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at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2016. 

 

Rodney Dyer, PhD 

Department of Biology, Center for Environmental Studies 

 

 

Phylogeographic studies have relied on surveying neutral genetic variation in natural populations 

as a way of gaining better insights into the evolutionary processes shaping present day 

population demography. Recent emphasis on understanding putative adaptive variation have 

brought to light the role of epigenetic variation in influencing phenotypes and the mechanisms 

underlying local adaptation. While much is known about how methylation acts at specific loci to 

influence known phenotypes, there is little information on the spatial genetic structure of 

genome-wide patterns of methylation and the extent to which it can extend our understanding of 

both neutral and putatively adaptive processes. This research examines spatial genetic structure 

using paired nucleotide and methylation genetic markers in the Sonoran bark beetle, Araptus 

attenuatus, for which we have a considerable knowledge about its neutral demographic history, 



 

 

demography, and factors influencing ongoing genetic connectivity. Using the msAFLP approach, 

we attained 703 genetic markers. Of those, 297 were polymorphic in both nucleotide (SEQ) and 

methylation (METH) were assayed from 20 populations collected throughout the species range. 

Of the paired SEQ and METH locis, the METH were both more frequent (16% vs. 7%), 

maintained more diversity (Shannon IMeth = 0.361 vs. ISeq=0.272), and had more among-

population genetic structure (ΦST; Meth = 0.035 vs. ΦST; Seq= 0.008) than their paired SEQ loci.  

Interpopulation genetic distance in both SEQ and METH markers were highly correlated, with 

16% of the METH loci having sufficient signal to reconstruct phylogeographic history.  Allele 

frequency variation at five loci (two SEQ and three METH) showed significant relationships 

with at-site bioclimatic variables suggesting the need for subsequent analysis addressing non-

neutral evolution. These results suggest that methylation can be as informative as nucleotide 

variation when examining spatial genetic structure for phylogeography, connectivity, and, 

identifying putatively adaptive genetic variance. 

 

Keywords: Phylogeography, epigenetic variation, msAFLP, adaptation
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Introduction 

Environmental heterogeneity may influence the distribution of genetic variation across natural 

populations by exerting a selective pressure on various parts of the genome.  The spatial 

distribution of this variation is, however, constrained by the species history, in that previous 

demographic perturbations determine the general distribution of total genetic variance.  Once 

neutral history is accounted for though, the remaining spatial genetic structure can provide 

insight into putative adaptive mechanisms in natural populations (Gavrilets & Vose 2005; Nosil 

et al. 2009). While putatively adaptive genetic and phenotypic variation shaping natural 

populations have been well demonstrated, the biological mechanisms involved in such adaptive 

processes have not been fully elucidated. Recent studies have suggested that epigenetic 

mechanisms may be one additional route through which populations respond to environmental 

stressors; possibly conferring an increased adaptive potential on these groups (Bossdorf et al. 

2010; Richards 2011).   

 

Epigenetic factors and mechanisms influencing gene expression and heredity include DNA 

methylation, histone modification, small/micro RNAs, and other mechanisms that alter how 

DNA sequences are translated into functional gene products. To date, methylation of cytosine 

residues appears to be the most studied mechanism (Roberts & Gavery 2012).  In eukaryotes, 

methylation is a chemical modification that involves the addition of a methyl group onto position 

5 of a pyrimidine ring on cytosines (5mC), primarily within the cytosine-phosphate-guanine 

(CpG) dinucleotides. DNA methylation can affect various functions in gene expression (Razin & 

Riggs 1980); it can change the structure of the chromosome, or, if present in the promoter region 
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of the genome, restrict the access of transcription factors to the gene, effectively silencing the 

proximal gene (Klose & Bird 2006). In invertebrates, DNA methylation is thought to occur 

mostly in the coding regions of the genome (Roberts & Gavery 2012). DNA methylation, while 

varying widely between species, has been functionally linked to development, behavior, and 

phenotypic plasticity (Boyko et al. 2010; Day & Sweatt 2010; Law & Jacobsen 2010; Feng et al. 

2010; Lyko & Maleszka 2011). For example, DNA methylation patterns in the honeybee brain – 

Apis mellifera have been associated with their life history; where workers progressing to 

different tasks (nursing the brood, to foraging outside the nest) with increasing age show varying 

patterns of methylated sites in their genome. In cases where these foragers revert back to nursing 

tasks, their methylation patterns have been shown to revert back to those characteristic of nest 

bees (Herb et al. 2012).  While the role of epigenetics in adaptive evolution is still unclear, it has 

been proposed to occur by contributing to phenotypic plasticity, and thus providing a substrate 

upon which selection is able to act (Flores et al. 2013). As such, it is of interest to evaluate the 

utility of incorporating methylation markers in phylogeographic studies, and to see how it aids in 

understanding and identifying putative adaptive variation in natural populations (Petren et al. 

