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CLUSTER ENHANCED NANOPORE SPECTROMETRY 
 

By Amy E. Chavis 
 
A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

in Physics at Virginia Commonwealth University. 
 

Virginia Commonwealth University, 2016 
 

Major Director: Joseph E. Reiner, Assistant Professor, Physics Department 
 

 
 

Nanopore sensing is a label-free method used to characterize water-soluble molecules. 

Recent work describes how Au25(SG)18 clusters improve the single molecule nanopore 

spectrometry (SMNS) technique when analyzing polyethylene glycol (PEG). This thesis will 

further study and optimize the enhancement effect resulting from a cluster’s presence. 

Additionally, a model describing the interaction between a cluster and PEG is developed to assist 

in understanding this mechanism of enhancement. This thesis will also discuss expanding the 

SMNS method to detect peptides, using Au25(SG)18 for enhancement, and adjusting solution 

conditions to improve the sensitivity of the SMNS system for peptide detection. Finally, a model 

describing the relationship between nanopore current blockades and molecular weight is developed 

to demonstrate the feasibility of using SMNS as a viable analytical technique for characterizing a 

wide variety of water-soluble molecules.   
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1. INTRODUCTION 

 

 

1.1. Nanopore sensing and analysis 

The need for reliable detection of single molecules has become increasingly important in 

nanobiotechnology,1 particularly within the field of molecular biology,2 medical diagnostics,3 and 

forensic analysis.4 Living organisms transport molecules through biological membranes using 

strictly regulated processes, one of which includes the use of specialized membrane proteins. These 

transmembrane protein pores are embedded within the biological cell membrane and play an 

important role in basic biochemical processes. For example, ion channels serve to regulate the flow 

of specific ions into and out of the cell. Transmembrane pores remaining in a stable and ‘open’ 

configuration will have very little (or no) selectivity, but they have been shown to serve as 

nanoscopic current transducers capable of detecting single molecules. These ‘nanopores’5 allow 

for real-time visualization of single molecules and their assemblies under biological conditions.1,5 

 

1.1.1. The fundamentals of nanopore detection 

Nanopore sensors use an approach similar to the Coulter counter,6 a device used to count 

microscale particles, and the classical example of a resistive-pulse sensor.7 A small aperture 

separates two electrolyte solutions while a constant ionic current flows through the aperture. 

Within the electrolyte solution are suspended particles that, upon entering the aperture, will 

displace a volume of solution equivalent to the volume of that particle. This results in an increase 
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in the aperture resistance, and a simultaneous reduction in the transaperature current. The 

concentration of particles suspended in the electrolyte solution can be approximated based on the 

rate of observed current pulses.7 Resistive-pulse nanopore detection modifies the Coulter counting 

principle by reducing the size of the aperture to the nanoscale.  The principal of operation is 

essentially the same where a nanopore is placed between two electrochemical chambers containing 

salt buffers, separated into cis and trans compartments (Figure 1), and an applied transmembrane 

potential drives ionic current through the nanopore. When a molecule accesses the nanopore, this 

produces a measureable current blockade whose magnitude depends on the ratio of molecular 

volume to nanopore volume (Figure 2).5,24  		

 

1.1.2. Biological nanopores 

The most widely used naturally-occurring biological nanopore is the Staphylococcus 

aureus alpha-hemolysin (αHL) protein toxin that assembles within a bilayer membrane. This is a 

mushroom-shaped protein with a hydrophobic β-barrel structure that, when inserted across the 

membrane, is 100 Å high and up to 100 Å in diameter (Figure 3).8 It is a heptameric complex that 

can be divided into three structural domains; the cap, the rim, and the stem. The cap is the widest 

part of the pore consisting of seven β-sheet pairs and the amino latches of each protomer. The rim 

domain extends from underneath the heptamer and assists with the pore’s stabilization within the 

membrane.8,9 The stem domain encompasses the transmembrane channel and in conjugation with 

the rim domain forms the aromatic amino acid-rich constriction ring. The constriction ring is the 

narrowest part (~1.4-1.5 nm)10 and sets the upper limit for the largest molecules that can be 

transported through the pore.8  
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Figure 1: Schematic of nanopore detection setup. The patch clamp amplifier is connected to 
two Ag/AgCl electrodes placed on either side of an aperture separating the cis-chamber (red) 
from the trans-chamber (blue). The aperture contains nanopores inserted into a planar lipid 
bilayer membrane (αHL here).	

Figure 2: A typical transit event. Current flows through an open nanopore yielding an average 
open pore current. If a molecule enters the pore, the ionic current will reduce and yield an 
average ionic current blockade. (Reprinted with permission from [28])	
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Figure 3: Molecular graph of alpha hemolysin nanopore. Dimensions of various regions of 
the lumen of the pore are provided. (Reprinted with permission from [10]) 

	

Figure 4: αHL nanopore embedded in a planar lipid bilayer (black lipid membrane). The 
phospholipid membrane extends approximately 100 µm in a hydrophobic support.                           
The path of cis-side entry analytes are shown through the lumen of the  nanopore.  (Reprinted 
with permission from [14])  
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1.1.3. The bilayer membrane 

The natural environment for a membrane protein to assemble is a lipid bilayer membrane, 

a fluid-like self-assembled structure ~5 nm thick (Figure 4).11 Meuller et al. observed the formation 

of a planar lipid bilayer which was called a ‘black lipid membrane’ based on its appearance using 

optical microscopy.12,13 The membrane consists of amphiphilic lipid molecules across an aperture 

separating two chambers containing aqueous solutions.  The lipid molecules will orient themselves 

into a bilayer structure with the hydrophilic head group of the lipid molecules pointing into the 

aqueous exterior region and the hydrophobic tail portion of the molecule oriented towards the 

interior.14 These membranes can be formed in laboratories as freestanding, nearly perfect 

insulating planar membranes (Rmembrane > 10-100 GΩ) and provide a stable environment to support 

αHL channels.11  

 
 
1.1.4. Applications of single-molecule nanopore sensing 
 
 Nanopore-based sensor research has a wide range of useful biological applications.15 DNA 

and RNA sequencing using nanopores has become increasingly important to diagnose and monitor 

various diseases.16,17 Manrao et al. demonstrated the ability to resolve changes in current that 

correspond to a DNA sequence translocating through a nanopore.18 Wang et al. detected an 

abundance of circulating microRNAs corresponding to a lung cancer diagnosis.17 By hybridizing 

a complimentary probe to a target miRNA, the complex was allowed to translocate through a 

nanopore. Detecting various protein folding patterns can also be used in disease diagnosis, and 

nanopores can be used as a real-time monitoring device. Hu et al. investigated the two structural 

features in the amyloidosis process using a characteristic nanopore blockade event to decipher 

between a random coil and a β-sheet structure.19 The excessive self-assembly of this particular 
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peptide (β-amyloid) in the brain is associated with Alzheimer’s disease. Nivala et al. used the 

AAA+ unfoldase ClpX to assist in protein translocation through a nanopore.20 It was found that 

characteristic blockade states could be linked to unfolding events in various proteins. Their results 

demonstrate that a molecular motor like ClpX can drive proteins through nanopores and assist with 

future protein translocation studies. 

 

1.1.5. Single molecule mass spectrometry 

Using nanopores as sensors originated when researchers attempted to characterize the 

geometry of nanoscale transmembrane pores.21,22 Various sizes of the common molecule 

polyethylene glycol (PEG) were used by Merzlyak et al.23 to estimate pore diameters and 

geometries. Krasilnikov et al.24 demonstrated that increasing the ionic strength of the electrolyte 

solution increased the mean residence time of PEG in the biological pore alpha hemolysin (αHL), 

which enabled one to detect measurable current blockades from individual molecules. Robertson 

et al.25 then created a histogram of the averaged current from each of these blockades, which 

showed distinct peaks corresponding to PEG molecules differing in size by a single monomer unit 

(Figure 5A).25,26,27,28,68 The mPEG histogram has a 1:1 correspondence to a MALDI-TOF mass 

spectrogram for the same pPEG sample (Figure 5B), which motivated the use of the term “single 

molecule mass spectrometry” (SMMS) to describe this technique.25,27,28 However, the SMMS 

technique cannot measure particle mass independent of size; therefore, this technique will be 

referred to hereafter as “single molecule nanopore spectrometry” (SMNS). 

