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Abstract

FAST ONLINE TRAINING OF L1 SUPPORT VECTOR MACHINES

By Gabriella Melki

A thesis submitted in partial fulfillment of the requirements for the degree of Master

of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2016.

Directors: Vojislav Kecman, Alberto Cano

Department of Computer Science

This thesis proposes a novel experimental environment (non-linear stochastic

gradient descent, NL-SGD), as well as a novel online learning algorithm (OL SVM),

for solving a classic nonlinear Soft Margin L1 Support Vector Machine (SVM) problem

using a Stochastic Gradient Descent (SGD) algorithm. The NL-SGD implementation

has a unique method of random sampling and alpha calculations. The developed

code produces a competitive accuracy and speed in comparison with the solutions of

the Direct L2 SVM obtained by software for Minimal Norm SVM (MN-SVM) and

Non-Negative Iterative Single Data Algorithm (NN-ISDA). The latter two algorithms

have shown excellent performances on large datasets; which is why we chose to com-

pare NL-SGD and OL SVM to them. All experiments have been done under strict

double (nested) cross-validation, and the results are reported in terms of accuracy and

CPU times. OL SVM has been implemented within MATLAB and is compared to the

classic Sequential Minimal Optimization (SMO) algorithm implemented within MAT-

LAB’s solver, fitcsvm. The experiments with OL SVM have been done using k-fold

cross-validation and the results reported in % error and % speedup of CPU Time.
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CHAPTER 1

INTRODUCTION

Over the past decade, dataset sizes have grown faster and disproportionately to the

speed of processors and memory capacity. With this prominent increase of large-

scale data, there is a demand for new machine learning algorithms that are able

to process these data to provide insightful information while completing these tasks

quickly and feasibly (because of memory constraints). SVMs represent a set of pop-

ular supervised, linear and nonlinear, machine learning algorithms having theoretical

foundations based on Vapnik-Chervonenkis theory [6, 16]. SVM models have similar-

ities to other machine learning techniques, but research has shown that they usually

outperform them in terms of computational efficiency, scalability, robustness against

outliers, and most importantly they are well suited for ultra-large data sets [16, 9, 24,

20], making them a very useful data mining tool for diverse real-world applications.

A traditional approach to training SVMs is the Sequential Minimal Optimization

(SMO) technique [15], which is an efficient approach for solving Quadratic Program-

ming tasks while training the L1 SVM. More recent and efficient approaches include

the Iterative Single Data Algorithm (ISDA) [6, 9]. It has been shown that ISDA,

applied as the L2 SVM solver, is faster than the SMO algorithm, and equal in terms

of accuracy [23]. Here, we will show that the SGD approach is faster than both

MN-SVM and NN-ISDA. MN-SVM belongs to the class of geometric approaches for

solving an SVM training task and was proposed to remedy the speed of learning

issues [20]. However, the newest algebraic solution of the L2 SVMs by NN-ISDA

seems to be the fastest approach for dealing with large datasets [9, 24, 8]. More
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recently, there has been more investigation into stochastic, also known as online, al-

gorithms to optimize large- scale learning problems. In [10] and [1] it has been shown

that stochastic algorithms can be both the fastest, and have the best generalization

performances. Bottou [1] and Shalev-Shwartz et al. [18, 17] demonstrate that the

basic Stochastic Gradient Descent (SGD) algorithm is very effective when the data

is sparse, taking less than linear [O(d)] time and space per iteration to optimize a

system with d parameters. It can greatly surpass the performance of more sophisti-

cated batch methods on large data sets. It is also shown in [7], that online algorithms

performances surpass that of the SMO algorithm, within the MATLAB platform.

This thesis first shows the performances of the SGD algorithm as proposed in [17]

while varying the parameters of the experiment. Unlike in [17], where the sample to

be updated is selected randomly and uniformly within the main training algorithm,

we shuffle the data and select the samples cyclically. We have also experimented with

three different ways of calculating the final values of dual variables αi, as well as

different configurations for looping through the data during training. We also present

a novel method of training L1 SVMs without performing kernel calculations at each

iteration, thus speeding up training time. The thesis is organized as follows. We

first define the notation used throughout the thesis, as well as define our problem.

We then provide background information on the Gradient Descent and Stochastic

Gradient Descent procedures. We then present the Hard-Margin and Soft-Margin L1

SVM problem as well as the L1 SVM dual formulation. This is then followed by the

Soft-SVM SGD algorithm in [17], with and without using kernels. Our algorithms are

then presented, followed by an explanation of our experimental environment, and a

presentation of our results and how they compare with different models. Our exper-

iments were done with nested cross-validation, ensuring reliable model comparisons.

Finally, we present the conclusions and discuss our future works.

2



CHAPTER 2

BACKGROUND

2.1 Notation and Problem Definition

We first will formally describe the classification problem and define the notation

that will be used in the paper for the description and definition of our contributions.

Let D be a training dataset of N instances that is generated i.i.d from a distribution.

Let Cm be the set of class labels existing describing D, where m is the number of class

labels. Let X be a random vector consisting of d input variables, sometimes called in-

put space, X1, . . . , Xd, having a domain of X ∈ Rd. Let Y be a label vector containing

the class labels for the input vectors, sometimes called output space, having a domain

of Y (l) ∈ C, l = 1, . . . ,m. For each sample (x(l), y(l)), x(l) = {x(l)1 , . . . , x
(l)
i , . . . , x

(l)
d }

is the input vector and y(l) ∈ C is the class label for x(l), where l ∈ {1, . . . , N},

and i ∈ {1, . . . , d}. Using the training dataset D = {(x(1), y(1)), . . . , (x(N), y(N))},

the goal is to learn a classification model h : X × Y , that assigns a label y with

m possible class values, for each input instance x. The model will then be used to

simultaneously predict the values of {yN+1, . . . , yN
′} for new, unlabeled input vectors

{xN+1, . . . ,xN
′}.

2.2 Regularized Loss Minimization

Regularized Loss Minimization (RLM) is a learning rule where a loss and regu-

larization function, also known as a regularizer, are minimized together. This is given

by

argmin
w

R =

(
λ

2
||w||2 + LS(w)

)
, (2.1)

3



where LS(w) is the loss function, and λ
2
||w||2 is the regularizer.

There are many different possible regularizers, but for the scope of this thesis we

will use R(w) = λ
2
||w||2, where λ > 0 is a scalar, and the norm of w is the l2 norm,

||w|| =
√∑d

i=1w
2
i . This is called Tikhonov regularization, and it acts as a stabilizer

for the learning rule. Stable learning rules do not overfit models to the data, where

the tradeoff between fitting and overfitting is dependent upon the parameter λ. The

main property of this type of regularization is that, for a convex LS(w), the objective

function of RLM becomes λ-strongly convex, as shown in [17].