2005).   

 

Since methylation can be induced de novo, there are at least three categories of potential markers 

that can be uncovered when compared to neutral sequence-based genetic variation.  Methylation 

loci that are induced each generation, or across a handful of generations, in response to 

environmental, developmental, or other localized conditions are expected to be uncorrelated with 

both population-level and spatial genetic structure based upon sequence-based markers.  Because 

they are induced repeatedly, these loci are, however, expected to be identifiable due to their 

correlation with quantifiable at-site conditions. A second category of markers are those whose 
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inheritance spans many generations, conferring assayable information about the recent 

demographic history of the species.  Inheritance across many generations would create spatial 

structure in these methylation markers that is correlated with that estimated from neutral 

sequence-based markers, more commonly used in describing demographic history. The final 

group of markers are uncorrelated with both neutral genetic and local heterogeneity. It is possible 

that methylation may have a stochastic component or be due to processes other than 

demographic history or local adaptation.   

 

Assaying both sequence and methylation based genetic variation can be performed using 

methylation-sensitive AFLP (hereafter msAFLP) as introduced by Hill et al. (1996) and Reyna-

López et al. (1997).  The msAFLP protocol produces both sequence and methylation variation, 

localized to a single nucleotide position in the genome, thereby controlling for intra-genomic 

heterogeneity.  This technique, uses two restriction isoschizomers, MSPI and HPAII, both of 

which target the same genetic sequence (5’-CCGG-3’).  Both enzymes cleave DNA when there 

is no methylation (denoted as +, + for MSPI and HPAII respectively), although they exhibit 

different expression patterns in the presence of methylation at one, or more of the cytosine 

residues.  When a methyl group is attached to the internal cytosine (denoted as CmCGG), HPAII 

is blocked from cutting (+,-).  This same pattern is also observed when a methyl group is 

attached to the external cytosine on one strand of DNA, a condition known as hemimethylation.  

The frequency of hemimethylation is low, and for the purposes of this work will be lumped in 

with markers indicating methylation at the internal cytosine location.  If both cytosine residues 

are methylated (complete methylation, denoted as mCmCGG), both MSPI and HPAII are 

blocked from cutting (-,-).  Some other combinations of methylation including at least one 

residue being methylated also produce this (-,-) pattern, though they are thought to occur at very 
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low frequencies, (see Fulneček and Kovařík 2014) and the bias associated with these low 

frequency events will be considered to be distributed randomly across the sampling populations 

and as such, would add noise to downstream analyses.  

 

If methylation is induced by local environmental heterogeneity and is not entirely stochastic, 

then it has the potential to influence adaptive genetic variation (Schoville et al. 2012). Thus, 

correlation between genetic or epigenetic variation with environmental gradients can be 

interpreted as evidence supporting the signals of natural selection (Eckert et al. 2010).  There are 

two general methods commonly used to identify putatively adaptive variation in non-model 

organisms based upon genome scans.  First, the background level of genetic divergence among 

populations is determined in large part by the demographic history of the populations being 

examined.  An outlier approach seeks to identify markers whose among population divergence is 

exceptionally high compared to this background level.  Genomic regions that are in the vicinity 

of divergent selection should show higher differentiation due to linkage (Nosil et al. 2009). This 

method has been used repeatedly in many systems including intertidal snails (Littorina saxatillis) 

(Grahame & Wilding 2006), whitefish (Coregonus clupeaformis; Campbell & Bernatchez 2004), 

and the common frog (Rana temporaria; Bonin et al. 2006).  Outlier loci have been shown to 

underestimate demographical effects, thus increasing the number of false positives, especially in 

the case of natural populations diverged during glacial periods (Excoffier et al. 2009; Garrick et 

al. 2013).  To counter this potential problem, Rellstab et al. (2015) suggest that analyses be 

based upon environmental association in covariance while controlling for neutral genetic 

structure (Rellstab et al. 2015). 
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One such approach to do this is by the use of gradient analyses—the so-called spatial analysis 

method (SAM) by Joost (2007).  This approach looks for systematic changes in allele 

frequencies along ecological gradients (Coop et al. 2010). The rationale here is that the if 

environmental gradients are at least correlated with fitness related components of the genome, 

variation in genetic markers should mimic gradients in ecological features. This approach does 

not require that the overall amount of differentiation is considerably larger than that created by 

demographic history, only that it changes systematically along with environmental gradients. It 

should be pointed out though, that both of these approaches only provide insights into genomic 

regions that may be linked to fitness related traits, and subsequent analyses and experimentation 

(Holderegger & Wagner 2008) are required to show they are actually adaptive. 