 

 

 



	

	 7 

 

 

 

 

 

 

 

 

 

Figure 5: Roberston et al. mass distributions using a single nanopore compared to a MALDI-
TOF mass spectrum for polydisperse PEG (Mr=1,500 g/mol). Histogram peaks correspond to 
PEG molecules difference in size by a single monomer unit (44 g/mol). (A) Larger values of 
I/Iopen correspond to lower PEG molecular masses, and smaller values of I/Iopen correspond to high 
PEG molecular masses. (B) MALDI-TOF mass spectrum. (Reprinted with permission from [25], 
Copyright (2007) National Academy of Sciences, U.S.A.).	
	

A	

B	
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1.1.5.1. Polyethylene glycol (PEG) 

PEG is a common neutral polymer that is water-soluble and can be branched or linear.29 It 

has an important history in nanopore sensing as shown in Section 1.1.5., but also plays an important 

role in many other biotechnical and biomedical applications like: peptide and protein 

stabilization,30 drug delivery,31 green chemistry,32 nanoparticle surface modification,33 synthesis,34 

catalysis,35 and stabilization of nanometer sized gold clusters.36 There are a large number of PEG 

applications associated with stabilized metallic clusters37 motivating the study of interactions 

between clusters and PEG. Additionally, PEG is non-toxic and available in a variety of molecular 

weights (Figure 6).29  

 

1.1.6. Sensing peptides and proteins 

Research has shown the ability to detect proteins using glass nanopores,38 nanofabricated 

chips,39 solid state nanopores,40 or binding proteins to ssDNA.41 However, due to their size, 

proteins are unable to translocate through biological nanopores like α-hemolysin and can be 

difficult to detect. Sutherland et al. first demonstrated that peptide analysis through a biological 

nanopore was possible using different repeat units of a collagen-like sequence.42 It was also found 

that peptides, containing more repeat-units, yielded longer-lived and deeper blockades.43 The 

enzyme Trypsin has been utilized to cleave polypeptides, which enable smaller peptides to 

Figure 6: Polyethylene glycol structure where n indicates the degree of polymerization.       
MWPEG = (44 g/mol)n + 12 g/mol (http://www.sigmaaldrich.com).  
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translocate through the nanopore.44,45 Small, naturally-occurring peptides have physiological 

applications, and a growing number of small peptides are being utilized in the biopharmaceutical 

industry.46,47 SMNS could benefit biomedical research by providing a real-time, sensitive, and 

cost-effective approach to further understand the properties of peptides.  More effort is being 

focused on peptide detection with nanopores48,49,50 and a better understanding of the nature of 

nanopore-based peptide detection is crucial for this effort.  For example, current studies focus on 

detecting known peptides in solution,51,52,53 but it would be more advantageous if one could detect 

a number of unknown peptides in real time and assign each current blockade to a particular peptide.  

This is not currently possible, but it is a long-term goal of this research.   

 

1.2. Thesis Objectives 

 

1.2.1. Improving analyte residence time 

The SMNS technique requires an analyte to reside within the nanopore for an extended 

period of time. This will decrease the standard of error of the estimated average from each 

blockade, eventually resulting in a clearer current blockade distribution. As previously stated, 

increasing the ionic strength of the electrolyte solution increases the PEG residence time in the α-

hemolysin pore. This will enable the current blockade distribution to mimic a mass spectrum; 

however, this will not increase most analyte residence times.54 Other researchers have modified 

the physical characteristics of the solution to increase analyte residence times. Fologea et al. and 

Kowalczyk et al. demonstrated increased DNA residence time by reducing the solution 

temperature, increasing solution viscosity, and using different counterions.54,55 However, in some 

cases the ionic conductivity and analyte on-rate was reduced,56 which decreases the quality and 

sensitivity of analysis. 
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1.2.1.1. Au25(SG)18 enhancement  

More sophisticated methods are being used to improve analyte residence times. Previously, 

negatively charged metallic clusters were utilized to increase cationic analyte residence times.57 

Au25(SG)18 is an anionic, glutathione (C10H17N3O6S) protected, water-soluble gold 

cluster.58,59,60,61,62,63,64 The diameter of this cluster has not been characterized in solution; however, 

a similarly-sized cluster Au25(SCH2CH2Ph)18 has been crystalized (Figure 7) and shown to have a 

diameter of 2.4 nm.58 Figure 8b shows that under an applied electric field, the cluster can be driven 

into the cis-side vestibule of an α-hemolysin pore and remain for extended periods (>10 seconds). 

This partially blocks the ionic current by about 25%, allowing PEG molecule to enter the trans-

side of the α-hemolysin pore and yield sizable current blockades. The cluster-PEG interaction 

increased PEG residence time by an order of magnitude yielding higher resolution peaks in the 

current blockade distribution (Figure 8c).  

 

 

Figure 7: Crystalized version of Au25(SCH2CH2Ph)18 included for visualization purposes. 
Au25(SG)18 has a similar size (~2.4 nm). (Image created by Anthony F. Pedicini (VCU, 
Richmond, VA) using Discovery Studio 4.1) 
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Figure 8: Previous Au25(SG)18 enhancement results: (A) A PEG molecule enters from the 
trans-side of the αHL pore and gives rise to short-lived current blockades. (B) Gold clusters 
diffuse and enter from the cis-side, decreasing the current for extended periods of time. The 
PEG molecule yields longer-lived blockades in the presence of a gold cluster. (C) A distribution 
of normalized PEG current blockades shows peaks corresponding to different sized molecules. 
The presence of gold clusters increases PEG residence times resulting in narrower peaks (red) 
and a more accurate characterization of the analyte in comparison to peak distributions with 
PEG alone in pore (black).57 
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1.2.2. Optimization of Au25(SG)18 enhancement 

This thesis will show improvements in optimizing the residence time enhancement between 

PEG molecules and thiolate-capped gold clusters, and characterize their interaction. The PEG-

cluster interaction is shown to have a dependence on the applied transmembrane voltage and 

cluster blockade states. Additionally, a model is presented showing the interaction between PEG 

and the cluster inside the pore. This model accurately describes the shift in the current blockade 

peak positions occurring when a cluster is present within a nanopore. These results indicate optimal 

conditions for utilizing clusters in SMNS technology, further suggesting SMNS as a useful tool to 

quantify metal-polymer interactions within a nanoconfined environment.65 

 

1.2.2. Expanding beyond PEG sensing 

This thesis will also move beyond PEG and explore using the SMNS approach for other 

analytes. It is shown that poly-L-lysine (PLL) also exhibits the same characteristic comb-like 

blockade peaks seen with PEG and can be treated as such. The SMNS process is then used to 

analyze various peptides, resulting in characteristic blockade peaks and residence times that are 

consistent with PEG results in similar conditions. Additionally, a model is created to correlate 

molecular weights with current blockade depths. 

Improvements in the SMNS sensing capabilities of peptides are also investigated here. As 

seen with PEG, metallic clusters are shown to increase the residence time of peptides within a 

nanopore. However, unlike PEG, peptides exhibit a larger degree of noise within the pore that may 

result from secondary structures not present in PEG molecules. With this in mind, the role that 

various solution conditions play on the standard deviation of each blockade is investigated and it 

is shown that by reducing these fluctuations, the peptide-induced current blockade peaks are 
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further resolved. Overall, it is shown that the combination of a gold cluster in the nanopore and 

adjustments to solution conditions improve the resolution of peptide-based current blockade 

distributions to levels commensurate with PEG. 
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2. MATERIALS AND METHODS 
 
 
 

 
Company Address 
Avanti Polar Lipids Inc. Alabaster, AL, USA 
Axio Observer Zeiss, Germany 
Eastern Scientific Rockville, MD, USA 
Eppendorf North America Hauppauge, NY, USA 
Kinetic Systems Boston, MA, USA 
List Biological Laboratories Inc. Campbell, CA, USA 
Molecular Devices Carlsbad, CA, USA 
National Instruments Austin, TX, USA 
Polypure Oslo, Norway 
Scientific Specialists Baltimore, MD, USA 
Sigma-Aldrich St. Louis, MO, USA 
Sutter Instrument Novato, CA, USA 
Thermo Scientific Waltham, MA, USA 
Wavemetrics Inc. Lake Oswego, OR, USA 
World Precision Instruments (WPI) Sarasota, FL, USA 

 
 
 
2.1. Analysis using α-hemolysin pores 

The α-hemolysin solution used in all experiments performed in this thesis was created by 

adding 0.5 mL millipore water (18 MΩ⋅cm) to 0.25 mg Alpha Toxin from Staphylococcus aureus 

purchased from List Biological Laboratories Inc. This was then aliquoted into several protein lo-

bind tubes (Eppendorf) and stored in a -80 °C freezer (Thermo Scientific). 

