situation when some 

clusters were so large that the desired model would still not converge using the cluster-

based approach. One possible solution will be to split those non-converging clusters into 

smaller subsets that converge using the independent samples approach, and then combine 

all subsets using meta-analysis. Since we would be creating subsets out of individual 

clusters, we may need to account for that dependence in our meta-analytic technique 

when combining the results. We would also need to investigate whether this approach 

works better than just using the independent samples approach from the start. We will 

study this question in our future work. 

 

Another limitation as mentioned in the previous Chapters is that we did not try 

bootstrapping the process of generating the K independent sub-samples. The main reason 

for not trying bootstrapping is that the computational time is exponentially long. And the 

estimate of inter-cluster variance is low in all cases suggesting that splitting for more than 
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one time may not improve the results. If splitting the data once and the estimated inter-

cluster variance is large, then we recommend to generate another set of independent sub-

samples to see whether the inter-cluster variance decreases. 

 

An important statistical value of our research is that the idea that we provided is not 

limited to apply on clustered data only. Theoretically, one may try to apply this “split and 

combine” process to other non-convergence models as long as smaller components of the 

overall database are analyzable by the desired model. The biggest advantage of our idea 

is that the hierarchical structure of the desired model is not reduced. We also did not omit 

any information the whole dataset provided.  

 

  



77 
 

 

 

List of References 

 

 

 

1. Krist AH, Aycock RA, Etz RS, Devoe JE, Sabo RT, Williams R, Stein KL, 

Iwamoto G, Puro J, Deshazo J, Kashiri PL, Arkind J, Romney C, Kano M, Nelson 

C, Longo DR, Wlover S, Woolf SH (2015). MyPreventiveCare: implementation 

and dissemination of an interactive preventive health record in three practice-

based research networks serving disadvantaged patients. Implementation Science 

9(181): epub.  

2. Murray DM, Varnell SP, Blitstein JL(2003). Design and analysis of group-

randomized trials: a review of recent methodological advances. American Journal 

of Public Health. 94(3):423-432 

3. Galbraith S, Daniel JA, Vissel B (2010).  A study of clustered data and 

approaches to its analysis. The Journal of Neuroscience. 30(32):10601-10608 

4. Campbell MK, Grimshaw JM (1998). Cluster randomized trials: time for 

improvement. The implications of adopting a cluster design are still largely being 

ignored [editorial]. BMJ. 317:1171-1172 

5.  Zyzanski SJ, Flocke SA, Dickinson LM (2004). On the Nature and Analysis of 

Clustered Data. Annals of Family Medicine. 2(3): 199–200.  

6.  Kerry SM, Bland JM (1998). The intracluster correlation coefficient in cluster 

randomization. BMJ. 316(7142):1455-1460 



78 
 

7. Killip S, Mahfoud Z, Pearce K (2004). What is an intracluster correlation 

coefficient? crucial concepts for primary care researchers. Annals of Family 

Medicine. 2(3):204-208 

8. SAS Institute Inc. 2008. SAS/STAT® 9.2 User’s Guide. Cary, NC: SAS Institute 

Inc. 

9.  Liang X, Laurence VM (2014). %HPGLIMMIX: A high-performance SAS 

macro for GLMM estimation. Journal of Statistical Software. 58(8): 1-25 

10. Fitzmaurice G.M (n.d.). Overview of Methods for Analyzing Cluster-Correlated 

Data [PowerPoint slides]. Retrieved April 15, 2016, from 

https://catalyst.harvard.edu/docs/biostatsseminar/Fitzmaurice_BSP-Workshop-

Slides.pdf 

11. Cappelleri JC, Loannidis JP, Schmid CH, Ferranti SD, Aubert M, Chalmers T, 

Lau J (1996). Large trials vs meta-analysis of smaller trials—how do their results 

compare? The Journal of the American Medical Association 276(16): 1332-1338. 

12. The Institute of Medicine (2001). Small Clinical Trials: Issues and Challenges. 

Washington, DC: The National Academies Press. 

13. DerSimonian R, Kacker R (2007). Random-effects model for meta-analysis of 

clinical trials: an update. Contemporary Clinical Trials 28: 105-114.  