 

The main objective in this study was to investigate the effectiveness of using epigenetic variation 

in informing demographic and evolutionary processes shaping natural populations.  This study 

uses the Sonoran desert bark beetle, Araptus attenuatus Wood (Circulionidae), known only to 

inhabit the senescing stems of the succulent Euphorbia lomelii (Euphorbiaceae) in Baja 

California.  The Sonoran bioregion is characterized by steep environmental gradients known to 

have promoted population subdivision during post Pleistocene range expansion (Garrick et al. 

2009, 2013).  While most species have exhibited a northward range expansion, this insect species 

has experienced a bi-directional range expansion, presumably due to a mid-peninsular warm 

desert refuge (Garrick et al. 2013).  Previous studies have also demonstrated the influence of its 

host plants’ demographic history to its own structure, the strength of which is attributed to the 

close relationship of the plant-insect pair.  From a set of 20 populations, DNA sequence and 
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methylation states were assayed using the msAFLP technique (Fulneček & Kovařík 2014).  The 

main questions were as follows: 

1. Is the amount and spatial distribution of genetic variation in methylation based markers 

congruent with what is observed in the paired sequence based markers?  Since each 

sequence and methylation locus is paired, targeting the exact same location in the 

genome, direct comparison of basic structure statistics is not confounded by marker 

location.  The expectations for the relationship between methylation and sequence 

structure depend upon the processes inducing methylation.  If methylation variation is 

entirely neutral and is inherited as a Mendelian trait across many generations then both 

sequence and methylation structure should share the same spatial-genetic structure. If 

methylation is induced on a recent timescale, is stochastic, or is responding to 

environmental conditions at a different temporal (e.g., developmental conditions) or 

spatial (perhaps regional conditions) scale, it would be expected to have less spatial 

genetic structure than sequence variation because demographic history is not being 

recapitulated. Finally, if methylation variation is greater than sequence variation then 

methylation loci may be conferring information about non-neutral processes that 

sequence variation is not capturing (e.g., hidden variance).      

2. Is there evidence in the spatial arrangement of genetic variance in either methylation or 

sequence-based markers for putatively adaptive genetic variance?  By adopting gradient-

type analyses, both sets of markers were examined for systematic changes with at-site 

environmental conditions.  While a stronger correlation of epigenetic loci to 

environmental factors is intuitively indicative as being more useful than sequence based 

variation in uncovering adaptation in natural populations, we should bear in mind the 
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complexities involved in the pathway connecting environmental variation, phenotypic 

plasticity, epigenetic, and genetic variation, and how it might affect inheritance 

underlying adaptation in a species. However, methylated loci may be a hidden repository 

of both neutral and putatively adaptive variation that we have yet to investigate fully.  

The potential for methylation based markers as a tool more broadly applicable in population 

and evolutionary genetic studies are discussed in light of the results of these questions. 
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Methods 
 

Araptus attenuatus Wood (Curculionidae) is a Sonoran desert endemic bark beetle known only 

from the euphorb Euphorbia lomelii (Garrick et al. 2013).  The insect and its host plant are 

distributed throughout peninsular Baja California and in at least two reticual populations in 

mainland Mexico in the states of Sonora and Sinaloa.  Both host plant and beetle have been 

profoundly influenced by post-Pleistocene range expansion (Garrick et al. 2009). At present, 

three major clades have been identified within Araptus.attenuatus.  The extent of mitochondrial 

DNA sequence divergence (8-12%) suggests potential cryptic speciation in this taxon. On 

peninsular Baja California, there are two divergent clades with regions in partial sympatry 

(Garrick et al. 2013; Figure 4); Clade B is widespread and diverse, while Clade C (Cape region) 

is predominantly restricted to the southern cape region. The third clade, Clade S (Sonora) is 

allopatric, found only on continental Sonora, although is postulated to have its ancestry in the 

Cape region due to both host plant and insect phylogeographic reconstructions (Garrick et al. 

2009, 2013). 

 

Individuals belonging to the larger clade (Clade B) were collected from 20 populations (Figure 

2) spanning regions that were not overlapping with Clade C.  Evidence from other studies in the 

Dyer laboratory suggests no introgression between peninsular clades (Garrick et al. 2013).  From 

these populations, at least six individuals were sampled per population (Table 1) to maximize the 

number of populations from which to test.  Each individual was collected from different plants to 

avoiding the confounding effects of sampling siblings.  All samples were stored in 90% ethanol 

and kept in the Dyer laboratory until template DNA was extracted. 
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Genomic DNA was extracted from each individual using the Qiagen DNA Blood and Tissue 

extraction kit (Qiagen Inc., Natick Mass). To aid in cell lysis for this small beetle, samples were 

incubated overnight at 56 °C with proteinase-K. The elution step was performed in 50 ul of 

sterile DNase/RNase free water, instead of the recommended Qiagen elution buffer (buffer ‘EB’) 

as it was found to interfere with downstream analysis. A subset of the extractions was replicated 

for QC/QA to determine reproducibility of genetic markers in the AFLP protocol. 