In the next section, we will describe the Stochastic Gradient Descent procedure

and how it can efficiently solve convex problems such as the RLM rule.

2.3 Stochastic Gradient Descent

In the context of convex learning problems, such as RLM, the advantage of SGD

is that it is an efficient and simple algorithm that has a good sample complexity. In

this section we will first describe gradient descent, subgradients for non-differentiable

function, and finally describe the SGD algorithm with some variants.

2.3.1 Gradient Descent

The approach for minimizing a convex, differentiable function f(w) is an iterative

one where the gradient of f is taken at each step and used to update the variable to

be minimized. The gradient of function f : Rd → R at w, is denoted and defined

by 5f(w) =
(
∂f(w)
∂w[1]

, . . . , ∂f(w)
∂w[d]

)
, the vector of partial derivatives of f with respect to

w. The Gradient Descent (GD) algorithm is as follows: w is first initialized to some

random value (say w(1) = 0), and at each iteration, a step is taken in the negative

4



Fig. 1. Right-hand side of Equation 2.3 is the tangent of f at w, where for convex

functions, the tangent lower bounds f [17].

direction of the gradient at that point, as shown in equation 2.2.

w(t+1) = w(t) − η5 f(w(t)) (2.2)

After T iterations, the algorithm returns the averaged weight vector w̄ = 1
T

∑T
t=1w

(t).

Different versions of the weight could also be returned, such as the last weight vector or

the average of the last 25% of changes, but this will be elaborated on in section 2.4.4.

The scalar parameter η > 0 will also be discussed later.

2.3.2 Subgradients

The Gradient Descent algorithm requires that the function being minimized is

differentiable. Some loss functions are not differentiable, and in these cases, the

subgradient of f(w) at w(t) can be taken instead of the gradient. A vector v that

satisfies Equation 2.3 is called a subgradient of f at w and the set of subgradients

is called the differential set denoted as δf(w) [17]. For every w ∈ S, where S is an

open convex set, there exists a v such that

f(u) ≥ f(w) + 〈u−w,v〉, ∀u ∈ S. (2.3)

5



Fig. 2. A plot of the gradient descent algorithm (left) and the stochastic gra-

dient descent algorithm (right) [17]. The function being minimized is

1.25(x+ 6)2 + (y − 8)2. In the figure representing stochastic gradient descent,

the solid line shows the averaged value of w.

2.3.3 Stochastic Gradient Descent

For the stochastic gradient descent algorithm, the update direction does not need

to be based exactly on the gradient. It is instead allowed to be a random vector, and

at each iteration, its expected value is required to be a subgradient of the function a the

current vector. An example of the difference between the SGD and the GD procedure

for minimization of convex function is shown in Fig. 2. As stated previously in 2.2

and in [17], if a function f is λ-strongly convex for every vector w,u, and v ∈ ∂f(w)

then we have 〈w − u, v〉 ≥ f(w) − f(u) + λ
2
||w − u||2 implying that the norms will

never be greater than λ. It is then shown in [17] that an unbiased estimate of the

function’s subgradient can be chosen. The update rule for these functions can then

be rewritten as 2.4.

w(t+1) = − 1

λ t

t∑
i=1

vi, (2.4)

where t is the number of iterations. This shows, by using SGD, the regularized

6



loss function can directly be minimized. It is done by sampling a point i.i.d from a

distribution, then using a subgradient of the loss function at this point as an unbiased

estimate of the subgradient of the risk function.

2.4 Support Vector Machines

In this section, we will present a very useful learning tool, the Support Vector

Machine (SVM). The SVM is particularly useful for learning linear predictors in high

dimensional feature spaces, which is a computationally complex learning problem.

This problem is approached (in the context of classification) by searching for the

optimal maximal margin of separability between classes. It will first describe the

Hard-Margin SVM in the case of linearly separable data, which will then be extended

to the derivation of the Soft-Margin SVM for non-linearly separable datasets.

2.4.1 Hard-Margin SVM

Let S be a training set such that S = {(x1, y1), . . . , (xi, yi), (xm, ym)}, ∀i ∈

{1, . . . ,m}, xi ∈ Rd, and yi ∈ {+1,−1}, where +1 and −1 are the class labels. The

training set S is linearly separable if a halfspace exists, (w, b), such that yi = d(x) =

sign(〈w,xi〉 + b),∀i ∈ {1, . . . ,m}, where w is a d-dimensional weight vector, and b

is a bias term. The sign function can be rewritten as constraints 2.5,

yi (〈w,xi〉+ b) > 0, ∀i ∈ {1, . . . ,m}. (2.5)

All halfspaces defined as d(xi) = 〈w,xi〉+b which satisfy 2.5 have 0 error. There

could be many different hypothesis that satisfy these constraints. A 2-dimensional

example of different possible separating hyperplanes, that correctly classify all the

data points, is shown in Figure 3. In Figure 3, two hyperplane decision boundaries

are shown to correctly classify the two classes of data points. Intuitively, the solid

7
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Fig. 4. Maximum margin hyperplane

line seems like the better and more generalized solution, and this line of thinking can

be expressed with the concept of margin.

The minimal distance between points belonging to opposite classes in the training

set and the hyperplane is defined as the margin and has a width equal to 2
||w|| . In

the example shown in Figure 3, if we slightly move the training data points, the solid

line (with the larger margin) will still correctly classify all the instances, whereas

the dotted line (with a much smaller margin, comparatively) will not. From this,

we can see that the location of the hyperplane has a direct impact on the classifiers

generalization capabilities. The hyperplane with the largest margin is called the

optimal separating hyperplane. Figure 4 shows the optimal separating hyperplane

for the training data points, where the filled data points are from the +1 class and

the non-filled data points are from the −1 class. The training data points on the

separating hyperplane (the circled data points), whose decision function value equals

+1 or −1, are called the support vectors.

To obtain the optimal separating hyperplane, the norm of the w vector must

be minimized. This is because the margin is inversely proportional to the w vec-

8



tor. Therefore, to find the optimal separating hyperplane for the Hard-Margin SVM

problem, one must minimize,

minimize
w,b

1

2
||w||2 (2.6)

subject to yi(〈w,xi〉+ b) ≥ 1, ∀i ∈ {1, . . . ,m} (2.7)

Note, the minimization of ||w|| produces the same optimal w as the minimization of

||w||2.