14. Haidich AB (2010). Meta-analysis in medical research. Hippokratia. 14(Suppl 1): 

29–37. 

15. Pearson K (1904). Report on certain enteric fever inoculation statistics. BMJ. 

3(2288): 1243-1246 



79 
 

16. O’Rourke K (2007). An historical perspective on meta-analysis: dealing 

quantitatively with varying study results. Journal of the Royal Society of 

Medicine. 100(12): 579-582. 

17. Glass GV(1976). Primary, secondary and meta-analysis of research. Educ 

Researcher.10: 3-8 

18. Reinard, J. (n.d.). Chapter 12: Meta-Analysis. Communication Research Statistics. 

Retrieved April 15, 2016, from 

http://commfaculty.fullerton.edu/jreinard/stat_ch12.htm 

19. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009). Introduction to 

metaanalysis. Chichester: Wiley. 

20. DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Controlled 

Clinical Trials 7: 177-187 

21. Houwelingen HC, Arends LR, Stinen T (2002). Advanced methods in meta-

analysis: multivariate approach and meta-regression. Statistics in Medicine 

21:589-624. 

22. Emrich LJ, Piedmonte MR (1991). A method for generating high-dimensional 

multivariate binary variates. The American Statistician 45(4): 302-304. 

23. Kang S-H, Jung S-H (2001). Generating correlated binary variables with complete 

specification of the joint distribution. Biometrical Journal 43(3): 263-269.  

24. Sabo RT, Haynes ME, Chaganty NR (2015). Using odds ratios to simulate 

dependent binary outcomes. Communications in Statistics: Simulation and 

Computation; submitted.  

http://commfaculty.fullerton.edu/jreinard/stat_ch12.htm


80 
 

25. Koning IM, Eijnden RJ, Verdurmen JE, Engels RC, Vollebergh WA (2011). 

Long-term effects of a parent and student intervention on alcohol use in 

adolescents:a cluster randomized controlled trial. American Journal of Preventive 

Medicine 40(5):541–547. 

26. Joe H (1997). Multivariate Models and Dependence Concepts. London: Chapman 

and Hall.  

27. Chaganty NR, Joe H (2006). Range of correlation matrices for dependent 

Bernoulli random variables. Biometrika 93(1): 197-206. 

28. Haynes ME, Sabo RT, Chaganty NR (2016). Simulating dependent binary 

variables through multinomial sampling. Journal of Statistical Computation and 

Simulation 86(3): 510-523. 

29. Qaqish BF(2003). A family of multivariate binary distributions for simulating 

correlated binary variables with specified marginal means and correlations. 

Biometrika 90: 455-463. 

30. Donner A, Birkett N, Buck C (1981). Randomization by cluster: sample size 

requirements and analysis. American Journal of Epidemiology 114: 906-914. 

31. Stevens, J. R., Taylor, A. M. (2009). Hierarchical dependence in meta-analysis. 

Journal of Educational and Behavioral Statistics 34: 46-73. 

32. Wang A, Sabo RT (2015). Simulating clustered and dependent binary variables. 

Austin Biometrics and Biostatistics 2(2): e1020. 

33. White IR (2009). Multivariate random-effects meta-analysis. The Stata Journal 

9(1): 40–56. 



81 
 

34. Becker BJ (2000). Multivariate meta-analysis. In Handbook of applied 

multivariate statistics and mathematical modeling. Academic Press: 501-502. 

 

 

 

 

 

 

  



82 
 

 

 

Appendix A. SAS code for simulating clustered 

dependent binary data 

 

 

 

/* two time points case */ /* normal dist */ 

/* include group var: treatment vs. control */ 

libname lib "c:\d\bios\dissertation\simulation_new\sim2\norm"; 

proc iml; 

repeat=500; 

study=0; 

seed=12345; 

do ii=1 to repeat; 

 study=study+1; 

 seed=seed+1; 

 k=20;  /* total number of clusters */ 

 n=100; /* number of subjects per cluster */ 

 rou12=0.2; 

 c=j(k,1,1); 

 s=j(k/2,1,seed); 

 s1=j(k,1,seed); 

 sigma=0.1; 