 

The msAFLP approach was used to contrast paired sequence and methylation markers sampled 

from across the genome.  This approach is a modification of the standard AFLP protocol 

(Fulneček & Kovařík 2014), identifying a large number of loci without any prior information on 

the genome of the organism (Mueller & Wolfenbarger 1999).  The Dyerlab protocol was adopted 

from Reyna-López et al. (1997) and Keyte et al. (2006).  Template DNA was standardized in 

concentration so no more than 200 ng of genomic DNA was used.  Samples of 20 ul were 

digested with a combination of EcoRI and either of the isoschizomers HpaII or MspI.  These 

isoschizomers cut at the exact same nucleotide sequence (Figure 1) and in the absence of 

methylation, both cut target DNA sequences (+,+).   When there is a methyl group attached to 

the internal cytosine residue (CmCGG), or in the rare case where the external residue is 

hemimethylated, HpaII is blocked from cleaving DNA (+,-).  Both enzymes are blocked from 

cutting (-,-) when both cytosine residues are methylated (Keyte et al. 2006).  Restriction digests 

were incubated at 37 °C for 3 h, followed by enzyme inactivation at 80 °C for 20 min.  Both 

EcoRI and HpaII/MspI digestions were performed simultaneously. DNA primers (1.875 µmol) 

attached to the end of fragments cut with EcoRI and HpaII/MspI were ligated onto the fragments 

using T4 DNA ligase (New England Biolabs) at 16 °C overnight (Table 2).  
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Two sets of Polymerase Chain Reaction (PCR) amplifications were performed on the fragments.  

The pre-selective amplification has primers (see Table 2 again) matching the sequences ligated 

onto the fragments plus a single additional nucleotide.  Amplifications consisted of 10 µl of 

digested-ligated product, 0.8 µM each of EcoRI + A primer, and HPAII/MspI + C primer, 10X 

polymerase chain reaction (PCR) buffer, 1.5 µl 50 µM MgCl2, 4 µl 10 mM deoxynucleoside 

triphosphates (dNTPs), and 0.5 µl 5U/µl Taq DNA polymerase, in a total volume of 50 µl. The 

reaction conditions were: 75 °C for 2 min, followed by 20 cycles of 94 °C for 50 s, 56 °C for 1 

min, and 72 °C for 2 min, and a final extension for 30 min at 60 °C.  Pre-selective PCR products 

were diluted 50 X in sterile water for the next step. 

 

The Selective Amplification step was conducted using a 2X Type-It Microsatellite PCR kit, in a 

volume of 25 µl, using 10 µl of the diluted PCR product from the pre-selective amplification. 

This reaction was performed using 12.5 µl 2x Type-it Multiplex PCR Master mix, 2.5 µl 2µM of 

each primer – EcoRI + ACT, and MspI + CGT (see Table 2 again). The EcoRI primer was pre-

labeled with tetrachlorinated analogue of 6-carboxyfluorescein (6-FAM). The PCR parameters 

included a heat inactivation step at 95 °C for 5 min, followed by a 3-step cycling process, for 28 

cycles – a denaturation step at 95 °C for 30 s, an annealing step at 63 °C for 90 s, and lastly an 

extension step 72 °C for 30 s. The samples were cleaned of unused primers and other 

oligonucleotides using the EXO-SAP IT kit (USB Co., Amersham). 

 

Each sample was assayed for both a non-methylation sensitive (SEQ) marker profile using the 

EcoRI+MspI combination of enzymes and a methylation sensitive (METH) genetic marker 

profile using EcoRI+HPAII.  In the absence of methylation, the presence or absence of DNA 

fragments will be identical in SEQ and METH profiles, whereas with methylation, either as a 
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hemimethylated cytosine or as a methylation site on the internal cytosine residue, SEQ and 

METH will produce different methylation profiles (see again Figure 1).  

 

Fragments from both SEQ and METH profiles were identified using an ABI3730xl DNA 

Analyzer (Applied Biosystems, Inc.), using LIZ500 (orange) as the size standard.  Individual 

trace files for each trace were analyzed using the ‘Binner’ package (version 0.1, Smith 2014) in 

R (version 3.0.1).  Bin sizes for fragments were set to be in the range of 1-1.5bp in width.  

Profiles were generated automatically and then checked by hand.  Duplicate samples were run 

for QA/QC and bands with poor repeatability (e.g., error rates in duplicate runs exceeding 5%) 

were dropped from the analyses (see again Table 1).  Bins were defined based upon SEQ profiles 

and then METH profiles were called using the same classification scheme.  Individual fragments 

were converted to AFLP genetic markers (absence/presence of fragment) for each locus using 

the gstudio library (Dyer, 2015).  