Table 1: This table shows the names of the manufacturing companies for equipment, supplies 
and reagents used in this thesis, and their addresses. 
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The stock lipid solution used in all experiments was made by adding 500 µL hexadecane 

(Sigma-Aldrich) to 5 mg 1,2-diphytanoyl-sn-glycero-3-phosphocholine purchased from Avanti 

Polar Lipids Inc. This was then aliquoted into 5 (1/2 dram) glass vials (Scientific Specialists) and 

stored in a -20 °C freezer. 

The stock prepaint solution was created by adding 500 µL pentane (Sigma-Aldrich) to 5 

mg 1,2-diphytanoyl-sn-glycero-3-phosphocholine purchased from Avanti Polar Lipids Inc. This 

was then aliquoted into 5 (1/2 dram) glass vials and 900 µL of pentane was added to each vial. 

Vials were store in -20 °C freezer. 

A transmembrane potential was applied through Ag/AgCl electrodes and experiments were 

performed as described in Section 2.3. All experiments were carried out at 21 ± 2 °C.  

 

2.1.1. Analysis of PEG 
 

The electrolyte solution used for the PEG in KCl measurements (Section 3.1.) was 3.5 M 

KCl in 10 mM Tris buffer (pH 7.2). The reference tip contained 3.5 M KCl buffer and 40 µM 

Au25(SG)18. PEG concentrations and transmembrane potential are specified in each figure 

description. The LiCl comparison study (Section 4.1.3.) used 3 M LiCl and 3M KCl, with an 

applied transmembrane potential of 50 mV and 5 µM PEG28 in the trans compartment. 

 

2.1.2. Analysis of PLL and peptides 

The electrolyte solution used for the PLL study (Section 3.2) was 2.5 M KCl in 10 mM 

Tris buffer (pH 7.2), with an applied transmembrane potential of 50 mV. The reference tip 

contained 2.5 M KCl buffer, and the trans compartment contained 20 µM PLL.  
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The electrolyte solution used for the peptides study (Section 3.3) was 3.0 M KCl in 10 mM 

Tris buffer, with a pH of 7.2 (Figures 19,20,21,22,23) or varying pH’s (Figure 24,25). Each peptide 

study was performed independently of each other, using 20 µM of each peptide in the trans 

compartment. Unless otherwise stated, all peptide studies had an applied transmembrane potential 

of 70 mV.  

 
 
2.2. Au25(SG)18 Cluster Synthesis 

Au25(SG)18 clusters were obtained through collaboration with Dr. Amala Dass’s laboratory 

from the Department of Chemistry and Biochemistry at the University of Mississippi using the 

following methodology.  

100 mg of HAuCl4 (0.253 mM/L) was dissolved in 50mL of DI water, resulting in a yellow 

solution. 307 mg of glutathione (1.00 mM/L) was slowly added to the gold salt under slow stirring, 

while the yellow solution changed to a cloudy white suspension. Next the solution was cooled in 

an ice bath for 30 min. Afterwards, 94.6 mg of NaBH4 (2.5 mM/L) was dissolved in 12.5 mL of 

ice cold DI water and added to the mixture all at once while stirring at 1000 rpm. The milky white 

color of the mixture rapidly turned black after the addition of NaBH4, indicating the formation of 

nanoparticles. After 1 hour, the mixture was rotary evaporated until the total volume was reduced 

to 5 mL, while the temperature was kept below 30 °C. Then 20 mL of methanol was added to the 

product mixture and centrifuged at 3800 rpm for 3 min. The resulting precipitate was washed three 

times with methanol. Au25(SG)18 was obtained using polyacrylamide gel electrophoresis (PAGE-

-as described previously).66 
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2.3 The patch-clamp experiment setup, data collection and analysis  

 

2.3.1. The hardware 

The investigation of individual PEG and peptide molecules with α-hemolysin pores was 

conducted using patch-clamp apparatus. Figures 9-10 show photographs of the instrumental setup. 

The patch-clamp instrument consists of four main components connected to a computer: the 

holder/Teflon unit, the electrodes, the amplifier, and the digitizer. 

The holder/Teflon unit consists of a 1 cm2 polytetrafluoroethylene (PTFE, Teflon) sheet 

with a ca. 100 µm hole in the center (Eastern Scientific). This is fixed to a previously fabricated 

large holder with polydimethylsiloxane (PDMS, Kwik-Cast, WPI) separating the holder/Teflon 

unit into two compartments, cis and trans. The compartments have approximate volumes of 650 

µL (cis) and 2500 µL (trans). The holder positions the Teflon sheet ca. 300 µm from the top of the 

microscope coverslip mounted onto a homemade base that sits on an inverted microscope (Axio 

Observer). The microscope is bolted to an air-floated optical table within a Faraday cage enclosure 

(Kinetic Systems) to reduce vibrational interference of the signal and protect against external 

electric noise. 

The electric potential across the lipid bilayer is applied via two Ag/AgCl electrodes that 

had been prepared by sanding silver wire and holding in bleach for ~1 hour prior to each 

experiment. The measuring electrode is connected to the trans compartment and the reference 

electrode is connected to the cis compartment.  
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Figure 9: Instrumental Setup. All hardware used in the experimental process is labeled. 
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Figure 10: Experimental Apparatus. (A) Holder/Teflon unit and base deconstructed.                  
(B) Holder/Teflon unit set into base and onto the inverted microscope. Pipette tips are shown 
in their respective holders and inserted into solution. 	

A	

B	
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2.3.2. Lipid Bilayer formation and pore insertion 

The prepaint mixture is applied to both sides of the 100 µm hole after attachment to the 

holder. The holder is then placed into the base and cis and trans compartments of the unit are filled 

with their respective electrolyte/buffer solution. Membranes are formed with a painting 

methodology closely related to the method of Mueller et al.13 A borosilicate capillary (1 mm OD, 

0.78 mm ID with filament, Sutter Instrument) pipette tip is formed with a laser-based pipette puller 

(P-2000, Sutter Instrument) and filled with lipid solution. This is positioned with a motorized 

manipulator (MPC-275, Sutter Instrument) just above the Teflon partition. Several picoliters of 

lipid solution are ejected under pressure (Femtojet, Eppendorf) from the tip and adhere to the 

Teflon surface. A glass rod with a ball formed at the tip is manipulated with a manual translation 

stage to wipe the lipid across the hole. The lipid/solvent mixture thins under an applied voltage 

(~100 mV) and a lipid bilayer membrane is formed. The membrane formation process is verified 

with bright-field optical microscopy. 

After the membrane is formed, a second pipette tip containing α-hemolysin is positioned 

above the bilayer and a backing pressure (~15 hPa) is applied for several seconds. A 

transmembrane voltage (20 mV) is applied to verify and encourage pore insertion. When a 

sufficient number of pores (ca. 500) are in the membrane, the backing pressure is turned off and 

the tip is removed from solution.  

 

2.3.3. Patch-clamping 

A quartz capillary (1 mm OD, 0.7 mm ID with filament, Sutter Instrument) patch pipette 

tip is filled with the same buffer solution used in cis and trans side plus 40 µM Au25(SG)18. A 

Ag/AgCl electrode is inserted into the pipette to enable the application of a transmembrane 
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potential. This pipette is brought down onto the membrane to isolate a single channel within a 

patch. If the patch membrane contains zero or more than one α-hemolysin pore it is removed from 

the surface and backing pressure is applied to remove the patch. The process is repeated until a 

single channel is isolated at the end of the electrode tip. The number of attempts required to obtain 

a single channel depends predominantly on the concentration of pores in the membrane. For our 

experimental parameters we typically capture a single pore every 5-10 patching attempts. The 

presence of a single pore can be determined by comparing the time-averaged current with the 

expected single channel current. For example, a single pore in 3.5 M KCl at pH 7.2 we expect a 

conductance of 3.2 nS.67 

 

2.3.4. Data Collection 

Ionic currents are recorded using an amplifier head stage with a four-pole 10 kHz low-pass 

Bessel filter (Axopatch 200B, Molecular Devices) sampled at 50 kHz (Digidata 1440A, Molecular 

Devices). The patch-clamp instrument is connected to a computer that records data in axon binary 

files (.abf) using Clampex software included in the pClamp 10 package (Molecular Devices).  

