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Abstract 

The ability to control the bi-stable magnetization states of shape anisotropic single 

domain nanomagnets has garnered a lot of attention due to its potential for spawning non-volatile 

and energy-efficient computing and signal processing systems that can surpass conventional 

CMOS-based platforms. However, the magnetization switching methods in most popular 

approaches, namely using a magnetic field or spin transfer torque, consumes enormous amounts 

of energy which negates any advantage gained by a nanomagnet over a transistor. One way to 

circumvent this problem is to adopt a system of a 2-phase multiferroic nanomagnet, comprising a 

single domain magnetostrictive layer elastically coupled to a piezoelectric layer. A voltage 

applied on the piezoelectric layer generates a strain in it and the strain is elastically transferred to 

the magnetostrictive nanomagnet which rotates the magnetization states of the nanomagnet at 

room temperature via the converse magneto-electric effect. Such electric-field induced 

magnetization switching has been theoretically and experimentally shown to dissipate a 

minuscule amount of energy of only ~ 1 attojoule at room temperature. Recently, it has been 

demonstrated that the magnetization of a single domain Co nanomagnet can be switched between 

two stable orientations by transferring a voltage-generated strain from a bulk PMN-PT substrate 

to the soft ferromagnetic Co layer. The switching probability, however, is low (4%). One of the 

reasons for low switching probability is the relatively small magnetostriction of elemental 

magnetostrictive nanomagnets like Co or Ni which would require relatively large electric fields 

to alter the magnetization state. One possible way to improve the statistics is to replace Co or Ni 

with a better magnetostrictive material like Galfenol. The alloy FeGa has much higher 

magnetostriction and is therefore desirable, but it also presents unique material challenges owing 

to the existence of many phases. Nonetheless, there is a need to step beyond elemental 
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ferromagnets and examine compound or alloyed ferromagnets with much higher 

magnetostriction to advance this field. There has been some work in FeGa thin films, but not in 

nanoscale FeGa magnets which are important for nanomagnetic logic and memory applications. 

This motivates my work. 

We have designed and patterned FeGa nanomagnets of feature size ranging from 200 nm 

to 350 nm on a piezoelectric PMN-PT substrate and reported observation of a „non-volatile‟ 

converse magneto-electric effect in elliptical FeGa. The nanomagnets are first magnetized with a 

magnetic field directed along their nominal major axes. Subsequent application of a strong 

electric field across the piezoelectric substrate generates strain in the substrate, which is partially 

transferred to the nanomagnets and rotates the magnetizations of some of them away from their 

initial orientations. The rotated magnetizations remain in their new orientations after the field is 

removed, resulting in „non-volatility‟. In isolated nanomagnets, the magnetization rotates by < 

90
o
 upon application of the electric field, but in a dipole-coupled pair consisting of one „hard‟ 

and one „soft‟ nanomagnet, which are both initially magnetized in the same direction by the 

magnetic field, the soft nanomagnet‟s magnetization rotates by > 90
o
 upon application of the 

electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized 

for a nanomagnetic NOT logic gate. 

We have successfully demonstrated a reversible strain-induced magnetization switching 

between two stable/metastable states in ~300 nm sized FeGa nanomagnets delineated on a 

piezoelectric PMN-PT substrate. Voltage of one polarity applied across the substrate generates 

compressive strain in a nanomagnet and switches its magnetization to one state, while voltage of 

the opposite polarity generates tensile strain and switches the magnetization back to the original 

state. The two states can encode the two binary bits, and, using the right voltage polarity, one can 



XII 
 

write either bit deterministically. This portends an ultra-energy-efficient non-volatile “non-

toggle” memory. 

Finally, in order to enhance the repeatable switching probability, a scheme of using 

localized strain to alter the magnetization states of nanomagnets has been proposed and 

experimentally realized by fabricating two pairs of patterned gold metals pad on PMN-PT 

substrate. The nanomagnets are then grown and aligned in such a way that one pair of electrodes 

subtends an angle 30
o
 with the common major axis of the magnets and the other pair subtends an 

angle 150
o
. The voltage was first applied between one pair of electrode and the ground plate on 

the back of the substrate and the other pair was activated. This method of applying voltage can 

completely reverse the magnetization of a nanomagnet with high probability. With correct 

voltage polarity, we have been able to switch the magnetization states of nanomagnets (feature 

sizes, 184-294 nm) between two stable orientations which are 180
o
 apart in repeated cycle. This 

will enable writing of binary bits in non-volatile magnetic memory implemented with magneto-

tunneling junctions whose soft layers are two-phase magnetostrictive/piezoelectric multiferroics. 

This thesis establishes Galfenol as the potential candidate in strain induced non-volatile memory 

application. This will stimulate research in binary or ternary magnetostrictive alloys to exploit 

their unique properties to realize more efficient devices that can outperform their charge based 

counterparts. The work has also realized a method of generating high localized strain which can 

be utilized for repeatable switching with dissipation as small as 6143 kT which is at least two 

orders of magnitude less than what spin- transfer-torque memory STT-RAM dissipates in a write 

cycle.  
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Chapter 1. Introduction 

1.1. Background of Straintronic Device and Villari Effect 

Exploiting electron‟s spin to encode binary information has shown promise for extremely 

energy efficient and nonvolatile logic and memory devices, [2]. In the traditional CMOS based 

devices, the on and off states are controlled by the number of charges N moving in and out of the 

active region which result in consumption of exorbitant amount of energy. A state-of-the-art 

CMOS dissipates over 50000 kT of energy at room temperature in isolation and over 10
6
 kT in a 

circuit to switch at a few GHz of clock frequency [3]. On the other hand, if the binary bit 

information („0‟ or „1‟) is stored in the spins of a nanomagnet, the switching between two 

stable/metastable states is ideally governed by the collective evolution of spins due to their 

mutual exchange interaction. Hence, the number of information carrier is ideally 1 and not N, 

which drastically reduces the energy dissipation. However, much of the advantage gained by the 

reduction of the number of information carriers is squandered in the writing scheme of a bit 

which involves switching the magnetization to the desired state by an external agent. 

There are many schemes for altering the magnetization state of a nanomagnet to enable 

the writing of a bit. The oldest is to use a local magnetic field generated by an on-chip current, 

which is, regrettably, extremely dissipative [4] and would dissipate about 10
7
 kT of energy at 

room temperature per write operation [3]. The second is to use a spin-polarized current to deliver 

a spin-transfer torque [5] or induce domain wall motion [6]. These are also extremely dissipative 

strategies and dissipate between 10
4
 kT and 10

7
 kT of energy per write step [7], [8]. The recent 

use of the giant spin Hall effect to generate a spin polarized current [9] may end up reducing the 

energy dissipation to perhaps ~10
4
 kT per step, but a much more energy-efficient approach is to 
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use two-phase multiferroics (a magnetostrictive nanomagnet delineated on a piezoelectric film) 

as shown in figure 1 [10]. An electrostatic potential applied across the piezoelectric film 

generates strain in that layer, which is partially transferred to the magnetostrictive layer and 

rotates the latter‟s magnetization via the Villari effect. This effect is based on the fact that when 

a mechanical stress is imposed on a sample, it alters the magnet‟s potential energy profile. That 

can rotate the magnet‟s magnetization while dissipating only ~100 kT of energy to switch at a 

clock frequency of ~1 GHz [10]. 

 

 

 

Figure 1.1: Schematic representation of 2 phase multiferroic system 

The above effect can be exploited to implement a voltage-controlled resistance switch. 

For this purpose, one would fabricate a magneto-tunneling junction (MTJ) stack consisting of 

three layers – a hard magnetic layer whose magnetization is stiff and does not budge easily, a 

spacer layer through which electrons tunnel, and finally a soft magnetic layer whose 

magnetization can be easily rotated by voltage-induced stress. The resistance of the MTJ depends 

on the angle θ between the magnetizations of the hard and soft layer. If the magnetizations are 

parallel (θ = 0
0
), then the resistance is small, whereas if the magnetizations are anti-parallel (θ = 

180
0
), then the resistance is large. Therefore, by changing the magnetization of the soft layer, and 

hence by changing θ, we can change the resistance of the MTJ. In general, the resistance of the 

MTJ is inversely proportional to 1 21 cos   , where η1 and η2 are the spin filtering efficiencies 

Piezoelectric Substrate 

Nanomagnet 
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at the interfaces of the spacer layer with the hard and soft magnetic layers, respectively [11]. 

Therefore, the resistance ratio (MR) for θ = 180
0
 and θ = 0

0
 is 

1 2

1 2

1

1
MR









                  (1.1)

 

Typical values of η are about 70% [12]; hence, the resistance ratio is roughly 2:1. 

The switching of the soft layer of an MTJ upon application of stress is depicted in Fig. 1. 

First, a strong magnetic field can be used to align the magnetizations of the soft and hard layer  

 

Figure 1.2: Schematic representation of Spin reversal in a multiferroic MTJ 

along the field, so that they are mutually parallel. The MTJ resistance will be in the low state and 

encode, say, the logic bit 0. Next, a voltage is applied across the underlying piezoelectric 

substrate PMN-PT, which generates stress in the piezoelectric, which is transferred to the soft 

layer in elastic contact with the piezoelectric and rotates its magnetization by ~90
0
. If we 

withdraw the stress immediately when the magnetization completes the 90
0
 rotation, then 

residual torque acting on the magnetization vector will continue to rotate it and complete 180
0
 

rotation [13]. At that point, the hard and soft layers will have anti-parallel magnetizations and the 

MTJ resistance will be high, encoding, say, the logic bit 1. 

PMN-PT PMN-PT PMN-PT 
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1.2. Motivation of Using Galfenol as the Magnetostrictive Material 

 Our teams have shown for the first time, experimental demonstration of strain-clocked 

nanomagnetic logic utilizing single-domain Co nanomagnets of ∼200 nm lateral dimensions on a 

bulk PMN−PT substrate to realize a Boolean NOT logic gate and unidirectional propagation of 

logic bit information down a chain of nanomagnets [1]. Although the nanomagnet dimensions 

are chosen so that stress anisotropy can beat the shape anisotropy barrier, issues such as 

lithographic variations and other discrepancies such defects, and jagged edges, which result in 

shape anisotropy energies that are higher than desirable or create pinning sites, may cause the 

effective field due to stress anisotropy energy to be insufficient to induce magnetization rotation. 