It is sometimes more convenient to consider homogeneous hyperplanes, in other

words, hyperplanes that pass through the origin, where the bias term b is set to

0. We can reduce the problem of learning from non-homogeneous hyperplanes to a

problem of learning from a homogeneous hyperplane by adding an extra feature to

each instance of xi, increasing the input space dimensionality to d+1. As noted in [17],

in Equation 2.6, we do not regularize the bias term b, but if we learn a homogeneous

hyperplane in Rd+1 as shown in Equation 2.8, we do regularize the bias term since it

is the d + 1th component of the input vector. [17] also notes that regularizing b does

not make a significant difference to the complexity of the optimization problem.

min
w
||w||2 s.t. ∀i, yi〈w,xi〉 ≥ 1 (2.8)

Since our dataset S is assumed to be linearly separable, there exists a w and b

that satisfy constraints 2.7. There will be no feasible solution for the Hard-Margin

SVM problem if the dataset is non-linearly separable, which is the case in most

practical datasets. To overcome this problem, Cortes and Vapnik [4] introduced the

Soft-Margin SVM problem.

9
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Fig. 5. 2-dimensional non-linearly separable example

2.4.2 Soft-Margin SVM

The Soft-SVM problem can be viewed as a relaxation of the Hard-SVM problem,

in the sense that it can be applied to non-linearly separable data. 2.7 enforces hard

constraints for all i ∈ {1, . . . ,m}, but in the Soft-SVM problem, it has been relaxed

to allow the constraints to be violated for some of the samples in the training set by

introducing non-negative slack variables ξi. The constraints can now be written as,

yi (〈w,xi〉+ b) ≥ 1− ξi, ∀i ∈ {1, . . . ,m}. (2.9)

Figure 5 shows an example of training data that is not linearly separable in

input space. For the data points that lie in the margin, such as data points with

corresponding slack variables ξ1 and ξ4, have slack variable values between 0 and 1.

They are correctly classified, but do not have the maximum margin. Data points

having slack variable values greater than 1 are misclassified because they lie on the

wrong side of the decision boundary. The slack variables allow some error in the

misclassification to account for overlapping data sets.
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Due to the addition of the slack variables, the Soft-Margin SVM problem can

now be re-written as,

minimize
w,ξ

λ

2
||w||2 +

1

m

m∑
i=1

ξpi , (2.10)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi, ∀i ∈ {1, . . . ,m} (2.11)

ξi ≥ 0, ∀i ∈ {1, . . . ,m} (2.12)

where λ > 0 is the penalty parameter that controls the trade-off between margin

maximization and classification error minimization. The λ parameter penalizes large

norms as well as errors. For the context of this contribution, we will set p to be equal

to 1 which provides the L1 SVM formulation. The resulting hyperplane is called

soft-margin hyperplane.

We can rewrite Equations 2.10 and 2.11 as a regularized loss minimization prob-

lem using the hinge loss function given in Equation 2.13.

LhingeS (w, b) =
1

m

m∑
i=1

max{0, 1− yi〈w,xi〉+ b} (2.13)

Then, given (w, b) and a training set S, we can consider the following optimiza-

tion problem,

minimize
w,b

(
λ

2
||w||2 + LhingeS (w, b)

)
(2.14)

We can say that equations Equation 2.14 and Equations 2.10 to 2.12 are equiv-

alent as shown in [17]. We can now see that the Soft-SVM problem falls into the

regularized loss minimization paradigm presented in Section 2.2. The hinge loss func-

tion is a convex one; it is not differentiable but has a subgradient, which means that

it can be minimized computationally efficiently.

It is more convenient to consider the Soft-SVM problem for learning a homoge-

neous hyperplane, as stated above, which produces the following optimization prob-
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lem,

minimize
w

(
λ

2
||w||2 + LhingeS (w)

)
(2.15)

where

LhingeS (w) =
1

m

m∑
i=1

max{0, 1− yi〈w,xi〉}. (2.16)

2.4.3 L1-SVM and Duality

Many properties of SVM can be obtained by considering the dual of Equa-

tion 2.15. The context of this thesis does not rely on the dual formulation of 2.15,

but for completeness we will present the dual formulation.

The L1 SVM is a type of SVM that has the value of p equal to 1.

minimize
w,ξ

1

2
||w||2 +

C

m

m∑
i=1

ξi, (2.17)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi, ∀i ∈ {1, . . . ,m} (2.18)

ξi ≥ 0, ∀i ∈ {1, . . . ,m} (2.19)

Given the above optimization problem, where C = 1
λ

is the SVM penalty parameter,

the dual can be found by first forming the primal Lagrangian given in Equation 2.20

Lp (w, b, ξ,α,β) = 1
2
||w||2 + C

m

∑m
i=1 ξi −

∑m
i=1αi (yi(〈w,xi〉+ b)− 1 + ξi)−

∑m
i=1 βiξi, (2.20)

where α and β are the non-negative Lagrange multipliers.

αi ≥ 0, ∀i ∈ {1, . . . ,m} (2.21)

βi ≥ 0, ∀i ∈ {1, . . . ,m} (2.22)
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The following Karush-Kuhn-Tucker (KKT) conditions must be satisfied:

∂L
∂wj

= 0 , ∀j ∈ {1, . . . , d} (2.23)

∂L
∂b

= 0 (2.24)

∂L
∂ξj

= 0 , ∀j ∈ {1, . . . , d} (2.25)

αi (yi(〈w,xi〉+ b)− 1 + ξi) = 0, ∀i ∈ {1, . . . ,m} (2.26)

βiξi = 0, ∀i ∈ {1, . . . ,m} (2.27)

αi ≥ 0, βi ≥ 0, ξi ≥ 0, ∀i ∈ {1, . . . ,m} (2.28)

At optimality, 5w,b,ξL(w, b, ξ) = 0, and the following conditions are met:

∂L
∂wj

: wj =
m∑
i=1

αi yi xi j, ∀j ∈ {1, . . . , d} (2.29)

∂L
∂b

:
m∑
i=1

αiyi = 0, ∀i ∈ {1, . . . ,m} (2.30)

∂L
∂ξj

: αi + βi =
C

m
, ∀j ∈ {1, . . . , d}, ∀i ∈ {1, . . . ,m} (2.31)

By substituting Equations 2.29, 2.30, and 2.31 into the Lagrangian in 2.20, the fol-

lowing dual problem is obtained:

minimize
α

1

2

m∑
i,j=1

αiαjyiyj〈xi,xj〉 −
m∑
i=1

αi (2.32)

subject to
m∑
i=1

αiyi = 0, (2.33)

0 ≤ αi ≤
C

m
, ∀i ∈ {1, . . . ,m} (2.34)

There are three cases that are possible for the αi values, from the constraints given

in Equations 2.26, 2.27, and 2.28, given below:

1. If αi = 0, then βi = C
m

and that ξi = 0, which indicates a correctly classified
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instance outside the margin.

2. If 0 ≤ αi ≤ C
m

, then βi > 0 and ξi = 0, indicating that a point sits on the

margin boundary. This instance will be an unbounded support vector.

3. If αi = C
m

, then βi = 0 and there is no restriction for ξi ≥ 0. This also indicates

that the instance is a support vector that is unbounded. If 0 ≤ ξi < 1, then the

instance is correctly classified, otherwise it is misclassified.