 

2.3.5. Data Analysis 

Data analysis of the .abf files are performed with in-house software written in Labview 8.5 

(National Instruments). A threshold algorithm, similar to one described by Reiner et al,28 was used 

to calculate the average blockade depth and residence time for each event. The average blockade 

depth associated with a gold cluster is about 25%. In order to avoid confusion between gold cluster 

and PEG-induced blockades, the current blockade threshold was set to detect events that remain 

35% above the open-pore current for a minimum period of 140 µs. This allows for analysis of 
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current blockades from both the open-nanopore state and the gold-blocked state for the same pore. 

The average current for each blockade was normalized by the average open current 1 ms before 

and 1 ms after the blockade event. Blockade events were discarded if the averaged open-state 

current fell outside of a narrow window defined as full width at half maximum of the open-pore 

current distribution, and full width at half maximum of the largest peak in the cluster-occupied 

current distribution. The n-values for each peak in the blockade distributions (Figure 11) were 

calibrated by assigning n = 28 to the largest peak.25,28,68 

The residence time for each event was defined as the period 20 µs before the initial 

threshold crossing (initiation of a blockade) to 20 µs (completion of a blockade). The residence 

time for a given blockade was assigned to PEGn molecule (PEG with n-monomer repeat units) if 

the magnitude of the current blockade fell between the two minima surrounding the n-th peak in 

the current blockade distribution. Ten-bin histograms (automatic bin widths) were calculated from 

the residence times for each PEGn using the histogram analysis package in IGOR 6.22A 

(Wavemetrics Inc.). 

The residence time distribution of events corresponding to PEGn are well fit by single-

component exponential functions from which the time constant for a given PEGn is referred to as 

the mean residence time. The quality of the current blockade distributions was quantified by the 

peak resolution (Rn = 1.18(µn-µn-1)/(σn-σn-1)), where µn is the location of the PEGn peak in the 

distribution and σn is the standard deviation of the PEGn peak. The resolution characterizes the 

spacing between adjacent peaks relative to the peak widths. Baseline resolved peaks correspond 

to Rn ≈ 1 and peak quality improves with increasing Rn values.57  
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3. RESULTS 
 
 
 
3.1. Optimizing Au25(SG)18 enhancement 

 
 
3.1.1. Increased Transmembrane potential 
 

It has been hypothesized that there is a Coulombic attraction between cationic PEG and the 

anionic Au25(SG)18 cluster. If the Coulombic attraction is responsible for lengthening PEG’s 

residence time within a nanopore, then increasing the transmembrane potential across the 

membrane will further increase PEG’s residence time. In this case, the applied electric field is 

forcing a stronger interaction between PEG and the cluster when they are both within the pore 

volume. As was shown previously, an increase in PEG residence time leads to improved peak 

resolution in terms of the current blockade distribution (Section 1.2.1.).57 So it follows that 

increasing the transmembrane potential would further improve the PEG residence times when gold 

is present within the pore, thus enhancing the resolution of the peaks in the gold-occupied current 

blockade distribution. Resolution is defined as,  

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑠𝑝𝑎𝑐𝑖𝑛𝑔	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑝𝑒𝑎𝑘𝑠

𝑤𝑖𝑑𝑡ℎ	𝑜𝑓	𝑝𝑒𝑎𝑘𝑠  

so that the ultimate goal would be to decrease the width of each current blockade peak. Figure 11 

shows that an increase in transmembrane potential through a gold-occupied nanopore from 50 mV 

to 60 mV improves the resolution of the current blockade distributions. PEG30’s peak resolution 

in a gold-occupied pore improved by 37%. (R30-gold(50 mV) = 2.07 and R30-gold(60 mV) = 2.84). In 



	

	 24 

contrast, a cluster free pore decreased PEG30’s peak resolution by 20% (R30-open(50 mV) = 1.24 

and R30-open(60 mV) = 1.03).69 

 
 
3.1.2. Optimal transmembrane potential 
 

It is clear that the quality of the PEG-induced current blockade distribution partially 

depends on the mean residence time of the molecule within the pore. Based on this, an optimal 

voltage for cluster-enhanced SMNS can be determined by measuring the mean residence time of 

PEG28 in both the open-pore and gold-occupied configurations as a function of applied voltage. In 

the open-pore configuration, the mean residence time decreases monotonically with increasing 

voltage (Figure 12, inset).28,70 In this configuration, PEG residence time peaks around 40 – 50 mV, 

agreeing with previous reports that show a non-trivial dependence between applied voltage and 

PEG residence time.70,71 

If a gold cluster is present in the pore, then PEG’s mean residence time also follows a non-

trivial dependence on the applied voltage. Increasing the voltage does show in a stronger 

interaction between PEG28 and a cluster, resulting in a peak mean residence time of PEG28 occuring 

near the applied voltage of 60 mV (Figure 12). However, further increasing the transmembrane 

potential beyond 60 mV causes a reduction in PEG28 residence time. One reason for this 

observation is that larger potentials tend to remove cations bound to PEG28, thus weakening the 

residence time enhancement mechanism.28 
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Figure 11: Increasing the transmembrane potential with a gold cluster present increases peak 
resolution of the PEG-induced current blockade distribution. (A) PEG induced blockade for 
the open-pore configuration with an applied transmembrane potential of 50 mV (left) and  60 
mv (right). (B) Improvements in the resolution of PEG induced blockades for the cluster-
occupied configuration with an applied transmembrane potential of 50 mV (left) and 60 mV 
(right). (C) The open pore blockade distribution (black) degrades with an increase in 
transmembrane potential. If a gold cluster occupies the pore, then there is an improvement in 
resolution (red). This data was recorded using 10 µM polydisperse PEG-1000, 10 µM 
polydisperse PEG-1500 and1 µM PEG28.69  

A	

B	

C	
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3.1.3. Cluster position within the nanopore 

If the interaction between the cluster and PEG play an important role, then the cluster’s 

position and orientation within the pore would have an effect on analyte residence time. If the bulk 

of the gold cluster is situated on top of the constriction ring, or closer to the trans-side of the pore, 

then it will interact more strongly with PEG located in the trans-side lumen. Clusters located in 

this position will also block current through the pore more effectively compared to clusters farther 

away from the constriction region.72 So if the cluster is in this orientation near the constriction 

ring, it will show a greater reduction in the cluster-induced current blockade and scale with the 

analyte residence time enhancement.  

Figure 12: Mean residence times for PEG28 as a function of the applied voltage in the open 
(black) and gold-occupied (red) pore. The mean residence time with gold present increases with 
increasing transmembrane potential until a peak at 60 mV, then a steady decrease at higher 
voltages (inset). The open pore configuration decreases in mean residence time over the entire 
range of voltages. Error bars correspond to ±1 S.D.    This data was recorded using 10 µM 
PEG28.69  
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Figure 13 shows that the PEG mean residence times averaged over a wide range of different 

PEG sizes at 70 mV applied voltage increase in conjunction with an increase in the cluster-induced 

blockade. This particular set of data shows four distinct orientations of the cluster corresponding 

to different cluster state currents (Figure 13, inset), each centered at 𝑖6,8  = -171.0 pA, -169.1 pA, 

-166.8 pA, and -164.7 pA. The left-most peak corresponds to a cluster position and orientation that 

comparatively does not block as much current ( 𝑖6,8  = -171.0 pA), and results in lower residence 

times across all PEG sizes. In contrast, the right-most peak indicates a position and orientation that 

is closer to the constriction ring, blocking more ionic current flow ( 𝑖6,8  = -164.7 pA), and 

corresponding to longer-lived PEG events.  