To improve the situation and generate large stress anisotropy in the nanomagnet, we have to 

investigate the unique magnetostrictive properties of binary or ternary alloy like Galfenol 

(FexGa1-x), Terfenol-D (TbxDy1-xFe2 (x~0.3)). Table 1 shows a comparative analysis of the 

material properties of different ferromagnetic materials. 

Table 1: Material properties of Co, Ni, Galfenol and Terfenol-D 

Material Young’s Modulus, Y 

(GPa) 

Saturation 

Magnetization, Ms 

(A/m) 

Magnetostriction 

Constant (  ⁄  λs) 

Ni 214 4.84 x 10
5
 -3 x 10

-5
 

Co 209 14.22 x 10
5
 -5 x 10

-5
 

Galfenol (Fe80Ga20) 75 11.9 x 10
5
 30-35 x 10

-5 

Terfenol-D  25-35 8 x 10
5
 90 x 10

-5 
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The stress anisotropy energy in a magnetostrictive material is governed by the following 

equation; 

                     ⁄                          (1.2) 

where, λs, σ, Ms, V are the magnetostriction coefficient, applied stress, saturation magnetization 

and volume respectively of the material. Hence, the stress needed to switch a magnetostrictive 

nanomagnet is inversely proportional to the magnetostrictive coefficient (the more 

magnetostrictive a material is, the easier it is to rotate its magnetization with stress). From table 

1, we can see that Terfenol-D offers the highest magnetostriction value while Galfenol has less 

magnetostriction than Terfenol-D but offers much larger value than those of the elemental Co or 

Ni. But to grow a ternary alloy like Terfenol-D while maintaining correct stoichiometry is quite 

challenging. Galfenol, on the other hand, is expected to grow as polycrystalline material during 

sputtering using just one single target. Therefore, it may preserve some of its high 

magnetostriction properties of bulk single crystal. Moreover, Galfenol has higher saturation 

magnetization than Ni and Terfenol-D. This makes it all the more suitable for characterization 

with Magnetic Force Microscopy (MFM) because of higher contrast MFM images with minimal 

tip-induced magnetization reorientation. Nonetheless, to further advance the field of 2 phase 

multiferroic system, it is necessary to look at exquisite properties of binary or ternary alloys. 

Galfenol provides the most balanced characteristics among the novel materials. There has been 

some work in FeGa thin films [14]–[17], but not in nanoscale FeGa magnets which are important 

for nanomagnetic logic and memory applications. This motivates our quest. 

 The rest of the work is divided into four chapters. The second chapter discusses the 

material growth and characterization of Galfenol, shape and stress anisotropy calculations, 

experimental setup for electron beam nanolithography and magnetic force microscopy. The third 
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chapter describes the magnetization switching of isolated and dipole coupled pair of Galfenol 

nanomagnets. It illustrates the metastable behavior of the magnetization states of Galfenol and 

how it can be utilized in nanomagnetic logic operation. The fourth chapter discusses the first 

experimental demonstration of a stress induced reversible non-volatile non-toggle memory 

scheme using elliptical nanomagnets with feature size, ~300 nm (major axis) by 240 nm (minor 

axis) which has the potential of dissipating minuscule energy while writing bit 1 with one 

polarity of stress and bit 0 with opposite polarity of stress deterministically. Finally, in the fifth 

chapter, we report experimental demonstration of repeatable switching between two stable 

orientations of the magnetization, which are 180
o
 apart. The scheme also rules out any use of 

external feedback circuitry or magnetic field ensuing minimal energy consumption.  
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Chapter 2. Fabrication of Galfenol Nanomagnets and Experimental    

Setup 

2.1: Galfenol Deposition and characterization 

As mentioned earlier in the introduction of the dissertation, the higher magnetostrictive a 

material is, the easier it is to rotate it‟s magnetization with stress. Galfenol or Fe1-xGax, where x = 

18 atomic percentage, possesses high magnetostriction. The following is a typical saturation 

magnetostriction value λs vs atomic composition x (Galium) plot [18], [19]: 

 

Fig 2.1.1: Magnetostriction vs Atomic Percentage, x (%Ga) [17] 

In a single crystalline Fe1-xGax where Ga atomic percentage varies from 17% to 20%, the 

value of λs varies from 300 ppm to 400 ppm. Such a high value, if realized in practice, can be 

utilized for easy switching of the magnetization in the free layer as we apply voltage to the 

piezoelectric layer. Most studies show that FeGa contains a mixture of A2 (Disordered BCC Fe) 

and DO3 phase (Fe3Ga) [18]. To deposit FeGa, I have used sputtering machine at the Virginia 
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Microelectronics Center, VCU and the National Institute of Standards and Technology, 

Gaithersburg, Maryland. A typical deposition parameters for nanomagnets are given below: 

Table 2.1: Deposition parameters for Galfenol Deposition 

Power (Watt) Deposition 

Pressure (milli-

Torr) 

Temperature (
o
C) Time (sec.) Base 

(Starting) 

pressure 

(Torr) 

45 1  21 33-90 (1-3)x10
-8

  

 

2.1.1: X-Ray Diffraction Analysis of Thin Film Galfenol 

To characterize the thin film for its crystallinity behavior, I carried out several grazing 

incidence XRD measurements at different power, time and pressure. These XRD patterns are 

taken carefully only from the thin film FeGa deposited on top of Silicon substrate so the peaks 

only correspond to the top layer and not from the substrate. We have carried out two types of 

grazing incidence X-Ray diffraction analysis depending on how the XRD detector collects the 

data. When the detector moves in the plane perpendicular to the thin film plane, it collects the 

data from the planes parallel to the crystal plane which we call out of plane grazing incidence 

XRD analysis. On the other hand, if the detector moves in the plane parallel to the crystal plane, 

it collects data from the planes along the film growth direction which we call in-plane grazing 

incidence XRD analysis. 

Table 2.1.1 lists deposition parameters and Figure 2.1.2 shows the corresponding XRD 

pattern. 
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Table 2.1.1: Deposition parameters for Galfenol Deposition for 50 nm thin film 

Power (Watt) Deposition 

Pressure(milli-

Torr) 

Temperature (
o
C) Time (sec.) Base 

(Starting) 

pressure 

(Torr) 

100  6.6  21 33-90 (1-3)x10
-6

  

 

 

Fig 2.1.2: Grazing incidence out of plane X-Ray diffraction pattern of 50 nm thin film Galfenol. The red 

curve is the experimental data and the blue curve is the fitted plot. 

 

Table 2.1.2: List of 2-theta (degree), inter-planar distance (d), size of the grains and crystalline 

plane 

2-theta (Degree.) d(A
o
) Size(A

o
) Plane 

44.320 2.0422 124.4 (110) 

64.63 1.441 79 (200) 

81.05 1.1855 82 (211) 

 

Meas. data:FeGa_100_900s_thin_film_graz
ing_incid_1/Data 1

Gallium Iron, ( Fe0.8 Ga0.2 ), 01-071-8220
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To fabricate our final device, we need to deposit around 10 to 15 nm thin film Galfenol. 

Therefore, we have also carried out XRD for extremely thin (15nm to 19nm) sample and 

observed polycrystalline behavior. The following XRD pattern in figure 2.1.3 shows the 

intensities matching (110), (200), (211) planes and the ratios of intensities also matches with the 

powdered sample spectrum. It confirms qualitatively that our sample is randomly oriented 

polycrystalline with all possible orientations appearing. Table 2.1.3 and 2.1.4 lists information of 

deposition parameters and XRD studies respectively. 

Table 2.1.3: Deposition parameters for Galfenol Deposition for 15 nm thin film 

Power (Watt) Deposition 

Pressure(milli-

Torr) 

Temperature (
o
C) Time (sec.) Base 

(Starting) 

pressure 

(Torr) 

45 1  21 45 (1-3)x10-8  

 

Table 2.1.4: List of 2-theta (degree), inter-planar distance (d), size of the grains and 

crystalline plane 

 

  

 

 

2-theta(Degree) d (A
o
) Size (A

o
) 

44.178 2.0484 75.0 
64.33 1.4470 41 
81.65 1.1782 44 
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Fig 2.1.3: Grazing incidence out of plane X-Ray diffraction pattern of 15 nm thin film Galfenol. The red 

curve is the experimental data and the blue curve is the fitted plot. 

 

We have performed in-plane XRD analysis (figure 2.1.4) on the 15 nm thick sample and 

interestingly found that there is a prominent (110) texture from the planes perpendicular to the 

sample plane or along the growth direction. At the same time, (200) and (211) orientations are all 

suppressed. Table 2.1.5 lists information of XRD studies. 

Table 2.1.5: List of 2-theta (degree), inter-planar distance (d), size of the grains and crystalline 

plane for the in-plane XRD analysis from the planes along the growth direction 

2-theta (Degree) Size (A
o
) 

43.774 182.9  
 

Meas. data:FeGa_45W_45s_1angled/Data 
1

Gallium Iron, ( Fe0.8 Ga0.2 ), 01-071-8220
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Fig 2.1.4: Grazing incidence in-plane X-Ray diffraction pattern from planes along the growth direction of 

15 nm thin film Galfenol. The red curve is the experimental data and the blue curve is the fitted plot. 

 

If we compare the grain sizes, the in-plane XRD gives larger grain size (182.9 Angstrom) 

compared to 75, 41 and 44 Angstrom in the out of plane XRD. This confirms the columnar 

structure of FeGa as mentioned in reference [20], [21]. In this case the length of the columnar 

grain closely matches the total thickness of the sample (16 nm). We conclude that with a 

sputtering power of 45 watt and very low pressure of 1 milli-torr, Galfenol growth is 

polycrystalline at best and has a continuous columnar feature along the growth axis.  