Analyses of Relative Genetic Signal 

 

Only loci with intermediate fragment frequencies between 0.05 – 0.95 were retained for 

subsequent analyses, since loci occurring at rates above 95% and below 5% may lead to spurious 

correlations and are not considered reliable (Pérez-Figueroa 2013). Analyses of methylation 

status were performed using the msap package (vers. 1.1.8 Pérez-Figueroa 2014) providing 

estimates of population level fragment frequencies for all methylation states (unmethylated, 

hemimethylated, internal cytosine methylation, and full methylation or absence of target).  

Overall fragment diversity for both SEQ and METH banding patterns were estimated using the 

Shannon index and statistical differences between the two were tested using a Wilcoxon rank 
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sum test (Lowry, Richard. "Concepts & Applications of Inferential Statistics". Retrieved 24 

March 2011). 

 

Multilocus genetic divergence was estimated separately for SEQ and METH data using the 

AMOVA (Analysis of MOlecular VAriance) approach from Excoffier et al. (1992). Genetic 

divergence was estimated for both SEQ loci at METH sites, and, overall — including SEQ loci 

at non-methylated sites; in order to test for SEQ loci under selection for uniformity at METH 

regions. Significance of the test statistic, ɸST, deviating from zero is estimated based upon 10000 

permutations of the design matrix. In addition to the magnitude of structure in SEQ and METH 

fragment profiles, inter-population structure was also examined.  If the same spatial signal is 

contained in both SEQ and METH profiles in bulk, then inter-population genetic distance should 

be significantly correlated.  Multilocus Euclidean genetic distance among population centroids 

was estimated for both SEQ and METH genetic data sets using the gstudio package (Dyer 2015) 

and compared using a Mantel test (vegan package, version 2.3-1; Okasanen et al. 2015).  

Significance of the correlation coefficient was tested using 999 permutations of the design 

matrix.   

 

The relative amount of genetic structure estimated in paired SEQ and METH loci were examined 

by estimating Weir and Cockerham’s  (1984).  Similarity in paired estimates of standing genetic 

structure measured in both marker sets was estimated using Spearman’s rank sum test.  Finally, 

to identify the fraction of METH loci that are inherited over a period long enough to recapitulate 

phylogeographic history, population covariance at each METH locus was compared to 

multilocus covariance based upon all SEQ markers, using a Mantel test while correcting for 

multiple comparisons via a Bonferonni correction. 

http://faculty.vassar.edu/lowry/ch12a.html
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Putative Signals of Selection 

 

Climate data were gathered from the WORLDCLIM Bioclim data at 30 arc-seconds resolution (1 

km2 resolution). We obtained data for monthly total precipitation, and monthly mean, minimum 

and maximum temperature, and 19 derived bioclimatic variables as listed on Table 4 

(http://www.worldclim.org/). 

 

A logistic regression of the presence of bands at both SEQ and METH loci on Bio-Climatic 

features was performed in R, to determine if variation in these loci covary with broad scale 

environmental gradients. These logistic regression models were generated for methylation and 

sequence based loci. All models were Bonferonni corrected for multiple comparisons and only 

those whose significance was less than P = 0.0001 were considered. 

  

http://www.worldclim.org/


 

14 
 

Results 
 

The msAFLP analysis was performed on a total of 120 A.attenuatus individuals sampled from 20 

E. lomelii populations (Figure 2). A total of 297 loci were identified that were both polymorphic 

and had variants that occurred at frequencies between 5% - 95%.  Of these, 21 loci were 

polymorphic for SEQ variants though had no variation in methylation.   Overall epigenetic 

diversity in methylation sensitive (IMeth= 0.360) fragments was greater than that for genetic 

diversity (ISeq = 0.275; Wilcoxon Rank Sum, W=3032, P = 0.0355).  The frequency of 

methylation occurrence varied by methylation state (hemimethylated vs. internal cytosine 

methylation) and sampling locale (Table 3 - Methylation Frequency).  At the level of the 

population, there is no correlation between hemimethylated and internal cytosine methylation 

frequencies (Pearson, t=-1.1323, df=18, P=0.272) suggesting that they may be treated as 

independent markers. 

Analyses of Relative Genetic Signal 
 

The level of among population differentiation varied between methylation and sequence 

fragment sets. The estimate of multilocus genetic divergence, ɸST, was 4.5X greater in 

methylation loci than in sequence loci. In fact, among the populations sampled, methylation 

fragment profiles (representing nucleotide divergence) were not significantly different than zero 

(ɸST= 0.007765, P = 0.277), whereas methylation sensitive (both hemimethylated and internal 

cytosine methylation) population divergence was ɸST= 0.03465 (P =0.0016). We note that SEQ 

loci at methylated sites are possibly under selection for uniformity at METH regions, from the 
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comparison of the overall AMOVA scores of METH (ɸST= 0.002382252) and SEQ loci 

(ɸST=0.001713423), where METH loci are 1.5X more divergent than SEQ loci.   