 

 

Figure 13: PEG residence times increase as the cluster is oriented closer to the constriction ring 
and positioned deeper into the nanopore. (Inset) A sample distribution of four distinct cluster-
induced blockade states. All error bars correspond to ±1 S.D.69  
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3.1.3.1. Normalizing residence times over a wide range of PEG sizes 

In order to quantify the dependence between the gold cluster states and PEG residence 

times over a wide range of PEG sizes (Figure 13, y-axis), the mean residence time for a given PEG 

size (n-mer) must be normalized by the average mean residence time from all four cluster-states. 

The following formula is used to quantify the global mean PEG residence time over this wide 

range.  

𝑇:;<=>?@A =

𝜏=,C
𝐴=

=E
=F=G

𝑁  

Where 𝜏=,C  is the mean residence time for a given n-mer PEG (PEGn ) measured from cluster 

blockade state 𝑝. The sum is then calculated over a set of 𝑁 PEG sizes ranging from 𝑛I to 𝑛J and 

normalized using 𝐴= which is given by, 

𝐴= =
𝜏=,C?

CFK

𝑃  

where 𝑃 is the total number of gold cluster states (Figure 13, inset shows P = 4). Taking the average 

over a wide range of PEG sizes using equations (1) and (2) indicates that PEG events from larger 

magnitude cluster blockade states exhibit greater residence time enhancement. The interaction 

between PEG and the cluster is clearly a crucial component of analyte residence time enhancement. 

 

3.1.3.2. Optimizing the voltage for cluster-based residence time enhancement 

 Figure 14 shows how 60 mV, the ideal transmembrane potential, is connected to cluster 

position. The distribution of PEG28 residence times at 50 mV, 60 mV, and 70 mV in terms of 

cluster blockade display the cluster’s behavior with varying voltages. The cluster will block 

between 15%-30% of the ionic current through the pore. 50 mV is not strong enough to push the 

cluster into position on top of the constriction ring, and cannot yield the longer residence times the 

(1) 

(2) 
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system is capable of producing. 70 mV is too large of a transmembrane voltage because the clusters 

are more likely to occupy various orientations and positions within the nanopore, indicated by the 

spread of different data points. 60 mV yields a more uniform distribution of cluster states within 

the pore.  At this voltage the cluster is more closely localized to the constriction ring and this 

allows for stronger interactions with PEG molecules. 

 

 

 

 

50	mV 

60	mV 

70	mV 

Figure 14: The distribution of residence times at 50 mV (green), 60 mV (blue) and 70 mV (gold) 
for the gold occupied pore compared to the degree of the cluster blockade. Figures show an 
approximate orientation of the cluster within the pore in terms of a cluster blockade state. This 
data was recorded using 10 µM PEG28.69 
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3.1.4. PEG on-rate 

Theoretically, for a bulk PEG concentration of 1 µM, the PEG on-rate to αHL should be 

around 1000 events per second via the Smoluchowski equation.56 However, a number of articles 

have noted a lower than expected on-rate for the analyte concentration studied.67,70,71,73 

Additionally, the on-rate for cationic PEG should increase with increasing transmembrane 

potential.25,28 However, the opposite occurs as shown in Figure 15 (black circles) where the 

observed on-rate of PEG28 decreases. These results are most likely due to many collisions between 

PEG and the pore going undetected at typical bandwidths used for nanopore sensing.74,75 Our 

sensing platform (Section 2.3.4.) has a bandwidth of 10 kHz, so that the cutoff time for detecting 

a blockade event is 100 µs. If a PEG molecule resides in the pore for less than 100 µs, its blockade 

event will go undetected (Figure 16). Therefore, using metallic clusters to increase the PEG-pore 

interaction time should increase the observed hit-rate of PEG with the pore.  (Figure 15, red curve).  

 
 
3.1.4.1. Using a correction factor kc 

A gold cluster increases PEG’s residence time within the nanopore, overall increasing the 

observed PEG on-rate. Figure 14 shows that the on-rate of PEG28 increases when a cluster is 

present in the pore. To verify that this observation is caused by missing events, we correct the 

observed hit rate, kobs, by including a factor that accounts for events that are too short to be detected 

by our system.  The corrected hit rate of PEG to pore, kc, follows from noting that the PEG 

residence time distribution is well described by a single exponential function (Figure 16).  

𝑘M =
𝑘NOP
𝑒(>R S)

𝜏 𝑑𝑡U
RVWX

= 𝑘NOP𝑒(RVWX S) (3) 
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where 𝜏 is the PEG mean residence time, and 𝑡MYR is the cutoff time for detecting a blockade (𝑡MYR =

100	µs). The corrected on-rate appears to agree with the observed on-rate in the gold occupied 

state, indicating that the gold-based residence time enhancement has the added benefit of yielding 

a more accurate estimate of the on-rate of PEG to the pore.  
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Figure 15: The PEG28 on-rate kinetics are more effectively measured with gold present in the 
pore (red circles). If gold is absent, the PEG28 on-rate is reduced with increasing applied 
voltage (black circles). Events that are too short to be detected can be approximated in this 
figure using a correction factor, kc, applied to the black data points. This data was recorded 
using 5µM PEG28. Error bars correspond to ±1 S.D..69 

Figure 16: PEG on-rate to a nanopore is well described by a single exponential function. 
Many events are lost without a gold cluster in the nanopore (black curve). Incorporating a 
gold cluster lengthens PEG residence time allowing for more blockade events to be detected 
(red curve).69  
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3.2. Expanding beyond PEG sensing 
 
In order to demonstrate the broader applicability of nanopore spectrometry, it is necessary 

to move beyond PEG molecules. The first goal is to simply demonstrate that nanopore 

spectrometry can be used for any polymer besides PEG. Another common polymer, Poly-L-

Lysine, with several molecular weights (Figure 17), a helical structure, and extremely cationic at 

a neutral pH76 was analyzed using the SMNS method. For simplicity the difference in charge 

between PEG and PLL will be neglected and this section will only compare differences in current 

blockade depth corresponding to molecule size. As seen with PEG, PLL exhibited a similar comb-

like peak distribution (Figure 18 A,B). Compared to the PEG distribution, the PLL blockade peaks 

showed wider spacing between each peak. Plotting arbitrarily assigned peak numbers and their 

blockade depth yields a linear relationship (Figure 18 C). By taking the least-squares fit of this 

data we obtain a slope of 69.0 ± 0.2 for PEG and 29.7 ± 0.3 for PLL. To show that we can correlate 

the spacing between PLL blockade peaks and the mass of individual PLL monomer units, the ratio 

between the molecular weight monomer units of each molecule will match the ratio of these two 

slopes. The ratio between these two slopes is mPEG/mPLL = 2.3 ± 0.02 and is in qualitative agreement 

with the ratio between the two monomer units (128n/44n = 2.9) this supports the notion that SMNS 

may be a viable tool to predict the mass of unknown analyte.    

 

Figure 17: Structure of PLL where n indicates the degree of polymerization.                           
MWPLL = (128 g/mol)n (http://www.sigmaaldrich.com).  
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Peptide Amino Acid Sequence Mol wt (g/mol) 
leu-enkephalen Tyr-Gly-Gly-Phe-Leu 555.62 

angiotensin II Asp-Arg-Val-Tyr-Ile-His-Pro-Phe 1046.18 

angiotensin I Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu 1296.48 

QBP1 Ser-Asn-Trp-Lys-Trp-Trp-Pro-Gly-Ile-Phe-Asp 1435.58 

neurotensin Gly-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu 1672.92 

Table 2: Peptides chosen for this study arranged in increasing size. 
	

Figure 18: SMNS correctly predicts the relative difference of PEG and PLL monomer 
molecular weights. (A) The current blockade distribution of PEG. (B) A similar comb-like 
distribution for PLL. (C) Plotting arbitrary peak numbers vs. blockade depth for PEG (black) 
and PLL (blue) yields slopeds of 69.0 ± 0.2 (PEG) and 29.7 ± 0.3 (PLL). 
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3.3. Using SMNS for peptide detection 
 
Motivated by the initial results with PLL, a variety of water-soluble, near-neutral peptides 

(Table 2) were analyzed using single molecule nanopore spectrometry. Each peptide gave rise to 

well-defined, unimodal blockade peaks that were distributed consistently according to their size 

(Figure 19A). The deepest current blockade peak corresponds to the largest peptide, neurotensin, 

and the shallowest blockade corresponds to the smallest peptide, leu-enkephalen. These results are 

consistent with the blockade distribution correlation to molecular size found with PEG in which 

the larger PEG monomer units exhibited deeper current blockades.25 Additionally, the residence 

times of each peptide were investigated and yielded single exponential distributions (Figure 19B). 