2.4.4 Stochastic Gradient Descent for the Soft-SVM Problem

The Soft Margin SVM optimization problem associated with regularized hinge

loss minimization, minimizes the following cost function in Equation 2.15, which is

λ-strongly convex. In this section, we will describe the SGD procedure in [17] for

solving the Soft-SVM problem.

Recall that we can rewrite the update rule in SGD as Equation 2.4 given below,

w(t+1) = − 1

λ t

t∑
i=1

vi,

where, at iteration j < t, vi is a subgradient of the loss function atw(j) on the random

sample chosen. For the hinge loss function, we choose v to be

vj :=


0, if y〈w(j),x〉 ≥ 1

−yx, otherwise.

(2.35)

Setting θ(t) = −
∑

j<t vj, Algorithm 1 minimizes Equation 2.15.

The SVM learns hyperplanes with a preference for a large margin. The Hard-

SVM finds the hyperplane that separates data perfectly with the largest possible

margin, whereas the Soft-SVM does not assume separability and allows the constraints

to be violated with some error. The sample complexity of finding this hyperplane is
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Algorithm 1 SGD for Solving Soft-SVM

Input: Training dataset D, number of cross-validation folds k, parameter T

Output: Optimal SVM weight vector w∗

1: Initialize θ(1) = 0

2: for t = 1 to T do

3: Let w(t) = 1
λ t
θ(t)

4: Choose i uniformly at random from [m]

5: if yi〈w(t),xi〉 < 1 then

6: Set θ(t+1) = θ(t) + yixi

7: else

8: Set θ(t+1) = θ(t)

9: end if

10: end for

11: return w∗ = 1
T

∑T
t=1 w(t)

not dependent on the dimensionality of the input space, but rather on the maximal

norm of w. Dimension-independent complexity is important, and in section 2.4.5 we

will discuss mapping our input space into a higher-dimensional feature space in order

to expand our hypothesis class to include non-linear classifiers.

2.4.5 Kernel Methods

Although the Soft-SVM learns an optimal hyperplane, if the training data set

is not linearly separable, the classifier learned may not have a good generalization

capability. Generalization and linear separability can be enhanced by mapping the

original input space to a higher dimensional dot-product feature space by using a
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kernel function shown in Equation

K (xi,xj) = φ (xi) · φ (xj) , (2.36)

where φ (·) represents a mapping function into a higher dimensional feature space.

To solve the optimization problem given in Equation 2.32, we do not need to

know the values of the elements in feature space, all we need is a method to calculate

their inner products in the feature space, namely the kernel function. This means

that we only need the value of the (m×m) matrix G such that Gij = K(xi,xj); and

thus, Equation 2.32 can be rewritten (in matrix form) as:

minimize
α

(
λαTGα+

1

m

m∑
i=1

max{0, 1− yi(Gα)i}

)
(2.37)

where (Gα)i is the ith element of the vector obtained by multiplying the matrix G by

the vector α. Note that Equation 2.15 is a convex quadratic programming problem

and can be solved efficiently. Our contribution is an even simpler method that solves

this problem and is described in Chapter 3.

The advantage of working with kernels instead of optimizingw directly in feature

space is that sometimes the dimensionality of the feature space is very large, and this

would require extensive computation, while computing the kernel is much simpler.

Table 1 shows some popular kernel functions. In the example of the Gaussian Radial

Basis Function (RBF) kernel, the feature space is infinitely dimensional, while the

kernel calculation is very straight-forward.

2.4.6 SGD with Kernels

While the Algorithm 1 is simple, it only works for linear SVMs. For a general

nonlinear SVM (NL-SVM) model, with use of kernels, there is also a simple method for

solving the Soft-SVM task by using a stochastic gradient approach. (The presentation
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Table 1. Popular Kernel Functions

Kernel Function Name Properties

K(xi,xj) = (xi · xj) Linear CPD 1

K(xi,xj) = (xi · xj + 1)d Polynomial of degree d PD 2

K(xi,xj) = (e−γ||xi−xj ||2) Gaussian RBF PD 2

1 Conditionally Positive Definite
2 Positive Definite

below follows [17]). For NL-SVM, one wants to minimize the regularized soft margin

loss function,

min
w

(
λ

2
||w||2 +

1

m

m∑
i=1

max{0, 1− yi〈w, φ(xi)〉}

)
(2.38)

where vector w(t) that is updated with Algorithm 1 is always in the linear span of

{φ(x1), φ(x2), . . . , φ(xm)}, which means that the corresponding coefficient α can be

maintained. In this new SGD procedure, [17] maintains two vectors β(t) and α(t) that

are updated by Algorithm 2 such that,

θ(t) =
m∑
j=1

β
(t)
j φ(xj) (2.39)

w(t) =
m∑
j=1

α
(t)
j φ(xj). (2.40)

The output of both Algorithm 1 and Algorithm 2 are equal. Let ŵ be the

output of Algorithm 1 in feature space, and let w̄ =
∑m

j=1 ᾱjφ(xj) be the output

of Algorithm 2. For every iteration t, by definition α(t) = 1
λ t
β(t) and w(t) = 1

λ t
θ(t)

which implies that Equation 2.40 holds. For proving that Equation 2.39 holds, our
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Algorithm 2 SGD for Solving Soft-SVM with Kernels

Input: Training dataset D, number of cross-validation folds k, parameter T

Output: Optimal SVM weight vector w∗

1: Initialize β(1) = 0

2: for t = 1 to T do

3: Let α(t) = 1
λm
β(t)

4: Choose i uniformly at random from [m]

5: ∀j 6= i, set β
(t+1)
j = β

(t)
j

6: if yi
∑m

j=1α
(t)
j K(xj, xi) < 1 then

7: Set β(t+1) = β(t) + yi

8: else

9: Set β(t+1) = β(t)

10: end if

11: end for

12: return w∗ =
∑m

j=1α
∗
j φ(xj), where α∗ = 1

T

∑T
t=1α

(t)

base case where t = 1 trivially holds. For t ≥ 1,

yi〈w(t), φ(xi)〉 = yi〈
∑
j

α
(t)
j φ(xj)φ(xi)〉 =

m∑
j=1

α
(t)
j K(xj,xi). (2.41)

This shows that the two algorithms are equivalent, and when updating θ,

θ(t+1) = θ(t) + yiφ(xi) =
m∑
j=1

β(t)φ(xj) + yiφ(xi) =
m∑
j=1

β(t+1)φ(xj). (2.42)

To summarize, we have shown how kernels can be used in the SGD algorithm

for solving the Soft-SVM optimization problem. Feature mapping and the kernel

trick allows us to use linear predictors for non-linear data. In the next chapter, we

will present a simple method and experimental environment for solving the L1 SVM
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problem that has competitive accuracy and very fast CPU time for datasets of any

size. We will then compare our method to two competitive methods for solving the

SVM problem, a geometric and an iterative approach. We will also present a different

formulation for performing updates in the SGD procedure that also speeds up training

time by using a slightly different loss function during optimization, as well as compare

it’s performance to the popular SMO algorithm.
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CHAPTER 3

STOCHASTIC GRADIENT DESCENT ALGORITHMS FOR

SOLVING SVMS

In this Chapter, we will present a modified version of the SGD algorithm for solving

the L1 SVM problem presented as Algorithm 2. The presented algorithm, Non-linear

SGD (NL-SGD), was developed and tested within the GSVM framework [21]. We will

then present a variant of the RLM problem for solving SVMs in the primal domain

along with a novel approach [7] called On-Line Support Vector Machine (OL SVM)

for optimizing it.

