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Abstract 

This thesis reports a comprehensive study of quaternary BeMgZnO alloy and 

BeMgZnO/ZnO heterostructures for UV-optoelectronics electronic applications. It was shown that 

by tuning Be and Mg contents in the heterostructures, high carrier densities of two-dimensional 

electron gas (2DEG) are achievable and makes its use possible for high power RF applications. 

Additionally, optical bandgaps as high as 5.1 eV were achieved for single crystal wurtzite material 

which allows the use of the alloy for solar blind optoelectronics (Eg>4.5eV) or intersubband 

devices.   

A systematic experimental and theoretical study of lattice parameters and bandgaps of 

quaternary BeMgZnO alloy was performed for the whole range of compositions. Composition 

independent bowing parameters were determined which allows accurate predictions of 

experimentally measured values. 

The BeMgZnO thin films were grown by plasma assisted molecular beam epitaxy (P-MBE) 

in a wide range of compositions. The optimization of the growth conditions and its effects on the 

material properties were explored. The surface morphology and electrical characteristics of the 

films grown on (0001) sapphire were found to critically depend on the metal-to-oxygen ratio. 

Samples grown under slightly oxygen-rich conditions exhibited the lowest RMS surface roughness 

(as low as 0.5 nm). Additionally, the films grown under oxygen-rich conditions were semi-

insulating (>105 Ω∙cm), while the films grown under metal-rich conditions were semiconducting 

(~102 Ω∙cm). Additionally, with increasing bandgap Stokes shift increases, reaching ~0.5 eV for 

the films with 4.6 eV absorption edge suggests the presence of band tail states introduced by 

potential fluctuations and alloying.  
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From spectrally resolved PL transients, BeMgZnO films grown on a GaN/sapphire template 

having higher Mg/Be content ratio exhibit smaller localization depth and brighter 

photoluminescence at low temperatures. The optimum content ratio for better room temperature 

optical performance was found to be ~2.5. 

The BeMgZnO material system and heterostructures are promising candidates for the device 

fabrication. 2DEG densities of MgZnO/ZnO heterostructures were shown to improve significantly 

(above 1013 cm-2) by adding even a small amount of Be (1-5%). As an essential step toward device 

fabrication, reliable ohmic contacts to ZnO were established with remarkably low specific contact 

resistivities below 10-6 Ohm-cm2 for films with 1018 cm-3 carrier density. 
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Executive Summary  

Zinc oxide (ZnO) based semiconductor materials are highly attractive for a wide range of 

optical and electronic device applications due to their direct wide bandgap (Eg~3.3 eV for ZnO at 

300K), large excitonic binding energy (~60 meV for ZnO), optical transparency in highly 

conductive state, and scalability to large volume native substrates. Alloying ZnO with BeO and 

MgO allows tuning of optical and electronic properties, inclusive of bandgap, band offsets, lattice 

parameters, and spontaneous polarization. However, compositions, and therefore, tunability 

achievable in MgZnO and BeZnO ternaries are restricted by limited solubility of BeO and MgO 

in wurtzite ZnO lattice and the associated phase segregation. Quaternary alloy BeMgZnO 

alleviates these limitations, and is attractive particularly for solar blind photodetectors, 

intersubband transition devices, and heterostructures with two-dimensional electron gas (2DEG) 

as well as light emitting devices. This thesis is dedicated to synthesis and investigation of structural, 

electrical, and optical properties of quaternary BeMgZnO thin films and (Be,Mg)ZnO/ZnO 

heterostructures with 2DEG. 

BexMgyZn1-x-yO thin films with a wide range of compositions of x = 0 – 0.19 and y = 0 – 

0.52 were grown by plasma assisted molecular beam epitaxy (MBE) on (0001) sapphire substrates. 

Optical bandgaps as high as 5.1 eV were achieved for single crystal wurtzite material.  Using the 

atomic compositions measured (1-2 atom % uncertainty) by means of a combination of 

nondestructive Rutherford backscattering spectrometry with He+ analyzing ion beam and non-

Rutherford elastic backscattering experiments with high energy protons, composition independent 

ternary BeZnO and MgZnO bowing parameters were determined for a and с lattice parameters 

and the bandgap. It was shown that precise control over lattice parameters by tuning the quaternary 



iv 

 

composition would allow strain control in BexMgyZn1-x-yO/ZnO heterostructures with the 

possibility to achieve both compressive and tensile strain, where the latter supports formation of 

2DEG at the interface with ZnO.  

The surface morphology and electrical properties of BeMgZnO thin films on grown on (0001) 

sapphire were found to critically depend on the metal-to-oxygen ratio. Samples grown under 

slightly oxygen-rich conditions (metal-to-oxygen ratio ~0.9) showed nearly 2D growth mode and 

exhibited the lowest RMS surface roughness (as low as 0.5 nm). Additionally, the films grown 

under oxygen-rich conditions were semi-insulating (>105 Ω∙cm), while the films grown under 

metal-rich conditions were more conductive (~102 Ω∙cm). 

To explore the further effect of growth conditions on the incorporation rate of Zn, Mg and 

Be during plasma-assisted MBE growth of quaternary alloy BeMgZnO, the effect of oxygen to 

metal (Be+Mg+Zn) ratio was investigated. Samples grown under fixed metal fluxes showed 

bandgap widening and c lattice parameter shrinking with reduced oxygen flow due to relative 

increase of Be and Mg content. This dependence may be explained by the differences in formation 

energies of the binary compounds. 

BexMgyZn1-x-yO thin films were found to exhibit strong Stokes shift, which increased with 

bandgap, reaching ~0.5 eV for BeMgZnO grown on c-sapphire with 4.6 eV absorption edge 

suggesting the presence of band tail states introduced by potential fluctuations and alloying.  

To improve the quality of the alloy, O-polar and Zn-polar BexMgyZn(1-x-y)O samples were 

grown on GaN templates that offer high structural quality and low lattice mismatch (only 1.9% 

compared to 18% on sapphire for ZnO thin films). 

The performance of heterostructure devices is highly sensitive to the material quality, which 

is governed by defects. Carrier dynamics are extremely sensitive to the type and quality of defects 
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and can be used as a powerful measure of material characteristics. The carrier lifetimes are also 

strongly affected by carrier localization, which is well pronounced in wide-bandgap semiconductor 

alloys due to large differences in metal covalent radii and the lattice constants of the binaries. 

These differences result in strain-driven compositional variations within the film and consequently 

large potential fluctuations, in addition to that possibly caused by defects. To investigate the effects 

of localization in Zn-polar BeMgZnO quaternary alloys, temperature-dependent carrier dynamics 

were investigated by time resolved photoluminescence (TRPL). From spectrally resolved PL 

transients, BeMgZnO samples with higher Mg/Be content ratio were found to exhibit smaller 

localization depth for Be0.03Mg0.18Zn0.79O (rMg/Be=6) compared to Be0.11Mg0.15Zn0.74O (rMg/Be=1.4). 

Similar correlation was observed in temporal redshift of the PL peak position that originates from 

removal of the band filling effect in the localized states. The S-shaped behavior of PL peak with 

change in temperature was observed for the quaternary alloy Be0.04Mg0.17Zn0.79O (rMg/Be=4.3). The 

carriers were found to be localized even above room temperature in Be0.11Mg0.15Zn0.74O (rMg/Be 

=1.4). Additionally, the inverse proportionality of low temperature PL intensity and rMg/Be content 

ratio was observed. However, at room temperature this proportionality was broken. With reducing 

rMg/Be, the compensation effect between Mg and Be weakens, which increases both number of 

defects as well as strain induced localization, ∆0. Since localization depth and defect density are 

somewhat coupled, there exists an optimum rMg/Be content ratio, which was found to be in the 

vicinity of 2.5 for the highest optical efficiency.  

The quaternary BeMgZnO material was also considered as a barrier material to explore 

heterostructures with 2DEG and their device potential. 2DEG densities, limited to 7.5 x 1012 cm-2 

in O-polar MgZnO/ZnO heterostructures (for 45% of Mg), were shown to improve significantly 

to above 1013 cm-2 with the quaternary BeMgZnO barrier having even a small amount of BeO 
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content (1-5 %). As another essential component to development of devices based on these 

structures, reliable Ohmic contacts to ZnO were established with remarkably low specific contact 

resistivities below 10-6 Ohm-cm2 for films with 1018 cm-3 carrier density. Further optimization of 

BeMgZnO/ZnO heterostructures with 2DEG and establishment of Schottky contacts with large 

barrier height would lead to ZnO-based high speed heterostructure field effect transistors.  
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Introduction 

Zinc oxide (ZnO) based materials have attracted a great deal of interest in recent years due 

to their direct wide bandgap (Eg~3.3 eV for ZnO at 300K), large excitonic binding energy (~60 

meV for ZnO), optical transparency in highly conductive state, and scalability to large volume 

native substrates.1,2 In regard to potential applications, ZnO shares some similarities with another 

wide-gap semiconductor, GaN, (Eg~3.4 eV at 300K) which is widely used in production of light 

emitting diodes (LED) and heterostructure field effect transistors (HFETs). However, reliable and 

reproducible p-type conductivity has not been achieved as yet which limits many potential 

applications of ZnO.  

1.1. ZnO family of materials 

Figure 1 shows bandgaps and in-plane lattice parameters for ZnO related family of materials. 

The solid line and shaded area between binaries in wurtzite phase corresponds to wurtzite ternary 

and quaternary alloys, respectively.  
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Figure 1. Bandgap and in-plane lattice parameter a for ZnO family of materials. The solid line and 

shaded area between binaries in wurtzite phase correspond to wurtzite ternary and quaternary 

alloys, respectively.  The parameters for wz-CdO are calculated in Ref. 3. 

 

Table 1 summarizes bandgaps and lattice parameters for the related binaries and compares 

them with other theoretical results and representative experimental values. Alloying ZnO with 

MgO (7.8 eV bandgap in stable rock-salt phase) is conventionally used to increase the bandgap. 

However, MgO has a cubic rocksalt lattice, and therefore, the ternary MgZnO alloy provides 

limited bandgap tuning in the wurtzite phase (wurtzite MgO bandgap 5.88 eV). Consequently, 

phase segregation becomes inevitable as the Mg content of the MgZnO solid solution increases. 

Ohtomo et al.4 and Sharma et al.5 were able to tune the bandgap to ~4 eV for wurtzite MgZnO 

alloys containing 33% and 36% Mg, respectively. The second-phase formation at higher Mg 

contents could be suppressed only at low growth temperatures at the expense of inferior material 
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quality: 55% Mg incorporation to ZnO in wurtzite phase and a corresponding absorption edge of 

4.55 eV have been achieved by Du et al.6 using plasma assisted molecular beam epitaxy (P-MBE) 

at a substrate temperature of 250 °C. It has been also possible to achieve metastable cubic phase 

MgZnO with even higher Mg content by mainly reducing the growth temperature.7 A caveat in 

this case, however, is the loss of semiconductor functionally (the cubic material is an insulator 

rather than a semiconductor). It should also be noted that supersaturated solid solutions are 

unstable against exposure to elevated temperatures during thermal treatments or device operation, 

which can trigger the second-phase formation and limit their practical use.  

The alternative BeZnO ternary alloy has been proposed8 to be more advantageous compared 

to MgZnO as it is expected to maintain the wurtzite structure for the whole compositional range, 

and therefore, provide a wide range of bandgap tuning, potentially up to that of BeO (10.6 eV). 

However, despite the initial optimistic report of bandgap modulation up to 5.4 eV in BeZnO,8 

recent studies9,10 indicate that BexZn1-xO solid solutions with intermediate Be composition are 

unstable and segregate into low- and high-Be content phases due to the large lattice mismatch of 

the binary constituents and large covalent radii difference between Zn and Be (1.22 Å for Zn, 0.96 

Å for Be11), making it difficult to incorporate intermediate concentrations of  Be to the ZnO lattice. 

The phase segregation has been observed for Be contents as low as 10%.9,12,13  

To overcome the abovementioned limitations of the MgZnO and BeZnO ternaries and 

suppress phase segregation, the quaternary BeMgZnO alloy can be used with achievable bandgaps 

above 5 eV.12,14–17 The advantage of this quaternary system is that Mg has a much larger covalent 

radius (1.41 Å)11 than Be and can compensate for the large lattice mismatch between ZnO and 

BeO. Therefore, it is expected that by tuning the compositions of both BeO and MgO in ZnO (i.e. 

Be/Mg ratio) one can achieve lattice matching to ZnO, prevent phase separation driven by the radii 
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difference, and achieve wider bandgaps. Up until now, the growth of single crystal quaternary 

BeMgZnO has been limited to growths on c-plane sapphire,15,16,18–22 quartz,23,24 silicon23 and 

GaN;25 and the explored growth techniques are MBE,15,19,21,22 PLD,16,18,20,23 sputtering24,25 and sol-

gel synthesis26.  

One of the attractive applications of the quaternary BeMgZnO alloy is the HFETs. In order 

to achieve efficient ZnO based HFETs the following conditions must be satisfied:  

- high quality of ZnO layer that will serve as a medium for 2DEG layer and high quality 

barrier layer that will provide proper spontaneous and piezoelectric polarization for the 

formation of 2DEG; 

- optimized growth conditions to achieve a heterostructure with 2DEG; 

- low specific contact resistivity ohmic contacts for Source and Drain electrodes; 

- large barrier height and low leakage current Schottky contact for Gate electrode. 
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Table 1. Calculated in-plane (a) and out-of-plane (c) lattice parameters and bandgaps for the 

binaries ZnO, MgO, BeO (note that u=3/8=0.375 in the ideal wurtzite structure) compared with 

representative experimental values.  

  Theory Experiment 

  a, Å c, Å u Eg, eV a, Å c, Å u Eg, eV 

ZnO 

(wz) 

This work 

 

3.30 

3.166a 

5.285 

5.070a 

0.378  

0.380a 

3.43 HSE06-0.375 

2.48b HSE06-0.25 

2.12-3.2c GW 

0.74d GGA 

3.252 

3.2475 

-

3.2501e 

5.203 

5.2042 

- 5.241e 

- 

0.3817 - 

0.3856e 

0.3817f 

3.26 

3.43 (LT)  

 

          

MgO 

(wz) 

This work 

 

3.32 

3.221a 

5.056 

5.040a 

0.386 

0.386a 

5.87 HSE06-0.375 

5.21b HSE06-0.25 

7.16g GW  

3.78h LDA 

 

3.283i 

 

5.095i 

 

0.388i 

 

5.88j 

          

MgO 

(rock-

salt) 

This work 

 

4.17 

0.421k 

N/A N/A 7.72 HSE06-0.375 

6.67b HSE06-0.25 

8.2-9.16l GW 

4.34m GGA 

- 

4.207n 

4.211o 

N/A N/A - 

7.77p
 

7.7q 

          

BeO 

(wz) 

This work 

 

2.72 

2.738r 

4.393 

4.449r 

0.378 

0.377s 

10.20 HSE06-0.375 

10.09t HSE06-0.25 

10.8u GW  

8.49v GGA 

- 

2.698w 

- 

4.3776w 

- 

0.378x 

 

- 

10.63y 

a LDA+U to DFT with ultrasoft pseudopotentials [Ref. 27] 
b Untuned HSE06 with fraction of exact exchange equal 0.25 [Ref. 28] 
c Various GWs. [Ref. 29] 
d GGA [Ref. 30] 
e XRD and energy-dispersive X-ray spectroscopy (EDX) [Ref. 31] 
f Powder neutron diffraction. [Ref. 32] 
g G0W0 [Ref. 28] 
h LDA to DFT [Ref. 33] 
i Extrapolation of the experimental data [Ref. 27]  
j Extrapolation of the experimental data [ Ref. 34] 
k GGA(PAW) to DFT[Ref. 35] 
l Various GWs [Ref. 36] 
m GGA(PBE) to DFT [Ref. 37] 
n XRD [Ref. 38] 
o XRD [Ref.39] 
p Reflectance [Ref. 40] 
q Reflectance [Ref. 41] 
r GGA(PBE) to DFT [Ref. 42] 
s DFT in the framework of the periodic linear combination of atomic orbitals (LCAO) approximation [Ref. 43] 
t Untuned HSE06 with fraction of exact exchange equal 0.25 [Ref. 44] 
u GW [Ref. 45] 
v GGA(PBE) to DFT [Ref. 44] 
w XRD [Ref. 46] 
x Neutron and 𝛾-ray diffraction  [Ref. 47] 
y Reflectance [Ref. 48]  
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1.2. Polarization Effects in (Be,Mg)ZnO/ZnO Heterostructures 

II-Oxide group heterostructures containing MgZnO and CdZnO ternaries have been widely 

investigated for optical and electronic applications.1,2 A very high low-temperature 2DEG mobility 

of 7x105cm2/Vs has been reported for a low Mg content Zn0.99Mg0.01O/ZnO heterostructure grown 

on bulk ZnO, although at a low electron sheet density of 1.4x1011 cm-2.49 This progress allowed 

the observation of the fractional Hall effect in ZnO-based heterostructures.50 However, the 

practical 2DEG densities  at MgZnO/ZnO interfaces are found to be limited to ≤1x1013 cm-2,51 

which may fall short for high power RF applications.  

The spontaneous polarization arises from an intrinsic asymmetry of the bonding in the 

equilibrium wurtzite crystal structure (Figure 2). In an infinitely large bulk wurtzite material with 

no interfaces, the net spontaneous polarization will be zero. However, when an interface is 

introduced, it would result in the non-zero spontaneous polarization; free electrons would try to 

screen the field and 2DEG may be formed on the interface.  
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Figure 2. (a) ZnO unit cell, including the tetrahedral-coordination between Zn and its neighboring 

O. (b) ZnO has a noncentrosymmetric crystal structure that is made up of alternate layers of 

positive and negative ions, leading to spontaneous polarization PSP (adopted from Ref. 52)  

In addition to the spontaneous polarization, PSP, in wurtzite crystals, mechanical strain also 

results in polarization, which is called piezoelectric polarization PPZ (PSP does not depend on strain). 

Figure 3 shows the origin of PPZ in strained Zn-polar ZnO. When the [0001] direction is assumed 

to be the positive direction, PPZ is negative for tensile and positive for compressive strained layers. 