Inter-population divergence assayed as multilocus distance in both SEQ and METH (Figure 3) 

were highly correlated (Mantel; r = 0.8924, P=0.001), indicating that the multilocus covariance 

among populations in epigenetic variance can approximate that created from sequence-based 

markers. Pairwise genetic structure at individual loci ranged from -0.08 – 0.28 for MSPI loci and 

-0.19 – 0.33 for HPA loci and averaged 0.05 and 0.07, respectively.  However, paired single-

locus structure in both marker sets was not correlated (Spearman Rank; S=3890800, P = 0.468). 

In relation to multilocus covariance measured across populations estimated across all SEQ loci, 

single locus population covariance at 45 METH loci were found to be significantly correlated 

after correcting for multiple comparisons using a Bonferonni correction. 

 

Putative Signals of Selection 
 

Both sets of loci produced logistical regression models whose fit suggests a high degree of 

congruence with ecological gradients (Table 5). Under the most stringent criteria, there were 5 

methylation loci related to systematic changes in temperature and latitude along the peninsula.  

One locus, 356.4, was found to have frequencies predicted by three different temperature 

variables. It is also noteworthy that from the 5 loci (both sequence and methylated) that were 

identified as responding to environmental features, only 2 of them were sequence marker, of 

which locus 306.7 was responsive to all the environmental variables tracked by sequence loci. 

The other sequence locus - locus 288.9 however was sensitive to only changes in latitude.  These 

results suggest that methylation may contain at least as much biologically informative 

information suitable for investigating putatively adaptive genetic variance and local adaptation as 
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sequence based markers.  Further investigation into the pathway involved in effecting these 

changes may shed light into the differences we have observed. 

 

Taken individually, the magnitude of inter-population genetic structure present in SEQ and 

METH loci appear to diverge (Figure 4).  Both marker types exhibit a skewed distribution of 

values with most loci exhibiting low levels of overall diversity and a few exhibiting increased 

divergence.  Surprisingly, loci with high structure in SEQ loci are not the same loci with high 

structure in METH loci (e.g., few markers  along the Seq = Meth).   
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Discussion 

Using the msAFLP technique, genetic and epigenetic differentiation was compared, 

simultaneously, in populations of A.attenuatus its species range in Baja California.  The data 

produced patterns of variation that support the hypothesis that methylation-based markers 

contain both neutral and putatively adaptive variation.  They also seem to contain signal that we 

are unable to quantify using sequence-based loci alone providing more raw material on which to 

build phyolgeographic and evolutionary genetic studies.  These results suggest that the addition 

of methylation-based markers may allow inferences regarding both neutral and adaptive genetic 

covariance rivaling the signal attained by sequence markers alone. 

 

By scanning patterns of genome wide sequence based and epigenetic polymorphism for 

individuals in several populations, it was possible to identify genomic regions exhibiting 

increased divergence because of direct or indirect (through linkage) selection (Luikart et al. 

2003). Identifying putatively adaptive loci underscored the potential importance of methylation 

polymorphism in phylogeographic studies.  Surprisingly, when examining among-population 

structure measured at paired SEQ and METH loci, the ones with high divergence in one dataset 

were generally not the same outliers in the other dataset.  If high divergence is an indicator of 

natural selection—a working hypothesis used in numerous evolutionary studies—then these 

results suggest that the amount of putatively adaptive variation found by using only SEQ markers 

may be a large underestimate of standing adaptive variation.  It is clear from these data that 

markers of high METH divergence are attached to cytosine sequences that do not have 

correspondingly high divergence.  The converse is also true in that there are SEQ loci that have 

high divergence while having polymorphic METH variation with low inter-population structure.    
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Allele frequencies at five loci showed significant relationships with at-site bioclimatic variables; 

three methylated loci, and two sequence loci were identified as being significantly correlated to 

environmental features (P<0.0001). However, one of the sequence based loci changed with 

latitude, while the other locus, 306.7, was significantly associated with latitudinal and 

longitudinal changes, and also with temperature measures during the wettest quarter, and 

precipitation seasonality. Along with the epigenetic loci; which exhibited a correlation with 

average temperature changes and latitudinal changes, these associations suggest subsequent 

analysis for local adaptation. 

 

The use of methylation markers is something that has recently started to receive attention in 

population and landscape genetic studies.  Before they become more prominent, it is perhaps 

prudent to discuss some of the complications associated with their use.  By far, the most 

problematic issues identified is that they have been shown to underestimate genome-wide levels 

of methylation due to a variety of limitations brought about by the restriction enzymes used.  

Firstly, the enzymes used herein recognize only the CCGG site, leaving methylation nested 

within other sequence motifs undetected.  In the absence of cuts in using both SEQ and METH 

profiles, this approach is unable to differentiate between full methylation (e.g., a methyl group on 

both cytosines) and the absence of sequence-based recognition sites (Fulneček & Kovařík 2014).  