3.1 Non-Linear SGD

The first modification made to Algorithm 2 was changing the method of sampling.

To improve the computational complexity of the algorithm, the data is first shuffled

and then learning can then proceed cyclically. Rather than produce a random index

at ever iteration, no random number generation is needed in the NL-SGD method

because the data is already shuffled. By excluding the random sampling from the

algorithm’s main loop, learning can be performed faster. Another advantage (besides

computational complexity) of shuffling the data rather than random sampling is that

shuffling ensures that each data point gets used in the learning process, therefore no

knowledge can be lost. With random number generation at each iteration, there is no

guarantee that each of the data points gets used in training, while with our shuffling

method it does.

In Algorithm 2, the calculation of the final dual variables is done by taking the
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average α value over all iterations. Our method, presented in Algorithm 3, tests

three different approaches of calculating the final α value. The first is averaging

over the last 50% of the updates, the second is taking the mean value of the dual

variables over the last 25% of updates, and lastly we used only the last value of

α. The reasoning behind these different methods is that as the iterations proceed,

the optimal objective function value is being approached. Taking the average of all

the different changes of the α values might include some added noise in the final

model from previous values of α that produce objective function values further from

the optimal one. Averaging over later sets of the α changes would ensure that no

noise would be taken into account in the final model. These more complex averaging

techniques can improve the convergence speed in some situations, such as in the case

of strongly convex functions.

Finally, we conducted some preliminary experiments for clarifying issues associ-

ated with stopping the training process. We first decided that the number of itera-

tions, T , would be set to the number of training samples, and then we added an extra

layer by specifying how many times, or epochs, to loop over the dataset. When an

epoch greater than one is used, we set T to be the number of samples multiplied by

the number of epochs. We experimented with using 2 and 5 epochs for small datasets,

and 1 and 2 epochs for medium datasets. We used a higher number of epochs for small

datasets because the number of samples might not be high enough for the minimum

to be found.

Preprocessing: Before beginning initialization of the training process, we first

perform some preprocessing on the datasets provided as input. We normalize the data

by scaling the features values to be between [0, 1]. Scaling is performed to ensure that

no feature has any bias (by having relatively larger values compared to other features)

during the training process. We then shuffle the data in order to proceed cyclically,
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Algorithm 3 Non-Linear Stochastic Gradient Descent for SVM

Input: Training dataset (xi, yi) ∈ D, ∀i ∈ {1, . . . ,m}, number of epochs e, % of

alpha changes kt

Output: Optimal SVM weight vector w∗

1: Initialize β(1) = 0, α(1) = 0, T (1) = m ∗ e

2: for t = 1 to T do

3: i = t

4: if yi
∑m

j=1α
(t)
j K(xj, xi) ≤ 1 then

5: Set β(t+1) = β(t) + yi

6: else

7: Set β(t+1) = β(t)

8: end if

9: η = 1
λ t

10: α(t+1) = η β(t+1)

11: if t ≥ kt ∗ T then

12: i = 1

13: end if

14: end for

15: return w∗ =
∑m

j=1α
∗
j φ(xj), where α∗ = 1

(1−kt)T
∑kt∗T

t=1 α
(t)

by eliminating random sampling, during the training process.

Initialization: We first select a feasible starting point to begin the algorithm

by initializing β(1) = 0 and α(1) = 0. The number of iterations is also initialized to be

the number of data points in the training set, m, multiplied by the number of epochs

e. The indexing of the samples proceeds cyclically by setting our index, i, at each

iteration to equal t. If the total number of iterations T exceeds the sample size, i.e.
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if there is more than one epoch, we reset the index to equal 1 in order to loop back

over the training set.

Identifying Violators & The Update Procedure: The algorithm proceeds

to find a violator by checking if the constraints shown in equation 2.41 is violated.

We have used a Gaussian RBF kernel, shown in Table 1, as our kernel function, K(·).

In our implementation, to improve computational complexity for vector calculations,

we maintain the vectors by stacking the violators found at the head of each array, i.e.

for vectors α(t) and β(t), the violators are stored in indices t ∈ {1, . . . , nv}, where nv

is the number of violators. If a violator is found, we swap the current sample index

with the sample located at the nv+1th location of the α(t) and β(t) vectors, increment

the value of nv, and proceed with the vector updates over the values contained in

locations {1, . . . , nv}. These updates are shown in Equations 3.2 and 3.3, where 3.2

follows Equation 2.42. This technique ensures that no unnecessary calculations will

be performed during the algorithms main loop, such as multiplying η with a 0 value in

the α vector for non-violating samples. This also benefits kernel calculations, shown

in Equation 3.1. The calculation to obtain the kernel value will only be over values

in locations {1, . . . , nv}.

K(xi,xj) = (e−γ||xi−xj ||2), ∀i, j ∈ {1, . . . , nv} (3.1)

nv∑
j=1

β(t+1)φ(xj) =
nv∑
j=1

β(t)φ(xj) + yiφ(xi)→

β
(t+1)
i = β

(t)
i + yi, where i is the current sample

(3.2)

α
(t+1)
i = η β

(t+1)
i , ∀i ∈ {1, . . . , nv} (3.3)

Final α Vector Calculation: If the input parameter kt is different than 1;

i.e. if we do not want to take the last α value as our final dual variable, during the
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learning phase we sum the values of α at each iteration in anticipation of taking some

average. We then calculate the final averaged α value using Equation 3.4, where e is

the number of epochs.

α∗ =
1

(T (1− kt))

e∑
i=1

αi (3.4)

In the next section, we will describe a different, yet similar, method for solving

the SVM optimization problem. The key difference between the two algorithms is

the identification of violators, where computation is sped up without loss of accuracy

due to the elimination of kernel calculations at each iteration.

3.2 OL SVM

Recently, several authors have proposed the use of a standard SGD for SVMs [16,

11, 19, 17]. The approaches in [16, 11, 19, 17] are extended variants of a classic kernel

perceptron algorithm shown in [5]. The main difference between the otherwise close

approaches presented in [16, 11, 19, 17], and the variants presented in [7] and shown

here, originate from the minimization of slightly different loss functions while training

the SVM. In [16, 11, 19, 17] the cost function was the regularized hinge loss given

by Equation 3.5, while in this section, the hinge loss, or soft margin loss, without

regularization shown in Equation 3.6, is minimized.