Therefore, the spontaneous and piezoelectric polarizations are co-directional in case of tensile 

strain and anti-directional in case of compressive strain.  
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Figure 3. The ball-and-stick configuration of a ZnO tetrahedron for with a homogenoeous in-plane 

tensile (left) and compressive (right) strain showing a net polarization in the [0001̅] and [0001] 
directions, respectively.  

For the BeMgZnO system, as a first approximation it is assumed that MgO has the largest 

spontaneous polarization and BeO has similar PSP to that of ZnO. The limiting factor for 

MgZnO/ZnO HFETs is the counteractive piezoelectric polarization originating from the 

compressive strain (Figure 4(a)). In order to overcome this limitation and achieve high 2DEG 

carrier density, the use of BeMgZnO barrier was proposed. The quaternary alloy allows smaller a 

lattice parameter than that of ZnO and thus provides tensile strain and piezoelectric polarization 

that supports the 2DEG on the BeMgZnO/ZnO interface (Figure 4(b)). Despite its great potential, 

there have been only a limited number of theoretical and experimental investigations of the 

quaternary BeMgZnO alloy. In this work we focus on properties of ternary BeZnO and quaternary 

BeMgZnO and their potential application for heterostructures with 2DEG. 
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Figure 4. The schematics of Zn-polar MgyZn1-yO/ZnO and BexMgyZn1-x-yO/ZnO 

heterostructure. 

1.3. Organization of the Thesis 

This thesis focuses on P-MBE growth and comprehensive investigation of (Be,Mg)ZnO 

alloys and (Be,Mg)ZnO/ZnO heterostructures. Introduction is dedicated to the discussion of ZnO 

family of materials and origin of the polarization effects in polar materials, such as wurtzite ZnO, 

and detailed discussion of the strengths and limitations of (Be,Mg)ZnO/ZnO heterostructures.  

In Chapter 2, the composition, bandgaps, lattice parameters, morphology and electrical 

conductivity of O-polar BeMgZnO quaternary alloy grown on c-sapphire are investigated using 

various measurement techniques. Ion beam analysis using Rutherford backscattering spectrometry 

with He+ analyzing ion beam and non-Rutherford elastic backscattering experiments with high 

energy protons were used for the composition measurements; X-ray diffractometry (XRD) was 

used for the investigation of lattice parameters and crystal quality; transmission/absorption 

measurements were used for the bandgap determination; atomic force microscopy (AFM) was 

used for the investigation of surface morphology; and reflection high-energy electron 

diffractometry (RHEED) was for the investigation of the growth mode and surface morphology.  
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Chapter 3 reports on the detailed investigation of optical characteristics of BeMgZnO alloy 

using steady state and time-resolved photoluminescence (PL) techniques. This includes 

determination of the effect of Mg/Be ratio on carrier dynamics, localization, and Stokes shift in 

BeMgZnO thin films. 

Chapter 4 discusses metal semiconductor structures and fabrication methods used for ZnO-

based devices. The effects of various surface preparation on Schottky barrier height were 

investigated. Where, additionally, the effects of annealing conditions and carrier concentration 

were investigated for ohmic contacts. The necessary steps to achieve ohmic contacts with low 

specific contact resistivity and Schottky contacts with high Schottky barrier height and low leakage 

current are specified. 

In Chapter 5, experimental results on O-polar MgZnO/ZnO heterostructures are discussed 

with the emphasis on temperature depended Hall and noise measurements. Where Section 5.2 

provides theoretical investigation of (Be,Mg)ZnO/ZnO heterostructures with 2DEG. All results 

are summarized and overall outlook and future work is discussed in Chapter 8. 
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Chapter 2. Growth and Characterization of BeMgZnO Thin Films 

There are many techniques as mentioned above for the growth of ternary and quaternary 

(Be,Mg)ZnO alloys. The structures presented in this thesis are growth using plasma assisted 

molecular beam epitaxy (P-MBE) which allows the formation of high-quality (low-defect, highly 

uniform) semiconductor thin films in a precisely controlled way. 

Figure 5 shows the cross-sectional schematics of the O-polar and Zn-polar BeMgZnO 

samples investigated in this work. BeMgZnO thin films were grown by P-MBE with an RF oxygen 

plasma source and Knudsen cells for Zn, Be, and Mg and on epitaxial carbon compensated high 

resistivity GaN(0001)/Al2O3(0001) templates. Pyrolytic boron nitride (PBN) crucibles were used 

for Zn and Mg sources and a BeO crucible for the Be source. The GaN templates were cleaned ex 

situ with aqua Regia to remove possible metal contamination and followed by immersion in a HCl : 

H2O = 1 : 1 solution to remove any gallium oxide (Ga2O3) from the surface. After loading the 

substrate to the growth chamber, GaN surface was thermally cleaned at 625 °C for 15 min. 

Templates were exposed to Zn flux prior to ZnO growth to terminate the GaN surface with Zn 

adatom and prevent the formation of Ga oxide. 53 By varying the VI/II ratio during low temperature 

ZnO growth, the polarity of the growth layer could be controlled.54 First, a ~15 nm-thick low 

temperature ZnO buffer layer was grown at 300 °C followed by annealing at 730 °C to achieve an 

atomically flat surface. Then, a 120 nm thick high temperature ZnO layer was grown at 680 °C. 

BeMgZnO films were deposited at ~1.3 x 10-5 Torr oxygen pressure with thicknesses 130 nm and 

100 nm for Zn-polar and O-polar films grown on GaN/sapphire temples.  The average growth rate 

of Zn-polar samples was 170 nm/h and that of O-polar was 75 nm/h.  

For the growth of O-polar layers on sapphire, a 2 nm-thick MgO buffer layer was deposited 

at 750 °C to ensure 2D nucleation followed by a 10-15 nm thick low temperature (300 °C) ZnO 
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buffer layer. Then BeMgZnO films were deposited at ~8 x 10-6 Torr oxygen pressure using 400 W 

RF plasma power and 400 °C substrate temperature, which as a set of conditions was found to be 

optimal for the best crystal quality.55 The average growth rate of the quaternary material was ~100 

nm/h, and the film thicknesses were ~170 nm.  

 

Figure 5. The cross-sectional schematics  of (a) Zn-polar and (b) O-polar BeMgZnO on 

GaN/sapphire  and c) O-polar BeMgZnO on sapphire templates. 

2.1. Composition Measurements 

The composition of Be and Mg directly influence the properties of the quaternary BeMgZnO 

alloy. Quantitative measurements of chemical profiles of light elements, such as C or Be, in 

matrices composed of heavy atoms are challenging for nondestructive methods. Analytical 

techniques like SIMS or XPS, which leads to sputtering and sample damage effects, require sample 

standards, and suffers from difficulties in the detection of the light Be element, we apply ion beam 

analysis as nondestructive characterization tool. To determine Be content and its depth distribution 

in ternary BeZnO and quaternary BeMgZnO, we employed ion beam analysis (IBA), which is a 

powerful and nondestructive characterization tool. IBA allows accurate measurements of 

concentrations of constituents and the stoichiometry of thin films as a function of depth. Although 
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conventional Rutherford Backscattering Spectrometry (RBS), the simplest IBA method, can 

provide an absolute accuracy of 1%, the detection of light elements in the presence of heavier ones 

is challenging. To overcome this limitation, we employed resonances which appear in the elastic 

backscattering cross section at characteristic energies of the analyzing He+ or H+ ions, which make 

feasible a quantitative chemical IBA of light elements in binary, ternary, or quaternary compounds. 

The atomic composition with less than 1-2 atom % uncertainty was measured in ternary BeZnO 

and quaternary BeMgZnO alloys using a combination of nondestructive Rutherford backscattering 

spectrometry with 1 MeV He+ analyzing ion beam and non-Rutherford elastic backscattering 

experiments with 2.53 MeV energy protons (Figure 6). An enhancement factor of 60 in the cross-

section of Be for protons has been achieved to monitor Be atomic concentrations. The applied ion 

beam technique applied in our work supported with the detailed simulation of ion stopping, 

backscattering, and detection processes allows for quantitative depth profiling and compositional 

analysis of wurtzite BeZnO/ZnO/sapphire and BeMgZnO/ZnO/sapphire layer structures with low 

uncertainty for both Be and Mg. In addition, the IBA data were correlated with excitonic bandgaps 

of the layers deduced from optical transmittance measurements. To augment the measured 

compositions and bandgaps of BeO and MgO co-alloyed ZnO layers, hybrid density functional 

bandgap calculations were performed by varying the Be and Mg contents. The theoretical vs. 

experimental bandgaps show linear correlation in the entire bandgap range studied from 3.26 eV 

to 4.62 eV. The analytical method employed should help facilitate bandgap engineering for 

potential applications, such as 2DEG electron channels, solar blind UV photodetectors, and 

heterostructures for UV emitters and intersubband devices. 
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Figure 6.  2.53 MeV non-Rutherford proton elastic backscattering spectra of (a) 

Be0.11Mg0.33Zn0.56O (Q3) layers measured at sample tilt angles of  = 7o and  = 70o. Surface peaks 

for Be, Mg, and Zn, and spectrum edges for O and buried Al (in sapphire), as well as the depth 

scale for Zn are indicated. The symbols represent measured data. Simulated spectra are also shown 

by red and blue lines. 

2.2. Lattice Parameters and Bandgaps 

The c- and a-lattice parameters were deduced from X-Ray Diffraction (XRD) measurements 

for the symmetric (0002) and skew-symmetric (10-13) reflections, respectively, using the line 

focus mode.  The optical absorption measurements to determine the optical bandgaps were 

performed using a Deuterium lamp and a SPEX 500M scanning spectrometer equipped with a 

photomultiplier tube. Figure 7 shows symmetric XRD 2theta-Omega scans for the (0002) 

reflections for selected O-polar BeMgZnO samples. With increased Be and Mg content the crystal 

quality slightly degrades, as evident from lower intensity of XRD peaks.  
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Figure 7. Symmetric XRD 2theta-Omega scans for the (0002) reflection of selected BeMgZnO. 

The optical bandgap energy (Eg) was estimated from the (αopthν)2 vs. hν Tauc plots (Figure 

8) where αopt, the absorption coefficient which was deduced from the transmission measurements 

and the measured thickness values and found to be in the order of is 2 × 105 cm-1 above the 

absorption edge. Widening of the bandgap with increasing Be and Mg content is clearly observed 

in Figure 8.  
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Figure 8. Tauc plots for the determination of absorption edges using transmittance measurements 

for selected BeMgZnO samples. The absorption coefficient is in the order of 2 × 105 cm-1 above 

the  bandgap.  

We used first principles calculations to analyze structure, and electronic properties of 

quaternary BeMgZnO alloys. The structural properties were calculated using Perdew-Burke-

Ernzerhof (PBE)16 parameterization of the generalized gradient approximation (GGA)17 to the 

density functional theory (DFT). Although in most cases PBE approximation is known to slightly 

overestimate the lattice constants, it was found to be adequate in this study as marginal 

improvements were obtained using a more accurate Heyd-Scuseria-Ernzerhof (HSE06) hybrid 

functional,18 which comes with a significantly increased computational cost.  

The electronic bandgaps computed by PBE, on the other hand, are significantly 

underestimated for the ZnO family of binaries: the PBE gaps obtained here are 4.99 eV for rock-
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salt MgO, 0.74 eV for ZnO, and 7.87 eV for BeO, showing mean error of 2.72 eV in comparison 

with the experimental values discussed below. Therefore, analysis of quaternary oxides using 

(semi)local approximations to the DFT is problematic. In contrast, standard HSE06 hybrid 

functional yields a drastically lower mean absolute error for the semiconductor bandgaps of only 

0.26 eV.19 Furthermore, in HSE06, the exchange-correlation energy contains exact Fock-type 

exchange part that is mixed with the (semi)local part in a ratio (standard fraction of exact exchange 

is 0.25) that can be adjusted to fit the experimental bandgap of a specific material. The fraction of 

exact exchange (0.375) adjusted to yield the experimental low temperature bandgap of 3.43 eV for 

ZnO,20 yields the bandgap of 10.2 eV for BeO, which is close to the experimental value of 10.6 

eV,21 and 7.72 eV for the stable rock-salt phase of MgO, close to the measured bandgap of 7.7 

eV.22 Based on the good agreement of calculated bulk binary bandgaps with experiment a common 

value of 0.375 was adopted in this work for the exact exchange23 fraction with the expectation that 

reasonable bandgaps will be obtained at intermediate concentrations of Mg and Be in BeMgZnO. 

All calculations were performed using supercells with 72 atoms and using Γ–point 

eigenvalues only, and projector augmented wave (PAW) pseudopotentials. Wurtzite lattice was 

used throughout the work for all alloy compositions, which leads to an additional error at high 

concentrations of Mg, where rock-salt crystal structure would prevail. However, in quaternary 

BeMgZnO alloys, the rock salt phase becomes energetically favorable for fractions of Mg 

exceeding 75% for alloy containing 3% of Be, and 83% for alloy with 17% of Be.13 These high 

concentrations of Mg are not accessible in experiment, and therefore, present purely theoretical 

interest at the moment. Therefore, for all data related to experimentally grown BeMgZnO alloy, 

and even at higher Mg and Be concentrations, the wurtzite structure is appropriate. All atomic 

structures were relaxed within PBE with respect to the lattice parameters a and c, c/a ratio, as well 
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as all internal degrees of freedom, to yield forces of 0.01 eV/Å or less. The plane wave basis sets 

with 500 eV energy cutoff were used in PBE calculations. This allowed accurate calculations of 

the BeMgZnO crystal structure. The electronic properties were computed for relaxed crystal 

structures using HSE06 hybrid functional with 0.375 fraction of exact exchange and 400 eV energy 

cutoff. The exchange range separation parameter in HSE06 was kept at 0.2 Å-1. 

Figure 9(a) displays the in-plane lattice parameters for BexMgyZn1-x-yO solid solution 

calculated using PBE approximation to DFT for the full range of compositions. The directly 

computed data (solid spheres for select compositions) exhibit bowing and can be represented by 

the polynomial form56 

 (  (  (  ( , 1 1 1         BeMgZnO BeO MgO ZnO BeZnO MgZnO xya x y xa ya x y a b x x b y y b xy
 

(1) 

where bBeZnO, bMgZnO, and xy BeZnO MgZnO BeMgOb b b b    are the bowing parameters that are 

independent of the composition.57 The surface plot in Figure 9(a) is the fit using Equation (1). As 

will be discussed below, computed c lattice parameters and the bandgaps can also be represented 

by Equation (1) with a replaced by the corresponding parameter. Additionally, since our 

calculations cover the entire range of compositions, this interpolation formula for quaternary 

BexMgyZn1-x-yO also yields the bowing parameters for ternary compounds that can be used to 

explain the properties of the corresponding ternary alloys. Note that there are different methods 

used across the literature with varying bowing equations, different definitions of bowing 

parameters, and their dependence on the composition of the quaternary alloy making it often 

difficult to compare the bowing parameters reported.  
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Table 2. Bowing parameters for the quaternary BeMgZnO alloy calculated in this work and 

reported in literature. 

  a (Å) c (Å) Bandgap (eV) 

bBeZnO This work 

 

 

- 0.043 ± 0.0209 

Lineara 

- 

- 0.043 ± 0.042 

Lineara 

- 

6.94 ± 0.428 

5.6a 

4.5 b 

bMgZnO This work 

 

0.061 ± 0.0209 

0.04167c 

- 0.172 ± 0.0421 

- 0.1333c 

0.237 ± 0.438 

- 

bxy This work - 0.140 ± 0.0384 0.427 ± 0.0773 - 2.79 ± 0.800 
a GGA(PBE) to DFT [Ref. 42] 
b Absorption measurements on RF magnetron sputtered BeZnO [Ref. 58] 
c GGA(PAW) to DFT [Ref. 35]  

 

The bowing parameters obtained from the fits using Equation (1) are provided in Table 2. 

For convenience, Figure 9(b) displays the dependence of a lattice parameter on Mg content for 

various fixed Be contents in BeMgZnO alloys. As also shown in Table 1, the a parameter of 

wurtzite MgO is very close to that of ZnO due to relatively small difference in covalent radii (1.22 

Å for Zn, 1.41 Å for Mg).11 On the other hand, due to the smaller covalent radius of Be (0.96 Å)11 

compared to Zn, the in-plane lattice parameter of BeO is substantially smaller than that of ZnO.  

The bowing of the surface in Figure 9(a) is relatively small despite the wide range of the lattice 

parameter variation in BeMgZnO. By choosing proper Be and Mg content it is possible to achieve 

in-plane lattice parameter larger (by a small amount) or smaller than that of ZnO. The latter one is 

very important in achieving tensile strain in the barrier layer of Zn-polar BeMgZnO/ZnO 

heterostructure, which yields to the proper sign of piezoelectric polarization and results in high 

two-dimensional electron gas (2DEG) density near the interface. For Zn-polar BexMg0.2Zn0.8-

xO/ZnO heterostructures even 5% of Be should provide sufficient piezoelectric polarization to 

generate 2DEG sheet density above 1013 cm-2. The tensile strain required in the barrier layer for 

2DEG generation cannot be achieved with Zn-polar MgZnO/ZnO heterostructure. 
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Figure 9. (a) Calculated a lattice parameters of BexMgyZn1-x-yO as a function of Be and Mg content. 

Solid circles represent calculated values using PBE-DFT, and the surface is a fit using equation 

(1), which provided the bowing parameters listed in Table 2. (b) Computed a lattice parameter 

values as a function of Mg content for different Be compositions. The solid lines are the 

corresponding sections from the surface fit in (a). The dashed line corresponds to Be1-yMgyO 

ternary alloy.  