  /* treatment group */ 

  z1=normal(s); 

  p1_t=0.25+z1*sigma; /* mu1=0.25 */ 

  z2=normal(s);       

  p2_t=0.45+z2*sigma; /* mu2=0.45 */ 
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 /* control group */ 

  z1=normal(s); 

  p1_c=0.25+z1*sigma; /* mu1=0.25 */ 

  z2=normal(s);       

  p2_c=0.25+z2*sigma; /* mu2=0.25 */ 

  p1=p1_t//p1_c; 

  p2=p2_t//p2_c; 

 do j=1 to k;  

  if p1[j]>1 then p1[j]=0.999; 

  if p1[j]<0 then p1[j]=0.001; 

  if p2[j]>1 then p2[j]=0.999; 

  if p2[j]<0 then p2[j]=0.001; 

 end; 

 

 q1=c-p1; 

 q2=c-p2; 

 p12=p1#p2+rou12*sqrt(p1#q1)#sqrt(p2#q2); /* # : elementwise multiplication */ 

 /* joint pdf */ 

 p11=p12; 

 p10=p1-p12; 

 p01=p2-p12; 

 p00=c-p1-p2+p12; 

 /* cdf bounds */ 

 b1=p11; 

 b2=b1+p10; 

 b3=b2+p01; 

 do i=1 to n; 

     u=uniform(s1); 

  out1 = (u<=b2); 

  out2 = (u<=b1 | ( b2<u & u<=b3 )); 
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  y1=y1//out1; 

  y2=y2//out2; 

  cluster=cluster//(1:k)`; 

  group=group//j(k/2,1,1)//j(k/2,1,2); /* group 1 means treatment, group 2 

means control */ 

 end; 

 mean1=mean(y1); 

 mean2=mean(y2); 

 *print mean1 mean2; 

 id=id//(1:(n*k))`; 

 study_ind=study_ind//j(n*k,1,study); 

end; 

 

create lib.t2_cluster2 var{ study_ind id y1 y2 cluster group }; 

append; 

close lib.t2_cluster2; 

quit; 

 

proc sort data=lib.t2_cluster2; by group; run; 

proc means data=lib.t2_cluster2; by group; var y1 y2; run; 

 

data lib.t2_repeat_long_2; set lib.t2_cluster2; 

y=y1; time=1;  output; 

y=y2; time=2;  output; 

drop y1 y2; run; 

 

proc sort data=lib.t2_repeat_long_2; by study_ind id time; run; 

proc glimmix data=lib.t2_repeat_long_2 maxopt=500 pconv=1e-6 method=MSPL; 

by study_ind; 

class time id cluster group; 
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model y(event='1') = time group time*group /dist=binary link=logit solution covb; 

random intercept /subject=cluster; 

random _residual_ /subject=id type=ar(1); 

nloptions technique=quanew maxiter=400 gconv=1e-5; 

lsmeans time*group / ilink e cov; 

estimate "group1: time1 to time2" time -1 1 time*group -1  0  1  0 /ilink e; 

estimate "group2: time1 to time2" time -1 1 time*group 0  -1  0  1/ilink e; 

estimate "group 1-2 diff: time1 to time2"   time*group -1  1  1  -1/ilink e; 

ods output lsmeans = lib.t2_repeat_long_2_lsmeans; 

ods output CovParms = lib.t2_repeat_long_2_random; 

ods output estimates = lib.t2_repeat_long_2_estm; 

run; 

 

proc sort data=lib.t2_repeat_long_2_lsmeans; by group time; run; 

proc means data=lib.t2_repeat_long_2_lsmeans mean std; 

by group time; 

var mu stderrmu; 

run; 

 

/* p2-p1 */ 

data time_diff; 

set lib.t2_repeat_long_2_lsmeans; 

keep study_ind time group mu; 

run; 

proc sort data=time_diff; by  group study_ind  time; run; 

 

proc transpose data=time_diff out=time_diff_1 prefix=p; 

by group study_ind ; 

id time; 

var mu; 
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run; 

 

data time_diff_1; 

set time_diff_1; 

diff=p2-p1; 

run; 

 

proc means data=time_diff_1 mean std; 

by group; 

var diff; 

run; 

 

 

proc sort data=lib.t2_repeat_long_2_estm; by statement; run; 

proc means data=lib.t2_repeat_long_2_estm mean std; 

by statement; 

var probt ; 

run; 