 

 

 

Meas. data:FeGa_45W_45s_INPLANE/Dat
a 1

Gallium Iron, ( Fe0.8 Ga0.2 ), 01-071-8220
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2.1.2 X-Ray Photoelectron Spectroscopy Analysis of Galfenol  

To perform compositional analysis, I carried out XPS (X-ray Photoelectron 

Spectroscopy). Depth profile has been obtained by XPS where the Ar ion etching has been done 

at 3kV, 1 μA to 2 μA to remove layers of thin film and then taking XPS data to get spectrum for 

the underlying layer until the spectrum of substrate silicon is found. The etching rate is 0.029 

A
o
/s. Shown in Figure 2.1.5 is the layer by layer atomic ratio of Fe, Ga and O. 

 
 

Fig 2.1.5: X-Ray Photoelectron Spectroscopy analysis of 15 nm thick Galfenol film. The blue, red and 

green plots correspond to the distribution of atomic percentage of Fe, Ga and O respectively. 

 

As we can see, oxygen is diffused through half of the sample. It is due to the fact that we 

have not deposited any capping layer to cover the thin film. Another interesting fact is that Fe/Ga 

ratio increases as we go from the top layer to the bottom layer and near the silicon, the film 

mostly consists of Fe and Silicon alloy (iron silicide). That means Gallium tends to be located 

more near the surface. This means that in our thin film, there is a whole range of the value of λs 
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from 35% Gallium to 10% Gallium in the structure (see figure 2.1.1 again). The XRD and XPS 

analysis substantiate the fact that material properties of sputtered thin film of Galfenol deviates 

significantly from the (100) single crystalline bulk substrate. We took this into consideration 

when the shape anisotropy of different shapes and sizes of nanomagnets were calculated. The 

next section will elaborate on different material properties and theoretical calculations.  

2.1.3 M-H measurement of Galfenol Thin Film by Vibrating Sample 

Magnetometer: 

 The magnetization (M-H) curves of FeGa layers were measured at 77 K and 300 K in a 

vibrating sample magnetometer and showed not only ferromagnetic behavior, but that the layer 

had in-plane magnetic anisotropy (see figure 2.1.6). The measured in-plane coercivity was ~180 

Oe and the out-of-plane coercivity was ~120 Oe as shown in zoomed in figure 2.1.7. 

Interestingly, the M-H curves showed “shoulders” indicative of the presence of more than one 

phase in FeGa, each with a different coercivity, as previously noted in other materials [22]. This 

indicated the presence of multiple energy barriers in the potential profiles of the FeGa 

nanomagnets which could result in the formation of metastable magnetization states. Stress could 

always drive a nanomagnet into such a state where it will remain after stress is withdrawn since 

the state is “metastable” and robust against thermal perturbations at room temperature. 

Metastable magnetization states could, of course, arise from other effects as well, such as due to 

pinning sites or irregular geometry of the nanomagnets caused by imperfect electron-beam 

lithography. There is a recent report of non-Joulian magnetostriction in FeGa [23] which could 

further complicate the nanoscale switching.  
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Figure 2.1.6: Magnetization curves with the magnetic field in-plane and perpendicular-to-plane. The 

results are plotted for two different temperatures. (a) 300K, (b) 77K 
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Figure 2.1.7: Magnetization curve of a FeGa sputtered thin film at low magnetic fields at 77 K and 300K. 

The shape of the curve bears telltale sign of multiple phases with multiple coercivities as observed before 

in ref. [22] 

 

2.2: Experimental Setup 

2.2.1: Substrate Selection, Poling and Strain Measurement: 

The piezoelectric substrate used in our experiments was a polished (001)-oriented and 

(011) oriented PMN-PT substrate of dimensions 5x5x0.5 mm
3
 and 10x10x0.5mm

3 
supplied by 

TRS technology and MTI Corporation. Table 2.2.1 shows material properties of PMN-PT and 

PZT. 

Table 2.2.1: Material properties of PMN-PT and PZT 

Property Ceramic PMN-PT Single Crystal 

 
PZT-5H X2B 

T
c
 (˚C)  >210 >142 

E
c
 (kV/cm) 7.8 1.9-2.5 

d
33

 (pm/V)  650-690 1500-2300 

d
31

 (pm/V) -100 -1750 

k
33

  0.75 0.91-0.95 
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 k
t
 0.55 0.55-0.59 

 

Table 2.2.1 shows us that PMN-PT substrate offers significantly larger d33 and d31 

coupling coefficients than those of PZT-5H substrates. We have used (001) oriented PMN-PT 

substrates to apply voltage across the length of the PMN-PT substrate (5mm x 5mm x 0.5 mm) to 

generate high strain owing to its high d33 coupling coefficient while the (011) oriented PMN-PT 

substrate has been used to apply voltage along the thickness (0.5 mm) to utilize its high d31 

coupling coefficient. The stress and strain measurement of the PMN-PT sample has been carried 

out by our team member, Dr. Noel D‟Souza. AT first, poling of the substrate is performed in a 

castor oil bath with an electric field of 800 kV/m (V= 4 kV). A strain gauge is then attached to 

the PMN-PT substrate to measure in-plane strain. Measurement of the strain response of the 

poled substrate is then carried out for various fields. Figure 2.2.1 is showing the strain response 

when PMN-PT is subjected to electric field along the length [1]. 

 

Figure 2.2.1: Strain response curves for bulk (001) PMN-PT substrate of dimensions 5x5x0.5 mm3. 

Poling of the substrate is performed in a castor oil bath with an electric field of 800 kV/m (V= 4 kV). 

Measurement of the strain response of the poled substrate is then carried out for various fields. A linear 

strain response can be observed, with a strain of ~300 ppm generated for V = 1.5 kV and ~400 ppm for V 

= 2 kV [1]. 
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It can be seen that in a linear regime, for a voltage of 1.5 kV (E = 300 kV/m), a strain of 

~300 ppm is observed, while at V = 2 kV (E = 400 kV/m), a strain of ~400 ppm can be 

generated. The d33 value of (001) PMN-PT experimentally measured in our experiments (~1000 

pm/V) is in accordance with other experimentally derived d33 values from references [24], [25]. 

For our numerical calculations, we use the following material constants for a) FeGa: Young‟s 

modulus, Y = 75 GPa (Davis, 2000), saturation magnetization, Ms = 11 × 10
5
 A/m, (b) PMN-PT: 

Young‟s modulus, Y = 105 GPa, Curie temperature, Tc = 150 °C [21]. 

2.2.2: Shape and Stress Anisotropy Calculations of Nanomagnets: 

It is extremely important to find a “sweet spot” where the shape anisotropy is sufficiently 

high to allow good magnetic force microscopy (MFM) imaging (with low moment MFM tips) 

but is low enough that the stress anisotropy energy due to applied stress overcome the shape 

anisotropy energy barrier in the magnet which is determined by the shape of the magnet, among 

other things. 

To calculate the shape anisotropy energy, we need to know the saturation magnetization 

of the nanomagnet. The saturation magnetization is assumed based on an average over all the 

layers of 11nm to 12 nm film (ranging from 1200 emu/cc to 800 emu/cc) since different 

segments have different Fe/Ga atomic ratio. We opted for 960 emu/cc (9.6 e5 A/m) since a large 

section from the top layer has higher Ga content. Since the composition of Ga varies with in the 

material, we also adopted an effective magnetostriction coefficient (λeff) rather than the isotropic 

bulk value of λs (for single crystalline, 3/2*λs= 300 to 400 ppm). From the XRD analysis, we 

found out that out of plane XRD has all possible orientations but in-plane XRD has strong (110) 

textures. The in-plane λeff can be calculated as 2/5 λ100 =73.33 ppm where 3/2 λ100 = 275 ppm 
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and polycrystalline surface has been assumed [26]. On the other hand, for the planes which are 

perpendicular to the film plane having strong (110) texture, λeff can be calculated as 1/5 λ100 

=36.66 ppm. The value we chose is, λeff = 70 ppm for polycrystalline material.  

We chose the value of strain, 400 ppm which can be obtained by applying 2 Kilo-volt 

along the length of the PMN_PT (according to plot in figure 2.2.1). The following equations are 

used for the calculations of the stress and shape anisotropy energies: for the ellipsoidal magnets, 

Stress Anisotropy Energy:         
 

 ⁄          
  

⁄  

Shape Anisotropy Energy :       
          

             
  

⁄  

, Where, Vol = volume of the magnet 
  

 
      , Msat = saturation magnetization, eV = 1 

electron volt, Nb and Na are the demagnetization factors along the minor and major axis 

respectively. 

The table 2.2.2 is showing some of the energy calculations based on which we determine 

the shapes and sizes of the magnets to be used in the study of stress-induced switching. The row 

designated “Type” shows the aspect ratio. The magnets are elliptical and the entry a/b implies 

that the major axis was a and the minor axis was b. We have assumed single domain 

approximation to estimate shape and stress anisotropy energy. 
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Table 2.2.2 Shape anisotropy, stress anisotropy values of different shapes of nanomagnets 

Type (a/b) 300/ 

250 

290/ 

255 

 320/ 

285 

270/ 

240 

250/ 

230 

240/ 

220 

200/ 

185 

220/ 

200 

Shape 

Anisotropy 

(eV) 

16 11  11 10 6 6 5 6 

Stress 

Anisotropy 

(eV) 

13 12  15 11 10 9 6 7 

 

The dipole interaction energy between two closely spaced magnets (one more shape 

anisotropic than the other) has been calculated as follows: 

                         
                    

, Where Vol1 and Vol2 are the volumes of highly shape anisotropic and less shape anisotropic 

magnets. For separation distance of 700 nm between each isolated element of arrays with feature 

sizes ranging from ~200nm to ~ 330 nm, we estimated the dipole interaction energy as small as 

0.8 eV which less than 5% of the shape anisotropic energy. For dipole coupled pairs with 

separation distance 300 nm, the interaction rises to 10 eV, which is almost 41% of the shape 

anisotropic energy of nanomagnets with dimensions, 300 nm by 250 nm. 

 2.2.3: Nano-Fabrication with Electron Beam Lithography 

 A bilayer of positive e-beam resist (495K PMMA and 950K PMMA; 4% Anisole) 

was spin-coated  using the  following procedure: A static dispense of ~3 ml (495K PMMA) was 

carried out on the PMN-PT substrate followed by a dynamic spread at 500 rpm for 5 seconds. 