Figure 10 shows the calculated out-of-plane c lattice parameters of BeMgZnO (solid spheres) 

and the fit (surface) obtained using equation (1). Bowing of the c lattice parameter is observed to 

be significantly larger than that of the a parameter due to the fact that the incorporations of Mg 

and Be have opposite effects on the in-plane lattice parameter (reducing with Be, increasing with 

Mg), while the out-of-plane lattice parameter of BeMgZnO reduces with increasing both Be and 

Mg content.  
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Figure 10. (a) Calculated c lattice parameters of BexMgyZn1-x-yO as a function of Be and Mg 

contents. Solid circles represent calculated values using PBE-DFT, and the surface is a fit using 

equation (1) which provided the bowing parameters listed in Table 2. (b) Computed c lattice 

parameter values as a function of Mg content for different Be compositions. The solid lines are the 

corresponding sections from the surface fit in (a). The dashed line corresponds to Be1-yMgyO 

ternary alloy.  

Figure 11 (a) presents the theoretically calculated bandgap values using tuned HSE06 hybrid 

functional with the fraction of exact exchange 0.375 (solid spheres) and the fit using equation (1) 

(the surface fit) for the entire range of BeMgZnO compositions. Figure 11 (b) shows the computed 

bandgaps as a function of Mg content for different Be contents. The bandgap bowing for ternary 

MgZnO compound is relatively small, while that for BeZnO is clearly noticeable in Figure 11 (a).   
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Figure 11. (a) Calculated bandgaps of BexMgyZn1-x-yO as a function of Be and Mg contents. Solid 

circles represent calculated values using the exchange tuned HSE06 hybrid functional, and the 

surface is a fit using equation (1), which provided the bowing parameters listed in Table 2. (b) 

Computed bandgaps as a function of Mg content for different Be compositions. The solid lines are 

the corresponding sections from the surface fit in (a). The dashed line corresponds to Be1-yMgyO 

ternary alloy. 

The theoretical methods used here were validated by comparing the calculated lattice 

parameters and bandgaps with those measured for MBE-grown quaternary layers. Figure 12 (a) 

and Figure 12 (b) compare the calculated a and c lattice parameters, respectively, of BeMgZnO 

quaternary solid solutions with experimental values. It is worth noting that incorporation of Be, 

which has small covalent radius on the Zn lattice sites, partially compensates the lattice expansion 

caused by Mg and permits attainment of BeMgZnO layers containing up to approximately 50% 

Mg.12 As GGA to DFT in most cases is known to overestimate the lattice parameters by 1-2%, as 

expected, the calculated values are larger than the measured ones by about 0.04 Å and 0.08 Å for 

a and c parameters, respectively. This discrepancy also partially originates from slight variations 

in the actual Be and Mg atomic contents  from the plotted 9% and 39%, respectively, as well as 

the error in measurement of the lattice parameters (see Table 3) and the compositions.59  
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Table 3. The lattice parameters and bandgaps of MBE grown quaternary BeMgZnO layers 

with corresponding measurement errors. The compositional values are within ±1-2 atomic % of 

Be for all samples and within ±1 atomic % of Mg for Set I (near 9% Be content, varying Mg 

content) and within ±4 atomic % of Mg for Set II (near 39% Mg content, varying Be content).   

  

Sample a parameter, Å с parameter, Å Bandgap, eV 

Set I: Be content near  ~9% 

Be0.08Zn0.92O 3.236 ± 0.020 5.123 ± 0.001 3.34 ± 0.05 

Be0.11Mg0.14Zn0.75O 3.208 ± 0.007 5.099 ± 0.001 3.64 ± 0.05 

Be0.07Mg0.33Zn0.60O 3.220 ± 0.010 5.049 ± 0.001 4.06 ± 0.05 

Be0.07Mg0.46Zn0.47O 3.229 ± 0.006 5.026 ± 0.001 4.44 ± 0.05 

Be0.12Mg0.52Zn0.36O 3.210 ± 0.006 4.979 ± 0.001 4.58 ± 0.05 

Set II: Mg content near ~39% 

Mg0.39Zn0.61O 3.269 ± 0.010 5.193 ± 0.001 3.60 ± 0.05 

Be0.05Mg0.37Zn0.58O 3.250 ± 0.006 5.104 ± 0.001 3.75 ± 0.05 

Be0.07Mg0.37Zn0.56O
* 3.245 ± 0.006 5.079 ± 0.001 3.95 ± 0.05 

Be0.08Mg0.39Zn0.53O
* 3.232 ± 0.006 5.044 ± 0.001 4.19 ± 0.05 

Be0.19Mg0.42Zn0.39O 3.160 ± 0.006 4.939 ± 0.001 4.62 ± 0.10 
* considered also as part of the set of samples with near 9% Be content. 

 

The error bars shown in Figure 12 represent the corresponding overall confidence limits. The 

measurement error results partially from alloy XRD peak broadening and use of the relatively 

weak and broad low-temperature ZnO XRD peak as the reference position for asymmetric XRD 

scans. It is observed in Figure 12(a) that Be0.09MgyZn0.91-yO samples (blue circles) exhibit larger 

scatter in the measured in-plane lattice parameter around the expected trend compared to the 

BexMg0.4Zn0.6-yO samples (red stars). The main source of error in this case is the deviation of the 

actual Be content from the plotted 9% as a small change in the Be molar content results in a 

significant change in the in-plane lattice parameter. Nevertheless, despite the rigid shift due to 

slight overestimation of the predicted lattice parameters, the theoretical model satisfactorily 

predicts the lattice parameters of the quaternary alloy. 
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Figure 12. (a) In-plane and (b) out-of-plane lattice parameters of BexMg0.39Zn0.61-xO (red curve for 

theory and red stars for experiment) and Be0.09MgyZn0.91-yO (blue curve for theory and blue circles 

for experiment) as functions of Be and Mg content, respectively. The error bars indicate the 

confidence limits originating from slight variations in the actual Be and Mg atomic contents from 

the plotted 9% and 39%, respectively, as well as the error in measurement of the lattice parameters 

(see Table 3) and the compositions. 

Figure 13 compares the calculated and measured bandgaps for Be0.09MgyZn0.91-yO solid 

solutions. The difference between theoretically predicted electronic bandgaps and experimentally 

determined optical bandgaps is 0.14-0.32 eV for Set I (samples with near 9% Be but varying Mg 

content) and higher for Set II (samples with near 39% Mg but varying Be content). The large 

deviation for Set II when Be content is 8% or lower may be attributed to possible segregation of 

the Mg-rich phase, which is characteristic to high Mg content MgZnO. Phase segregation would 

also take place in the quaternary alloy with Be concentration insufficient to compensate the tensile 

strain caused by large Mg content.17 As a result, effectively lower Mg content remains in the 

wurtzite lattice, which would be revealed as lower optical bandgap. It should be noted that XRD 

measurements are not sensitive enough to reveal any secondary phase. Moreover, as the effect of 

Mg incorporation on the lattice parameters is smaller than that of Be, the effect of phase 

segregation may not be noticeable, particularly also due to broad XRD peaks.12 
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The discrepancy between calculated and measured bandgaps shown in Figure 13 is also 

associated with neglecting temperature expansion of the lattice, temperature dependence of 

electron-phonon coupling, and excitonic effects in ab initio calculations. The hybrid functional 

method of calculations was tuned to yield the bandgap that matches the measured low-temperature 

ZnO bandgap of 3.43 eV (obtained from the 3.37 eV low temperature emission of A-exciton plus 

the exciton binding energy 
X

BE of 60 meV), higher than the excitonic bandgap measured at room 

temperature (3.26eV). Similarly, for MgO and BeO, increasing temperature from 77K to 300K 

results in bandgap shrinkage of about 0.2 eV 40 and 0.1 eV,48 respectively. Thus, the combined 

effects of lattice expansion and temperature dependence of electron-phonon coupling on the 

bandgap of BeMgZnO alloy can account for variations in the range of 0.1 eV to 0.2 eV. The 

decrease in bandgap due to the excitonic effect only is 80meV in rocksalt MgO,40 and the reported 

excitonic binding energy of wurtzite MgZnO does not vary from that of ZnO by more than 10meV 

for Mg content up to 29%.60,61 The excitonic binding energy measured for BeO, on the other hand, 

is significantly higher (0.17eV). Therefore, for ternary BeZnO and quaternary BeMgZnO alloys, 

the exciton binding energy is expected to fall within the range determined by ZnO and BeO exciton 

binding energies, i.e. 0.06–0.17 eV. These estimates suggest that the systematic difference between 

the calculated and measured bandgaps in BeMgZnO alloys is mainly due to excitonic effects and 

temperature dependent renormalization of the bandgap, unaccounted for in the theoretical method. 

When all these effects are considered, the satisfactory prediction of Be0.09MgyZn0.91-yO bandgap 

by the theory suggests that the use of the HSE hybrid functional in our calculations yields the 

correct bandgaps for both constituent binaries and their solid solutions. Thus, the bowing 

parameters provided in Table 2 are expected to be well representative. It should be noted, however, 

that although the solubility limits in the BeO-MgO-ZnO system have not yet been explored in 
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detail, growing single-phase material with large Mg and Be content while maintaining the material 

quality may be extremely challenging or even impossible because of strong tendency for phase 

segregation observed for MgZnO and BeZnO ternaries. 
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Figure 13. Bandgaps of Be0.09MgyZn0.91-yO and BexMg0.39Zn0.61-xO solid solutions calculated using 

tuned HSE06 (solid lines) compared to experiment (symbols). The large deviation between 

experimental and theoretical values for BexMg0.39Zn0.61-xO for Be content below 10% is attributed 

to possible segregation of Mg-rich phase. On the other hand, for samples with relatively high Be 

content, Be can suppress phase segregation of Mg-rich phase and thus increase incorporation of 

Mg to the wurtzite lattice of BeMgZnO alloy due to compensation of the tensile strain resulting 

from large Mg content. The compositions of all BexMg0.39Zn0.61-xO samples are estimated based 

on flux measurements and thus show accumulative amount of Be and Mg in the quaternary layers.  
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Table 2 compares the bowing parameters computed here for the quaternary BeMgZnO 

system, with those of the ternary alloy subsystems, BeZnO and MgZnO, from literature. We obtain 

negative and relatively small values for BeZnO bowing of -0.043 Å for both a and c lattice 

parameters. The in-plane lattice bowing parameter for MgZnO is 0.061 Å and out-of-plane lattice 

bowing is negative but larger in the absolute value, -0.172 Å. Among the ternaries involved, 

MgZnO have been explored extensively both experimentally and theoretically, whereas BeZnO 

has received limited attention, and BeMgO almost no consideration at all due to difficulty of 

growth. Shimada et al.35 calculated structural properties of MgZnO alloy using GGA to DFT with 

projector augmented wave (PAW) pseudopotentials and reported lattice bowing parameters similar 

to ours. The observed nonlinearity of the lattice parameters was attributed to difference in the 

chemical bonding between rocksalt MgO and wurtzite ZnO. In regard to the effect of Be 

incorporation, the calculations predict relatively small bowing parameters for the compositional 

dependences of the lattice parameters in BeZnO, as shown in Table 2. Using GGA, X. Su et al.62 

performed DFT calculations of lattice parameters of wurtzite BeMgZnO for selected compositions; 

however, no bowing was reported. The bowing parameters ba_BeZnO
 and bc_BeZnO determined here 

are relatively small and have not been reported to date; in part due to the complications associated 

with precise determination of the Be content,63 with the measurement error being higher than the 

effect of bowing itself. In addition, experimental studies of BeZnO for a wide range of 

compositions is challenging because of phase segregation observed for the solid solutions with 

both low (more than ~10% Be) and high Be (less than ~75% Be) content.9  

In regard to bandgap bowing, we obtain relatively large BeZnO bowing of 6.94 eV and 

relatively small MgZnO bowing of 0.237 eV, which shows that the bowing parameters increase 

with the size difference of the constituents. Shi and Duan56 calculated bandgaps of zinc blende 
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BeMgZnO using local density approximation (LDA) to DFT and reported large and composition 

dependent bandgap bowing parameters. However, the composition dependence does not allow 

comparison with the results presented here. Ding et al.42 reported theoretical investigation of the 

bandgap of ternary BeZnO with a bowing parameter of 5.6 eV. The bandgap bowing parameter 

bEg_BeZnO has also been reported experimentally (4.5 eV in Ref. 58) but is lower than the 

theoretically predicted value most likely due to low range of available Be compositions and low 

crystal quality. It should also be noted that, in our case, the calculated bowing parameters are 

independent of composition, indicating that the symmetry of the wave functions do not change 

significantly due to incorporation of Mg and Be to the lattice of ZnO to form the quaternary 

BeMgZnO alloy. 

 

Figure 14. HSE06 calculated band-decomposed charge densities for valence band maximum 

(VBM) for (a) bulk ZnO and (b) Be0.19Mg0.42Zn0.39O. The isosurfaces (yellow) are set at 6% of the 

maximum value. In each case a small fragment of the super cell is shown for clarity, with vertical 

direction corresponding to wurtzite (0001) axis. Zn, Mg, Be, and O atoms are represented by large 

gray, large orange, medium green, and small red spheres.  
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In order to understand the evolution of the lattice and the bandgap of the BeMgZnO alloys 

with the increasing Be and Mg contents, Figure 14 shows the crystal structures along with the 

isosurfaces of the electron density corresponding to the valence band maxima (VBM) for bulk 

ZnO [Figure 14(a)] and BeMgZnO alloy with 19% of Be and 42% of Mg [Figure 14(b)]. 

Significant structural distortions due to lattice relaxation are observed in the BeMgZnO alloy. 

Bond lengths between Mg and O atoms and Zn and O atoms are similar and on average about ~2 

Å, while Be-O bonds are significantly shorter, on average ~1.7 Å. Due to a large BeO formation 

enthalpy (ΔfH
0=-6.316 eV),64 Be-O bonding is significantly stronger than that of Zn-O (ΔfH

0=-

3.632 eV),64  which is another reason for the decrease in the lattice constant when admixing Be to 

ZnO. At the same time, MgO has formation enthalpy (ΔfH
0=-6.235 eV)64 similar to BeO; however, 

larger atom size leads to Mg-O bond length being similar to that of ZnO.  

As shown in Figure 14 electron densities are localized on oxygen atoms away from the 

formal bond centers. This shift is quite pronounced in HSE06 due to partial correction of the self-

interaction error for the oxygen 2p-derived states, which make up most of the upper part of the 

valence band in both ZnO and BeMgZnO. Electron densities show stronger localization in 

BeMgZnO alloy compared to bulk ZnO. Particularly the VBM orbitals localized on oxygen 

coordinated by Mg atoms tend to be more localized, compared to those coordinated by zinc [Figure 

14(b)]. These changes in the wavefunction with increasing concentration of Mg and Be are related 

to the bandgap bowing discussed above. Larger bowing is usually accompanied by a stronger 

wavefunction localization. For example, in AlxGa1-xN alloys the similarity between Ga and Al 

atoms leads to small bowing and weak wavefunction localization.65 On the other hand in InxGa1-

xN, the stronger wavefunction localization also leads to larger bandgap bowing.66 In the case of 

BeMgZnO alloys, the wavefunction localization as a result of alloying is significant, which 
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explains the observed bandgap bowing. At the same time, the compensating effect of substituting 

Be and Mg on Zn sites leads to relatively small average changes in metal-oxygen bond lengths, 

leading to small bowing in lattice parameters.  

In order to quantify the overall wavefunction localization in BeMgZnO, we calculate 

participation ratio (PR) for conduction band minima (CBM) and VBM wavefunctions 

4
( )V d r r .65 The PR is equal to 1 for a constant function, and has larger value for any spatially 

varying function, with larger values for stronger localization. Compared to GGA the 

wavefunctions computed with HSE06 are usually more localized, resulting in larger bandgap 

bowing. Table 4 presents computed PR values normalized to the most delocalized state in our 

calculations, which is bulk ZnO CBM state. In all alloy configurations both CBM and VBM 

wavefunctions are more localized, compared to bulk ZnO. Admixing Be atoms into the alloy 

shows stronger localization effect, where 19% of Be produces similar wavefunction PR values as 

42% of Mg atoms in the alloy. Since the PRs for VBM increase by a factor of 1.5 from ZnO to 

Be0.19Mg0.42Zn0.39O alloy, indicating significant changes in the band edge wavefunctions, the 

calculated values of bandgap bowing are significant as well. Enhanced localization also usually 

indicates stronger interatomic bonding, which also leads to increased bandgap bowing. 
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Table 4. Participation ratios for the CBM and VBM wavefunctions in bulk ZnO and 

BexMgyZn1-yO alloys, normalized to the bulk ZnO CBM. Larger values correspond to stronger 

localization of the wavefunction.  

 

 CBM VBM 

Bulk ZnO 1.0 5.92 

Mg0.42Zn0.58O 1.13 7.22 

Be0.19Zn0.81O 1.35 7.62 

Be0.19Mg0.42Zn0.39O 1.36 9.00 

 

In conclusion, we performed a systematic experimental and theoretical study of lattice 

parameters and bandgaps of quaternary BeMgZnO alloy for the whole range of compositions. The 

calculations using exchange tuned HSE06 hybrid functional (exchange fraction of 0.375) are in 

good agreement with the experimental data for MBE grown samples containing up to about 19% 

Be and 52% Mg in quaternary BeMgZnO alloy. The a and с lattice parameters were calculated 

within 1-2% accuracy in comparison with experimentally observed values. The effect of BeO 

content on the a lattice parameter is much stronger than that of MgO due to larger difference of 

lattice parameter of the former with ZnO. Further offset of 0.14-0.32 eV for Be0.09MgyZn0.91-yO 

and higher for BexMg0.39Zn0.61-xO (due to possible phase segregation) between theoretically 

predicted and measured bandgaps (in the available compositional range) is attributed to the 

temperature expansion of the lattice, temperature dependence of electron-phonon coupling, and 

excitonic effects. Composition independent bowing parameters were determined for ternary 

BeZnO and MgZnO alloys: bEg_BeZnO=6.94 eV and bEg_MgZnO=0.237 eV for bandgaps, and ba_BeZnO
 

=-0.043 Å, ba_MgZnO
 =-0.172 Å and bc_BeZnO

 = -0.043 Å, bc_MgZnO
 =0.061 Å for a-lattice and c-lattice 

parameters, respectively. The large bandgap bowing bEg_BeZnO correlates with strong localization 
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of both CBM and VBM wavefunctions in BeMgZnO alloy, compared to bulk ZnO. Finally, it is 

important to note that, by using BeMgZnO alloy as a top barrier layer on Zn-polar ZnO, it is 

possible to achieve both tensile and compressive strain, where former cannot be achieved with 

MgZnO. This is advantageous to generate high density 2DEG by utilizing piezoelectric 

polarization for future generation (Be,Mg)ZnO/ZnO heterostructure field effect transistors.  