 

proc sort data=lib.t2_repeat_long_2_random; by covparm; run; 

proc means data=lib.t2_repeat_long_2_random mean; 

by covparm; 

var estimate; 

run; 
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Appendix B. SAS code for the independent samples 

approach and fitting desired model to sub-samples 

 

 

 

/* This macro select random samples of specified size and run glimmix */ 

%macro select(study,k,seed,i,size,origname,origset,rootset,rootlib);  

 /* study represents the study index */ 

 /* i indicates ith selection of samples */ 

 /* origset & origlib are baseline dataset and its folder*/ 

 /* rootset & rootlib are  whole   dataset and its folder */ 

  

 proc sort data=&origset; by group cluster ID time; run;  

 /* select among baseline data */ 

 proc surveyselect data=&origset out=&origset.select 

  method=srs sampsize=&size seed=&seed; 

  strata group cluster /alloc=proportional; 

 run; 

 

 /* selected IDs */ 

 data IDs; set &origset.select; keep ID; run; 

  

 proc sort data=IDs; by ID; run; 

 

 /* selected samples */ 

 proc sort data=&rootset; by ID; run; 

 data &rootset.select; 
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  merge IDs(in=b) &rootset (in=a); 

  by ID; 

  if b; 

 run; 

 /* rest baseline data */ 

 proc sort data=&origset; by ID; run; 

 data &origname.&i.rest; 

  merge &origset (in=a) IDs(in=b); 

  by ID; 

  if a & ~b; 

 run; 

 

 /*glm on selected samples */ 

 proc sort data=&rootset.select; by ID time; run; 

 proc glimmix data=&rootset.select maxopt=500 pconv=1e-6 method=MSPL; 

 class group cluster id time; 

 model y(event='1') = time group time*group /dist=binary link=logit solution 

covb; 

 random intercept /subject=cluster; 

 random _residual_ /subject=id type=ar(1); 

 nloptions technique=quanew maxiter=400 gconv=1e-5; 

 lsmeans time*group / ilink e cov; 

 estimate "group1: time1 to time2" time -1 1 time*group -1  1  0  0 /ilink e; 

 estimate "group2: time1 to time2" time -1 1 time*group 0  0  -1  1/ilink e; 

 estimate "group 1-2 diff: time1 to time2"   time*group -1  1  1  -1/ilink e; 

 ods output lsmeans = lsmeans; 

 ods output CovParms = random; 

 ods output estimates = estm; 

 run; 

 data lsmeans; set lsmeans; study_ind=&study; sample_ind=&i; run; 
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 data random;  set random;  study_ind=&study; sample_ind=&i; run; 

 data estm;    set estm;    study_ind=&study; sample_ind=&i; run; 

  

 /* add estimates */ 

 proc append base=&rootlib..lsmeans_k&k data=lsmeans ; run; 

 proc append base=&rootlib..random_k&k data=random ; run; 

 proc append base=&rootlib..estm_k&k data=estm ; run; 

%mend select;   

 

/* This macro generate simulation dataset */ 

/* and output summary statistics of mlm on each subsample*/ 

%macro meta(k,seed1,root_lib); 

%let kminus1= %eval(&k - 1) ; 

%let repeat=1000; 

%do j=1 %to &repeat; 

 proc iml; 

  seed2= &seed1+ 2*&j; 

  nk=20; /* # of clusters */ 

  rou12=0.2; 

  c=j(nk*2,1,1); 

  s1=j(nk,1,seed2); 

  s2=j(nk*2,1,seed2); 

  sigma=0.1; 

  /* p1 is the same for both treatment and control group */ 

  z1=normal(s1); 

  p1_tc=0.25+z1*sigma;/* mu1=0.25 */ 

  /* p2 for treatment group */ 

  del=normal(s1);  

  sigma1=0.2; 

  delta=0.2+del*sigma1;  
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  p2_t=p1_tc+delta; /* mu2 = 0.45 */ 