The spin cycle was performed by quickly ramping to 2500 rpm and held for 45 seconds. A pre-

bake at 115°C (so as not to exceed the PMN-PT Curie temperature of 150°C) was then 
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performed for 120 seconds, resulting in a 495K PMMA layer of ~ 100 nm. The top 950K 

PMMA layer was spin-coated next using the same procedure, resulting in the final bilayer 

PMMA having a thickness of ~ 200 nm. PMMA 495K has higher sensitivity to the electron 

beam exposure than PMMA 950K. Hence, following the developing procedure, it produces a 

nice clean undercut as shown in figure 2.2.2. The undercut serves to minimize any side wall 

deposition on the resist, thus preserving the fine feature sizes of nanomagnets. It is also 

instrumental for having better lift-off after metal deposition with hot PG-Remover or Acetone. 

 

 

 

Figure 2.2.2: Undercut developed for bilayer PPMA resist spun on PMN-PT substrate 

The resists are then exposed in a Hitachi SU-70 SEM with a Nabity attachment using 30 

kV accelerating voltage and 60 pA beam current. Subsequently, the resists were developed in 

cold MIBK: IPA (1:3) for 90 seconds followed by rinsing in cold IPA for 2 minutes.  

2.2.4: Material Deposition and Lift-off 

There are several issues with the sputter deposition of FeGa. The sputtering process is 

conformal, not like directional evaporation. Moreover, the sputtering species are relatively hot 

which sometimes cure the resist as they impinge on the layer. The pressure for sputtering 

deposition is another important parameter. The mean free path (MFP) of the energized atoms in 

the chamber scales with the deposition pressure according to the following equation: 

PMN-PT PMN-PT 

PMMA-950K 

PMMA-495K 
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The typical deposition pressure is 50 mT for DC sputtering. That gives the MFP value roughly 

0.1 cm. Our sample to target separation is approximately 5 inch or less. So the atoms undergo 

many collisions before they hit the substrate. The adatom energy is roughly 1 to 10 eV for 

sputtering. Therefore, atoms fly around in every direction unlike evaporation and reach the 

pattern on the substrate from random angles. This eventually causes side wall deposition on the 

resist and traditionally sputter deposition is good for better side wall coverage. That‟s why we 

chose 1 milli-Torr pressure, which results in an MFP of 5 cm. The more the pressure is lowered, 

the more directional sputtering becomes. Our sputtering instrument is set up for conformal 

coverage. The following figure shows a schematic of the set up: 

 

 

 

 
 
 

 
Figure 2.2.3: Schematic picture of sputtering machine and normal deposition on the sample. Therefore, 

we deposit without rotation of the sample and additionally, care is taken to make the line of sight of the 

sputtering perpendicular to the sample surface to reduce side wall coverage even more.  

 

For nanomagnet delineation, a 4-5 nm thick Ti layer was first deposited using e-beam 

evaporation at a base pressure of (2-3) x 10
-7

 Torr, followed by the deposition of 10-15 nm of 

FeGa (thickness verified with AFM) using DC magnetron sputtering of a FeGa target with a base 

pressure of (2-3) x 10
-8

 Torr and deposition pressure of 1 milli-Torr. The magnetron power was 

45 W and the deposition was carried out for 33-45 seconds. The nanomagnets were formed 

following lift-off procedure in hot (60
o
C) PG-Remover for couple of hours and they were imaged 

Sample 
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with both scanning electron microscope (SEM) and atomic force microscope (AFM). Figure 

2.2.3 is showing SEM image of nanopatterns on PMN-PT substrate. 

2.2.5: Magnetic Force Microscopy Imaging of Nanomagnets: 

Magnetization states were ascertained with magnetic force microscopy (MFM). All MFM 

imaging was carried out with a low moment MFM tip in order to perturb the magnetization states 

of the nanomagnets as little as possible. The nanomagnets are initially magnetized with a large 

field of 2 Tesla along the nominal direction of the major axis of elliptical shape nanomagnets. 

This makes the magnetization rotate to nearest easy axis. Then, we perform MFM imaging of the 

nanomagnets and record the magnetic states of nanomagnets at zero stress. Following first cycle 

of imaging, a strain of ~400 ppm is applied to the substrate which is mostly transferred to the 

nanomagnets causing the magnetization to evolve to a new state. Finally, new orientation is 

captured by second cycle of MFM imaging in order to compare the pre- and post-stress magnetic 

states of nanomagnets. 
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Figure 2.2.4: Scanning electron microscopy image of nanomagnets 

 

 

Isolated Magnets 

Dipole Coupled Magnets 
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Chapter 3. Demonstration of Electric Field Control of 

Magnetization Switching in FeGa Nanomagnets 

 In this chapter, we discuss the experimental results of switching the magnetization states 

of Galfenol nanomagnets by electric field induced stress. Our system consists of elliptical FeGa 

nanomagnets of 200–350 nm feature size fabricated on a (100)-oriented PMN-PT substrate (70% 

PMN and 30% PT) [27]. The fabrication involved electron beam lithography and sputtering. The 

major axes of the elliptical nanomagnets are aligned nominally parallel to each other on the 

substrate. Prior to delineation of the nano-magnets, the PMN-PT substrate is poled with an 

electric field of 9 kVcm
–1

 in a direction that will coincide with the major axes of the 

nanomagnets. Here, we investigate magnetization dynamics of isolated and dipole coupled 

nanomagnets. 

3.1: Isolated Nanomagnets 

Figure 3.1.1 shows atomic force (AFM) and magnetic force (MFM) micrographs of two 

nearly elliptical isolated nano-magnets that are placed far enough away from each other to make 

dipole interaction between them negligible. The MFM shows the in-plane magnetization 

features. The nanomagnet nominal dimensions are: major axis = 335 nm, minor axis = 286 nm 

and thickness = 15 nm. Underneath each nanomagnet there is a ∼5 nm layer of Ti needed to 

adhere the nanomagnets to the PMN-PT substrate. This layer is thin enough to allow most of the 

strain generated in the PMN-PT substrate (upon the application of an electric field) to transfer to 

the FeGa nanomagnets resting on top. The nanomagnets are initially magnetized in one of the  
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Figure 3.1.1: (a) Magnetic force (MFM) and atomic force (AFM) micrographs of isolated elliptical 

nanomagnets that have been subjected to a strong magnetic field in the direction indicated by the vertical 

green arrow. The resulting magnetization direction of the right nanomagnet is indicated by the slanted red 

arrow. (b) The MFM image of the nanomagnets after they have been stressed with an electric field and 

relaxed (stress withdrawn). The magnetization direction of the left nanomagnet does not show any 

discernible change, but the right nanomagnet‟s magnetization has rotated to a new orientation shown by 

the slanted solid yellow arrow. For comparison, the initial orientation of this nanomagnet‟s magnetization 

is shown by the broken red arrow. The magnetization has rotated by ∼40° owing to the stress generated 

by the electric field and subsequent removal of the electric field has not returned the magnetization to the 

original state, but left it in the new state. (c) The poling direction and direction of electric field applied to 

generate compressive stress along the nominal major axes of the nanomagnets. 

 

two directions along their major axes with a 1.5 T magnetic field as shown by the vertical green 

arrow in figure 3.1.1(a). The MFM image in figure 3.1.1(a) shows that after the magnetizing field 

has been removed, the nanomagnets have close to a single-domain state with their 

magnetizations pointing not quite along that of the applied magnetic field, but reasonably close 

to it. The deviation could be due to lithography imperfections (see the AFM images) that make 

the shapes of the nanomagnets slightly non-elliptical (which is why the stable orientation is not 



27 
 

exactly along the major axis) or the presence of pinning that pins the magnetization in an 

orientation subtending a small angle with the major axis. An electric field of 4.2 kV cm
–1

 is then 

applied across the PMN-PT substrate in the direction opposite to the poling direction to generate 

compressive stress along the nano-magnets‟ major axes (see figure 3.1.1(c)). This field is 

generated by applying a voltage of 2.1 kV across a 5 mm long substrate and this voltage is within 

the linear strain-versus-voltage regime determined in [19]. This field strains the PMN-PT 

substrate owing to d33 coupling. The value of d33 measured in our substrates in [19] was 1000 pm 

V–1. Therefore, the average strain generated in the PMN-PT substrate is 420 ppm. If all of it is 

transferred to the FeGa nanomagnets, then the stress generated in them is ∼33 MPa since the 

Young‟s modulus of FeGa is about 75 GPa. The nanomagnets are compressed in the direction of 

their major axes by the electric field and since FeGa has a positive magnetostriction, this should 

rotate the magnetization of the magnetized nanomagnets toward the minor axis because stress 

anisotropy relocates the potential energy minimum to an orientation that is perpendicular to the 

stress axis. It is expected that after the electric field (or stress) is removed, the magnetization will 

return to the original orientation, or perhaps to some other orientation, since the potential energy 

landscape changes when stress is withdrawn. 

 From figure 3.1.1 (b) illustrates the post-stress magnetization states. The left 

nanomagnet‟s magnetization is indeed in the original orientation but the right nanomagnet‟s 

magnetization is not. The left‟s magnetization is in the original orientation because it either did 

not rotate at all (perhaps owing to the fact that the stress generated in it was insufficient to 

overcome the shape anisotropy energy barrier in this nanomagnet and make its magnetization 

rotate, or the magnetization was pinned by defects) or it did rotate but returned to the original 

orientation after the removal of stress, as expected. What is interesting is that the right 
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nanomagnet‟s magnetization has assumed an orientation subtending an angle of ∼40° with the 

original. Clearly, in this nanomagnet, stress was able to overcome the shape anisotropy energy 

barrier and budge the magnetization from its original orientation, but after stress withdrawal, the 

magnetization settled into a different orientation and stayed there. This is obviously a metastable 

orientation corresponding to a local potential minimum that is robust against thermal noise and 

could have arisen either because the shape of the right nanomagnet deviates significantly from 

elliptical causing local minima to appear in the potential profile of the nanomagnet, or pinning 

sites pin the magnetization in a given state after stress withdrawal, or there are multiple phases 

(or even multiple chemical constitution owing to some surface oxidation) that lead to multiple 

coercivities [28] associated with the presence of multiple energy barriers in the potential profile 

separated by local energy minima. The stress anisotropy gives rise to an effective magnetic field 

given by       
 ⁄ |  |        , where λs is the magnetostriction coefficient, σ is the stress, 

μ0 is the permeability of free space and Ms is the saturation magnetization of the nanomagnet. If 

the material has two different coercivities H1 and H2, and the inequality H1< Heff <H2 holds, then 

stress can get the magnetization stuck in a metastable state.  