2.3. Effect of Oxygen-to-Metal Ratio on Incorporation of Metal 

Species into Quaternary BeMgZnO Alloy Grown by P-MBE on c-

Sapphire 

Advanced ZnO based heterostructure and quantum well devices require precise control over 

composition, bandgap and lattice parameters of barrier layer during thin-film growth.  Kinetics of 

chemical reactions on the growing surface play a critical role in MBE growth of compound 

materials in general, and BeO-MgO-ZnO quaternary solid solutions in particular. One can expect 

that the ratio of reactive-oxygen flux to metal flux would have a significant effect on composition 

of the BeMgZnO quaternary alloys and thus on many of material properties including bandgap, 

lattice parameters, dielectric constant, thermal stability etc. For the growth of BeMgZnO layers 

under metal-rich conditions (oxygen limited), a competition between different metal species to 

form a bond with oxygen is expected on the growing surface. If the surface mobility of adatoms is 

sufficiently high (at sufficiently high substrate temperature, TS), one can expect the minimization 

of formation energy to be the mechanism governing the formation of BeMgZnO. In other words, 

we expect oxygen to form the most favorable bonds with available metal adatoms. This assumption 

applies only to layers with moderate Be and Mg content, when the phase segregation is suppressed. 

To the best of our knowledge, the solubility limits of Be and Mg for the BexMgyZn1-x-yO alloy 

have not yet been established. However, for the samples grown at the same substrate temperature 



33 

 

and similar oxygen flux, as employed in this work,  we were able to achieve quaternary single 

crystal alloys with compositions of Be0.19Mg0.42Zn0.39O and Be0.12Mg0.52Zn0.36O by varying metal 

fluxes.67 Therefore, compositions below Be and Mg content of 0.19 and 0.52, respectively, should 

be below the phase segregation limit.  

To confirm this hypothesis and develop a phenomenological model describing the formation 

process of BeMgZnO alloy, we have investigated metal incorporation rates during MBE growth 

of quaternary BeMgZnO layers as a function of reactive oxygen flux. Plasma density was 

evaluated from measurements of intensity of the oxygen *O radical line at 777.5 nm using Ocean 

Optics SD2000 fiber optic spectrometer to determine the relative amount of oxygen radicals flow 

for different settings of the mass flow controller. Linear relationship of the amount of *O radicals 

on O2 flow was found for the discussed range of the gas flow. To obtain a first-hand insight into 

the formation process of BeMgZnO alloy, we performed ab initio calculations of formation 

energies Hf of the binary compounds and ternary alloy for the whole range of BeMgZnO 

compositions. 

Thermodynamic stability of an alloy as a function of the constituent concentrations at zero 

temperature can be described by the formation energy. For all alloys compositions, when 

performing first principles were calculations of formation energies, equilibrium lattice constants, 

and relaxed atomic positions using Perdew-Burke-Ernzerhof (PBE)68 parameterization of the 

GGA.69 The electronic properties were calculated using exchange tuned HSE hybrid functional. 

The functional was tuned to reproduce the low temperature bandgap of ZnO which also results in 

bandgaps of wurtzite BeO and MgO within 3% error with the experiment. The structure model 

was based on a 72-atom supercell. The computational methods have been described in Ref. 67. For 
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the given concentrations of Be and Mg, the formation energy of BexMgyZn1-x-yO alloy can be found 

from the total energy calculated as 

1Be Mg Zn O
( , ) (1 )x y x y BeO MgO ZnO

f total total total totalE x y E xE yE x y E      
 (2) 

where terms Etotal are the total energies of the quaternary compound and the corresponding binaries 

normalized per atom. The accuracy of this approach can be evaluated from the computed formation 

enthalpies of the binary compounds involved in the formation of alloys. For example, the enthalpy 

of formation of ZnO is tot O Zn(ZnO)H E       , where the chemical potentials  of oxygen 

and zinc are taken from the calculated energies of an oxygen molecule and a Zn metal. Table 5 

shows that for bulk wurtzite ZnO, HSE calculations yield -3.35 eV, compared to the measured 

value of -3.632 eV.64 In the case of wurtzite BeO, the HSE calculation result is -6.04 eV, while the 

experimental value is -6.316 eV.64 MgO is stable in rock salt structure, with computed formation 

enthalpy of -5.91 eV, while the measured value is -6.235 eV. 64 The formation enthalpy of the non-

existent wurtzite phase of MgO is -5.68 eV. First, all formation energies are underestimated by 4-

8%, indicating that the accuracy of equilibrium formation energy is a few percent. Second, 

formation enthalpies of the wurtzite and rock salt MgO differ by ~0.2 eV, therefore using the total 

energy of wurtzite MgO will also lead to ~0.2 eV error in the alloy formation energies.  

 

Table 5. Heat of formation Hf for the binary components of the quaternary BeMgZnO  

Compound 
Crystal 

structure 

Heat of formation, eV 

(experiment) 

Heat of formation, 

eV (theory) 

Error, % 

(theory vs. exp.) 

BeO Wurtzite -6.31664 -6.042 -4.3% 

MgO Rocksalt 

Wurtzite 

-6.23564 

Unavailable 

-5.906 

-5.678  

5.3% 

- 

ZnO Wurtzite -3.63264 -3.354 7.7% 
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The BeMgZnO alloy formation energies for the full range of Mg, Be, and Zn concentrations 

are shown in Figure 15. Positive values of formation energy indicate the trend towards phase 

separation. Almost parabolic positive formation energies for the BeZnO ternary indicate 

difficulties in the equilibrium formation of this alloy. On the other hand, MgZnO exhibits negative 

formation energies, indicating favorable conditions for the formation of this alloy. The competition 

between the two trends results in the lowest energy path on the BeMgZnO formation energy 

surface, for the fraction of Mg around 15% (for fraction of Be from 10 to 20%), with a saddle point 

at 61% of Be and 12% of Mg. Favorable concentrations of Mg are around 12-15%. Realistically, 

this corresponds to the experimentally observed increase in Be solubility with the addition of Mg 

to the incident flux. As discussed in Section 2.2, we reported a wurtzite single crystal 

Be0.19Mg0.42Zn0.39O with Be content beyond that achievable with ternary BeZnO. On the other 

hand Su et al.15 reported stabilization of wurtzite MgZnO up to 57% of Mg by the addition of 1-

2% of Be. Aforementioned results suggest a positive co-effect of both Be and Mg species on each 

other’s solubility in the lattice of ZnO (at least for the samples with Be content up to 19% and Mg 

content up to 57%). It is important to note that, in order to reproduce the alloy formation in the 

wurtzite ZnO lattice, in the calculations of the alloy formation energy, the total energy of MgO in 

the wurtzite phase was used. As described above, this phase is unstable, which leads to an 

underestimated formation energy of MgZnO alloy by ~0.2 eV. Experimentally, maximum Mg 

content achieved in MgZnO lattice is 55%, at a substrate temperature 250°C70 (in contrast to  

BeZnO, where the phase segregation accrues above 10-15%). At higher temperatures, phase 

segregation is often observed with MgO formed in rock-salt phase. Thus, overall energetic trend 

of Mg being better soluble in ZnO in comparison with Be is correctly reproduced by calculations, 

although negative formation energies of MgZnO are most likely unrealistic.  
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Figure 15. (a) The formation energy as a function of Be (x) and Mg (y) atomic fractions for 

BexMgyZn1-x-yO alloy. The color surface represents the fit with the quadratic equation (Equation 

2) to calculated points, which are indicated with solid spheres. (b) Directly calculated values in 

two dimensional presentation with spline fits.  

Figure 16 shows bandgap, c lattice parameter, and growth rate of quaternary BeMgZnO alloy 

as functions of the O2 flow. For the sample grown with the oxygen mass flow of 1.00 sccm the 

total metal flux has been adjusted to provide near-stoichiometric growth conditions, while three 

other samples were grown under metal-rich conditions, as determined from the metal flux 

measurements and test growths of ZnO at a substrate temperature of 400°C. As seen from Figure 

16 (a), the c lattice parameter of the quaternary BeMgZnO alloy systematically decreases and 

bandgap increases with decreasing O2 flow rate. These findings are consistent with the increase in 

Be and/or Mg content of the alloy with decreasing O2 flow. Additionally, the reduction in lattice 

parameter and the increase in bandgap correlate with the observed systematic decrease in the 

growth rate with reducing O2 flow (Figure 16 (b)].  
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Figure 16. (a) The c lattice parameter, bandgap and (b) growth rate dependence on the O2 flow. 

For the sample grown with the oxygen mass flow of 1.00 sccm the total metal flux has been 

adjusted to provide near-stoichiometric growth conditions, while three other samples were grown 

under metal-rich conditions. For all discussed samples the metal fluxes were kept constant. 

The composition of quaternary BexMgyZn1-x-yO alloy can be fully described with two 

parameters x and y, for Be and Mg contents, respectively, as discussed in Section 2.1. Using the с 

lattice parameter and bandgap values of quaternary alloy it is possible to determine Be and Mg 

contents of the BeMgZnO alloy. Tuning the theoretical calculations to match the experimentally 

observed optical bandgap of ZnO, 𝐸𝑔
𝑍𝑛𝑂 = 3.26𝑒𝑉, and c lattice parameter, cZnO = 5.2042 Å, 

allowed accurate prediction of the experimentally observed bandgap and с lattice parameter of 

quaternary BeMgZnO for the whole range of compositions. A generic fitting equation is used 

instead to provide a better fit to the calculated values: 67 

 (  2 2, 1.33 5.29 3.233. 0.65 [eV6 ]2gE x y x x y y    
 (3) 

 (  2 2, 1.052 0.138 0.2395.2 0.024 [04 Å]c x y x x y y    
 

(4) 

 

Using the experimental bandgap and с lattice parameter, simultaneously solving equations 

(3) and (4) allows determination of compositions of BexMgyZn1-x-yO samples Table 6 shows the 
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compositions and the change in the Be and Mg contents with the change in the oxygen flow. 

Sample B and C are grown under the same growth condition in order to confirm the reproducibility 

in the experiment. As expected, Be and Mg contents increase with decreasing oxygen flow. The 

increase in the growth rate with increasing reactive-oxygen flow indicates that the total 

incorporation of metal species increases. By using the known Be and Mg contents in the samples 

under consideration, we can find the effective growth rates of the binaries composing the 

quaternary BeMgZnO alloy. The effective growth rates of binaries for sample A grown under near 

stoichiometry condition were found to be 4 nm/h, 15 nm/h and 51 nm/h for BeO, MgO and ZnO, 

respectively.  

. In order to quantify the effect of the oxygen flow on the effective growth rates of binaries 

(BeO, MgO, ZnO) and thus incorporation coefficients of corresponding metals (Be, Mg, Zn), the 

calculated compositions and measured growth rates were used by solving systems of equations for 

each binary of the form: 

 

 

( 

( 
( 

*

0.06                     Be conent for A is 0.06

0.08 Be conent for B is 0.08
( )

BeMgZnO

BeO

BeMgZnO BeMgZnO BeMgZnO

BeO MgO ZnO

Be

BeMgZnO BeMgZnO BeMgZnO

BeO MgO ZnO A B

r

r r r

r

r r r r r




 

 
    


 (5) 

 

where BeMgZnO

BeOr , 
BeMgZnO

MgOr , BeMgZnO

ZnOr  are the effective binary growth rates of BeO, MgO, ZnO, 

respectively; and rA, rB are the measured BeMgZnO growth rates for films A and B, respectively. 

It was found that incorporation rates of Be and Mg into the growing film are virtually 

constant and equal to unity due to low metal vapor pressure and high melting point, i.e. αMg≈αBe≈1, 
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while the Zn incorporation varies. The excess amount of Zn atoms re-evaporates from the sample 

surface which is possible due to much higher equilibrium vapor pressure of Zn compared to those 

of Mg and Be at the growth temperature of 400°C.  

 

Table 6. The composition, O2 flow, VI/II ratio, the growth rate and the incorporation coefficient 

αZn of the samples discussed in Section 2.3. 

Sample Composition 
O2 flow, 

sccm 
VI/II ratio 

Growth 

rate*, nm/h 
αZn 

Z ZnO† 1.2 1 80 0.3 

A Be0.06Mg0.22Zn0.72O 1.0 0.9 70 0.24 

B 

C 
Be0.08Mg0.28Zn0.64O 0.8 0.7 56 0.17 

D Be0.10Mg0.34Zn0.56O 0.7 0.6 45 0.12 
*The growth rate shown for samples B and C corresponds to an average value 

†ZnO sample has ~10% higher Zn flux than BeMgZnO samples. 

 

The absolute value of the Zn incorporation coefficient, αZn, is defined as 
max/BeMgZnO

Zn ZnO ZnOr r  , 

where 
max

ZnOr is the maximum possible ZnO growth rate for the particular Zn flux, i.e. for αZn = 1, the 

growth rate corresponds to 100% incorporation of arriving Zn atoms into ZnO. The 
max

ZnOr value 

calculated using Zn flux measurements with the quartz thickness monitor and Zn/ZnO molar-mass 

and density ratios was found to be 
max

ZnOr = 215 nm/h for TZn=315°C. However, the actual ZnO 

growth rate depends on the surface polarity (being about a factor of 2 higher for Zn-polar material 

compared to that of O-polar54,71) and substrate limiting the Zn sticking coefficient. The growth rate 

of 65nm/h for the O-polar ZnO at TS = 400°C, corresponds to αZn=0.3, which is in agreement with 

the value reported by Ivanov et al.72 The αZn values for different samples are shown in Table 4. As 

seen from the table, when Be and Mg fluxes are present (growth of BeMgZnO), Zn incorporation 
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decreases with reducing oxygen to metal ratio. Under metal-rich conditions, αZn varied from 0.3 

to 0.12 for the change in the oxygen flow from 1.0 sccm to 0.7 sccm.   

Under thermal equilibrium, ZnO heat of formation is much less negative than those of BeO 

and wz-MgO, which are very close to each other. Additionally, the calculated Hf for BeMgZnO 

varies only by 0.15 eV/atom for the whole range of compositions, and y 0.05 eV/atom for the 

compositional range in samples A-D (Mg below 25% and 10% for Mg and Be, respectively). Thus, 

linear interpolation is a reasonable approximation to estimate the Hf of discussed BeMgZnO 

samples. If the surface mobility during growth is sufficient for adsorbed metal species to find and 

form the most favorable bonds, the composition of the quaternary alloy should be governed by the 

formation energies of corresponding binaries to minimize the total Hf of BeMgZnO alloy. Since 

for a BeMgZnO alloy the formation of Zn-O bond has the lowest probability, the metal-rich (or 

oxygen-deficient) growth conditions would lead to higher incorporation of Be and Mg, while the 

Zn species that are not able to form chemical bonds with oxygen, re-evaporate from the surface 

owing to high Zn vapor pressure. This would result in the relative increase of Be and Mg content 

in the BeMgZnO lattice, and corresponding changes in electronic and structural properties should 

be observed. It should be noted that MBE growth conditions are away from thermodynamic 

equilibrium; therefore, the theory can explain only a general trend rather than providing 

quantitative predictions.  

In conclusion, the dramatic effect of flux of reactive oxygen on the composition of 

BeMgZnO alloy grown by MBE with constant metal fluxes is observed. Relative fraction of Mg 

and Be in the alloy systematically increases with reducing the ratio of reactive oxygen flux to the 

total metal flux (Be+Mg+Zn). With the same metal fluxes used, Be0.06Mg0.22Zn0.72O (Eg=4 eV) 

forms under near stoichiometric conditions (VI/II = 0.9), whereas Be0.10Mg0.34Zn0.56O (Eg=4.5 eV) 
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grows under highly metal-rich conditions (VI/II = 0.6). The corresponding change in the ZnO 

incorporation coefficient αZn during BeMgZnO growth is αZn = 0.24 for VI/II = 0.9 and αZn = 0.12 

for VI/II = 0.6, where αZn for binary ZnO growth under similar conditions is 0.3. These findings 

are qualitatively explained by the difference in heat of formation Hf of binary compounds and the 

quaternary alloy. As revealed by theoretical HSE06 calculations, formation energy -3.354 eV of 

ZnO is less negative compared to those of BeO (-6.042 eV) and wz-MgO (-5.678 eV) that gives 

rise to lower probability of Zn incorporation into BeMgZnO lattice compared to Mg and Be under 

metal-rich conditions. Substrate temperature of 400ºC is sufficient to re-evaporate unbounded Zn 

species from the surface. For the case when substrate temperature is low, we should expect similar 

changes in the incorporation rates of all Be, Mg and Zn, i.e. composition would not change with 

varying oxygen flow.  

2.4. Effect of Oxygen-to-Metal Ratio on Surface Roughness, 

RHEED and Electrical Conductivity of O-polar BeMgZnO on c-

Sapphire 

The fabrication of high quality heterostructures require low interface surface roughness. 

Figure 17 shows the dependence of Root-Mean-Square (RMS) surface roughness on metal 

(Zn+Mg+Be) to oxygen ratio (II/VI ratio). It was found, that samples grown under slightly oxygen 

rich conditions (II/VI=0.8-0.9) exhibit the minimum surface roughness (~1 nm); where samples 

grown under both oxygen rich or metal rich conditions show increased surface roughness. The 

inserts to Figure 17 shows corresponding RHEED images that were taken at the end of each growth 

that support the trends in surface roughness. BeMgZnO samples growth under metal or oxygen 

rich conditions show 3D growth mode. This island growth mode results in high RMS roughness 
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that is observed with AFM. The sample growth under slightly oxygen rich conditions shows nearly 

2D growth mode. 