Rrhl = C
m∑
i=1

max (0, 1− yi o(xi)) +
1

2
||o||22 (3.5)

Rrl =
m∑
i=1

max (0, 1− yi o(xi)) (3.6)

o is the output, or decision function, of the SVM for a given input vector xi, and

is the function being minimized. It is given by Equation 3.7. Note that o is calculated

25



without the use of the bias term b.

o(x) =
m∑
i=1

αiK(x,xi) (3.7)

Typically, this type of regularization is expressed by squaring the norm of the

weight vector w as shown in Equation 2.14 which, geometrically, determines the

width of the margin between two classes. [3] presents the justification for not using

the regularization term, 1
2
||o||22, shown in Equation 3.5. The algorithm 4 presented in

this section [7], OL SVM, was obtained by minimizing the soft margin loss function

shown in Equation 3.6, and it is similar to the approach in [5]. It is also similar to the

approach shown in Algorithm 3, except that it has a more efficient method of finding

the dual variable α. The experiments performed using the algorithm in [7] confirm

the statements and findings in [3] and will be shown in Chapter 4.

In addition to being very simply structured, the efficiency of the OL SVM al-

gorithm is improved by calculating viol variable with the help of the output vector

o and by caching o only when there is a violation, i.e. an αj update. By using

output vector o, one avoids computing a dot product of m-dimensional vectors at

each iteration step, making the computation of viol more efficient. The bias term b is

not needed when positive definite kernels are implemented, but it can be used. If b is

used, whenever viol < 1, b is updated by Equation 3.8. Also, and only when viol < 1,

the term η yi must be added to the right hand side of the output o in Algorithm 4.

The bias updates in the SVM model output o are given in Equations 3.8 and 3.9.

bi = bi + η yi (3.8)

o(x) =
m∑
i=1

αiK(x,xi) + b (3.9)
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Algorithm 4 Online Algorithm - OL SVM for RHL

Input: Training dataset (xi, yi) ∈ D, ∀i ∈ {1, . . . ,m}, number of epochs e

Output: Optimal SVM dual variable α∗

1: Initialize o(1) = 0, α(1) = 0, T (1) = m ∗ e, i = 0

2: for t = 1 to T do

3: η = C
√

2
t

4: i = i+ 1

5: if i > m then

6: i = 0

7: end if

8: viol = yio
(t)
i

9: if viol < 1 then

10: Set o(t+1) = o(t) + η yi k(·,xi)

11: Set α
(t+1)
i = α

(t)
i + η yi

12: end if

13: end for

14: return α∗ = α(T )
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CHAPTER 4

RESULTS

In this chapter we will describe the datasets used for our experimental environments to

test the NL-SGD and the OL SVM algorithms. We will then describe the experimental

setup and show the results obtained by both algorithms. More detailed results can

be found in [7].

4.1 Data

4.1.1 Data for NL-SGD Experiments

To evaluate our experimental procedure, and the SGD algorithm, as well as com-

pare its performance with the MN-SVM and NN-ISDA algorithms, we used bench-

mark datasets from both the UCI Machine Learning Repository [22] and the LIB-

SVM [13] sites. Table 2 lists all the datasets used to test our model. For each dataset,

the table lists the number of inputs, the number of features (dimensionality), and the

number of classes. Note that these datasets are the same as the datasets used in [20]

and [23]. In [20] MN-SVM was compared to the BVM implementation taken from

the LibCVM package [12], and in [23] the NN-ISDA algorithm was then compared to

the results obtained by MN-SVM in [20].

MN-SVM was implemented in an open source framework called GSVM Com-

mand Line Tool for Geometric SVM Training [21] and showed considerable training

time speedup in comparison to the L1 and L2 SVM methods from LIBSVM [2], as

well as BVM from LibCVM. These comparisons are shown in [20]. It has been then

shown in [23] that the NN-ISDA algorithm is faster than the MN-SVM. This is why

29



Table 2. Dataset Information

Dataset # Instances # Features # Classes

Small Datasets

Iris 150 4 3

Glass 214 9 6

Wine 178 13 3

Teach 151 5 3

Sonar 208 60 2

Dermatology 366 33 2

Heart 270 13 2

Prokaryotic 997 20 3

Eukaryotic 2427 20 4

Medium Datasets

Optdigits 5620 64 10

Usps 9298 256 10

Reuters 11069 8315 2

we compare our implementation of the SGD algorithm with these two approaches.

Note that all the three algorithms are implemented within the general framework of

GSVM [21].

4.1.2 Data for OL SVM Experiments

The comparison of the two binary SVM classifiers, the SMO based fitcsvm and

the implementation of OL SVM [7], is performed on datasets that contain up to 15,000

samples. An overview on the datasets used are presented in Table 3. The data that
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Table 3. OL SVM Dataset Information

Dataset # Instances # Features

Small Datasets

Cancer 198 32

Sonar 208 60

Vote 232 16

Eukaryotic 2427 20

prototask 8192 21

Reuters 11069 8315

Chess Board 8000 2

Two Normally distributed classes 15000 2

is not originally binary has been transformed into a binary classification problem

by grouping the samples into two classes. For the Eukaryotic dataset, results are

shown for classifying class 4 vs. the rest. The Prototask dataset is transformed into

a balanced two class problem, where if yi ≥ 89, xi is assigned to class 1, otherwise,

the data belongs to class 2.

4.2 Experimental Environment

4.2.1 Experimental Environment for NL-SGD

The comparison of the NL-SGD, NN-ISDA, and MN-SVM models was obtained

using a strict nested (a.k.a. double) cross-validation procedure. This experimental

environment is computationally expensive, but it ensures that the models perfor-

mances are accurately assessed. In the outer loop, the data is separated into equally

sized sections; in our experiments we have chosen to use 5 sections. Each part is
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held out in turn as the test set, and the remaining four parts are used as the training

set. In the inner loop, 5-fold cross-validation is used over the training set, where

the best hyper-parameters are chosen. The best model obtained by the inner loop

is then applied on the outer loops test set. This procedure ensures that the models

performance is not optimistically biased as what would have occurred using single

loop k-fold cross-validation.

The preprocessing steps used for our data sets were feature normalization and

data shuffling. Our features were rescaled to values between [0, 1], and we shuffled the

data to ensure that our method is stochastic when looping through each data point.

The tuning of our model during cross-validation consists of finding the best

penalty parameter C, or 1
λ
, as well as the best shape parameter γ for the Gaus-

sian RBF kernel. The parameters were selected among 8 × 8 possible combinations,

from the below values, which have also been used in [20, 23].