 There can be another feature peculiar to FeGa alloys. A recent paper suggests that there is 

significant non-Joulian magnetostriction in FeGa alloys [22] which can complicate the stress 

induced magnetization rotation process in this material and perhaps drive the magnetization to 

metastable states. To ascertain that this effect is repeatable, we examined another set of 

nanomagnets of slightly different dimensions (major axis = 337 nm, minor axis = 280 nm and 

thickness = 16 nm). The corresponding AFM and MFM pictures are shown in figure 3.1.2. 
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Figure 3.1.2: (a) Same as figure 1(a), except there are four nanomagnets in this image. The initial 

magnetization direction of the nanomagnet in the upper right corner is indicated by the slanted red arrow. 

(b) MFM image after application and removal of stress. The magnetizations of all nanomagnets expect the 

one in the upper right corner show no discernible difference between the pre- and post-stress conditions, 

but the magnetization of the one in the upper right corner has rotated by ∼82°. Notice that this 

nanomagnet is most „circular‟ of all and therefore has the lowest shape anisotropy energy barrier, which is 

why stress was able to rotate its magnetization. 

 

The three nanomagnets (among the four shown) that have the highest shape anisotropy (highest 

eccentricity of the ellipse) do not show any perceptible difference between the pre- and post-

stress magnetization states (either because their magnetizations did not rotate when stressed or 

returned to the original states after stress removal), but the least shape anisotropic nanomagnet 

has evolved to a different state after stress removal. The new state‟s magnetization has an 

angular separation of ∼82° from the original magnetization state. Once again, the new state is 

non-volatile. Altering the magnetization state of a magnet with an electric field is the converse 
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magnetoelectric effect. Therefore, we have observed clear evidence of the converse 

magnetoelectric effect in the nanoscale and the effect has the property of non-volatility. 

3.2: Dipole Coupled Nanomagnets 

In order to investigate whether this effect is influenced by dipole coupling between 

nanomagnets, we fabricated arrays of closely spaced nanomagnet pairs whose mutual separations 

are small enough to allow reasonable dipole coupling between them. One nanomagnet in the pair 

is intentionally made much more shape anisotropic than the other. This makes the former 

magnetically stiff (or hard) and its magnetization cannot be budged by the stress generated 

because of the extremely high shape anisotropy energy barrier. The latter has much less shape 

anisotropy and hence is softer. Its magnetization state can be affected by stress. 

Figure 3.2.1 shows the pre-stress MFM images of four such pairs which have all been 

initially magnetized with a strong magnetic field, making their magnetizations approximately 

parallel. Dipole coupling would prefer anti-parallel ordering within a pair, but the dipole 

coupling strength is insufficient to overcome the shape anisotropy energy barrier of any soft 

magnet to rotate its magnetization and make the two magnetization orientations in a pair 

mutually anti-parallel after the magnetizing field has been removed. Next, all nanomagnets are 

compressed along their nominal major axes with an electric field and the field is withdrawn. 

Figure 3(b) shows the post-stress MFM images. Three pairs show no perceptible difference 

between the initial and final orientations, but the fourth pair in the upper right-hand corner shows 

that the magnetization of the soft nanomagnet has rotated by a larger angle of 110° ( > 90
o
 ) and 

once again the new state is non-volatile. The larger angle of rotation (compared to the case of 

isolated nanomagnets) is obviously due to dipole coupling. 
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Figure 3.2.1: Dipole-coupled pairs where the right partner is much more shape anisotropic than the left 

partner, making the right partner hard and the left partner soft. (a) MFM image after being magnetized by 

a magnetic field in the direction of the green vertical arrow and before application of stress. (b) MFM 

image after application and removal of stress. The magnetizations of all pairs, expect the one in the upper 

right corner, show no discernible difference between the pre- and post-stress conditions, but the 

magnetization of the soft nanomagnet in the upper right corner (indicated by the short light green arrow) 

has rotated by ∼110°. 

 

The latter prefers anti-ferromagnetic ordering within a pair, i.e., the magnetization of the soft 

nanomagnet should be anti-parallel to that of the hard nanomagnet. This is not completely 

achieved because the magnetization ultimately gets trapped in a metastable state, but it does not 

get trapped in a metastable state that is close to the original state because the dipole coupling is 

strong enough to dislodge the magnetization from any such state and steer it to a state subtending 

a large angle with the original state. The difference between the isolated and dipole-coupled 

cases is that in the former, the angular separation between the old and new states is less than 90°, 
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whereas in the latter, it is greater than 90°. Therefore, the converse magnetoelectric effect is 

influenced by dipole coupling. 

 

Figure 3.2.2: (a) MFM image of a dipole-coupled pair after being magnetized by a magnetic field in the 

direction of the green vertical arrow and before application of stress is shown on the left. In these pairs, 

the left partner is more shape-anisotropic than the right, i.e., the left nanomagnet is „hard‟ and the right 

nanomagnet is „soft‟. MFM image after application and removal of stress is shown on the right. The 

magnetizations of all expect the pair in the upper right corner show no discernible difference between the 

pre- and post-stress conditions, but the magnetization of the soft nanomagnet in the upper right corner 

(indicated by the short light green arrow) has rotated by ∼150°. (b) Similar to (a), except now the rotation 

is by 180°. 

 

 In figure 3.2.2, we show two more dipole coupled pairs, initially magnetized in the same 

direction, where the magnetization of the soft nanomagnet has rotated by ∼150° in one case, and 

∼180° in the other case, after application and withdrawal of stress. Once again the dipole 
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coupling, which prefers anti-parallel magnetizations of the two magnets, is responsible for the > 

90
o
 rotation of the magnetization. 

3.3: Implementation of NOT Logic gate or Inverter: 

 The above mentioned results not only show that electric field control of local 

magnetization orientation (and hence local magnetic field) is possible, but also that the effect is 

nonvolatile and can be influenced by neighboring magnetization states because of dipole 

coupling. This influence is critical to implement the conditional dynamics of Boolean (or even 

non-Boolean) logic where the state of one logic device determines the state of the next. The 

dipole-coupled pair, for example, acts as an inverter (NOT gate) Let the hard (more shape 

anisotropic) nanomagnet host the input bit and the soft (less shape anisotropic) nanomagnet the 

output bit. Let us say that we encode the logic bit „1‟ in the initial magnetization orientation of 

both magnets (which are made mutually parallel by the magnetizing field). The input bit then 

becomes „1‟. The application of the electric field acts like a clock signal that triggers the output 

bit to become „not 1‟ (because the magnetization rotates by a large angle from the initial 

orientation), which we designate as bit „0‟. This results in successful inversion and a clocked 

NOT gate. 

 Finally, because the magnetization rotation is non-volatile, there are also potential 

applications in non-volatile memory where bits, encoded in the magnetization orientation, are 

written with a voltage. Because of the extremely low energy dissipation in electric field control 

of magnetization [10], [17], [28], [29], these initial observations are encouraging for future 

energy-efficient nanomagnetic computing. 
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Chapter 4. Reversible Strain-induced Magnetization Switching in 

FeGa Nanomagnets- A Scheme to Realize Straintronic Memory 

Cell 

 In chapter 4, we will illustrate the core component of a straintronic non-volatile, 

rewritable, non-toggle memory element using Galfenol nanomagnet. As mentioned before, a 

nanomagnet can store bits of information (typically „1‟/ „0‟) in a stable or metastable 

magnetization state. Writing a bit involves switching the magnetization to the desired state by an 

external agent. There are two most desirable properties while employing any writing scheme. 

First, the process should be minimally dissipative. Second, the writing agent should not have to 

read the earlier stored bit first and then decide on a course of action to write the desired bit based 

on that knowledge. The latter is known as the non-toggle behavior of a memory. In a non-toggle 

memory the writing agent can write either bit deterministically without needing to know what the 

previously stored bit was. 

 4.1: Background and Experimental Setup 

 Spin transfer torque, domain wall motion or uses of giant spin hall effect to generate spin 

polarized current are all regrettably energy hungry and consume energy between 10
4
 kT to 10

7
 

kT. The multiferroic nanomagnet studied in this research employing thin magnetostrictive 

nanomagnet coupled to a piezoelectric substrate, can come to the rescue by reducing energy 

dissipation to 2 or 3 orders of magnitude less than conventional transistors that dissipate at least 

~10
4
 kT of energy to switch in isolation. Non-toggle writing schemes based on such strain-

induced switching of a magnetostrictive nanomagnet from one stable state to another have been 

proposed in the past [28], [30].  
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Figure 4.1: (a–c) Non-toggle straintronic memory of the type discussed in refs 10,11. (a) A magnetic field 

applied along the minor axis of an elliptical nanomagnet gives rise to two stable magnetization 

orientations at an angle with each other (the angle depends on the magnetic field strength, shape of the 

nanomagnet, etc.). They encode bits „0‟ and „1‟. (b) We will assume that the magnetostriction coefficient 

of the nanomagnet is positive. Then, compressive stress along an axis collinear with one stable state (say, 

state 2) causes the magnetization to settle into state 1. If the magnetostriction coefficient were negative, 

the magnetization would have settled into state 2. (c) Tensile stress along the same axis causes the 

magnetization to settle into state 2 for positive magnetostriction and state 1 for negative magnetostriction. 

Therefore, we can write either bit by choosing the sign of the stress along the stress axis. We do not need 

to know what the previously stored bit was in order to write the desired bit. (d) Our test set-up. Electric 

field in the direction of substrate poling generates tensile stress in the nanomagnets whose major axes are 

aligned collinear with the poling direction. This aligns the magnetizations along one direction and writes 

bit „0‟. Electric field in the opposite direction generates compressive stress and aligns the magnetizations 

in a different direction, writing bit „1‟. 