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0

1

2

3

4

5

6

7

Oxygen-rich

R
M

S
 r

o
u

g
h

n
es

s 
(n

m
)

II/VI ratio

Metal-rich

 

Figure 17. Dependance of RMS surface roghness on II/VI ratio during BeMgZnO growth on c-

sapphire. Insters are RHEED images taken at the end of each growth with errors indicating 

corresponding growth condition  

Figure 18  shows an AFM 2.5 x 2.5 𝜇m scan of Be0.1Mg0.4ZnO with RMS surface roughness 

below 0.5 nm. Further reduction in surface roughness shown in Figure 17 may be explained with 

higher compensation effect between Mg and Be species in the quaternary layer.  
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Figure 18. AFM image of Be0.1Mg0.4ZnO. RMS surface roughness < 0.5 nm. 

With regard to the effect of metal to oxygen ratio on electrical conductivity, in the 

preliminary study it was found that BeMgZnO films grown under oxygen rich conditions are semi-

insulating (>105 Ω∙cm), while the films grown under metal rich conditions are more conductive 

(~102 Ω∙cm). We have also found that the films grown under O-rich conditions remain insulating 

despite Ga doping (~1∙1018 cm-3 of Ga donors) which suggest high degree of compensation in such 

material. The ability to dope quaternary BeMgZnO may be essential for fabrication of wide 

bandgap transparent conductive oxide (TCO) films24 or modulated-doping field effect transistors 

(MODFET) with BeMgZnO barriers. 

In conclusion, the appropriate growth conditions must be chosen for the specific needs. The 

optimum metal-to-oxygen ratio for the O-polar BeMgZnO growth on c-sapphire, for the minimum 
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surface roughness, lays in the vicinity of 0.9. Additionally, samples grown under oxygen rich 

conditions are semi-insulating where those grown under metal rich conditions are semiconducting.  

  



45 

 

Chapter 3. Optical quality, localization, and carrier dynamics in 

BeMgZnO 

The bandgap value is an extremely important parameter that is typically deducted from an 

absorption edge, as was done for previously discussed BeMgZnO films growth on c-sapphire. 

However, for films grown on lower bandgap material such as GaN, the absorption measurement 

cannot reveal the bandgap and thus other methods must be used. The photoluminescence (PL) peak 

position with the knowledge of Stokes shift can provide a fair estimate of the bandgap value of the 

quaternary alloy. Moreover, the performance of heterostructure devices is highly sensitive to the 

material quality, which in turn is governed by the number and type of defects. On the other hand, 

carrier dynamics is extremely sensitive to the type and quality of defects and therefore can be used 

as a powerful measure of material characteristics. Additionally, the carrier lifetimes are strongly 

affected by carrier localization, which is well pronounced in wide-bandgap semiconductor alloys 

such as (Be,Mg)ZnO, (Al,In)GaN due to large differences in metal covalent radii and the lattice 

constants of the binaries. These differences result in strain-driven compositional variations within 

the film and consequently large potential fluctuations, in addition to that possibly caused by defects. 

To investigate the potential effects of localization in Zn-polar BeMgZnO quaternary alloys, 

temperature-dependent carrier dynamics were investigated by time resolved photoluminescence 

(TRPL). 

Figure 5 shows the cross-sectional schematics of the O-polar and Zn-polar BeMgZnO 

samples investigated in this work. The quaternary thin films were grown on epitaxial carbon 

compensated high resistivity GaN(0001)/Al2O3(0001) templates. Pyrolytic boron nitride (PBN) 

crucibles were used for Zn and Mg sources and a BeO crucible for the Be source. The GaN 

templates were cleaned ex situ with aqua Regia to remove possible metal contamination and 
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followed by immersion in a HCl : H2O = 1 : 1 solution to remove any gallium oxide (Ga2O3) from 

the surface. After loading the substrate to the growth chamber, GaN surface is thermally cleaned 

at 625 °C for 15 min. Templates were exposed to Zn flux prior to ZnO growth to terminate the 

GaN surface with Zn adatom and prevent the formation of Ga oxide. 53 By varying VI/II ratio 

during low temperature ZnO growth we could control polarity of the growth layer.54 First, a ~15 

nm-thick low temperature ZnO buffer layer was grown at 300 °C followed by annealing at 730 °C 

to achieve an atomically flat surface. Then, a 120 nm thick high temperature ZnO layer was grown 

at 680 °C. BeMgZnO films were deposited at ~1.3 x 10-5 Torr oxygen pressure with thicknesses 

of 130 nm and 100 nm for Zn-polar and O-polar films, respectively.  The average growth rate of 

Zn-polar samples was 170 nm/h and that of O-polar was 75 nm/h.  

PL and TRPL measurements were performed using frequency-tripled Ti:Sapphire laser 

excitation (4.68 eV) with 150 fs pulse width and 80 MHz repetition rate. PL was analyzed by a 

liquid nitrogen cooled charge couple device (CCD) camera connected to a 30 cm focal length 

monochromator. TRPL was analyzed by a spectrometer attached to a 30 ps resolution Hamamatsu 

streak camera. The photo excited carrier densities were estimated as 8x1015 cm-3 and 8x1017 cm-3 

for PL and TRPL measurements, respectively. The excitation spot size on the sample surface was 

100 μm in diameter. 

The compositions of quaternary BexMgyZn1-x-yO alloys studied here were deduced by 

comparing the measured c lattice parameters (from X-ray diffraction) and bandgaps (from 

absorption edge) with previously determined values for the full range of compositions.59,73 The 

lattice parameters, low temperature PL peak positions and Mg/Be ratios are shown in Table 7. 

Figure 19 shows low temperature (LT) and room temperature (RT) steady state PL spectra 

of BeMgZnO samples grown on GaN measured at 15 K with 4.68 eV excitation. From LT spectra, 
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samples I and IV with the highest Mg/Be ratio, rMg/BE, and lowest PL energy peak position, EPL, 

exhibited the highest PL intensity. Sample II has ~0.1 eV higher EPL than that of sample I. At LT, 

the PL intensity, ILT, is inversely proportional to rMg/Be. Sample III, despite its higher PL peak 

position, featured a higher ILT than that of sample II due to mutual compensation effects between 

Be and Mg (higher rMg/Be then that of sample II). On the other hand, at RT sample III with 

rMg/Be=2.5 shows highest RT PL intensity, IRT. The reason is discussed later in the text. 

Additionally, subbandgap BL2 GaN transitions are clearly observed. Demchenko et al.74 attributed 

BL2 transitions to a hydrogen-carbon defect complex, either CNON-Hi or CN-Hi. Weak band-to-

band GaN luminescence is absorbed in the ZnO layer and masked with the BeMgZnO luminescent 

shoulder. The Zn-polar sample IV has stronger LT PL intensity and similar bandgap in comparison 

to sample I, which may be due to better crystal quality of the quaternary layer provided by lower 

film thickness (100nm for IV and 130nm for I, II, III), which in turn may provide better crystal 

quality of the quaternary layer. The absorption depth at 265nm excitation is ~50nm for our samples.  
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Figure 19. Low temperature photoluminescence of O-polar BeMgZnO samples grown on GaN. 

Sample I is Be0.04Mg0.17Zn0.79O, sample II is Be0.11Mg0.15Zn0.74O, sample III is Be0.10Mg0.25Zn0.65O 

and sample IV is Be0.03Mg0.18Zn0.79O. 
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To evaluate the carrier dynamics in the BeMgZnO layers, time-resolved PL measurements 

were performed at 15 K. The PL transients were fitted using single exponential decays for samples 

I, II, III and double exponentials for sample IV. Figure 20 shows PL decay dependence on the 

emission energy. The time-integrated spectra exhibit two peaks that correspond to buffer ZnO 

(3.39eV) and quaternary BeMgZnO (3.62 – 3.90 eV) with dramatically different decay time values. 

All decay times for BeMgZnO layers monotonically decrease with increasing emission energy. 

Such behavior is characteristic for localized excitons. It is important to note that the measured 

buffer ZnO decay times are not representative as they are very close to the system response time. 

The observed decay times can be expressed as 

(  0

0

0

1 exp

E
E E


 

 
  

   

(6) 

where 0 is the exciton recombination time in the absence of the energy transfer, 0  is the degree 

of the localization depth in the band tail state, and E0 is the characteristic energy where 

recombination rate equals the delocalization rate. It is assumed that above the characteristic energy 

(E>E0) localized excitons will transfer out of localized states and eventually undergo nonradiative 

recombination; below the characteristic energy (E<E0) localized excitons do not have sufficient 

energy and undergo radiative recombination. Longer decay times of Zn-polar sample IV were used 

for the fitting. 
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Figure 20. PL decay time dependence on the emission energy at 15 K and time integrated PL for 

a) sample I: Be0.04Mg0.17Zn0.79O; b) sample II: Be0.11Mg0.15Zn0.74O; c) sample III: 

Be0.10Mg0.25Zn0.65O; d) sample IV: Be0.03Mg0.18Zn0.79O. The spectral sampling width is 1 nm. The 

localization parameters are determined from the fit with Equation (6). 

Table 7 summarized the localization parameters obtained by fitting experimental decay times 

with Equation (6). Sample IV with the smallest EPL and the highest rMg/Be shows the smallest 

localization depth ∆0. Sample II with the lowest rMg/Be shows the highest localization depth ∆0. On 

the other hand, sample III that has the highest PL peak energy and intermediate Mg/Be ratio shows 

significantly smaller ∆0 in comparison with sample II. Despite the increase in PL peak position, 

the higher rMg/Be supports smaller localization depth by allowing Be and Mg to mutually 

compensate each other’s effects on the lattice of ZnO by reducing formation energy and strain. 

Sample II has almost twice higher decay time 𝜏0  in comparison to other two samples, which 

possibly originates from high degree of localization or potential fluctuations. All O-polar samples 

show single exponential decays and Zn-polar samples shows double exponential decay with 
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shorter decay time related to nonradiative recombination. The longer decay time of sample IV that 

is related to radiative processes is significantly longer suggesting enhanced optical quality in 

comparison to that of O-polar samples. No TRPL investigation was reported for BeMgZnO or 

BeZnO. Thus, only values for MgZnO and CdZnO are presented for comparison. Chernikov et 

al.75 reported longer decay time (τ0 = 1 ns) and smaller localization depth ( 0 =0.06 eV) and a 

characteristic energy of E0 = 3.90 eV for Mg0.21Zn0.79O with low temperature bandgap of 3.75 eV.  

Table 7. Composition, Mg to Be content ratio (rMg/Be), out-of-plane lattice parameter (c), PL peak 

position (EPL), characteristic energy (E0), the exciton recombination time in the absence of the 

energy transfer (𝜏0), PL transients (τ), degree of localization depth determined from the fit with 

Equation (6) to the spectral dependence of the decay time (∆0), and ∆𝐸𝑡 is the observed temporal 

redshift of the PL peak position. 

 Sample 
rMg/B

e 

c, 

Å 
PLE

, 

eV 

0E
, 

eV 

0 ,  

ns 


,  

ns 

0 , 

meV 

∆𝐸𝑡, 

meV 

I Be0.04Mg0.17Zn0.79O 4.3 5.143 3.62 3.76 0.44 0.294 98 8 

II Be0.11Mg0.15Zn0.74O 1.4 5.124 3.69 3.54 0.83 0.300 268 55 

III Be0.10Mg0.25Zn0.65O 2.5 5.117 3.93 3.96 0.45 0.294 173 42 

IV Be0.03Mg0.18Zn0.79O 6 
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The temporal dependence of the PL peak position for BeMgZnO samples grown on GaN is 

shown in Figure 21. As evident from Figure 20, decay rates at high emission energies are higher. 

This results in the redshift of the PL spectra with time. The observed redshifts ∆𝐸𝑡 are 10 meV, 8 

meV, 55meV, and 42 meV for samples IV, I, II, and III, respectively, under the same excitation 

density. Samples with higher ∆0 also show higher ∆𝐸𝑡.  
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Figure 21. Temporal dependence of PL peak position of O-polar BeMgZnO samples grown on 

GaN at 15 K. Delay time equal to zero corresponds to the moment of pulse excitation. Note, 

vertical scales are different. 

There are two potential possibilities explaining large shift in the peak position. The first one 

is potential fluctuations that originate from an inhomogeneous distribution of charged defects.78 
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The diagonal tunnel transitions with reduced energy take a longer time to recombine than direct 

fast transitions and, therefore, redshift is expected as time progresses. Another possibility is band 

filling of the localized states that would result in carriers occupying higher energy non-localized 

states; with time, localized states will become available and remaining de-localized carriers would 

fall-in to the localized states which would result in the observed temporal redshift in the PL spectra. 

Both of these processes may exist simultaneously. However, no change in FWHM of PL peak 

position was observed with change of excitation intensity or temporal PL evolution (see Figure 22 

for the excitation dependent PL of sample IV).  
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Figure 22. Excitation dependence of steady state PL of sample IV Be0.03Mg0.18Zn0.79O at 15K. 

Figure 23 shows that both the dependence of degree of localization depth ∆0  and the 

temporal redshift of the PL peak ∆𝐸𝑡 are decreasing with increasing the Mg/Be content ratio. Such 

dependence may be explained by mutual compensation of ZnO lattice distortion and minimization 
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of formation energy due to incorporation of Mg and Be.15,55,79 A lower Mg/Be ratio would result 

in stronger internal strain and thus strain-driven potential fluctuations and localizations. The 

authors do not imply that the carrier localization is a direct measure of material quality. Localized 

carriers have higher probability to recombine radiatively in the localized state, unless there are 

non-radiative centers in close proximity to the potential minima. However, if the localization is 

driven by a strong internal strain which also generate high density of defects acting as nonradiative 

recombination channels, localizations centers may be located near non-radiative center and confine 

carriers for non-radiative transitions. 
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Figure 23. The dependence of the degree of localization depth ∆0 (top) and the temporal redshift 

of the PL peak ∆𝐸𝑡 (bottom) on rMg/Be content ratio.  



54 

 

The presence of local potential minima is often verified with temperature dependence of the 

PL peak position.  To confirm the presence of localized states that were observed with TRPL, 

temperature dependent PL measurements were performed for sample I and sample II with the 

lowest and the highest  ∆0, respectively, and the results are shown in Figure 27. The S-shape 

behavior of PL peak position, which is an evidence of the presence of localized states, was 

observed for sample I (see Figure 27(a)). At very low temperatures, photo-excited carriers are 

localized and recombine radiatively at localized states with various depths and do not have 

sufficient energy to overcome the local barrier and migrate to the deepest localized state. With a 

rise of the temperature up to 180 K, excitons will gradually gain thermal energy sufficient to 

overcome local barriers and reach the deepest localized states that results in the redshift. 

Additionally, thermal lattice expansion and temperature dependence of electron-phonon coupling 

will also result in redshift with increasing temperature. With a further increase in temperature, 

above 180 K, the localized excitons gain sufficient thermal energy to delocalize, and as a result 

the blue shift is observed. At higher temperatures, the reduction in bandgap again governs the 

temperature dependence of PL peak position. The degree of the localization effect can be estimated 

by fitting the temperature dependence of PL peak position with modified Varshni equation:80,81 

(  ( 
( 

2 2

0g g

B

T
E T E

T k T

 


  


 

(7) 

where ( 0gE  is the energy gap at T=0,   and   are empirical Varshni coefficients, and 𝜎 

indicates the degree of localization effect; kB is the Boltzmann constant. For sample I, 

Be0.04Mg0.17Zn0.79O, with high Mg/Be ratio 𝜎 = 22 meV. The fitted Varshni coefficients   and 

  for sample I are not representative due to carrier redistribution and delocalization effects and 

therefore are not shown here. For sample II, Be0.11Mg0.15Zn0.74O, no S-shaped behavior was 
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observed (see Figure 27(b)) due to high degree of localization – excitons are localized even at 

room temperature. The emission peak energy in this case is most commonly fitted with the 

Varshni’s equation, (  (  ( 20g gE T E T T    ,  i.e. Equation (7) without 𝜎2/𝑘𝐵𝑇 term. The 

calculated fitted parameters for Be0.07Mg0.10Zn0.83O are ( 0 3.70 eVgE  , 
41.2 10 eV/K    and 

37K  . Ko et al.82  reported 
47.2 10 eV/K    and 1077K   for ZnO and such coefficients 

result in higher PL redshift with increasing temperature. We may only speculate that in Sample II 

showing the highest ∆0, excitons localized in the deepest state would gradually redistribute with 

increasing temperature between slightly shallower states and thus smaller redshift is observed.  
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Figure 24. Temperature dependence of PL peak position for (a) Be0.04Mg0.17Zn0.79O and (b) 

Be0.11Mg0.15Zn0.83O. 

Both Equation (6) and Equation (7) are empirical and provide means to estimate the degree 

of localization using TRPL and temperature dependent PL, respectively. For sample I, 

Be0.04Mg0.17Zn0.79O, the degree of localization ∆0, determined from TRPL, is about five times 

higher than 𝜎 determined from temperature dependent PL. Additionally, for sample I with ∆0=

98 meV, we observe the valley around 180 K. On the other hand, for sample II with ∆0= 268 
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meV, no S-shape behavior was observed. We suspect that in order to observe the valley in the PL 

peak position due to delocalization of carriers it is necessary to reach temperatures higher than 

300K. The exact relationship between ∆0 and 𝜎 requires further investigation.  