  /* p2 for control group */ 

  z2=normal(s1);       

  p2_c=0.25+z2*sigma; /* mu2=0.25 */ 

  p1=p1_tc//p1_tc; 

  p2=p2_t//p2_c; /* treatment then control */ 

  do m=1 to nk*2;  

   if p1[m]>1 then p1[m]=0.999; 

   if p1[m]<0 then p1[m]=0.001; 

   if p2[m]>1 then p2[m]=0.999; 

   if p2[m]<0 then p2[m]=0.001; 

  end; 

  q1=c-p1; 

  q2=c-p2; 

  p12=p1#p2+rou12*sqrt(p1#q1)#sqrt(p2#q2); /* # --> elementwise 

multiplication */ 

  /* joint pdf */ 

  p11=p12; 

  p10=p1-p12; 

  p01=p2-p12; 

  p00=c-p1-p2+p12; 

  /* cdf bounds */ 

  b1=p11; 

  b2=b1+p10; 

  b3=b2+p01; 

  z3=normal(s2); 

  n=2500+z3*200; 

  n=round(n);/* # of subjects for each cluster of trt and control group*/ 

  do mm=1 to nk*2; 

      s3=j(n[mm],1,seed2); 
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      u=uniform(s3); 

   out1 = (u<=b2[mm]); 

   out2 = (u<=b1[mm] | ( b2[mm]<u & u<=b3[mm] )); 

   y1=y1//out1; 

   y2=y2//out2; 

   if mm<nk+1 then do; clust=mm; gp=1; end; 

   else do; clust=mm-nk; gp=2; end; 

   cluster=cluster//j(n[mm],1,clust); 

   group=group//j(n[mm],1,gp); 

  end; 

 

 Ntotal=sum(n); 

 samplesize = round(Ntotal/&k); 

 create size var {samplesize}; 

 append; 

 close; 

 id=(1:Ntotal)`; 

 study_ind=j(Ntotal,1,&j); 

 create root var{ study_ind id y1 y2 cluster group}; 

 append; 

 close root; 

 quit; 

 data _NULL_; 

  set size; 

  call symput('smpsz',trim(left(put(samplesize,8.)))); 

 run; 

 data root; 

  set root; 

  y=y1; time=1;  output; 

  y=y2; time=2;  output; 



92 
 

  drop y1 y2; 

 run; 

 proc sort data=root; by id time; run; 

 data base0rest; set root; if time=1;run; 

 

 %let seed= %eval(&seed1+ &j); 

 

 /* the first k-1 samples */ 

 %do jj=1 %to &kminus1; 

  %let ii = %eval(&jj-1); 

  %select(&j, &k, &seed, &jj, &smpsz, base, base&ii.rest, root, &root_lib); 

 %end; 

 /* the last sample */ 

 proc sort data=base&kminus1.rest; by ID; run; 

 data rootselect; 

  merge base&kminus1.rest(in=b) root(in=a); 

  by ID; 

  if b; 

 run; 

 proc sort data= rootselect; by ID time; run; 

 /* run glimmix on last sample */ 

 proc glimmix data=rootselect maxopt=500 pconv=1e-6 method=MSPL; 

 class group cluster id time; 

 model y(event='1') = time group time*group /dist=binary link=logit solution 

covb; 

 random intercept /subject=cluster; 

 random _residual_ /subject=id type=ar(1); 

 nloptions technique=quanew maxiter=400 gconv=1e-5; 

 lsmeans time*group / ilink e cov; 

 estimate "group1: time1 to time2" time -1 1 time*group -1  1  0  0 /ilink e; 
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 estimate "group2: time1 to time2" time -1 1 time*group 0  0  -1  1/ilink e; 

 estimate "group 1-2 diff: time1 to time2"   time*group -1  1  1  -1/ilink e; 

 ods output lsmeans = lsmeans; 

 ods output CovParms = random; 

 ods output estimates = estm; 

 run; 

 

 data lsmeans; set lsmeans; study_ind=&j; sample_ind=&k; run; 

 data random;  set random;  study_ind=&j; sample_ind=&k; run; 

 data estm;    set estm;    study_ind=&j; sample_ind=&k; run; 

  

 /* add estimates */ 

 proc append base=&root_lib..lsmeans_k&k data=lsmeans  ; run; 

 proc append base=&root_lib..random_k&k data=random ; ; run; 

 proc append base=&root_lib..estm_k&k data=estm  ; run; 