However, at present, there is no indication that the bias introduced by these faults would result in 

systematic problems estimating among-population structure and/or correlations between the 

presence of bands and environmental gradients. 

 

Moreover, despite these limitations of this method, it is suitable for rapid assays producing a 

large set of putative fragments amenable for analyses.  In this study, 276 (92.9%) methylated 



 

19 
 

sites (hemimethylated or methylated at the inner cytosine) were detected, of which 226 were 

polymorphic (82%). It is noteworthy that although a higher level of polymorphism was detected 

using non-methylated loci, overall epigenetic diversity at the population level was significantly 

higher (Wilcoxon Rank Sum, W=3032, P = 0.0355) at methylation-based loci.  Taken in total, 

among-population multilocus structure showed a high degree of congruence with sequence-based 

markers.  While inter-population covariance was significantly correlated, the magnitude of 

standing genetic structure measured among populations was greater in the METH loci than 

estimated among SEQ loci.   

 

However, despite these complications, these results suggest that methylation-based markers 

should be considered as an additional repository of genetic (both neutral and putatively adaptive) 

variation that has not been fully appreciated in population-level and evolutionary genetic studies. 

A pertinent follow-up question would be with respect to the autonomy of epigenetic variation. In 

line with that, we recommend the following steps for further analysis (Bossdorf et al. 2008):  

Performing a deeper sequencing technique to analyzing the extent and structure of epigenetic 

variation with and among this species. SMP - Single Methylation Polymorphisms allow for the 

differentiation between the internal cytosine methylation and other patterns that are not assayable 

using this technique (e.g., Platt et al. 2015).  

 

While these data provide some inferences in the partitioning of methylation based loci into 

categories that recapitulate neutral history, align with at-site conditions, or deviate with both, the 

use of neutral population covariance structure significantly aided in differentiating among the 

first two categories.  In general, methylation studies are not conducted in the context of 
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population history and instead focus on specific gene products and resulting phenotypes.  Further 

understanding about the distinctions between these categories are needed.  For example, it would 

be beneficial to set up breeding experiments in investigating not only the fidelity of methylation 

variation, but also, how they might might affect phenotypic variation in the identified 

ecologically relevant traits. Given the life history traits of our study species and its coassociation 

with its host plant, these kinds of studies may uncover not only individual evolutionary 

trajectories but also elucidate coevoluationary processes in both taxa.  At the very least, 

population and landscape geneticists alike now have an additional data set on which to develop 

and test their hypotheses.
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Tables & Figures 

Table 1: Sample identification numbers from 20 mainland populations found within the larger 

Baja California clade (Clade B).  Individual identification numbers represent the population 

number followed by a decimal and the plant number within the population.  Samples with 

asterisks indicate individuals resampled and re-run to be used to verify repeatability of fragment 

profiles. 

 

Population Individuals 

                  

12 12.1 12.2 12.3 12.8 12.7 12.6 12.5   

51 51.17* 51.18* 51.19* 51.20* 51.13* 51.15     

58 58.15 58.18 58.17 58.12 58.13 58.19 58.2   

64 64.14 64.8 64.7 64.5         

88 88.15 88.17 88.11 88.12 88.13 88.14     

89 89.31 89.35 89.33 89.32 89.37 89.4 89.34   

93 93.11 93.19 93.15 93.18 93.16 93.14 93.17   

153 153.13 153.15 153.17 153.19 153.11* 153.12     

159 159.12 159.18 159.13 159.14 159.11 159.17     

160 160.11 160.12 160.14 160.15 160.17 160.19 160.2   

161 161.1* 161.6 161.4* 161.2* 161.1 161.3 161.9*   

162 162.2 162.3 162.4 162.5 162.7 162.1 162.11 162.12 

165 165.4 165.2 165.1 165.3 165.9 165.1 165.11   

168 168.1 168.5 168.8 168.2 168.3 168.9 168.6   

169 169.3 169.7 169.6 169.8 169.1 169.2 169.4   

171 171.2 171.3 171.4 171.5 171.6 171.7 171.1   

173 173.1 173.4 173.3 173.2 173.6 173.5     

174 174.18 174.17 174.16 174.15 174.14 174.13     

175 175.1 175.2 175.3 175.4 175.5      

177 177.1 177.4 177.5 177.7 177.2 177.3A 177.6 177.8 
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Table 2: Adaptors and Primers used in this study (Overhanging nucleotides are shown in italics) 

 

Adaptors   

EcoRI – adaptorI 

EcoRI – adaptorII 

HPAII/MspI – adaptorI 

HPAII/MspI – adaptorII 

5’CTCGTAGACTGCGTACC 

5’AATTGGTACGCAGTCTAC 

5’GACGATGAGTCCTGAG 

5’CGCTCAGGACTCAT 

Preselective primers   

EcoRI + A 

HPAII/MspI + C 

5’GACTGCGTACCAATTCA 

5’GACGATGAGTCCTGAGCGGC 

Selective primers   

EcoRI + ACT EcoRI + A + CT 

HPAII/MspI + CGT HPAII/MspI + C + GT 
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Table 3: Population-level nucleotide and methylation frequencies. 