Figure 25 shows the dependence of the RT to LT ratio, rRT/LT, on the Mg/Be ratio, rMg/Be, and 

localization depth, ∆0.  rRT/LT increases with increasing rMg/Be and decreasing ∆0. This is also a 

result of inverse proportionality between rMg/Be and rRT/LT. The reason for this dependence may be 

the following: for samples with a higher Mg/Be ratio (sample I and IV), which is closer to ZnO 

matched composition (rMg/Be~13),73 and minimization of formation energy (rMg/Be~10),79 LT PL is 

higher and localization depth ∆0 is lower. With reducing rMg/Be, the compensation effects between 

Mg and Be weaken which increases both the number of defects as well as strain induced 

localization ∆0. On the other hand, higher localization depth provides higher carrier confinement 

which supports radiative transitions at elevated temperatures. Therefore, for RT PL there exists 

ideal rMg/Be. In our case this ratio is close to that ratio of sample III, which is rMg/Be=2.5. The 

possible reason for sample IV having better efficiency at RT in comparison to sample I may be 

due to the thinner barrier layer and thus possible better crystal quality. Nevertheless, the Mg/Be 

ratio is a dominant factor influencing RT efficiency.  
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Figure 25. (a) The relation between content ratio, rMg/Be, and degree of localization, ∆0, with RT 

to LT PL intensity ratio, rRT/LT; b) RT PL normalized by the highest LT PL value (for sample IV)  

To further explore potential fluctuations in BeMgZnO samples, the absorption and PL 

measurements were performed on the samples grown sapphire with different bandgaps. Direct 

growth of O-polar samples on sapphire allows measurement of absorption impossible for the 

samples grown on lower bandgap and thick GaN templates. Figure 26 shows the comparison 

between room temperature PL peaks and absorption edges of O-polar BeMgZnO samples, the 

difference between which is defined as the Stokes shift. The shift increases with increasing 

bandgap, which suggests the increase in the band tail states introduced by potential fluctuations 

and alloying. Additionally, the comparison between BeMgZnO and MgZnO grown by Liu et al.83 

(see Figure 26(b)) reveals that the quaternary alloy exhibit stronger Stokes shift than that of the 

ternary MgZnO alloy. The possible reason for it may be insufficient Mg/Be ratio to compensate 

the internal strain that results in stronger localization and potential fluctuations. As regarding to 

BeMgZnO samples grown on GaN, we expect higher structural quality of this material and thus 

smaller potential fluctuations and localization compared to those grown on sapphire due to smaller 

lattice mismatch at the ZnO/GaN interface than that at ZnO/MgO/c-sapphire interfaces.  
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Figure 26. (a) Room temperature photoluminescence and absorption spectra and (b) comparison 

between PL peak position and absorption edge for O-polar BeMgZnO samples. MgZnO literature 

data is from Ref. 83,84. 

To get deeper understanding of radiative and nonradiative processes in BeMgZnO samples, 

the dependence of the time-integrated PL intensity and PL decay time on temperature is 

investigated and are shown in Figure 27. The changes in PL intensity are concurrent with change 

in PL spectrum and blue shift of the PL peak position (see Figure 27b).  
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Figure 27. Temperature dependence of (a) the time-integrated PL intensity and (b) PL decay time 

and quaternary energy peak position of sample II. 
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To extract the radiative and nonradiative decay times, the measurement of external quantum 

efficiency was performed on sample II at 15Kusing the calibration sample with the known external 

quantum efficiency. On the other hand, efficiency can be expressed as the ratio of the radiative 

recombination rate to the total recombination rate.  

( 

( 
1 1

15 100 1 1

r

PL r nr

I T

I K



  
 

 
 

(8) 

where τr and τnr are the temperature dependent radiative and nonradiative decay times, respectively. 

The PL decay time, PL , obtained from TRPL can be expressed in terms of radiative and 

nonradiative decay times as 

1 1 1

PL r nr  
 

 
(9) 

Equations (8) and (9) can be solved for τr and τnr and the result of such calculation is shown 

in Figure 28. The use of different values of quantum efficiency would change τnr and only vertically 

shift τr on the logarithmic plot without changing its shape. Based on our assumption of 1% quantum 

efficiency at low temperature, the nonradiative recombination channels dominate at all 

temperatures.  
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Figure 28. PL ( PL ), radiative (τr) and nonradiative (τnr) decay times of sample II. 

Rosales et al.85 have shown that temperature dependence of radiative lifetime can be 

expressed as 

/2

0

N

r T 
 (10) 

where τ0 is a characteristic constant. and N is the dimensionality of the material, which is N=3 for 

bulk. The obtained fitting parameters are τ0=0.33±0.1 ps and N/2=1.50±0.05 which confirms that 

the BeMgZnO thin films are bulk-like. The effect of excitation intensity on the measured 

dimensionality and degree of localization require further investigation. Additionally, the study will 

be extended to a variety of BeMgZnO think films with different Be and Mg content and growth 

conditions. 

The carrier localization and potential fluctuations in the barrier BeMgZnO may play a vital 

role on the performance of BeMgZnO/ZnO heterostructures. Such investigations have not yet been 

performed. As was mentioned in equation (10) the radiative decay time can be expressed as 
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/2

0

N

r T  . We used an assumption of 1% quantum efficiency at low temperature. However, with 

the exact value of internal quantum efficiency and PL decay time it is possible to deconvolute the 

PL decay time and determine effects of radiative and nonradiative components. To extract the 

exact value of the nonradiative component we will compare PL intensity of the barrier layer with 

a sample with known quantum efficiency. After that, the temperature dependence of the 

nonradiative decay time can be fitted by85 

 
1 1exp expa a

nr

B

E T

k T T
  

   
    

    
(11) 

where Ea (Ta) is the activation energy (temperature).  

The knowledge of the fitting parameters such as τ1, τ0 and Ta and the dependence of 

photoluminescence intensity with temperature can be fitted by85 
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1 expN a
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(12) 

Figure 29 shows the behavior of time integrated PL with temperature as well as the fit 

obtained Equation (12). The higher the activation energy, the more stable PL intensity is with 

temperature. Sample B shows high activation energy and stable PL intensity up to 200K. High Ea 

is well correlated with high ∆0 (268 meV for sample II). 
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Figure 29. Time integrated PL intensity of sample II. Solid line and coefficients are obtained using 

the fit with Equation (12). 

In conclusion, time-resolved PL measurements reveal an increase in the degree of 

localization depth and temporal redshift with the increase in rMg/Be content ratio in BeMgZnO 

samples grown on GaN which are attributed to mutual compensation effects of Be and Mg to 

reduce formation energy and strain The localization depths (temporal redshift) are 46 meV (10 

meV), 98 meV (8 meV), 173 meV (42 meV), and 268 meV (55 meV) for Be0.03Mg0.18Zn0.79O, 

Be0.04Mg0.17Zn0.79O, Be0.10Mg0.25Zn0.65O and Be0.11Mg0.15Zn0.74O, respectively. PL transients 

indicate that emission at low temperature is dominated by recombination of localized excitons, 

which exhibit decay times as long as 1 = 0.485 ns at PL peak position.  The S-shaped behavior of 

PL peak with change in temperature was observed for the quaternary alloy Be0.04Mg0.17Zn0.79O 

with localization depth Δ0=98 meV and Mg/Be=4.3; the degree of localization 𝜎 was determined 
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to be 22 meV. The carriers were found to be localized even above room temperature in 

Be0.11Mg0.15Zn0.74O with Mg/Be =1.4. The Varshni’s coefficients for the latter sample are 

41.2 10 eV/K    and 37K  . The inverse proportionality of low temperature PL intensity 

and rMg/Be content ratio was observed. However, at room temperature this proportionality was 

broken. With reducing rMg/Be, the compensation effects between Mg and Be weaken, which 

increase both number of defects as well as strain induced localization ∆0. For room temperature 

performance, higher degree of localization is necessary. Since localization depth and defect density 

are somewhat coupled, there exists an optimum rMg/Be content ratio. At room temperature, the 

optimum rMg/Be ratio lay around 2.5. The radiative lifetime exhibited temperature dependence of 

/2N

r T  with dimensionality N = 3 corresponding to bulk-like behavior at 65 Wcm-2 excitation 

intensity. 
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Chapter 4. Metal-semiconductor contacts to ZnO and BeMgZnO 

For the fabrication of BeMgZnO/ZnO HFET, it is necessary to achieve a large Schottky 

barrier height at the gate metal contact and low specific contact resistivity at source and drain 

ohmic contacts. Therefore, the formation of Schottky and ohmic contacts to ZnO were investigated. 

First, theoretical backgrounds of the formation of Schottky contact and effects of surface states 

will be discussed, then experimental results of the contacts will be presented. 

4.1. Schottky Contacts 

4.1.1. Theoretical Background 

First, we will consider an ideal case for a metal-semiconductor contact (MSC) without 

surface states or interface insulator layer. Figure 30a shows the band diagram of a metal with work 

function φm and n-type semiconductor with work function φs and electron affinity χ.  Figure 30b 

shows the ideal metal-semiconductor contact with no interface states and no interface insulator 

layer. The Fermi levels are aligned. Based on the energy conservation the barrier for electrons 

traveling from metal to semiconductor can be written as: 

 
0 ( )Bn mq q q n type    

 (13) 
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Figure 30. A metal n-type semiconductor pair before (a) and after (b) contact with no 

surface/interface states. The metal work function is greater than that for the semiconductor 

(φm>φs).  

Based on equation (13), in order to achieve rectifying behavior with MSC, a metal with φm> 

φs must be chosen and higher φm will result in higher Schottky barrier height Bq . Figure 31 shows 

collection of metals with their free energy of formation per oxygen atom and work function.  
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Figure 31. Free energy of formation per Oxygen atom for variety of metals as a function of metal 

workfunction. 

However, in practice simple equation (13) is rarely realized due to presence of surface 

contamination and defects that introduce surface states and can potentially even pin the position 

of Fermi level to the level of the defect. The interface states are usually discussed on the basis of 

two assumptions: (1) interfacial layer of atomic thickness which will be transparent to electrons 

but can withstand potential across it, and (2) the interface states are the property of semiconductor 

and are independent of the metal. More detailed diagram is shown in Figure 32. We will consider 

a semiconductor with donor-like interface traps whose density is Dit states/cm2-eV. This is the case 

of ZnO surface which exhibits downward surface band banding due to presence of oxygen 

vacancies. The interface-trap charge density Qss is therefore positive and expressed as: 

 ( 0 0ss it g BnQ qD E q q   
 (14) 
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Figure 32. Detailed energy-band diagram of a metal-n-semiconductor contact with an interfacial 

layer (vacuum) of the order of atomic distance.  

 

Additionally, the space charge Qsc is formed and given as:  

 

02sc D D s D Bn n

kT
Q qN W q N

q
  

 
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   
(15) 

where ND is donor concentration, WD is the depletion width. An equal and opposite to the 

total charge on the semiconductor surface will be formed on the metal surface.  

 ( M ss scQ Q Q  
 (16) 
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The potential Δ across the interfacial layer can be obtained by applying gauss’s law.  

 
M

i

Q


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(17) 

where MQ  is the charge on the metal side and i is the permittivity of the interfacial layer and   

is its thickness. From the energy diagram, Δ can be seen as the correction factor to simple equation 

(13).  

 ( 0m Bn     
 (18) 

By combining equation (17) and equation (18) we obtain 
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Equation (19) can be solved for 0Bn .  

To simplify the equation, we can introduce quantities:  
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Equation (19) reduces to: 
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Considering the ZnO case, we assume 0(0) 8s  , 0i  , and 
18 310DN cm , 

81 10 cm   . The resulted 1 0.05c V  is small, and therefore we can neglect the square root 

term in equation (21).  
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The interface properties can be expressed in terms of c2 and c3: 
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Two limiting cases are possible 

1. When itD  , then 2 0c   and the Fermi level at the surface is pinned to the level 

of surface states. The barrier height is independent of the metal work function.  

 
0 0Bn gq E q  

 (25) 

2. When 0itD  , then 2 1c   and the simplified equation (13) is true 

 ( 0Bn mq q   
 (26) 

Figure 33 shows the result for achieved Schottky barrier height to ZnO using different metal 

options. The line with slope = 1 indicates the expected barrier height based on the Schottky-Mott 

model, equation (13). The spread in the achieved results for each metal is high, and suggests that 

the surface of ZnO plays an important role in the formation of Schottky barrier height. Moreover, 

most results lay within 0.6-0.8 eV, which coincide with the level of oxygen vacancy 
( 2,0

OV


 and 

result in  0itD   for such samples.  
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Figure 33. Schottky barrier height ϕB as a function of difference between metal work function ϕm 

and electron affinity χZnO of ZnO measured based on I-V characteristics of the results available in 

literature. 

4.1.2. Surface preparation 

Strong downward surface band banding is observed for ZnO surface which results in 

increased surface carrier concentration. Heinhold et al. 86 reported surface bandbandign of -0.2 eV 

and -0.5 eV for O-polar and Zn-polar ZnO, respectively, deducted using synchrotron x-ray 

photoelectron spectroscopy on the polar surface of ZnO single crystal. For both surfaces the near 

surface carrier concentration differs by orders of magnitude from the bulk carrier concentration.87 

There are variety of methods reported in the literature that are used to prepare the surface of 

ZnO for better Schottky contact fabrication, such as HCl etching (and other acids), Ar physical 
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etching, H2O2 treatment, UV Ozone and O-plasma (or mixture with He) exposure. The first two 

are only physical etching of the top layer; the peroxide may additionally eliminate oxygen 

vacancies that serve as donors on the surface of ZnO; UV Ozone and O-plasma are used only to 

decrease surface conductivity and do not etch ZnO. 

For nonreactive (i.e. no active component like Oxygen is present) metal deposition technique 

it is necessary to reduce upward surface band banding by applying proper surface treatment prior 

to metal deposition. Hydrogen peroxide surface treatment is also well regarded method to improve 

Schottky diode performance. 88–90 Schifano et al.91 reported fabrication of Schottky diode based 

on hydrothermally grown single crystal ZnO with Pd as the Schottky metal where samples are 

cleaned with H2O2 for 15 min; no rectifying behavior is observed for solvent cleaned sample. The 

reported H2O2 surface treatments usually include boiling in the non-diluted peroxide (majority of 

papers do not specify exact cleaning procedure). Such procedure will etch thin films with thickness 

in the range of microns and therefore, cannot be applied for heterostructure FET. The necessity of 

such strong cleaning is not discussed in the literature. Nevertheless, H2O2 treatment shows 

improved performance in comparison to HCl or H3PO4 etching prior metal deposition (0.7eV for 

H2O2 and Ohmic for HCl).92  

There are few works showing results for plasma treated samples vs. not plasma treated 

samples. Mosbacker et al.93 reported IV characteristics for bulk ZnO samples before and after 

plasma treatment using Pt and Pd metals. Without plasma treatment, contacts are Ohmic. Despite 

clear effect of the oxygen plasma, the achieved results of φb=0.5 eV are dramatically below the 

best reported values (see Figure 32). 

Muller et al.94 reported on fabricated Schottky contacts (SC) with or without presence of a 

reactive component (O or Ar/O2 atmosphere) during the deposition process. It was found that 
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devices fabricated with deposition method containing reactive component (reactive E-PLD, 

reactive sputtering etc.) show rectifying behavior even without any surface treatment. On the other 

hand, devices fabricated with a deposition technique without a reactive component (thermal 

evaporation, e-beam evaporation etc.) shows no or small rectifying behavior and most of the 

reported result are in the vicinity of φb=0.5-0.9 eV (in many cases despite variety of different 

surface treatments). It is suggested that such devices exhibit Fermi level pinning to the surface 

states level of oxygen vacancy at 0.6-0.7 eV. Additionally, Schottky barrier height above 0.7eV is 

achievable even without any surface treatment with deposition containing reactive component.94 

Allen et al.95 attributed this behavior to the partial oxidation of the Schottky contact metal made 

of Pd, Pt or Ir and the compensation of the surface VO and reduction of the surface carrier 

concentration and thus surface band banding due to higher reduction potential of Zinc in 

comparison to the noble metals. Best reported values for Ag, Pd and Pt are achieved with reactively 

deposited contacts.  

Usually Schottky contacts are achieved by depositing a high work function metal such as Pd, 

Pt, Ir etc. (see Figure 31). In contrast, Ag has low work function of 4.3 eV. Despite that, devices 

fabricated with Ag metal can show rectifying behavior. This is due to interface silver oxide layer 

that is formed from partial oxidation of Ag with Oxygen from ZnO matrix. The formed oxide layer 

is transparent for electrons and have higher work function in comparison to Ag. Raju et al.96 

reported ~5.55eV work function for PLD grown AgO which is 1.3 eV higher than of Ag (4.26 eV). 

Silver oxidation with oxygen from ZnO must create high concentration of oxygen vacancies and 

therefore donors on the interface. It may be the case that there is a competition between the increase 

in number of oxygen vacancies (expected to hurt the Schottky performance) and the formation of 
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silver oxide with higher work function than Ag (expected to benefit the Schottky performance) 

and overall the latter one wins. This consideration requires more detailed investigation.  

Allen et al.97 reported  Schottky barrier height of 1.02 eV and 0.88 eV for Zn-polar and O-

polar Melt grown ZnO, respectively (n=4E16 cm-3, 230 cm2/Vs) with ideality factor n=1.1-1.2 

using thermally evaporated Ag metal with similar results for RF sputtered Ag2O. (no serial 

resistance was reported to determine the conductivity of the sputtered oxide). Even higher barrier 

heights, ϕb=1.2eV were reported by Allen et al.98 on Zn-polar bulk ZnO samples (n=4E16 cm-3, 

230 cm2/Vs) with nearly ideal Schottky diodes, ideality factor n=1.03 with silver oxide Schottky 

contact deposited with Ag target in Ar/O2 plasma. Martin Allen99 commented that such silver oxide 

films were highly silver rich (90-96% silver by atomic composition) and had low lateral 

conductivity and required capping metal layer (30nm Pt was used). Nearly ideal behavior at room 

temperature and above and non-ideal behavior at low temperatures was observed. 

4.1.3. Experimental Procedures 

There is a discrepancy in the literature regarding optimum surface treatment that has to be 

addressed. The most promising candidates to achieve reproducible high Schottky barrier are silver 

due to high electron affinity of silver oxide that can be formed on the interface after the metal 

deposition and platinum due to its high metal work function. Zn-polar and O-polar MBE grown 

ZnO layers were used for investigation of SC. The photolithography process was used to define 

planar circular SCs with diameter of 140 μm. The metal was deposited using electron beam 

evaporating system.   

The Schottky barrier heights are calculated using thermionic emission theory can be 

expressed as:  
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where V is applied voltage, Rs is serial resistance and n is ideality factor.  

The saturation current is given by: 
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where A is area of the contact and A** is the effective Richardson constant. 