With the exception of QBP1, our results showed longer mean residence times for larger peptides 

and shorter mean residence times for smaller peptides. The largest peptide neurotensin has a mean 

residence time τneuro = (6.7 ± 0.2) ms and the smallest peptide leu-enkephalen, τl-e= (0.016 ± 0.001) 

ms. Previous results using PEG showed a similar trend where larger molecules would consistently 

yield longer residence times within the nanopore, further indicating that the SMNS method is a 

powerful tool that can be used for peptide analysis. 

 

3.3.1. Debye screening length 

 The debye length for a 1:1 electrolyte of concentration 3M is calculated using, 

𝜅>K 𝑛𝑚 =
0.304
𝐼(𝑀)

 

and is found to be 𝜅>K = 0.176𝑛𝑚.77 The diameter of the inner lumen of the nanopore is much 

larger than this (see Section 1.1.2.), therefore the majority of any peptide-pore Coulombic 

interactions can be essentially ignored. 
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Figure 19: SMNS for peptide detection. (A) Current blockade distributions for all five 
peptides. (B) Residence time distributions for all five peptides. 
	

leu-enkephalen	
angiotensin	II	
angiotensin	I	
QBP1	
neurotensin	
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3.3.2. Peptide correlation with PEG 
 
Figure 20 shows the relationship between current blockade depth and the molecular weight 

of polydisperse PEG (black circles) mixture and the aforementioned peptides (solid squares).  The 

agreement between the PEG and peptide data suggests the ability to assign molecular weights 

based on the magnitude of current blockades.  A theoretical model discussing the connection 

between current blockade ratio and molecular will be presented later in the thesis (see Section 4.2). 
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Figure 20: A distribution of current blockade peaks and their corresponding molecular 
weight for PEG (open circles) and peptides (squares). 
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3.3.3. Peptide enhancement using Au25(SG)18 

Section 1.2.1.1. discussed previous work where a single gold cluster in the pore greatly 

improves the SMNS sensing capabilities of the pore.57 This earlier work showed that when a 

charged cluster is present within the cis-side region of a nanopore, a PEG molecule entering the 

trans-side will have over an order of magnitude increased residence time in addition to an 

increased on-rate to the pore. This increased the resolution of current blockade distributions using 

SMNS analysis. Motivated by this enhancement, the role that gold clusters may play in enhancing 

peptide detection was investigated. The current blockade peaks of three largest/cationic peptides, 

angiotensin I, angiotensin II, and neurotensin, are analyzed in an empty pore versus a gold-

occupied pore (Figure 21 A-C). The quality of these current blockades will partially depend on the 

mean residence time of the peptide within the pore. In a gold cluster-occupied nanopore, peptides 

not only demonstrated similar improvements in mean residence time, but also improvements in 

the observed peptide on-rate to the nanopore (Table 3). 

 

 

Peptide Empty pore Gold-occupied pore 

angiotensin II 
kon 2.27 s-1 2.76 s-1 

tres 1.15 ms 2.06 ms 

angiotensin I 
kon 3.33 s-1 4.08 s-1 

tres 3.85 ms 12.0 ms 

neurotensin 
kon 2.66 s-1 5.06 s-1 

tres 8.05 ms 21.9 ms 
 

 

Table 3: The on-rate (kon) and residence time (tres) of each peptide improves in a gold-
occupied pore.  
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angiotensin II 

angiotensin I 

neurotensin 

Figure 21: Gold clusters enhance current blockade and residence time distributions for each 
peptide, (A, D) angiotensin II. (B, E) angiotensin I. (C, F) neurotensin. 
	

Figure 22: The cluster-induced enhancement improves with increasing voltage for    
angiotensin I (black circle), angiotensin II (red triangle), and neurotensin (blue square).  
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The Coulombic interaction between the oppositely charged gold cluster and peptide plays 

an important role in increasing the mean residence time of a peptide within the nanopore. As seen 

previously with PEG (Section 3.1.1.), the peptide residence time will increase with increasing 

transmembrane potential. The applied electric field forces the peptide and cluster to interact more 

strongly within the pore volume. Figure 22 shows how the enhacement ratio of each peptide with 

and without a gold cluster in the pore (τgold/τopen) grows with increasing voltage. 

 

3.3.4. Altering solution conditions 

 The degree of noise within individual blockades has shown to be greater using peptides, 

than previously studied PEG molecules (Figure 23B). Noise can be parameterized using the 

standard deviation of each blockade (Figure 23A), so to further improve the resolution of current 

blockade peaks it is necessary to decrease the standard deviation of each blockade. Peptides have 

a more complicated secondary structure, which may be indicated by this degree of noise. By 

adjusting solution conditions, like decreasing pH and adding a denaturing agent, the charge, and 

therefore, the structure of a peptide can be changed (Figure 24). This will not only enhance the 

charge-charge interaction between the peptide and cluster, but will also decrease the standard 

deviation of a peptide’s current blockade.  
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Figure 23:  Noise and standard deviation comparisons between the current blockades for PEG 
(red) and angiotensin I (black). (A) Peptide blockades exhibit a larger standard deviation resulting 
from (B) a greater degree of noise in a given blockade. This is expected given the more 
complicated secondary structure expected for these peptides.   
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3.3.4.1. Adjusting solution pH 
 
 As shown in section 3.3.3., there is a Coulombic interaction between the peptide and gold 

cluster that enhances the residence time of a peptide within the pore. By lowering the pH of an 

electrolyte solution, the charge of a peptide like can be increased (Figure 24). This will increase 

the interaction between the cluster and peptide, leading to an increased mean residence time for 

that peptide. Additionally, increasing the charge may change the peptide’s structure in a way that 

decreases each blockade’s standard deviation (Figure 23A). Lowering the standard deviation and 

increasing the mean residence time improves the selectivity of the pore by providing more accurate 

estimates of the mean blockade current.57  

 

 

 

Figure 24: By lowering the solution pH, the net charge of a peptide can be increased. (Image 
created by Joseph W.F. Robertson (NIST, Gaithersburg, MD) using Proteochem) 
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Parameterizing the observed enhancement using, 

𝛾 =
𝜏NJJ

K/g

𝑆. 𝐷.  

shows that lowering the pH will improve the sensing capabilities of the pore. By decreasing the 

electrolyte solution pH to 5.8, the charge of Angiotensin I increases to z = 1.2e (Figure 24), which 

lowered the standard deviation (Figure 25A), increased the mean residence time, and improved the 

observed enhancement (Figure 25B). 

 
 
 
 
 

 
 
 
 
 
 
 

(3) 

Figure 25: pH of solutions is correlated to blockade fluctuations (A, inset) Estimated peptide 
charge according to pH of solution. (A) The mean standard deviation of current blockades for 
angiotensin I (black circles) and neurotensin (red squares) with varying solution pH. (B) The 
enhancement factor with varying solution pH.  Larger values for the enhancement factor γ 
correlate with narrower peaks in current blockade distributions.  These narrower peaks allow for 
a more accurate connection between a given blockade and a particular peptide.      
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3.3.4.2. Adding a denaturing agent 
 
 Residence time has proven to be a critical component towards improving the resolution of 

a current blockade peak. However, this sensing technique can only improve peak resolution by a 

finite amount. Lowering the pH of an electrolyte solution has shown to increase the charge, thereby 

altering the structure of a peptide in a way that reduces the standard deviation of current blockades. 

The final step in optimizing angiotensin I detection using SMNS was to take this structural change 

further by introducing a denaturing agent, guanidinum hydrochloride (Gdm-HCl). Gdm-HCl 

caused a reduction in the mean standard deviation of each event (Figure 26C(iv)) which further 

improved the resolution of the angiotensin I current blockade peak (Figure 26A(iv)). 