 

Electrostatic potential of one polarity generates compressive strain in the nanomagnet and 

switches the magnetization to one state (to write bit „0‟) and voltage of the opposite polarity 

generates tensile strain and switches the magnetization to the other state (to write bit „1‟). This is 

illustrated in Fig. 4.1(a–c). According to theoretical calculations, roughly 850 kT of energy will 
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be dissipated to write a bit in ~1.5 ns at room temperature in this type of non-toggle memory 

[28]. 

 Our system consists of Elliptical FeGa nanomagnets of major axis ~300 nm, minor axis 

~240 nm, and thickness ~8 nm were fabricated on a (100)-oriented PMN-PT substrate (70% 

PMN and 30% PT) [31]. The substrate was first poled with an electric field of 8400 V/cm in a 

direction which will coincide with the major axes of the nanomagnets (the major axes of the 

nanomagnets were nominally parallel to each other) prior to fabrication of the nanomagnets. In 

order to study magnetization switching, we first magnetized all FeGa nanomagnets on a PMN-

PT wafer with a ~2 Tesla magnetic field directed along the nominal major axis of the 

nanomagnets. The magnetization states of nanomagnets were then determined with magnetic 

force microscopy (MFM). Care was taken to use low-moment tips in order to not perturb the 

magnetization states of the nanomagnets with the tip.  

4.2: MFM imaging of First Cycle of Compressive and Tensile Stress 

Vertical panel 2 of figure 4.2.1 and figure 4.2.2, show that most nanomagnets have been 

magnetized in the direction of the field, but some have been magnetized in an orientation that 

subtends a non-zero angle with the magnetizing field. This odd behavior is ascribed to the 

presence of spurious energy minima in the potential profile of these nanomagnets in a magnetic 

field that are caused by either the presence of multiple energy barriers due to irregular shapes, or 

multiple phases, or pinning sites. The magnetic field drives a nanomagnet to an energy minimum 

closest to the initial state, whose magnetization orientation may not be collinear with the field. 
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Figure 4.2.1: Magnetic force (MFM) and atomic force (AFM) micrographs of three isolated elliptical 

FeGa nanomagnets that have all been magnetized with a magnetic field in the direction indicated by the 

thick vertical green arrow. Starting from the left, the first vertical panel shows the AFM image of the 

nanomagnet, the second vertical panel shows the initial magnetization state after magnetizing with the 

field (note that the magnetization is not always in the direction of the field), the third vertical panel shows 

the new magnetization state after compressive stress is applied and withdrawn, and the last vertical panel 

shows the magnetization state after tensile state is applied and withdrawn. Note that compressive stress 

takes the magnetization to a state different from the initial one and keeps it there after stress withdrawal 

(non-volatile). Tensile stress brings it back to the original state and keeps it there after stress withdrawal. 

Thus, tensile stress always writes the bit „0‟ and compressive stress writes a bit that is „not-0‟ and we call 

it bit „1‟. This realizes a non-volatile, non-toggle memory. 

 

  



38 
 

 

Figure 4.2.2: Same as figure 4.2.1, but for a different set of nanomagnets. Here, the nanomagnet in the 

last row was magnetized in a direction almost perpendicular to the magnetizing field showing that there is 

a deep energy minimum corresponding to that orientation and the nanomagnet prefers to go there even in 

the presence of the magnetizing field. Compressive stress, however, seems to drive it out of that state, but 

subsequent application of tensile stress brings it back to that state, just like in the case of the other 

nanomagnets. Again, a non-volatile, non-toggle memory is implemented. 

 

After the initial magnetizing, every nanomagnet is compressively stressed along its major 

axis by subjecting the PMN-PT substrate to a global average electric field of 4.4 kV/cm in a 

direction opposite to that of the initial poling (see Figure 4.1(d)). The field is generated by 

applying a potential of − 2.2 kV along a 5 mm long substrate. It strains the PMN-PT substrate 

owing to d33 coupling. The value of d33 measured in our substrates in ref. [1] was 1000 pm/V. 
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Therefore, the average strain generated in the PMN-PT substrate is 440 ppm. This strain is 

partially or completely transferred to the FeGa nanomagnets, resulting in a maximum stress of 

~33 MPa in the nanomagnets since the Young‟s modulus of FeGa is about 75 GPa [32]. The 

electric field lines in the vicinity of the nanomagnets are not necessarily directed along the major 

axes because of fringing effects and the stress on a nanomagnet is not necessarily uniaxial along 

the major axis. However, the exact field or stress distribution in space is not important; in the 

end, the average stress generated in a nanomagnet is either compressive or tensile depending on 

the polarity of the voltage. This compression or tension alters the magnetization states. 

 Compressive stress makes the magnetization evolve to a new state, and the magnetization 

stays there after the stress (electric field) is removed, showing that the new state is “non-

volatile”. This is shown in the third vertical panels of Figure 4.2.1 and 4.2.2. Next, tensile stress 

is applied along the major axis of the nanomagnets by reversing the polarity of the voltage from 

− 2.2 kV to + 2.2 kV. The fourth vertical panels of Figure 4.2.1 and 4.2.2 show that all 

nanomagnets that were imaged returned to the original state after experiencing tension (it is 

possible, however, that some nanomagnets that were not imaged failed to return to their original 

states). All this shows two important features: First, one can “rewrite” a bit in the nanomagnets 

after the first writing (rewritable non-volatile memory), and second, the switching is “non-

toggle”. Writing does not always require toggling the previously stored bit; if we apply a positive 

voltage and tensile stress, then we will always deterministically write the bit 1 irrespective of 

whether the previously stored bit was 1 (no toggling required) or 0 (toggling required). The same 

is true if we wish to write the bit 0. In fact, we do not even need to know what the previously 

stored bit was, which avoids a read step. 
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4.3: MFM imaging of Second Cycle of Compressive and Tensile 

Stress 

In Figure 4.3, we show magnetic force micrographs of three FeGa nanomagnets to 

establish that the stress-induced magnetization switching between two distinct states is 

repeatable. In successive vertical panels, we present the initial magnetization state, the state after 

the first compression cycle, the state after the first tension cycle, the state after the second 

compression cycle, and the state after the second tension cycle. In the nanomagnets that switch, 

compression always drives the magnetization away from its pre-stress state and tension always 

brings it back to the pre-stress state. Unfortunately, we cannot cycle the stress too many times to 

assess the endurance since the piezoelectric substrate develops fatigue and physically cracks after 

a few cylces. Our substrate is sourced from a commercial vendor and not of the quality of thin 

films. Unclamped thin films grown on high quality substrates [14] will presumably be less prone 

to fatigue and exhibit better behavior. Although, we cannot test the endurance, we note that the 

effect is perfectly repeatable and is seen in every nanomagnet that shows the switching behavior. 

We show the MFM images for three arbitrarily chosen nanomagnets and all three exhibit this 

feature. 

One important observation is that the state under tension is unique, but the state under 

compression is not. At different times, compression drives the magnetization to different states. 

This is not surprising in a multi-phase ferromagnet where there will be multiple metastable states 

and different ones can be accessed at different times when the nanomagnet is compressed. Which 

of these states is visited under compression is not controllable, but what is important is that the 
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visited state is always distinct from the state visited under tension. For memory applications that 

is sufficient. 

 

Figure 4.3: Magnetic force microscope images of nanomagnets showing repeatability of the switching. A 

nanomagnet cycles through its two magnetization states repeatedly with successive compression and 

tension. Whenever the stress is tensile, the magnetization goes into one state and whenever stress is 

compressive, it goes into the other state. This consistency shows that the memory has endurance. 

 

4.4: Implementation in a Straintronic Memory Scheme: 

 We could fashion a memory element by using a magneto-tunneling junction (MTJ) with 

a FeGa soft layer and magnetize the hard layer permanently in a direction anti-parallel to the pre-

stress magnetization orientation of the soft layer. Then, tensile stress applied with one voltage 

polarity will always take the MTJ resistance to a high state (encoding, say, bit 1) and 
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compressive stress applied with the other voltage polarity will take the MTJ resistance to a 

different state encoding the logic complement of the bit 1.  

 

 

Figure 4.4: A straintronic memory array compatible with a crossbar architecture. Not drawn to scale.  

 

Figure 4.4 shows two possible implementations of a memory array. In the first scheme, 

we have a continuous piezoelectric thin film and strain is localized around each nanomagnet with 

isolation gate pads in the manner of ref. [33]. In the second scheme, the piezoelectric layer is 

mesa-etched and a nanomagnet is delineated on top of each mesa. Since strain exists only in the 
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piezoelectric material, this strategy provides automatic strain (and hence bit) isolation. The 

isolation gate pads are not repeatedly charged and discharged during reading/writing of bits and 

hence do not dissipate energy. We follow the scheme of [14] for generating the necessary strain 

around each nanomagnet. The two write lines will be shorted together and a potential will be 

applied between them and the grounded substrate. This potential is dropped across the 

piezoelectric layer since the substrate is conducting. The magnitude of this potential is the 

product of the electric field needed to write a bit and the thickness of the piezoelectric layer, 

which is ~100 nm. This potential is a few tens of mV. The piezoelectric layer is poled in the 

vertical direction. Because of d33 and d31 coupling, the applied voltage generates biaxial strain 

around the nanomagnets [14]. For one polarity of the voltage, there will be compression along 

the major axis and tension along the minor axis, whereas for the other polarity, the signs of the 

strain will be reversed. Thus one voltage polarity will write bit `0' and the other will write bit 

`not 0' or, equivalently, bit`1' into the resistance state of the MTJ. For reading, the write lines are 

grounded so that there is no voltage over the piezoelectric and the MTJ resistance between the 

read line and the grounded write lines is read to determine if the stored bit is 0 or 1. 