4.2. Results and Discussion 

4.2.1. Platinum Schottky Diode 

O-polar P1 and Zn-polar P2 ZnO samples were used for the first Pt deposition. Both samples 

were cleaned with acetone, methanol solvents in ultrasonic bath for 3 min followed by thorough 

rinsing in DI water and drying with N2 gun. To remove any possible water residue, samples were 

additionally dried on a hot plate at 110ºC for 3 min. The photolithography was performed with PR 

thickness of 1 μm. After PR development, each sample was diced into four pieces and exposed to 

different surface treatments with O-plasma and hydrogen peroxide:  

- “Reference” – no additional cleaning to initial solvent cleaning; 

- “Reactive” – O-plasma exposure at the 1st shelf (the highest etching rate of PR). O2 

flow was 50 sccm and plasma power 200W, exposure time 3 min. Such treatment 

removes ~500nm of PR (half) 

- “Ashing” - O-plasma exposure with insulating glass plate under the sample. O2 flow 

was 50 sccm and plasma power 200W, exposure time 3 min. Such treatment removes 

below 100nm of PR.  
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- “H2O2“ – hydrogen peroxide treatment with 30% H2O2 mixture and DI water in the 

proportion of 1:30 (H2O2:H2O) for 90s. Such treatment resulted in ~5nm ZnO removal 

on the dummy sample.  

Surface treatment was followed by Pt(30nm)/Au(40nm) metal stack deposition. Sample 

properties and achieved results for Pt metal deposition are summarized in Table 8.  

Table 8. Schottky contact fabrication results with Pt. Plasma power 200W, time 3 min, 

pressure 0.35 Torr. 

Surface prep. Thin Film Prop. Fabrication comments ϕb, eV n Rs, Ohm 

P1, O-polar  

Reference 

n=5.1·1016 cm-3 

μ=80 cm2V-1s-1 

Ohmic contact: Reactive 

O-plasma after 

lithography  

Annealed 500ºC 10s 

RTA N2 

Ohmic   

Reactive 0.4 4.01 1219 

Ashing 0.4 3.92 1305 

H2O2 Ohmic   

P2, Zn-polar 

Reference 

n=2.5·1017 cm-3 

μ=109 cm2V-1s-1 

Ohmic contact: Reactive 

O-plasma after 

lithography  

Annealed at 450ºC 10s 

RTA N2 

Ohmic   

Reactive Ohmic   

Ashing Ohmic   

H2O2 Ohmic   

All fabricated Zn-polar samples show Ohmic behavior. For O-polar sample, only those 

exposed to O-plasma show small rectifying behavior with small ϕb of 0.4 eV and very high ideality 

factor. However, Pt had high metal work function (see Figure 31) and based on Schottky-Mott 

model should provide ϕb above 1eV. The resulted pure or no rectifying behavior with Pt/Au metal 

stack must originate from insufficient or improper surface treatment prior to metal deposition and 

require further optimization 

4.2.1.1. Silver Schottky Diode 

O-polar S1 and Zn-polar S2 and S3 ZnO samples were used for the g(200nm)/Au(30nm) 

deposition. Prior to PR coating, the samples were boiled in acetone and methanol for 10 min, each 
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step followed by thorough rinsing in DI water and drying with N2 gun and on a hot plate at 110ºC 

for 3 min. The photolithography was performed with PR thickness of 1 μm. After PR development, 

each sample was diced into four pieces and exposed to different surface treatments. For Pt based 

SC only those that were exposed to O-plasma showed any rectifying behavior. Therefore, only 

plasma treatments will be explored for SCs with Ag:  

#1 – 35W, O2=40 ccm, p=0.312 Torr, 1 hour – low power is used with intention to eliminate 

possible energetic radicals that may damage the surface or re-sputter PR.  

#2 – 200W, O2=50 ccm, p=0.351 Torr, 3 min – the fastest recipe we can make to etch ~500nm 

of PR.  

#3 – 35W, O2=40 ccm, Ar=40ccm, p=0.312 Torr, 1 hour - exploring conditions similar to 

previously reported on O2/He mixture 

#4 – “Reference” – no additional cleaning.  

Figure 34 shows I-V characteristics of the best Ag-metal Schottky diodes. For the fabricated 

samples Ag suffers from bad adhesion to ZnO. Degree of the adhesion is marked in Table 9, 

however the trend is unclear to me for this fabrication. Practically all reference samples (only 

solvent cleaning prior PR spinning) have Ag/Au metal stack lifted-off. Only for sample S2, few 

devices are available which are exhibiting no rectifying behavior. Ohmic behavior were also 

observed for Pt deposition for only solvent cleaned samples.  
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Figure 34. I-V characteristics of fabricated Schottky diodes. S1 is O-polar ZnO, S2 and S3 are Zn-

polar 

 

There exists variation across the sample. Figure 35 shows the variation in the I-V 

characteristics of O-polar S1-3 treated with 35W, O2=40 ccm, Ar=40ccm, p=0.312 Torr, 1 h. 

 

 

Table 9. Schottky contact fabrication results with Ag. All samples were boiled in Acetone and 

Methanol for 10 min prior PR spinning. 

Surface preparation 
Thin Films 

Prop. 
ϕb, eV n 

Rs, 

Ohm 

S1, O-polar 

#1 35W, O2=40 ccm, p=0.312 Torr, 1 h 

n=3·1016 cm-3 

μ=80 cm2V-1s-1 

0.51 2.5 767 

#2 200W, O2=50 ccm, p=0.351 Torr, 3 min 0.47 3.14 1163 

#3 35W, O2, Ar=40ccm, p=0.312 Torr, 1 h 0.54 3 1033 

#4 Reference    

S2, Zn-polar 

#1 35W, O2=40 ccm, p=0.312 Torr, 1 h 

n=4·1017 cm-3 

μ=70 cm2V-1s-1 

~0.37   

#2 200W, O2=50 ccm, p=0.351 Torr, 3 min ~0.37   

#3 35W, O2, Ar=40ccm, p=0.312 Torr, 1 h ~0.37   

#4 Reference    

S3, Zn-polar 

#1 35W, O2=40 ccm, p=0.312 Torr, 1 h 
n=9.8·1017 

cm-3 

μ=53 cm2V-1s 

<0.36   

#2 200W, O2=50 ccm, p=0.351 Torr, 3 min -   

#3 35W, O2, Ar=40ccm, p=0.312 Torr, 1 h -   

#4 Reference Ohmic   
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Figure 35. The variation in I-V characteristics for O-polar S1-3 treated with 35W, O2=40 ccm, 

Ar=40ccm for 1 h. Devices are measured at different areas of the sample.  

The best achieved on/off ratio for Ag metal Schottky diodes is ~102 for ±2V bias for S1-3 

O-polar treated with 35W, O2=40 ccm, Ar=40ccm, p=0.312 Torr, 1 h.  No improvement of SCs 

was observed with aging (for our case 7 days) as was reported by Allen et al.97 On the contrary, 

degradation of ϕb from 0.54 eV to 0.47eV and of n from 3 to 3.8 were observed. 

Based on the literature review, both Ag and Pt metals can provide Schottky barrier height 

above 1eV under surface treatment. Improved rectifying behavior of Ag fabricated SCs in 

comparison to those fabricated with Pt may be attributed to introduction of solvent boiling prior to 

PR coating or smaller sensitivity of Ag metal to surface cleaning due to possible oxidation of Ag 

on the surface of ZnO.  
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Bad silver adhesion may be a result of a thick layer deposition (200nm). Further experiments 

with thinner metal layer (50nm) showed improvement in metal adhesion but didn’t eliminate the 

problem completely. Pt provides much better adhesion to ZnO.  

Our investigation shows that both Ag and Pt can produce ϕb>1 eV to ZnO with proper surface 

preparation. However, there are no reports of Schottky contacts using Pt metal based on ZnO thin 

films, which are expected to have higher density of defects in comparison to bulk layers. Ag, per 

say, should not provide rectifying behavior based on Schottky-Mott model. Due to lower formation 

energy of silver oxide in comparison to zinc oxide it is favorable for Ag to pull oxygen from zinc 

oxide. Silver oxide has 1.3 eV higher96 work function then Ag which allows rectifying behavior. 

However, oxidation of Ag must generate oxygen vacancies on the interface and thus increase 

upward surface band bending which in turn will hurt rectifying characteristics. Furthermore, for 

non-reactive metal deposition, it is necessary to eliminate high upward surface band banding (high 

surface electron concentration)94 by introducing H2O2 or O-plasma treatment that will lower 

concentration of high surface concentration of oxygen vacancies prior Schottky metal deposition. 

With proper surface treatment, it is expected to have higher Schottky barrier height with BeMgZnO 

in comparison to ZnO for the same metal. It is important to note that, despite seemingly better 

results for silver Schottky contacts, the surface preparation was different for silver and platinum 

depositions and thus two experiments and therefore results cannot be directly compared. Pt 

contacts can be improved with better surface preparation. 
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4.2.2. Schottky Contacts to BeMgZnO 

The electron affinity of MgO and BeO is smaller than ZnO by about 1.5 eV and 2 eV, 

respectively (see Table 10). Based on the Schottky-Mott model that does not include the effect of 

surface states, i.e. 0itD  , it is expected to see an increase in ϕb in comparison to ZnO.  Such 

improvement can only be expected for a defect free surface of quaternary BeMgZnO layer. 

Otherwise, the Fermi level can be pinned at the surface and Schottky barrier height would be 

independent of the metal work function. Mohonta et al.92 reported ϕb=0.7 eV and n=3.37 with Pt 

metal to MOCVD grown c-plane Mg0.1ZnO:N after hydrogen peroxide pre-treatment. IPA or HCl 

pre-treatment resulted in Ohmic behavior. Assuming the same electron affinity for wurtzite MgO 

as for rocksalt MgO and linear interpolation of MgO and ZnO values, we expect 0.2eV increase 

in ϕb for Mg0.1ZnO in comparison to ZnO. Lee et al.100 reported 0.73 eV, 0.67 eV and 0.48 eV for 

Ag, Au and Pd, respectively, in case of  PLD grown Mg0.3Zn0.7O without any surface treatment; 

and Ohmic behavior to the reference ZnO layer for all three metals.  Results from both reports 

suggest the presence of a high concentration of surface state and possible Fermi level pinning. 

Therefore, it is necessary to use proper surface cleaning or deposition technique to achieve high 

Schottky barrier to BeMgZnO predicted by Schottky-Mott model.  

 

Table 10. Electron affinities of binary compounds of quaternary BeMgZnO 

Material Electron Affinity, eV 

ZnO 
4.5101 

4.2-4.3587 

MgO (RS) 2.64102 (theory) 

BeO 2.1102 (theory) 
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4.3. Ohmic Contacts 

Ohmic contacts can be considered as contacts with zero or negligible Schottky barrier height 

and linear current-voltage characteristic. In order to achieve low voltage drop and thus low contact 

losses it is essential to use contacts with minimum specific contact resistivity. For the investigation 

of the specific contact resistivity, patterns used in transmission line method (TLM) were fabricated 

by conventional photolithography. The Ti(30nm)/Au(75nm) metal stack was evaporated followed 

by the lift-off process. Prior to lithography process different surface preparation conditions were 

investigated such as variations of solvent cleaning and exposure to O-plasma.  

Figure 36 shows results for annealing experiments of O-polar ZnO that was treated with O-

plasma after lithography process. It is important to note, that for data points prior annealing the 

spread originates from nonuniformity of the fabricated devices and includes all extreme points: 

edges and center of the sample. After this initial measurement the wafer was cut into smaller pieces 

to apply different annealing conditions. With increasing annealing temperature or time, we observe 

increase in sample conductivity (see Figure 36(b)). Black points correspond to the measurement 

done right after annealing (time=0) and time starts counting from the same annealing day. Based 

on right after annealing results one may judge that the best annealing conditions are 500ºC, 10s. 

However, these devices would show strong degradation with aging. Those that were not annealed 

at all or annealed at 450ºC for 10s are not Ohmic or Ohmic but highly resistive. Degradation 

decreases with increasing annealing temperature or time. The best annealing conditions with aging, 

in respect of lowest specific contact resistivity, are found to be in vicinity of 500ºC, 20s or 525ºC, 

10s. This suggest that 500ºC, 10s does not provide sufficient metal alloying with ZnO and therefore 

shows degradation over time. On the other extreme annealing temperatures above 525ºC degrade 

the metal contact stack and provide lower specific contact resistivity but not degradation over time. 
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Figure 36. O-polar ZnO (reactive O-Plasma) annealed at different condition in RTA  

in N2 environment. The devices that were measured at the time right after annealing and  

after aging are presented (for as grown sample Hall carrier concentration 1.3·1017 cm-3 and 

mobility 62 cm2V-1s-1). 

O-polar sample cleaned in ultrasonic bath with solvents showed better performance in terms 

of achieved specific contact resistivity in comparison to those additionally cleaned with plasma. 

However, the spread in results should be eliminated. To do so, we investigated effect of boiling in 

solvents on the specific contact resistivity. All samples were subjected to boiling in Acetone, 

Methanol 10 min each step followed by thorough rinsing with deionized water and drying with N2 

gun. Subsequently samples were dried at 110ºC for 3min on a hot plate at atmospheric environment. 

Prior to boiling samples showed hydrophobicity while they became hydrophilic after boiling.  

Figure 37 shows that most devices annealed at 525ºC for 5s have calculated carrier 

concentration that is slightly higher than of those annealed at 525ºC for 10s. I believe it is related 

to the degradation of the contacts. Further investigation of the degradation process is necessary as 

well as quantification of the measurement error. For the previous fabrication, we observed increase 

in the calculated carrier concentration with aging.  From the fabrication with O-polar ZnO we 

found that devices annealed for 10s above 500C show small or no degradation with aging. 
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Therefore, the optimum annealing conditions were additionally investigated by annealing devices 

at 500ºC for 30 sec. and 525ºC for 5 sec. However, no improvement in specific contact resistivity 

was found in comparison to devices annealed at 500ºC 10s or 525ºC 5s. 
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Figure 37. Zn-polar ZnO (solvent boiled) annealed at different condition in RTA in N2 

environment. Hall carrier concentration 1·1018 cm-3 and mobility 53 cm2V-1s-1  

We observe that Zn-polar samples show strong dependence on the solvent cleaning 

procedure and require solvent boiling in order to achieve low specific contact resistivity. On the 

other hand, O-polar samples show weaker dependence on the variation of solvent cleaning. The 

best annealing conditions for O-polar and Zn-polar thin films with Ti/Au metal stack lay in vicinity 

of 500-525ºC annealed for 10s in RTA with N2 environment. Figure 31. Free energy of formation 

per Oxygen atom for variety of metals as a function of metal workfunction. Figure 31 compares 

the achieved results to those available in literature. 
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Figure 38. Specific contact resistivity dependence on the carrier concentration for discussed 

samples and samples available in the literature. The carrier concentration for annealed samples is 

calculated from TLM measurements using assumption that mobility does not change with 

annealing 
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Chapter 5. (Be,Mg)ZnO/ZnO Heterostructures with 2DEG 

There is a considerable interest in the utilization of polarization field in polar oxide based 

heterostructure epitaxy. Remarkable mobilities have been reported for ZnMgO/ZnO 

heterostructures 2DEG. The highest reported low temperature 2DEG mobility for 

Zn0.99Mg0.01O/ZnO grown on bulk ZnO substrates is 7 x 105 cm2/Vs, albeit at a low electron sheet 

density of 1.4 x 1011
 cm-2

. However, for high power RF application carrier densities above 1013 cm-

2 are necessary. It was shown in Section 2.2 that precise control over lattice parameters by tuning 

the quaternary composition would allow strain control in BexMgyZn1-x-yO/ZnO heterostructures 

with the possibility to achieve both compressive and tensile strain, where the latter supports 

formation of 2DEG at the interface with ZnO. 

5.1. O-Polar ZnO/MgZnO Heterostructures with 2DEG 

As an initial step to the fabrication of heterostructures with 2DEG using the BeMgZnO 

quaternary barrier, the use of the ternary MgZnO barrier was investigated. The O-polar 

ZnO/MgZnO/ZnO structures were grown on c-plane sapphire substrates by plasma-assisted 

molecular-beam epitaxy. First, a 2-nm thick MgO layer was deposited at a substrate temperature 

TS = 700ºC followed by low-temperature ZnO deposited at TS = 300ºC and annealed at 700ºC. 

Then a ZnO buffer layer and a MgZnO barrier were grown at 620ºC and 350ºC, respectively. The 

growth was finished by depositing a 40-to-50-nm thick ZnO channel layer at TS = 620ºC. An 

oxygen plasma cell operating at 400 W served as a source of reactive oxygen while Zn and Mg 

were evaporated from K-cells. The oxygen pressure in the growth chamber was near 1.2×10−5 Torr. 

Mg fraction in the MgZnO barrier layers was varied by adjusting Zn and Mg cell temperatures. 

Figure 39 shows the results of temperature dependent Hall measurement on 

ZnO/MgZnO/ZnO heterostructures and ZnO thin films. With the reduction in the sample 
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temperature the sheet carrier density reduces, indicating the presence of room temperature bulk 

conduction in the heterostructure samples. However, the results for ZnO thin film indicate that 

bulk carriers freeze out below 100K. This is consistent with saturation of hall carrier mobility 

below 100K (see Figure 39(b)) 
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Figure 39. Dependance of a) sheet carrier density and b) Hall mobility on temperature of 

ZnO/MgZnO heterostructures and ZnO thin film (black curve) 

 Figure 40 shows the 2DEG carrier density dependence on the Mg content in O-polar 

ZnO/MgZnO/ZnO structures determined from Hall Measurement performed at 15 K where Mg 

content was deduced from the absorption edge. Higher Mg content results in higher spontaneous 

polarization which in turn allows higher 2DEG carrier density and near linear relationship on n2DEG 

and Mg content is observed. Despite high Mg concentration in the MgZnO barrier layer, 2DEG 

carrier densities are limited below 1013 cm-2 for ZnO/MgZnO heterostructures.   
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Figure 40. The 2DEG carrier density dependence on the Mg content in O-polar ZnO/MgZnO/ZnO 

structures determined from Hall Measurement performed at 15 K. 