  

3.3.5. Optimizing peptide detection 

The degree of optimization previously achieved using PEG (B, blue line) should also be 

possible in peptide sensing. Figure 26 shows how each step in the optimization process affects the 

full width at half maximum (FWHM) of angiotensin I’s current blockade peak. A(i) displays an 

angiotensin I current blockade peak with no adjustments, in a pH 7.2 solution. By changing the 

solution conditions to pH 5.8, the residence time (toff) increased and standard deviation (S.D.) 

decreased (C(ii)) resulting in a more resolved current blockade peak (A(ii)). As seen before, the 

inclusion of a gold cluster further improves the FWHM by increasing the residence time of 

angiotensin I in the nanopore (A(iii)). Finally, incorporating the denaturing agent, Gdm-HCl, 

decreased the standard deviation, so that the final current blockade peak has a FWHM similar to 

optimized PEG results (A(iv)). Part B displays each step in the peptide optimization process 

narrows the width of each blockade peak, showing that SMNS is capable of detecting peptides 

with the same level of sensitivity as PEG. 
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Figure 26: Optimizing peptide detection using SMNS. (A) angiotensin I’s current 
blockade peak improves with system adjustment. (i) pH 7.2, (ii) pH 5.8, (iii) pH 5.8 and 
a gold cluster in the pore, (iv) pH 5.8, 1M Gdm-HCl, and a gold cluster in the pore.           
(B) The width of each blockade peak (FWHM) decreases with each level of enhancement 
(i-iv), showing that peptide detection is capable of the same level of sensitivity as seen 
with PEG (blue line). (C) Mean residence time (toff), on-rate (kon), and standard deviation 
(S.D.) of angiotensin I with each system adjustment (i-iv). 
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4. DISCUSSION 

 
 
 

4.1. Understanding Au25(SG)18 PEG enhancement 
 

When a gold cluster enters a nanopore, the voltage profile of a pore is modified leading to 

a reduction in the applied electric field. This could be one explanation for the increased residence 

time of PEG. However, a decrease in the electric field generally results in a reduction of the PEG 

on-rate to the pore.28 This contradicts results shown in Figure 15 where PEG28’s on-rate increased 

with a gold cluster present in the nanopore. As hypothesized earlier, there must be some interaction 

between PEG and the cluster that gives these results.57,69  

 
4.1.1. Current blockade distribution shift 
 

Figure 8 shows a rightward-shift in the current blockade distribution when a cluster enters 

the pore. In order to understand this shift, an expression describing the ratio of the current blockade 

peak positions with and without a gold cluster in the pore must be derived. The nanopore sensor 

can be modeled as a series of Ohmic resistors (with linear I-V dependence) as shown in Figure 27. 

As discussed in Section 1.1.2. the α-hemolysin pore structure consists of a large cis-side vestibule 

and a narrow trans-side lumen.8 The total resistance of the nanopore can then be described as a 

series of two resistors, 

𝑅RNR<j = 𝑅Rk<=P + 𝑅MIP 
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Figure 27: Schematic illustration of the ohmic model of an α-hemolysin nanopore. One of four 
possible configurations of the nanopore occur when Au25(SG)18 is on the cis-side of the nanopore 
and PEG is on the trans-side. (A) Open pore configuration. (B) PEG in the trans-side of the 
nanopore. (C) Au25(SG)18 in the cis-side of the nanopore. (D) PEG and Au25(SG)18 both in the 
nanopore.69 
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The access resistance of the gold cluster entering the pore is being neglected due to its small size 

and rapid entrance time relative to our bandwidth and sampling frequency. If the pore is empty, 

the resistance will be dominated by the trans-side lumen78 and can be defined as, 

𝑅Rk<=P = 𝑅CNk; 

𝑅MIP = 0 

If a PEG molecule enters the trans-side, the resistance on the trans-side will increase to, 

𝑅Rk<=P = 𝑅CNk;m?@A  

If a cluster enters the cis-side, the resistance on the cis-side will increase to, 

𝑅MIP = 𝑅nY 

So that the total resistance of the nanopore can then be described as, 

𝑅RNR<j = 𝑅CNk;m?@A + 𝑅nY + 𝛿𝑅 

where 𝛿𝑅 indicates a change in resistance due to any structural changes from the interaction 

between PEG and gold, possibly causing this shift in peak position. In order to verify this claim, 

the time-averaged open pore current ( 𝑖6 ) under an applied transmembrane voltage (𝑉) is 

described using Ohm’s law, 

𝑖6 =
𝑉

𝑅CNk;
 

The time-averaged current when only a gold cluster is in the pore, 

𝑖6,8 =
𝑉

𝑅CNk; + 𝑅nY
 

The time-averaged current when only PEGn in is the pore, 

𝑖 =
𝑉

𝑅CNk;m?@Aq
 

 

(4) 

(5) 

(6) 
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and the time-averaged current when both PEGn and Au are in the pore, 

𝑖8 =
𝑉

𝑅nY + 𝑅CNk;m?@Aq + 𝛿𝑅
 

The relative shift in the peak positions once the cluster enters the nanopore is defined by, 

𝑆= =
𝑖8 𝑖6,8 =
𝑖 𝑖6 =

 

where 𝑛 refers to the polymer repeat number for a given peak in the current blockade distribution. 

Substituting equations (4) - (7) into equation (8) yields, 

𝑆= =
𝑅CNk; + 𝑅nY

𝑅nY + 𝑅CNk;m?@Aq + 𝛿𝑅
𝑅CNk;m?@Aq
𝑅CNk;

 

In order to further simplify this, an expression (𝑏=) indicating the position of the nth peak in an 

open pore will be derived. This is the PEGn-induced current blockade ratio with no gold present 

and can be calculated by dividing equation (6) by equation (4). 

𝑏= =
𝑖
𝑖6 =

=
𝑅CNk;

𝑅CNk;m?@Aq
 

A second expression (𝑐) describing the ratio of the open pore current and the current with a gold 

cluster in the pore can be derived by dividing equation (4) by equation (5). 

𝑐 =
𝑖6
𝑖6,8
	

=
𝑅CNk; + 𝑅nY

𝑅CNk;
 

Expressions 𝑏= and 𝑐 are then be substituted in equation (9) and manipulated to obtain a simpler 

expression for 𝑆=, 

𝑆= =
𝑐

1 − 𝑏= 1 − 𝑐 + 𝑑(𝑉) 

 

 

(8) 

(9) 

(10) 

(11) 

(12) 

(7) 
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where, 

𝑑 =
	𝛿𝑅

𝑅CNk;m?@Aq
 

and is the relative change in the resistance due to the interaction between PEG and the cluster. This 

parameter depends on the applied voltage 𝑉 and the size of the PEGn molecule; however, to 

minimize the number of free parameters in the model, d is assumed to be a constant. 

 

4.1.2. PEG/cluster structural change 
 

The interaction between PEG and the cluster most likely result in structural changes to 

either the PEG and/or cluster. Figure 28 shows the shift in the current blockade distribution by 

examining measured values of 𝑆= (equation (12)) over a range of applied voltages. First, it should 

be observed that 𝑑, the interaction strength, scales linearly with the applied voltage (Figure 28, 

inset) which is consistent with the resident time-mechanism hypothesis. If there is no interaction  

Figure 28: The current blockade distribution of experimental data (open symbols) with least-
squares fitting, and the distribution when d = 0 using equation (12) (dashed lines). There is a 
linear relationship between d and applied voltage (inset). (red = 50mV, blue = 60mV, green 
= 70mV)69	
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term or structural change (i.e. 𝑑 = 0), then we would observe a larger shift in 𝑆= (Figure 28, dashed 

lines). However, we observed a smaller shift (Figure 28, open symbols). The interaction term 𝑑 

serves to reduce the magnitude of the peak shifts thus verifying that 𝑑 is nonzero; and that there is 

most likely a structural change in either PEG and/or the cluster upon interaction within the pore.  

 

4.1.3. K+ interaction with PEG 

Section 3.1.3. discussed how the oppositely charged PEG and cluster are attracted to each 

other when located closer to the constriction region of the pore. This Coulombic attraction is 

dependent on the charge of PEG. Previous studies show that neutral PEG molecules become 

charged because they to bind K+ in high ionic strength conditions.25,28 One way to test the validity 

of our peak shift model (Figure 28) is to conduct a study where PEG is not charged when it interacts 

with the cluster inside the pore. A previous study suggests that lithium cations will not bind to 

PEG,70 and therefore, in a high ionic strength LiCl solution, PEG should remain neutral. This will 

be verified if the interaction term 𝑑 in LiCl (𝑑LiCl) is less than the interaction term in KCl (𝑑KCl). 