4.5 Energy Calculation 

Consider the memory array shown in the figure 4.4. If strain is generated in a nano 

magnet in the manner of, say, ref. [14], then a voltage will be applied between the top contacts 

and the grounded substrate to strain the nanomagnets. In that case, the electric field of 4.4 kV/cm 

will appear across the thickness of a ~100 nm piezoelectric layer, resulting in a switching voltage 

V of only 4.4 kV/cm ×  100 nm =  44 mV. This method generates biaxial strain (tension along 

the minor axis of the elliptical nanomagnets and compression along the major axis, or vice versa, 
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depending on the voltage polarity which is even better because it results in larger stress 

anisotropy energy. This may further reduce the voltage (and electric field) needed to rotate 

magnetization and therefore further reduce the energy dissipation. 

For an effective electrode area of 100 nm × 100 nm and a piezoelectric film thickness of 

100 nm, the electrode capacitance in the scheme of 24 would be ~2 × 1000 × 8.854 × 10
−12

 ×  

100 nm ×  100 nm/100 nm =  1.7 fF1 (there are two electrodes that are shorted in the scheme of 

24). The resulting energy dissipation ~CV
2
 to write a bit would have been only 1.7 fF ×   (0.044 

V)
2
 = 3.3 aJ (788 kT at room temperature). There is also some internal energy dissipation in the 

nanomagnet owing to Gilbert damping, but that is on the order of 1 aJ [34]. If we add that, the 

total dissipation would be ~4.3 aJ (1027 kT). In contrast, present day mainstream spin-transfer 

torque random access memory (STT-RAM) dissipates about 10
7
 kT of energy per write 

operation [8] and spin-Hall based versions will dissipate ~10
4
 kT.  

In conclusion, we have demonstrated the core component of a straintronic non-volatile, 

rewritable, non-toggle memory element. Since the magnetization switching is induced by strain, 

it should be remarkably energy-efficient going by all available theoretical predictions. Therefore, 

this experiment lays the foundation of a remarkably energy-efficient non-toggle non-volatile 

straintronic memory technology. 
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Chapter 5. Repeatable ~180
o
 Switching of Magnetization of 

Nanomagnets by Localized Strain 

 Magnetic random access memory (MRAM) is generally composed of a magneto-

tunneling junction (MTJ). An MTJ consists of a hard and a soft ferromagnetic layer separated by 

a spacer that acts as a tunnel barrier. The soft layer is shaped like an elliptical disk that has two 

stable (mutually anti-parallel) magnetization states along its major axis. The hard layer is 

permanently magnetized parallel to one of those states. When the soft layer‟s magnetization is 

parallel to that of the hard layer, the MTJ‟s resistance is low and encodes one binary bit (say „0‟), 

and when it is anti-parallel, the MTJ‟s resistance is high and encodes the other bit (say „1‟). If we 

employ voltage-generated uniaxial strain/stress to rotate the magnetization of the soft layer to 

write a bit, we can achieve unprecedented energy efficiency [13]. Unfortunately, strain/stress can 

rotate the magnetization of a nanomagnet by only up to ∼90◦. After the withdrawal of stress, the 

final magnetization state will have roughly equal likelihood of returning to the original stable 

orientation (not flipping, or 0◦ rotation) or flipping to the other stable orientation (180◦ rotation). 

That makes the flipping only ∼50% likely, which is undesirable. However, if the stress is 

withdrawn precisely at the moment when the magnetization has rotated through 90
o
 from the 

original orientation, then a residual torque due to the magnetization vector‟s out of plane 

component may continue to rotate it beyond 90◦ and achieve a “flip” with very high probability 

(> 99.99% at room temperature)10. To achieve this, we require a feedback mechanism that will 

determine when the 90
o
 rotation has been completed and feed that information back to the stress 

generator which will then immediately withdraw the stress [10]. The need for such feed-back 

circuitry makes this strategy unappealing since it introduces additional energy dissipation and 

complexity. 
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 The clever way to circumvent this problem is to apply a magnetic field in the direction of 

the minor axis of the nanomagnet, as illustrated in the figure 4.1 of chapter 4 [11], [30], [35], 

[36]. The magnetic field will dislodge the stable magnetization state from the major axis and 

place it in two mutually perpendicular orientations in the plane of the magnet. Depending on the 

sign (say positive) of the magnetostriction coefficient of the material, one sign of stress (tensile) 

along one of these two axes will make the magnetization rotate to the stable state axis while 

opposite sign of stress (compressive) will take it to the other stable orientation. Although this 

scheme has the advantage of switching between two stable states without needing any feedback 

circuitry, application of magnetic field makes the approach unappealing. Moreover, the angle θ 

between two stable configurations is only 90
o
. If we employ this scheme to implement a MTJ, 

the magneto-resistance ratio will be roughly 1.49, considering 70% spin injection/detection 

efficiency. The resistance ratio is largest when θ = 180◦ and smaller when θ = 90◦. In fact, if spin 

injection/detection efficiency is 1, then the resistance ratio is infinite when θ = 180◦ and only 2:1 

when θ = 90◦. Thus, it is imperative to increase θ and bring it as close to 180
o
 as possible. 

5.1 Experimental Setup 

 Here, we will be showing an experimental demonstration of scheme proposed by our 

group (see reference [34]) which not only increases θ to 180
o
 but also eliminates the bias 

magnetic field. The experiment was jointly done by me and past group member Dr. Ayan Kumar 

Biswas. Elliptical Co nanomagnets of ~ 180-300 nm feature size were fabricated on the polished 

surface of (110)-oriented PMN-PT (10mm by 10mm by 0.5mm) substrate (70% PMN and 30% 

PT). The PMN-PT substrate was poled initially with an electric field of 0.8 MV/m along the 
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thickness by applying a positive voltage on the polished surface and a negative voltage on the 

bottom surface.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Schematic of an elliptical shape nanomagnet and two pairs of square metal pad delineated on 

PMN-PT substrate (figure is not drawn to scale). The PMN-PT substrate has a dimension of (10 x 10 x 

0.5) mm
3
. The major axis of the nanomagnet is aligned along the x direction. The substrate is poled along 

the thickness with the polarity shown in figure. Two pairs of Au pad are fabricated with the feature size of 

(400 x 400 x 0.08) μm
3
. In each pair, the pads are separated from each other by 500 μm, comparable to 

the thickness of the substrate. the line xAA‟, joining pads in pair AA‟ subtends an angle of 30
o
 with x axis 

while line xBB‟, joining the pads in pair BB‟ subtends an angle of 150
o
. First, 300 volt is applied between 

the AA
‟
 pair and back electrode (shown in red), then while keeping the AA

‟
 activated, 300 volt is applied 

again between BB‟ pair and back electrode, next AA
‟
 is deactivated, finally BB

‟
 is deactivated. 

 

Prior to fabrication of nanomagnets, following the scheme described in ref. [34], two 

pairs of Au metal pad were patterned and grown by using photolithography and evaporation 

respectively. Each electrode has the dimension of (400 x 400 x 0.08) μm
3
. The distance between 

the electrodes in each pair is around 0.5 mm, comparable to the thickness of the substrate. Next, 

patterns of nanomagnets were delineated by ebeam nanolithography and ferromagnetic Co layer 
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of nominal thickness 10 nm were deposited by evaporation. The nanomagnets are aligned in such 

a position that the line joining one pair of electrode is made to subtend an angle ~30
o
 with the 

common major axis of the nanomagnets while the other pair subtends an angle of 150
o
 as shown 

in figure 5.1. There is also a ~ 4nm of Ti adhesion layer underneath each Co layer. This layer is 

thin enough to transfer most of the strain generated in the PMN-PT layer to the Co layer. 

5.2 ~180
o
 Magnetization Switching 

Case 1: Nanomagnets (198 x 183 x 10) nm
3
 

To study the magnetization switching, we first magnetized all Co nanomagnets with a ~ 2 

tesla magnetic field along the nominal major axis of the nanomagnets. The magnetization states 

of the nanomagnets are determined by magnetic force microscopy (MFM) using a low moment 

tip. Figure 5.2.1 (a) shows AFM images of four such nanomagnets which are 700 nm apart from 

each other to make dipole interaction among them negligible. The nominal dimensions of these 

nanomagnets are designed to be (198 x 183 x 10) nm
3
. Figure 5.2.1 (b) shows the MFM images 

of these nanomagnets before application of stress. It is evident from the figure 5.2.1(b) that after 

initialization with a magnetic field, the nanomagnets are close to a single domain state but not all 

of their magnetizations are collinear with the direction of the applied field. This is probably due 

to the lithographic imperfections or pining sites which causes the magnetization to rotate to 

nearby easy axis, closer to the applied field direction. One of the electrode pairs (AA
‟
) on the 

PMN-PT substrate was then subjected to an electric field of 0.6MV/m with the same polarity of 

the poling field. This generates a highly localized out of plane tensile strain due to d33 coupling 

and inplane compressive strain due to d31 coupling under the electrode pair. Since the separation 

between each pair of electrodes are comparable to the substrate thickness (500 micron), the 
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interaction between the local strain fields will generate a biaxial strain in the PMN-PT substrate 

underneath the nanomagnets. This method enables us to generate more strain and hence, have 

better control and higher switching probablity of the magnetization of the nanomagnets. Most of 

the strain is assumed to be transferred from the PMN-PT substrate through the thin adhesion 

layer of Ti to the Co ferromagnetic layer. 

 

                                                                    

 

Figure 5.2.1: Atomic force micrographs (AFM) and Magnetic force micrographs (MFM) of nanomagnets 

of dimensions, (198 x 183 x 10) nm
3
. a) Top panel shows the topography of the nanomagnets. b) The 

magnets are intialized with a high magnetic field (~2 Tesla) along the direction of the green arrow as 

shown in the left panel. After magnetization, the magnetization of the nanomagnets rotated to near by 

easy axis which subtends a non-zero angle to the original direction of the field. Top left nanomagnet was 

not properly intilaized and got trapped into a stable single domain state aligned in the opposite direction 

of that of the applied field. Trapping of magnetization can be caused by lithographic imperfactions, 

zagged edges (as evident from AFM image in panel (a)) or defect sites. c) After intialization, a tensile 

stress was generated in the PMN-PT substrate and transferred to the Co nanomagnets. The panel shows 

the MFM images of post-stress magnetization states. The magnets in the first row has not shown any 

rotations while two magnets (marked by white arrow) in the second row has undergone complete 180
o
 

rotation from their pre-stress magnetization states. 
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When the voltage is applied to the AA
‟
 pair, the nanomagnets are elongated along the 

line, xAA‟ joining the pair and are contracted along the line, yAA‟ (see figure 5.1). Since Co is 

positive magnetostrictive material, the combination of the biaxial strain (εxx-εyy) makes xAA‟ the 

hard axis and the magnetization should rotate to the induced easy axis yAA‟. Then, while keeping 

the AA‟ electrode pair activated, another electric field of same polarity and 0.6 MV/m was 

applied to the electrode pair, BB‟and simultaneously, the volatge at AA‟ pair was removed. 