C ∈ 4n, n ∈ {−2,−1, . . . , 5} (4.1)

γ ∈ 4n, n ∈ {−5,−4, . . . , 2} (4.2)

To deal with multi-class classification problems, we used the one-vs-one, or pair-

wise, approach. The pairwise training procedure trains c(c−1)
2

binary classifiers, a

classifier for each possible pair of classes, where c is the number of classes. During

the prediction phase, a voting scheme is used where all c(c−1)
2

models predict an un-

seen data sample and the class that received the highest number of votes is considered

to be the samples true class.
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4.2.2 Experimental Environment for OL SVM

In all the simulations, found in [7], of the experiments for OL SVM, the SVM

with a Gaussian kernel has been used. The results shown are obtained by performing

the 5-fold cross-validation. The two design hyperparameters used where out of the

following ranges, shown in Equations 4.3 and 4.4

C ∈ 10n, n ∈ {−4,−3, . . . , 4} (4.3)

σ ∈ 10n, n ∈ {−1, 0, . . . , 2}, (4.4)

where the Gaussian parameter σ =
√

2 γ. These sets of 9 C and 4 σ values would

lead to 36 × 5 = 180 runs for each dataset, which is computationally expensive for

larger datasets. For example, the SMO algorithm with solver fitcsvm needed 2.7 days

to finish the cross-validation runs for Reuters dataset.

4.3 Results

4.3.1 Comparison of NL-SGD with NN-ISDA and MN-SVM

Table 4 shows the accuracies achieved by our implementation of NL-SGD, by

MN-SVM [20, 21], and NN-ISDA [9, 23].

Figures 6 and 7 show the accuracy comparisons of the three algorithms for the

small and medium datasets. In all cases, NL-SGD performs competitively, or even

surpasses the accuracy of NN-ISDA and MN-SVM.

Table 5 compares the three algorithms CPU training and shows that the NL-

SGD implementation is the choice for learning from datasets. In all cases, except the

Wine dataset, the NL-SGD implementation is fastest. From the perspective of the

average CPU time, it is 1.2 times faster than NN-ISDA and 8 times faster than MN-

SVM for training small datasets. For medium datasets, NL-SGD is 1.35 times faster
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Fig. 6. Accuracy Comparison for Small Datasets

Fig. 7. Accuracy Comparison for Medium Datasets

than NN-ISDA and 1.92 times faster than MN-SVM. This, combined with NL-SGDs

competitive accuracy, shows that it is definitely suitable for training datasets of any

size, especially large datasets.
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Table 4. NL-SGD Accuracies Achieved

Dataset MN-SVM NN-ISDA NL-SGD

Small Datasets

Iris 96.67 94.00 96.00

Glass 69.29 67.82 69.17

Wine 96.60 96.69 97.17

Teach 52.95 52.31 56.95

Sonar 87.57 89.48 89.49

Dermatology 98.36 98.36 97.38

Heart 83.33 83.33 84.81

Prokaryotic 88.97 88.65 87.86

Eukaryotic 81.21 79.56 71.36

Average Accuracy 83.33 83.34 83.35

Medium Datasets

Optdigits 99.31 99.29 98.88

Usps 98.21 98.05 96.93

Reuters 98.05 98.08 97.28

Average Accuracy 98.52 98.47 97.69

Accuracies are reported in percents (%)

The main motivation for the experiments presented in this thesis is to examine the

speed of learning that can be achieved by using the NL-SGD algorithm on datasets of

increasing size. In that respect, Figs. 8, 9, 10, and Table 5 show exactly that. From

the results shown in this section, we can see that our NL-SGD implementation is

very competitive with respect to the NN-ISDA and MN-SVM algorithms. Being able

35



Table 5. NL-SGD CPU Time Needed For Training

Dataset MN-SVM NN-ISDA NL-SGD

Small Datasets

Iris 3.57 0.27 0.18

Glass 11.94 1.01 0.5

Wine 4.84 0.43 0.47

Teach 8.85 0.44 0.47

Sonar 3.03 0.98 0.74

Dermatology 11.68 2.47 1.69

Heart 6.45 0.91 0.61

Prokaryotic 50.86 10.64 5.61

Eukaryotic 342.76 49.16 45.38

Average CPU Time 49.33 7.37 6.16

Medium Datasets

Optdigits 787.85 528.04 340.70

Usps 7777.82 5245.55 4193.36

Reuters 1657.04 1368.02 758.05

Average CPU Time 3405.57 2380.54 1764.04

CPU time is reported in seconds (s)

to process large amounts of data with these CPU training times provides a sizeable

advantage, especially because the accuracy of the model generated, with respect to its

competitors, is not reduced. The average accuracy of MN-SVM is slightly higher, but

being able to build a model with significant speedup in the training time compensates

this.
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Fig. 8. CPU Time Comparison for Small Datasets

Fig. 9. CPU Time Comparison for Prokaryotic and Eukaryotic Datasets

4.3.2 Results for Different Configurations of NL-SGD

Below we can see how NL-SGDs accuracy is affected by different configurations

in terms of the number of epochs chosen, as well as the percentage of alpha changes

37



Fig. 10. CPU Time Comparison for Medium Datasets

taken into account. We tested our implementation using three different percentages

of the α updates, as explained in Section 3.1. These percentages are shown in the

following figures on the x-axis, where 0% represents taking the last α vector as the

final α∗. For the small datasets, we ran our experiment with two and five epochs.

For the medium datasets, we ran our implementation with one and two epochs. The

number of epochs is depicted by the color of the bar plots, indicated by the legend.

Smaller datasets would require multiple updates to the α vector to ensure reaching

optimality, because the algorithm loops cyclically over the data. For larger datasets,

this is not the case due to their size. This is shown in Figs. 11 and 12.

Fig. 11 shows that for the smaller sized datasets, such as the Wine, Glass,

and Teach datasets; the accuracy achieved with five epochs surpasses that with two

epochs. We can also see that for the larger of the small datasets, such as Eukaryotic

and Prokaryotic; the accuracy achieved with two epochs is better than using five

epochs. This is because there were more updates than needed, and the minimum was
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Fig. 11. NL-SGD Accuracy on Small Datasets

Fig. 12. NL-SGD Accuracy on Medium Datasets

overshot. We can also see that taking the average of the last 50% and 75% of alpha

updates produces better results than taking the last alpha update.

From Fig. 12 we can see that there are minimal differences in the accuracy’s
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achieved by using one or two epochs. Due to the small difference, we would recom-

mend using one epoch to achieve faster CPU training time. Figs. 13, 14, and 15 show

the CPU training times achieved by our NL-SGD implementation.