 

  Methylation Levels 

Population HPA+/MSP+ 

(Unmethylated) 

HPA+/MSP- 

(Hemimethylated) 

HPA-/MSP+ 

(Internal cytosine 

methylation) 

HPA-/MSP- 

(Full methylation 

or absence of 

target) 

12 0.05745 0.15217 0.14079 0.64959 

51 0.04469 0.05797 0.10145 0.79589 

58 0.05487 0.14545 0.14803 0.65166 

64 0.09239 0.21467 0.11685 0.57609 

88 0.05495 0.1413 0.17874 0.625 

89 0.07609 0.14674 0.17572 0.60145 

93 0.08696 0.1413 0.22826 0.54348 

153 0.08756 0.20894 0.10447 0.59903 

159 0.05918 0.15157 0.17814 0.61111 

160 0.0854 0.1972 0.1382 0.5792 

161 0.0471 0.1029 0.1341 0.7159 

162 0.08832 0.22192 0.1481 0.54167 

165 0.0854 0.1962 0.1641 0.5543 

168 0.06039 0.1564 0.12198 0.66123 

169 0.07867 0.1853 0.19151 0.54451 

171 0.08799 0.17805 0.18892 0.54503 

173 0.1123 0.1902 0.2144 0.4831 

174 0.0558 0.06667 0.26449 0.61304 

175 0.09783 0.18841 0.21232 0.50145 

177 0.06386 0.22328 0.08469 0.62817 

Mean 0.07386 0.163332 0.161763 0.601045 
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Table 4: WorldClim bioclimatic feature variables at 30 arc-seconds resolution extracted from 

WORLDCLIM. 

 

Code Bioclimatic Feature 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range  

(Mean of monthly (max temp - min temp)) 

BIO3 Isothermality (BIO2/BIO7) (* 100) 

BIO4 Temperature Seasonality (standard deviation *100) 

BIO5 Max Temperature of Warmest Month 

BIO6 Min Temperature of Coldest Month 

BIO7 Temperature Annual Range (BIO5-BIO6) 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 

BIO11 Mean Temperature of Coldest Quarter 

BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Month 

BIO14 Precipitation of Driest Month 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 
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Table 5: Loci sensitive to the environmental factors as identified using more stringent regression 

models (P < 0.0001), are listed. Some loci are sensitive to more than one environmental factor. 

Loci in red are METH loci, and those in black are SEQ loci. 

 

  

Environment

al Variables 
288.9 306.7 241.2 356.4 397.3 

BIO15  

R2 = 0.055 

P  = 

3.50x10-5 

   

BIO2    

R2 = 0.078 

P = 

5.49x10-5 

 

BIO6    

R2 = -0.073 

P = 

1.38x10-5 

 

BIO7    

R2 = 0.074 

P = 

4.39x10-5 

 

BIO8  

R2 = 0.013 

P = 

8.43x10-5 

   

Latitude 

R2 = -0.698 

P = 

9.38x10-5 

R2 = -0.851 

P = 

9.60x10-6 

R2 = -0.772 

P = 

7.30x10-5 

 

R2 = -0.839 

P = 

2.45x10-5 

Longitude  

R2 = 0.885 

P = 

8.18x10-5 
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 HpaII+ HpaII- 

MspI+ Unmethylated 

5’---C▼CGG---3’ 

3’---GGC▲C---5’ 

Internal Cytosine Methylation 

5’---C▼mCGG---3’ 

3’---GGCm▲C---5’ 

MspI- Hemimethylated 

5’---C▼mCGG---3’ 

3’---GGC▲C ---5’ 

Full Methylation 

5’---mC▼mCGG---3’ 

3’---GGCm▲Cm ---5’ 

 

Figure 1: This figure outlines the inferences that may be drawn based on the absence (-), or, 

presence (+) of the MSPI, and/or, HPAII bands. The methylation status at each cut-site, along 

with a depiction of the enzymatic action at that cut site is also detailed. 
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Figure 2: Spatial locations of the 20 Peninsular populations in Baja California, Mexico. 
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Figure 3: Scatterplot of inter-population MSP/HPA values showing correlation between 

sequence markers (MSP) and methylation markers (HPA). Significance of correlation was tested 

using a Mantel test. 
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Figure 4: Among population genetic structure assayed via Wier & Cockerham’s  (1984) for both 

SEQ and METH genetic markers with marginal distributions for each marker type individually.  

The dashed line represents where both marker types have the same degree of divergence. 

.
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