   

%end; 

%mend meta; 

libname rootlib "C:\D\BIOS\Dissertation\simulation_new\sim6\k4\c20_02"; 

%meta(4,1234,rootlib); 
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Appendix C. SAS code for univariate meta-analysis 

 

 

 

libname lib1 "C:\D\BIOS\Dissertation\simulation_new\sim6\k6\c10_02"; 

data one; set lib1.Estm_k6; run; 

data one; set one; if statement=3; run; 

 

proc iml; 

   k=6; 

   do ii= 1 to 1000; /* ii is the statement number */ 

 use one; 

 read all var {Estimate StdErr} where(Study_ind=ii); 

 close one;   

 var=StdErr##2; 

 *** t2(DL) ***; 

 Ai = 1/var; 

 yw = sum(Ai#Estimate)/sum(Ai); 

 y_w=j(k,1,yw); 

  

 t2_DL = (sum(Ai#((Estimate-y_w)##2))- (k-1)) / (sum(Ai)-ssq(Ai)/sum(Ai)); 

 t2_DL = max(0,t2_DL); 

 w_i = 1/(t2_DL + var); 

 mw_DL = sum(w_i#Estimate)/sum(w_i);  

 se_DL = 1/sqrt(sum(w_i)); 

 

 *** t2(DL2) ***; 

 Ai = 1/(t2_DL + var); 
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 t2_DL2 = (sum(Ai#((Estimate-mw_DL)##2))-

sum(Ai#var)+sum((Ai##2)#var)/sum(Ai) ) / (sum(Ai)-ssq(Ai)/sum(Ai)); 

 t2_DL2 = max(0,t2_DL2); 

 

 *** estimate mu ***; 

 w_i = 1/(t2_DL2+var); 

 mw_DL2 = sum(w_i#Estimate)/sum(w_i); 

 se_DL2 = 1/sqrt(sum(w_i)); 

 

 t2_DL2_total = t2_DL2_total//t2_DL2; 

 mw_DL2_total = mw_DL2_total//mw_DL2; 

 se_DL2_total = se_DL2_total//se_DL2; 

 study_ind=study_ind//ii; 

  end; 

 

create lib1.uni_result_k6 var {t2_DL2_total mw_DL2_total se_DL2_total study_ind}; 

append; 

close lib1.uni_result_k6; 

quit; 

 

proc means data=lib1.uni_result_k6; 

var t2_DL2_total mw_DL2_total se_DL2_total; 

run; 

 

data lib1.uni_result_k6; set lib1.uni_result_k6; z=mw_DL2_total/se_DL2_total; 

   if abs(z)>1.96 then reject=1; else reject=0; 

run; 

proc means data=lib1.uni_result_k6; var reject; run; 
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Appendix D. SAS code for multivariate meta-analysis 

 

 

 

libname lib1 "C:\D\BIOS\Dissertation\simulation_new\sim6\k6\c10_02"; 

data data1; set lib1.estm_k6; if statement<3; run; 

data data3; set data1; 

if statement=1 then do exp=1; con=0; trial=sample_ind; var=StdErr**2; end; 

if statement=2 then do exp=0; con=1; trial=sample_ind; var=StdErr**2; end; 

keep statement study_ind exp con trial estimate StdErr var; 

run; 

 

data data4;  set data3; arm = mod(_N_,12); if arm=0 then arm=12; run; 

data covvars; do study_ind= 1 to 1000; est=0;output; output; output; end; run; 

data covvars1; set data4; keep study_ind var; rename var=est; run; 

data covvars2; set covvars covvars1; by study_ind; run; 

 

ods output CovParms=CovP Estimates=lib1.estmdiff; 

proc mixed cl method=ml data=data4 asycov; 

by study_ind; 

class trial arm; 

model estimate = exp con / noint s cl covb ; 

random exp con/ subject=trial type=un s; 

repeated /group=arm; 

estimate 'difference' exp 1 con -1 /cl df=1000; 

parms /parmsdata=covvars2 eqcons = 4 to 15 ; /*first three elements are zero */ 

run; 
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proc means data=lib1.estmdiff; var study_ind; run;  

data CovP; 

set CovP; 

if Subject = 'trial'; 

keep study_ind CovParm Estimate; 

run; 