To get better insight into operation of HFET it is important to investigate electron transport 

at high electric fields, which is strongly controlled by longitudinal optical (LO) phonons in most 

polar materials. Strong LO-phonon-plasmon coupling is the condition for the ultrafast decay of 

hot phonons and the associated ultrafast relaxation of the hot electron energy. Indeed, a hot electron 

loses a considerable amount of energy when an LO phonon is emitted, but the energy loss is 

compensated when an LO-phonon is reabsorbed. The reabsorption rate is proportional to the 

occupancy of hot-phonon modes controlled by the lifetime of hot-phonon decay into acoustic 

phonons and other vibrations. Thus, the hot-phonon accumulation slows down the hot-electrons 



88 

 

energy dissipation, but the hot-phonon effect is reduced if plasmons assist the hot-phonon decay 

under near-resonance conditions.  

We have studied hot electron effects in the ZnO/Mg0.38Zn0.62O/ZnO heterostructures with 

two-dimensional electron gas (2DEG) channel subjected to pulsed electric field applied in the 

channel plane under near equilibrium thermal bath temperature. The microwave noise (at a 

frequency of 38.5 GHz) technique was applied to measure the hot-electron noise and estimate the 

electron energy relaxation time. The voltage pulse width was τ = 100 ns, the gate pulse width was 

τgate = 50 ns. The gate pulse was placed at the second half of the voltage pulse. The pulses were 

short enough to mitigate the self-heating effect. The dependence of the excess noise temperature 

on the electric field is shown in Figure 41. The dependence is interpreted in the following way. 

The electric field heats electron gas and causes the excess noise. The electron temperature Te 

approximately equals the noise temperature Tn measured at the selected frequency in the range of 

white noise where other sources of noise do not manifest themselves. in the following way. The 

electric field heats electron gas and causes the excess noise. The electron temperature Te 

approximately equals the noise temperature Tn measured at the selected frequency in the range of 

white noise where other sources of noise do not manifest themselves. 
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Figure 41. Dependence of the excess noise temperature on the electric field in the 

MgO/MgZnO/MgO structure with the 2DEG channel. Inset shows the dependence on the 

dissipated power per electron. Line corresponds to the constant electron energy relaxation time 

equal to 55 fs. 

The electric power supplied to the electron gas Ps equals the dissipated power Pd because the 

voltage pulse is long enough for the strongly coupled subsystem of hot electrons and hot phonons 

to reach the quasi-steady state. The energy relaxation time approximation relates the electron gas 

temperature to the supplied power. The straight line in the inset of Figure 41 corresponds to the 

constant electron energy relaxation time. The self-heating effect is more easily avoided in 2DEG 

channels (100 ns pulses are short enough at the supplied power levels under discussion). The slope 

of the excess noise temperature versus the supplied power (inset in the Figure 41) is used to obtain 

the energy relaxation time. The value of τen = 55fs is extracted.  
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The 2DEG density of ∼5.5×1012 cm−2 was chosen to be near the possible LO-phonon–

plasmon resonance where the electron energy relaxation is expected to be fast because of ultrafast 

decay of hot phonons. The results are compared with those for doped ZnO films. The hot-electron 

energy relaxation time of ∼ 55 fs is extracted from the gated microwave noise measurements at 

the 2DEG density of ∼5.5×1012 cm−2. Figure 42 shows that this value is in between the resonance 

density reported for GaN 2DEG channels (~8x1012 cm−2) 2DEG channels and InGaAs 2DEG 

channels (~2.5x1012 cm−2).103  

 

Figure 42. Illustration of the effect of LO-phonon–plasmon resonance for InGaAs 2DEG channels 

(red bullets) and GaN-based 2DEG channels (black bullets) together with the energy relaxation 

time for MgO/MgZnO/MgO 2DEG channel indicated by green pentagon. Solid curves  

guide the eye. 
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The ultrafast energy relaxation suggests that the power dissipation is enhanced by the LO-

phonon–plasmon resonance. The results are in good agreement with those for doped ZnO films 

(Figure 43). However, it should be noted that, because of the limited 2DEG electron density in 

ZnO/MgZnO/ZnO heterostructures (our structure contains 38% Mg which is very close to a 

practical limit of 40% for Mg content), further studies of hot-electron effects in ZnO-based 

channels are required on ZnO/BeMgZnO/ZnO with higher 2DEG densities. 

 

Figure 43. Energy relaxation time vs. the electron density in Ga-doped ZnO films (blue symbols) 

and the MgO/Mg0.38ZnO/MgO 2DEG channel (green pentagon). Solid curve is to guide the eye. 

Dashed area indicates limits of an approximate conversion of the 2DEG density into the average 

3DEG density for the MgO/Mg0.38ZnO/MgO 2DEG channel. 
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For discussion of the resonance electron density (per unit volume) nres let us make use of the 

expression for the infinite plasma: 

 2

2

ph

res

E m
n

e




 
(29) 

where Eph is the LO-phonon energy, m is the electron effective mass,   is the dielectric 

constant, e is the elementary charge and  is the reduced Planck constant. The effective electron 

mass and the LO-phonon energy are lower in arsenides as compared with oxides and nitrides. The 

fitted resonance density is in a qualitative agreement with Equation (11) though the comparison is 

not straightforward. 

Because of large conduction band gap in MgZnO, the 2DEG is predominantly located in the 

top ZnO layer at the ZnO/MgZnO interface of the ZnO/MgZnO/ZnO structure. The and 92meV, 

respectively). Correspondingly, the 2DEG density in the ZnO channel (green pentagon, Figure 42) 

is lower as compared with the resonance density for GaN 2DEG layers (black bullets, Figure 42) 

in a qualitative agreement with Equation (11). The obtained energy relaxation time for the 

ZnO/MgZnO/ZnO is the shortest among the results presented in Fig. 3. This finding suggests that 

the density of 5.5×1012 cm−2 is close to the resonance density. In particular, the relaxation time 

(pentagon) is two times shorter than the LO-phonon lifetime in the GaN 2DEG channel (black 

bullets). Let us compare the result for the ZnO 2DEG channel with the recent results on doped 

ZnO films where the electron energy relaxation time was measured over a wide range of 3DEG 

densities (see Figure 43). The comparison is not straightforward because the 3DEG density is not 

constant in the 2DEG channel; it depends on the position in the transverse direction. The density 

profile resembles a rather asymmetrical Gauss function, and only some average 3DEG density can 

be specified for the 2DEG channel. We have used an approach where the thickness of the channel 
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is estimated as the width of the density profile at the Fermi level. Taking a realistic value of 4 nm, 

we get the average 3DEG density of ∼ 1.4 × 1019 cm−3 for the 2DEG channel (Figure 43, green 

pentagon). A bit larger or smaller thickness would lead to the density values inside the shaded area. 

In this work we demonstrate that the hot electron energy relaxation is quite fast at the selected 

electron density. However, we do not know how sharp is the resonance. There is always a statistical 

variation in the electron density in the wafer. In particular, each open circle in the Figure 4 is an 

average over several devices having nominally the same electron density though the actual density 

differs. Because of the statistical averaging the fitting curve is less sharp than the resonance one. 

The ultrafast energy relaxation in the ZnO 2DEG channels is demonstrated for relatively low 

power per electron (the data are presented for ∼ 4 nW per electron). The measurements above ∼ 

20 nW are limited by onset of residual effect of the field on the channel resistance. The low field 

resistance measured after the short (100 ns) voltage pulse is higher as compared to its value before 

the pulse. The resistance slowly relaxes to its low-electric field value when the high field is 

switched off. Further comparing the data in Figure 4 we can notice that the electron energy 

relaxation in the 2DEG channel is faster than the energy relaxation obtained for the doped ZnO 

films at any electron density (blue circles). The energy relaxation time (blue circles) increases with 

the density except for the vicinity of the LO-phonon–plasmon resonance. The ultrafast energy 

relaxation is important for high-speed operation of power devices. Thus, high electron densities 

are of primary importance. The relaxation time of ∼55 fs at 5.5×1012 cm−2 is a good result. For 

comparison, the reported measurements yielded ∼200 fs at similar electron densities. The 

resonance helps to achieve the ultrafast relaxation at relatively high densities. 
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5.2.  Strain Engineering for BeMgZnO/ZnO Heterostructure with 

2DEG 

In the BeO-MgO-ZnO system the knowledge of in-plane lattice parameters makes it possible 

to calculate the strain in ZnO-based heterostructures, including structures with 2DEG and quantum 

wells, which provides a guide for polarization charge engineering by tuning the sign and amount 

of piezoelectric polarization. The polarization charge is governed by the strain which sequentially 

depends on the lattice mismatch between the BeMgZnO and ZnO layers. Figure 44 represents 

strain in the quaternary BexMgyZn1-x-yO thin film grown on a ZnO template (a = 3.250 Å) vs. Be 

and Mg content. The generic quadratic equation can produce better fit than Equation (1). Therefore, 

the result is obtained by fitting directly calculated values with a generic quadratic equation with 

ternary bowing parameters that are independent of each other. The in-plane lattice parameter can 

be expressed as: 

 (  2 20.09, 4  0.030   03.284 0.4 78 .006 x x ya y yx      (30) 

where a is expressed in Angstroms. The 0% strain line indicates the quaternary BexMgyZn1-x-yO 

alloy that is lattice matched to ZnO which is described by the equation y = 15.13x – 30.81x2. From 

Figure 44 it is clear that Be has a much stronger effect than Mg on the strain in the quaternary alloy 

film. As an example, in order to achieve lattice matched BeMgZnO with 40% of Mg, only about 

3% of Be is needed, and the quaternary layers containing more than ~8% of Be are under tensile 

strain for the whole range of Mg concentrations.  
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Figure 44. Strain in the BexMgyZn1-x-yO layer on ZnO template as a function of Be and Mg 

contents. The negative and the positive signs represent the compressive and tensile strain, 

respectively. 

Alloying of ZnO with BeO and MgO gives rise to opposite signs for the changes of the in-

plane lattice parameter, a, in BeO-MgO-ZnO solid solutions. The a parameter increases and 

decreases with increasing Mg and Be content, respectively. Therefore, by varying the Be and Mg 

content of BeMgZnO one can tune the in-plane lattice parameter a and thus control the sign and 

amount of strain in the ZnO/BeMgZnO heterostructures. This makes it possible to address the 

problem of limited densities (<1013 cm-2) of 2DEG in ZnO-MgO-based heterostructures.  

Figure 4 with a cross-sectional schematic drawings illustrate spontaneous and piezoelectric 

polarization fields in Zn-polar heterostructures based on the BeO-MgO-ZnO system. At the 
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interfaces between the top barrier and the bottom ZnO layers of the heterostructures, the abrupt 

change in polarization value gives rise to a polarization sheet charge density:  

 
top bottomP P    (31) 

where σ is the interface polarization charge density, and Ptop and Pbottom are the polarization charge 

densities in the top and bottom layers, respectively. If the net polarization charge is positive, 

screening by free electrons would cause accumulation near the interface, and thus form 2DEG. 

For the Zn-polar MgZnO/ZnO heterostructure MgZnO is under compressive strain due to its 

larger in-plane lattice parameter than that of the relaxed ZnO buffer layer. The resulting 

piezoelectric polarization, PPz, in MgZnO is antiparallel to the spontaneous polarization, PSp, 

resulting in total polarization  𝑃(𝑀𝑔𝑍𝑛𝑂) = 𝑃𝑆𝑝(𝑀𝑔𝑍𝑛𝑂) − 𝑃𝑃𝑧(𝑀𝑔𝑍𝑛𝑂) . Therefore, the 

polarization charge at the MgZnO/ZnO interface is lower as compared to the value expected for 

unstrained MgZnO: 

 (  (  ( Sp Pz SpP MgZnO P MgZnO P ZnO     
(32) 

Addition of Be into the top MgZnO layer makes it possible to reduce the lattice parameter 

below that of the relaxed ZnO buffer, and therefore, reverses the sign of the piezoelectric 

polarization. As a result, the polarization charge at the interface increases, which is favorable for 

2DEG.   

 (  (  ( Sp Pz SpP BeMgZnO P BeMgZnO P ZnO     
(33) 

The spontaneous polarization can be obtained using linear interpolation between three binaries 

can be expressed as:  

 (  (  (  ( 1Sp Sp Sp SpP xP BeO yP MgO x y P ZnO      (34) 

and the piezoelectric polarization can be expressed as follows: 
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 ( 1 31 33 13 332 /PzP e e C C   (35) 

where 1 is the biaxial in-plain strain in the top layer that is calculated as the relative difference 

in the in-plane lattice constants of the epitaxial layer and template (buffer or substrate) through 

( (  ( 1 , / ,buffera a x y a x y   ; exx are the components of the piezoelectric tensor; and Cxx are the 

elastic coefficients.  

Table 11. Lattice parameters, the elastic and piezoelectric constants and spontaneous 

polarization PSp of the binaries BeO, MgO, and ZnO used in the calculation of the piezoelectric 

polarization PPz of the quaternary BeMgZnO, 

 BeO MgO ZnO 

a lattice parameter (Å) 2.698a 3.30c 3.2501b 

C33 (GPa) 488a 109d 211b 

C31 (GPa) 77a 58d 105b 

e33 (C/m2) 0.2a 1.64d 1.22b 

e31 (C/m2) -0.02a -0.58d -0.51b 

PSp (C/m2) -0.045a -0.12e -0.053e 
a Ref. 104 
b Ref. 31 
c Ref. 105 
d Ref. 106 
e Ref. 27 

 

The knowledge of the strain in the barrier layer allows the calculation of the 2DEG density 

for BexMgyZn1-x-yO/ZnO heterostructures. Figure 45 shows the dependence of calculated 2DEG 

sheet carrier density on Be in BeMgZnO/ZnO heterostructure with Mg content of 20% and 40%. 

Due to smaller lattice parameter of BeO, Be incorporation into the barrier supports the formation 

of 2DEG. In order to achieve carrier concentrations above 1013 cm-2 as small as 3-4% is needed in 

these quaternary heterostructures.  
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Figure 45. The dependance of calculated 2DEG carrier densities for Zn-polar (a) BexMg0.2Zn0.8-

xO/ZnO and (b) BexMg0.4Zn0.6-xO/ZnO heterostcutres on Be conent.  

In conclusion, BeMgZnO/ZnO heterostructures allow a clear advantage for the formation of 

high 2DEG carrier density in comparison to those in MgZnO/ZnO. As small as 3-4% of Be is 

sufficient to achieve carrier concentrations above 1013 cm-2 in the quaternary heterostructures with 

20-40% of Mg. In fact, any amount of the Be in the barrier layer would increase the 2DEG carrier 

density.  
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Summary and Outlook 

The synthesis and investigation of structural, electrical, and optical properties of quaternary 

BeMgZnO thin films and (Be,Mg)ZnO/ZnO heterostructures with 2DEG have been performed. 

Wide range of compositions (up to Be0.19Mg0.42Zn0.39O and Be0.12Mg0.52Zn0.36O), bandgaps (from 

3.3 eV to 5.2 eV) and a lattice parameters (from 3.27 Å to 3.16 Å, the latter one is equal to 2.8% 

strain) were achieved. Despite high Be and Mg contents that are not achievable with ternary 

BeZnO and MgZnO, the solubility limit in the quaternary alloy has not yet been reached; which is 

also evidence of the positive effect of Be and Mg atoms on each other’s incorporation and 

stabilization in the lattice of ZnO.  

The effect of metal-to-oxygen ratio on the surface morphology and electrical properties was 

investigated. It was found that samples grown under slightly oxygen rich conditions exhibit the 

lowest surface RMS roughness. Additionally, samples grown under O-rich conditions are 

insulating and samples grown under metal rich conditions are semiconducting. For FET 

applications, the lowers surface roughness and the highest crystal quality are desired. On the other 

hand, for TCO applications, doping possibilities and high conductivity are main concerns and for 

solar blind photodetectors low background conductivity may be an advantage.   Therefore, the 

optimum metal-to-oxygen ratio depends on the use of the BeMgZnO alloy and may require 

additional tuning of its properties for the specific application. 

The steady state and time-resolved measurements revealed that the carrier localization is in 

the inverse proportionality with Mg/Be ratio (at least up to Mg/Be = 6). This effect is observed 

due to compensation effects between Be and Mg atoms in the lattice of ZnO. Similar correlation 

is observed in the temporal redshift of the PL peak position that originates from removal of the 

band filling effect in the localized states. Based on steady state PL measurements at room and low 
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temperatures, it was found that optimum Be/Mg ratio for the room temperature optical 

performance is about 2.5.  

For device fabrication it is necessary to have control over contact formation. Specific contact 

resistivity below 10-6 Ohm-cm2 for 1018 cm-3 for ohmic contact to ZnO was realized. The optimum 

rapid thermal annealing conditions in the N2 environment were found to be near 525 ºC, 10 seconds 

or 500 ºC, 20 seconds. In regard to Schottky contact, the presence of high density surface carrier 

concentration is responsible for Fermi level pinning which is responsible for limited height of the 

Schottky barrier. Further optimization of surface preparation prior metal deposition or utilization 

of metal deposition techniques with in situ oxygen plasma treatment is necessary. In regard to 

BeMgZnO, due to lower work function of BeO and MgO in comparison to that of ZnO, it is easier 

to form high Schottky barrier to the quaternary alloy. The latter one would be true only if high 

surface carrier concentration is eliminated. It is essential to find proper surface treatment to remove 

high defect density and maintain the functionality of the structures. 

The investigation of O-polar MgZnO/ZnO heterostructures has shown that 2DEG electron 

densities are limited to 7.5 x 1012 cm−2 (for 45% of Mg). The advantage of BeMgZnO-based 

heterostructures to those based on MgZnO are that the first ones provide for the possibility to tune 

the piezoelectric polarization in a wide range by changing the in-plane lattice parameter of the 

barrier alloy and thus achieve high two-dimensional carrier densities at the interface. Due to larger 

a lattice parameters of MgZnO then that of ZnO, any amount of Be would play a beneficial role in 

the formation of 2DEG because of compressive strain compensation in the ternary barrier. It is 

shown that even small amount of Be (few %) would result in significant improvement in 2DEG 

carrier densities and values above 1013 cm−2. The insertion of the very thin BeO interfacial layer 

may have a favorable influence on the device performance (similar to AlN layer in 
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AlGaN/AlN/GaN HFETs) and require further investigation with numerical simulations and 

fabrication experiments.  
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