Fig. 13. NL-SGD CPU Time on Small Datasets

Fig. 14. NL-SGD CPU Time on Prokaryotic and Eukaryotic Datasets
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Fig. 15. NL-SGD CPU Time on Medium Datasets

We can definitely see a trade-off with balancing the number of epochs to achieve

higher accuracy, while maintaining fast CPU training times. It is shown through

our results that as the number of samples increases, it is preferable to use a lower

epoch number. This will ensure achieving a high accuracy while maintaining low

CPU training time.

4.3.3 Comparison of OL SVM with the SMO MATLAB Implementation

Table 6 shows the average error rates of the SMO and OL SVM algorithms on the

test datasets given in Table 3. OL SVM is more accurate than fitcsvm for all but one

dataset. For all the simulations, OL SVM is faster than SMO. Also note that as the

dataset size increases, the speedup of OL SVM increases. It is important to note that

the SMO based fitcsvm training time increases sharply with both a bad conditioned

kernel matrix k (for example, caused by a broad Gaussian kernel or higher order

polynomial) and by a large value for the penalty parameter C. Figures 17 and 16
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show the typical and characteristic changes of error rates and CPU time for the

two methods in 24 cross-validation runs (6C and 4σ values) for training a normally

distributed 2 class dataset in 2-dimensional space, with 15, 000 samples. The SMO

algorithm has a weakness, where for large C and σ values, SMO suffers from very high

CPU time, as stated previously. This is due to its iterative nature of two-coordinate

descent in search for the optimal minima. With large C values, the box defined by

C would be very large, thus leading to more iterations in search of the minimum

value. With large σ values, the cost function would be badly conditioned, making the

optimal value of the regularized hinge loss function, shown in Equation 3.5, difficult

to find. OL SVM does not suffer from the weaknesses stated, which are linked to the

SVM hyperparameters, rather it is dependent on the number of iterations which is

defined by the cardinality of the dataset and the number of epochs, e.

Table 6. Average Error Rate and Speedup of OL SVM vs. SMO

Dataset Error Rate SMO, % Error Rate OL SVM, % OL SVM vs. SMO CPU Time Ratio

Cancer 24.00 25.62 4.1

Sonar 34.70 24.35 3.68

Vote 22.68 8.09 1.89

Eukaryotic 36.05 14.55 5.67

Prototask 33.57 11.28 5.61

Reuters 5.64 4.48 4.10

Chess Board 13.62 4.27 7.65

Two Normally Distributed Classes 28.25 7.82 41.50

Figures 18 and 19 show the performances of SMO and OL SVM for the Reuters

data. This is a very sparse dataset (only 11, 069 samples in 8, 315 dimensional space).

The curves in all simulation have a typical sew-saw behavior due to the order of

selection of C and σ. Typically, one C is selected and it is being used in combination

with all the shape parameters given. The last runs are with the largest values of C

and σ.
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Fig. 16. Error rates of SMO and OL SVM for two normally distributed classes in

2-dimensional space, with a sample size of 15, 000.

Fig. 17. CPU times of SMO and OL SVM for two normally distributed classes in

2-dimensional space, with a sample size of 15, 000.
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Fig. 18. CPU times of SMO and OL SVM for two normally distributed classes in

2-dimensional space, with a sample size of 15, 000.

Fig. 19. CPU times of SMO and OL SVM for two normally distributed classes in

2-dimensional space, with a sample size of 15, 000.
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More simulations and results can be found in [7] showing the superiority of OL

SVM in comparison to two other stochastic methods, a modification of the algorithm

Pegasos named Pegaz [19] and Norma [16, 11]. The results show that the error rate

of Norma and OL SVM are similar and Pegaz has a higher error rate than both. OL

SVM is 2 times faster than Norma and 4 times faster than Pegaz.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The potential for fast learning and building accurate models using stochastic gradient

algorithms is very promising. Our implementation, named NL-SGD shown in Algo-

rithm 3, shows CPU time speed up with respect to the fastest (known to us) non-linear

SVM algorithms implemented within the publicly available GSVM code. The results

shown in this thesis are indicative of the quality of the models built by NL-SGD,

all the while having the best CPU training time, while keeping similar accuracies on

various datasets. This thesis also introduces a new stochastic gradient based SVM

learning algorithm in primal, named OL SVM. The learning classification algorithm

is devised and shown in Algorithm 4 as described next. It minimizes a soft-margin,

or hinge, loss without the quadratic regularization term Rhl in 3.6. This approach

has some similarities with the kernel perceptron learning algorithm expressed in dual

variables [7]. The experiments compare OL SVM with the classic and most pop-

ular SVM training approach, the SMO algorithm. All the experiments have been

performed in MATLAB and they show the superiority of OL SVM in terms of both

accuracy and CPU time needed for performing 5-fold cross-validation on various data.

The comparisons have been performed on several binary classification datasets, with

up to 15, 000 samples. Whether this superiority claim is right and valid for the imple-

mentation of the OL SVM algorithm on other platforms (C++, Java, Python, R) is

partly answered in [14], as well as by the results presented for NL-SGD, and is still the

subject of present and future investigations by using more datasets of various sizes

and characteristics. An important characteristic of OL SVM and NL-SGD is that
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the CPU time needed for the training does not depend upon the values of penalty

parameter C or on the kernel hyperparameter values (shape parameter of Gaussian

kernel or the order of the polynomial kernel). This feature significantly reduces the

OL SVM and NL-SGD training time for bigger values of both C and Gaussian shape

parameters (i.e., for higher order polynomials) compared to the training CPU times

shown by the SMO algorithm, which slows down significantly due to worse condition-

ing of Hessian matrix used in a dual space. The results presented in this thesis, as

well as in [7], show that stochastic gradient training for the L1 SVM problem seems

to be the strongest contender for classifying large datasets.

Possible future works include the following,

• Implementing OL SVM in C++ and testing both NL-SGD and OL SVM on

very large datasets

• Include the ability to train models for multi-target datasets

• Parallelize both NL-SGD and OL SVM

• Implement a linear version of NL-SGD and compare its performance with OL

SVM and NL-SGD

By investigating the above possible implementations, we would be expanding

the range of classification and regression solutions that would be useful in various

industries. The experiments conducted so far show performance improvement on

small and medium datasets, and the next step would be to establish whether this will

be the case for very large datasets.
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Appendix A

ABBREVIATIONS

VCU Virginia Commonwealth University

GD Gradient Descent

SGD Stochastic Gradient Descent

SVM Support Vector Machine

NL SGD Non-Linear Stochastic Gradient Descent

OL SVM Online Support Vector Machine

MN SVM Minimal Norm Support Vector Machine

ISDA Iterative Single Data Algorithm

NN ISDA Non-Negative Iterative Single Data Algorithm

SMO Sequential Minimal Optimization

RLM Regularized Loss Minimization

KKT Karush-Kuhn-Tucker

RBF Radial Basis Function

GSVM Geometric Support Vector Machine
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