The current blockade shifts for PEG28 using LiCl and KCl were compared. Using LiCl, 

PEG28 had a mean normalized current blockade when a cluster was present, 

𝑖8
𝑖6,8 =Fgs

= 0.494 

where 𝑖6,8 = 57.0	𝑝𝐴. The mean normalized current blockade without a cluster in the nanopore 

is, 

𝑖
𝑖6 =Fgs

= 0.430 

where 𝑖6 = 75.4	𝑝𝐴. These two current blockades yield a blockade ratio S28 = 1.15. Applying 

these values to equation (12) leads to an interaction term, dLiCl = 0.007. This is almost an order of 
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magnitude less than the interaction term for identical conditions in KCl, dKCl = 0.054, and indicates 

that there is a stronger interaction between PEG and the cluster, and verifies that PEG is becoming 

more charged in a KCl solution by binding to K+.  

 

4.2. Modeling the connection between analyte molecular weight and current blockade  

 Section 3.3.2. showed that PEG and peptides have a similar trend when plotting the mean 

blockade depth as a function of the peptide molecular weight. This agreement suggests the ability 

to assign molecular weights to unknown molecules based on the magnitude of their blockade 

depth. It is well established that PEG blockade peaks are separated at the single monomer unit. So 

to verify the universality of the relationship between analyte mass and current blockade depth, it 

is necessary to model the nanopore system (Figure 29) and estimate the connection between 

current blockades and corresponding analyte mass. 

 
 

 

Figure 29: Molecular model of a nanopore with a molecule inside. The pore (yellow) is 
modeled as a cylinder with cross sectional area Apore and length Lpore. A molecule (green) is 
also modeled as a cylinder with cross sectional area A and length L. 
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Following a similar approach as the model describing cluster-PEG interactions, we model the 

current blockade ratio as a ratio of two different resistances,28 

𝑖
𝑖6

=
𝑅NC;=
𝑅OjNMv;w

=

𝜌NC;=𝐿NC;=
𝐴NC;=

𝜌NC;=(𝐿NC;= − 𝐿)
𝐴NC;=

+ 𝜌𝐿
𝐴NC;= − 𝐴

 

where 𝑅NC;= is the open pore resistance and 𝑅OjNMv;w is the resistance of the pore with a molecule 

inside the pore. 

 Resistance is then expanded in terms of the resistivity of the open pore, 𝜌NC;=, the 

resistivity of the pore within the vicinity of the molecule, 𝜌, the open pore length 𝐿NC;=, the 

molecule length, 𝐿, the open pore cross sectional area, 𝐴NC;=, and the the molecule cross sectional 

area, 𝐴. Minor manipulations rearrange equation (13) to,28 

𝑖
𝑖6

=
1

1 − 𝐿
𝐿NC;=

1 − 𝜌
𝜌NC;=

1
1 − 𝐴/𝐴NC;=

 

To further simplify, we assume, 

𝐿
𝐿NC;=

=
𝑉

𝑉NC;=

z

		 

 and,   

𝐴
𝐴NC;=

=
𝑉

𝑉NC;=

(K>z)

 

where 𝑉 is the volume of the molecule, 𝑉NC;= is the volume of the open pore, and 𝛾 parameterizes 

the molecule’s shape inside the nanopore. 𝛾	~	1 corresponds to a rod shaped molecule and 𝛾 = K
|
 

corresponds to a spherical molecule.  

 

(13) 

(14) 
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The molecular volume ratio can also be written in terms of the molecular weight, M, 

𝑉
𝑉NC;=

=
𝑀
𝛼  

where 𝛼 is the upper limit of the molecular mass that can enter the nanopore. The resistivity 

ratio,	𝛽, is a more complex parameter that describes ion interactions with the molecule.28 For 

simplicity, and because PEG and peptides are near neutral, 𝛽 will be assumed to be constant. 

𝜌
𝜌NC;=

= 𝛽 

From these simplifications, equation (14) can be simplified to, 

𝑖
𝑖6

=
1

1 − 𝑀
𝛼

z
1 − 𝛽 1 − 𝑀

𝛼
K>z >K  

Fitting the current blockade levels for each peptide with respect to the peptide molecular weights 

using equation (15), gives the following values, 

𝛼 = 2630 ± 50	𝑔/𝑚𝑜𝑙 

𝛽 = 0.51	 ± 0.01 

𝛾 = 0.84	 ± 0.04 

Fitting the current blockade levels for each PEG data point with respect that the PEG molecular 

weight using equation (15), give the following values, 

𝛼 = 2760 ± 70	𝑔/𝑚𝑜𝑙 

𝛽 = 1.15	 ± 0.06 

𝛾 = 0.69	 ± 0.04 

These values are consistent with known values. For example, the upper limit cutoff for PEG 

molecules entering the trans-side of a α-hemolysin pore has been found to be ca. 3000 Daltons.79 

The least-squares fitted parameter for 𝛾 is nearly 1 which is consistent with molecules forming 

(15) 
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somewhat rod-like structures in the trans-lumen region of the pore. This agreement verifies that 

the trend seen in Figure 20 is in agreement with a theoretical prediction of molecular weight based 

on current blockade. A least squares fit can be used to show this trend and potentially be used as a 

calibration curve for determining unknown molecular weights based on current blockade depth 

(Figure 30). 
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Figure 30: A least squares fit showing the trend of current blockade depth and their 
corresponding molecular weight for PEG (open circles) and peptides (colored squares). 
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4.3. Future Directions 
 

The optimization of PEG residence time using Au25(SG)18 suggests a way to improve the 

enhancement by permanently fixing the cluster deep within the nanopore volume.80 This 

encourages a stronger interaction when the target analyte is in the trans-side lumen. Additionally, 

if a cluster is fixed within the pore vestibule, the contribution of electroosmotic flow to the 

residence time enhancement is more easily quantifiable which could lead to further optimization 

using pH adjustments.81 

The results from Section 4.1.3. are consistent with the cluster-PEG interaction model of 

residence time enhancement. This suggests that the simplified Ohmic model (Figure 27), applied 

to the interaction term (d), should enable one to characterize the interaction strength between a 

metallic cluster and a PEG-like molecule in a nano-confined environment. 

 When a peptide interacts with a nanopore, the degree of noise is greater than what is 

observed with PEG (Figure 23). However, changing the pH of solution and adding a denaturing 

agent like Gdm-HCl decreased the standard deviation when taking the average of these current 

blockades. This indicates that there is a structural component contributing to this increase in noise, 

so that SMNS could be used as an alternate method to examine the structural variety between 

molecules based on their individual blockade characteristics, and peak position.  
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5. CONCLUSION 
 
 

 
The experiments conducted in this thesis have demonstrated that nanopore-based resistive 

pulse sensing is a promising tool for label-free peptide analysis. Previously, it was found that 

SMNS PEG-based detection is greatly improved when a charged Au25(SG)18 cluster is present 

within the cis-side region of the pore. A cluster encourages PEG molecules to spend extended 

periods of time within the pore volume and increases the overall resolution of the current blockade 

distribution. In this thesis the cluster-PEG interaction was further explored, and optimal voltage 

conditions for cluster-based residence time enhancement was found to be near 60 mV. The cluster 

position and orientation within the nanopore was found to have not only an important role in the 

residence time enhancement but also the mere presence of a cluster improved PEG on-rate to the 

pore. It was also demonstrated that a cluster-PEG interaction term describing the shift in current 

blockade distributions can be used to quantify the relative strength of a cluster-polymer interaction. 

Additionally, it was demonstrated that SMNS can be used for other analytes.  Specifically, 

PLL exhibited the same characteristic comb-like blockade peaks seen using PEG. Several water 

soluble peptides were also analyzed using SMNS and gave rise to well-defined and unimodal 

blockade peaks that distributed consistently with PEG and molecular weight. SMNS peptide 

sensing was then enhanced with the introduction of a Au25(SG)18 cluster, altering solution pH, and 

adding a denaturing agent. Finally, a model is developed that verifies the connection between 

analyte molecular weight and ionic current blockades. 
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