Similar to the process of AA‟, upon application of voltage to the pair BB‟, the magnetization 

should rotate to the induced easy axis along the yBB‟ line from xBB‟ (see figure 5.1). After 

removal of voltage from the BB‟ pair, the magnetization should rest in the nearest easy axis. This 

is shown in the figure 5.2.1 (c). The magnetization of two nanomagnets in the top row has 

remained same. They either rotated but came back to their original orientation after removal of 

stress, as expected or they did not rotate due to insufficient strain tarnsfer to beat the shape 

anisotropy barrier, or the magnetization was pinned by defects. However, the other two magnets 

in the second row have been switched after the application of stress. Clearly in this scenario, the 

magnetiation has been evolved with an electric field from the initial state to final state. 

Case 2: Nanomagnets (294 x 272 x 11) nm
3
 

To determine the scalibility of this effect, we considered another set of nanomagnets with 

feature size, (294 x 272 x 11) nm
3
 and separation distance, 700 nm. Figure 5.2.2 (a) shows the 

topography image of 6 similar nanomagnets. MFM images before and after application of stress, 

have been shown in figure 5.2.2 (b) and (c) respectively. After initialization with a magnetic 

field, the nanomagnets were oriented in a direction that subtends a non-zero angle with the 

magnetic field as shown in figure 5.2.2 (b). The post-stress MFM images (see figure 5.2.2 (c)) 
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reveals that the nanomagnets, not indicated by the arrows, show no perceptible difference in their 

magnetiation orientation between pre- and post-stress. On the other hand, the magnets, indicated 

by the white arrows in figure 5.2.2 (c), have evolved to a new magnetic states. The angular 

separation of the new magnetic states of the nanomagnets, numbered 1 and 2 in the first row, 

from their initial state, is 180
o
. But the nanomagnet, numbered 3 in the second row, has rotated 

by less than 180 degree, probably due to some pinning sites which ultimately trapped the 

magnetization states while revolving towards new stable state. The important feature in all of 

three of them is that their magnetizations have been altered to a new single domain, nonvolatile 

state by rotating ~180
o
 from the original state with an electric field induced stress, resulting in 

revolution from one single domain state to another single domain state. 

 

                                      

 

Figure 5.2.2: Atomic force micrographs (AFM) and Magnetic force micrographs (MFM) of nanomagnets 

of dimensions, (294 x 272 x 11) nm
3
. Same as figure 3, a) shows the topography of the 4 nanomagnets. b) 

The magnets are initialized with a ~2 Tesla magnetic field along the direction of the green arrow. c) The 

magnets were subected to tensile stress. The magnetization of two nanomagnets in the top row (numbered 

as 1 and 2) have rotated 180
o 

from their respective intial orientations (the initial states subtend a non-zero 

angle with applied field direction, as marked by white arrows in panel (b)). The nanomagnet, numbered as 
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3, has rotated less than 180
o
. It may happen due to pinning sites which might trap the magnetization. 

However, the newly acquired states of all three nanomagnets are single domain. 

 

 5.3 Repeatable 180
0
 Switching between 2 Stable Orientation 

 In order to investigate whether the state of magnetization can be switched repeatedly 

between two stable states, we chose two sets of nanomagnets with feature size, Set A: (294 x 272 

x 11) nm
3
 (see figure 5.3 (a,b)), Set B: (187 x 164 x 9) nm

3
 (see figure 5.3 (c,d)). Figure 5.3 (b) 

illustrates the switching behavior of Set A nanomagnets in three cycles. Cycle 1 shows the initial 

single domain state of the four nanomagnets. In cycle 2, upon application of tensile stress, top 

left nanomagnet (marked by white arrow) has evolved to a new state by rotating 180 degree from 

the original orinetation. The new state is single domin and non-volatile. Next, tensile stress is 

applied again in cycle 3 and the corresponding MFM images show that the marked nanomagnet 

has returned to the original state or very close to it. This mechanism corroborates the scheme 

proposed in ref [34] which predicts successful repeatable switching between two stable states 

(180
o
 apart) by applying voltage pulses to two pairs of metal pads successively. The scheme can 

also be scaled to smallers sizes of nanomagnets, as shown in figure 5.3 (d) where mangnets with 

dimesnions (Set B), major axis: 187 nm and minor axis: 164 nm, have undergone similar cycles 

of stress like Set A magnets. In consecutive panels (see, figure 5.3 (d)), we present initial states 

of four nanomagnets of similar dimensions, the state after first tension, the state after second 

tension. The top right nanomagnet (marked by the white arrow in cycle 2), being subjected to 

tension, has been driven to a new state, 180
o
 apart from its initial state. The second tension cycles 

brought it back to original state (marked by white arrow in cycle 3). 
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Figure 5.3: Atomic force micrographs (AFM) and Magnetic force micrographs (MFM) of two sets of 

nanomagnets (Set A and Set B) showing repeatable switching. Set A (a,b): 4 nanomagnets with feature 

size (294 x 272 x 11) nm
3
, Set B (c,d): 4 nanomagnets with feature size (187 x 164 x 9) nm

3
. (a,c) 

Topography of the 4 isolated nanomagnets with negligible dipole interaction. (b,d) Left most panels show 

the MFM picture of the intital states; center panels show the MFM image after one tension cycle where 

nanomagnets (marked by white arrow in (b) and (d)) experineced 180
o
 switching; right most panels show 

that the nanomagents marked by white arrows have reverted to their initial orientation after second 

tension cycle. 
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Hence, we can define two stable orienations (say, up or down) of the nanomagnets as two logic 

bits, i.e. up as „1‟ and down „0‟; and upon application of tensile stress, we can switch the 

magnetic orientation from „1‟ to „0‟ or „0‟ to „1‟, thus realizing ultra-low-energy switching 

operation in a repeatable manner. 

Finally, we calculate the energy dissipation during the switching event in our experiment. 

We applied 300 V across the 0.5 mm thick PMN-PT substrate corresponds to an electric field of 

0.6 MV/m. In our experiment, CV
2
 dissipation, the main contributor of energy loss is 255 nJ per 

sequence where capacitance is 2 × 1000 × 8.854 × 10
-12

 x 0.4 mm × 0.4 mm / 0.5 mm = 2.83 pF 

(factor 2 comes from two electrode pads). In straintronic scheme, internal dissipation due to 

Gilbert damping is almost negligible compared to the CV
2
 dissipation. Therefore, the total 

dissipation a switching event is 2 × 255 nJ = 510 nJ for applying stress in two pairs of electrodes. 

However, if we would have used a PMN-PT substrate of 100 nm thick, and electrode pads of 100 

nm × 100 nm, the effective capacitance would be ~ 2 × 1000 x 8.854 × 10
-12

 × 100 nm × 100 nm 

/ 100 nm = 1.7 fF. The required voltage for switching would reduce to 0.6 MV/m x 100 nm = 60 

mV resulting in a CV
2
 loss of 2 × 1.7fF × (60 mV)

2
 = 12.24 aJ (2955 kT). In contrast to the 

dissipation in other nanomagnetic switching mechanism such as traditional spin transfer torque 

(STT) (10
7
 kT) and spin-Hall STT (10

4
 kT), this straintronic version of switching nanomagnets is 

immensely energy efficient.  
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Chapter 6. Conclusion 

Numerous proposals to rotate the magnetization of a nanomagnet have been put forward 

but most of them have failed to deliver the energy efficiency needed to outpace current 

CMOS technology. Straintronic devices employing magnetostrictive nanomagnet delineated 

on piezoelectric substrate can offer a solution to this problem by drastically reducing the 

energy dissipated in the switching event. Switching the magnetization of nanoscale two-

phase multiferroics with electrically generated strain has been reported in the past [1], [37], 

[38]. There is also a report of switching the resistance of a magneto-tunneling junction (MTJ) 

whose soft layer is a two-phase multiferroic (CoFeB/PMN-PT) with electrically generated 

strain but the MTJ had tens of mm-scale dimensions (not nanoscale). Most important, all of 

the above experiments employed ferromagnets with low saturation magnetostriction (Co, Ni, 

CoFeB), which is not conducive to energy efficiency since the stress needed to rotate the 

magnetization and correspondingly the voltage needed to generate the stress) is inversely 

proportional to the magnetostriction coefficient of the magnetostrictive component. In this 

work, we have investigated how to exploit properties of Galfenol which offers better 

magnetostriction than most elemental material. We have found the meta-stable behavior in 

Galfenol which may open the door for multiple bit storage in single nanomagnet. 

A core component of straintronic memory is proposed and experimentally demonstrated 

using Galfenol nanomagnets. There are previous demonstrations of magnetization rotation in 

FeGa layers with strain [39]–[42], Even more important, none of the above experiments 

addressed, let alone demonstrate, the “non-toggle” behavior, i.e., the magnetization being 

driven to one state with one sign of stress/strain and restored back to the other (original) state 

with the opposite sign of stress/strain. Here, we have achieved this feat. 
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Finally, we experimentally demonstrated a scheme to realize repeatable ~180
o
 

magnetization switching with localized strain which does not require external bias magnetic 

field and promises to deliver a high magneto-resistance ratio. This method can be scaled 

down to nano-dimensions enabling access to individual magnetic tunneling junction 

comprising nanomagnet grown on piezoelectric layer and portends an ultra-energy-efficient 

non-volatile memory. 

In fine, this research opens the door for new possibilities to further advance the field of 

spintronics in realizing ultra-energy-efficient logic and memory devices to sustain the 

Moore‟s Law beyond 2020.  
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