 

proc transpose data=CovP out=CovP1; by Study_ind; var estimate; id CovParm; run; 

 

data lib1.CovP; 

set CovP1; 

rename UN_1_1_=UN11 UN_2_1_=UN21 UN_2_2_=UN22; 

tau2 = UN_1_1_ + UN_2_2_ - 2*UN_2_1_; 

run; 

 

proc means data=lib1.CovP ; var UN11 UN21 UN22 tau2; run; 

 

proc means data=lib1.estmdiff; var estimate stderr; run; 

 

data lib1.estmdiff; 

set lib1.estmdiff; 

z=estimate/stderr; 

if abs(z)>1.96 then reject=1; else reject=0; 

run; 

proc means data=lib1.estmdiff; var reject; run; 
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Appendix E. SAS code for checking hierarchical 

dependence across sub-samples 

 

 

 

libname lib1 "C:\D\BIOS\Dissertation\simulation_new\sim6\k5\c20_02"; 

data one; set lib1.estm_k5; run; 

data one; set one; if statement=3; run; 

 

proc iml; 

k=5; 

do ii = 1 to 1000; /* ii is the study number */ 

  use one; 

  read all var {Estimate StdErr} where(Study_ind=ii); 

  close one;   

    

  var=StdErr##2; 

  V=diag(var); 

      M=j(k,k,1)-I(k); 

  Ident=I(k); 

  X=j(k,1,1); 

 

      sig_k=0; 

  tau_k=0; 

  sig_k1=100; 

  tau_k1=100; 

  m=0; 
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  do while( max(abs(tau_k-tau_k1), abs(sig_k-sig_k1)) > 1e-5 ); 

  m=m+1; 

  if tau_k1=100 then tau_k=0; else tau_k=tau_k1; * check if initial value; 

  if sig_k1=100 then sig_k=0; else sig_k=sig_k1; 

 

  phi= V + (tau_k**2)*Ident + sig_k*M; 

  invp = inv(phi); 

  A = invp - invp*X*inv(t(X)*invp*X)*t(X)*invp; 

  RSS = t(estimate)*A*estimate; 

 

  tau_k1 = (RSS - trace(A*V) - sig_k*trace(A*M))/trace(A); 

  if tau_k1 > 0  then tau_k1 = sqrt(tau_k1); else tau_k1 = 0; *if tau2<0 then 

set to 0; 

  phi_k1 = V + (tau_k1**2)*Ident + sig_k*M; 

  invp = inv(phi_k1); 

  A_k1 = invp - invp*X*inv(t(X)*invp*X)*t(X)*invp; 

  RSS_k1 = t(estimate)*A_k1*estimate; 

  sig_k1 = (RSS_k1 - trace(A_k1*V) - (tau_k1**2)*trace(A_k1)) / 

trace(A_k1*M); 

   if (sig_k1 > (tau_k1**2)) | (sig_k1 < (-tau_k1**2)/(k-1)) then do; 

    if abs(sig_k1-(tau_k1**2))< abs(sig_k1+(tau_k1**2)/(k-1)) 

then sig_k1 = tau_k1**2;  

    else sig_k1 = -(tau_k1**2)/(k-1); 

   end;/*ensure phi is positive definite */ 

  end;  

  phi_f = V + (tau_k1**2)*Ident + sig_k1*M; 

  se22=inv(t(X)*inv(phi_f)*X); 

 

  beta_i = inv(t(X)*inv(phi_f)*X)*t(X)*inv(phi_f)*estimate; 

  se_i = sqrt(inv(t(X)*inv(phi_f)*X)); 
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  z_i = abs(beta_i)/se_i; 

  p_i = 2*(1 - probnorm(z_i)); 

 

  beta = beta//beta_i; 

  se = se //se_i; 

  pvalue = pvalue//p_i; 

  itera = itera//m; 

  tau2 = tau2//(tau_k1**2); 

  sig = sig//sig_k1; 

  study_index = study_index//ii;    

end; 

 

create uni_dependence var {sig tau2 beta se pvalue study_index}; 

append; 

close uni_dependence; 

quit; 

 

proc means data=uni_dependence_k5; run; 
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