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A MECHANISTIC STUDY OF AN iPSC MODEL FOR LEIGH’S DISEASE CAUSED BY 

MtDNA MUTATAION (8993 T>G) 

 

By, John Patrick Galdun III B.S. (Microbiology) University of Georgia, 2013 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2016 

 

Major Director: Raj R. Rao Ph.D, Associate Professor, Department of Chemical and Life 

Science Engineering 

 

Mitochondrial diseases encompass a broad range of devastating disorders that typically 

affect tissues with high-energy requirements. These disorders have been difficult to diagnose and 

research because of the complexity of mitochondrial genetics, and the large variability seen 

among patient populations. We have devised and carried out a mechanistic study to generate a 

cell based model for Leigh’s disease caused by mitochondrial DNA mutation 8993 T>G. Leigh’s 
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disease is a multi-organ system disorder that depends heavily on the mutation burden seen within 

various tissues. Using new reprogramming and sequencing technologies, we were able to show 

that Leigh’s disease patient fibroblasts reprogrammed to induced pluripotent stem cells maintain 

the same level of mutation burden seen in the original patient cell line. Mutation burden was 

maintained through several passages and spontaneous differentiation. This cell based model 

could be useful for future pathogenesis studies, or therapeutic drug screenings in a patient and 

tissue specific manner.    
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CHAPTER 1:  INTRODUCTION  

 

 

 

 

A. Mitochondria Structure, Function, and Genetics 

 1. Structure 

Through DNA sequencing technologies and homology analysis, it is theorized that 

mitochondria arose from anα-Proteobacterial progenitor that formed an endosymbiotic 

relationship with an ancestral type of eukaryotic cell (95, 26). As such, mitochondria share a 

structural resemblance to their prokaryotic ancestors; possessing two separate and functionally 

unique membranes referred to as the outer membrane and inner membrane (41). The outer 

membrane separates the mitochondria from the cytoplasm and surrounds the inner membrane. 

Unlike the inner membrane, the outer membrane is rather porous. Ions and small-uncharged 

particles are able to flow through membrane protein porins, such as the voltage-dependent anion 

channel (4). The inner membrane is the site of the protein complexes responsible for generating 

the electrochemical gradient needed for adenosine triphosphate (ATP) synthesis in oxidative 

phosphorylation (41).  The inner membrane is subdivided into two contiguous regions known as 

the inner boundary membrane, which lies close to the outer membrane, and the cristae, which are 

folded invaginations of the inner membrane into the interior of the mitochondrion (60). A large 

complex of proteins known as the mitochondrial contact site and cristae organizing system is 
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responsible for upholding the integrity of the folded cristae, and furthermore, maintaining the 

efficiency of energy production (23, 75, 61).  

The two membranes divide the mitochondrion into three compartments that serve 

different functions, and possess different protein components. The intermembrane space is the 

compartment between the outer and inner membrane, where much of the transportation 

machinery resides (56). The innermost compartment of the mitochondrion, the matrix, houses the 

double stranded circular mitochondrial deoxyribonucleic acid (mtDNA) molecule, as well as 

serves as the location for numerous enzymatic reactions, mitochondrial transcription, and 

mitochondrial translation carried out by the mitochondrial ribosomes, or mitoribosomes (81). 

The cristae delineate the final compartment, which is the cristae lumen. As the cristae membrane 

is the site for most of the protein complexes of the respiratory chain, the cristae lumen is the 

location where the proton gradient is formed (41). Complex V, or ATP synthase, is directly 

responsible for using the energy stored in the electrochemical proton gradient to produce ATP 

from adenosine diphosphate (ADP) and phosphate (12). Individual ATP synthases are composed 

of more than 20 individual proteins, and ATP synthases form supramolecular dimers and 

oligomers in long rows along the strongly curved regions of the cristae membrane (76). These 

dimers have been shown to be a universal feature among many mitochondria investigated. If 

certain subunits are removed from ATP synthases, dimers are unable to form, and the 

mitochondria lack the highly folded cristae that are typical of cristae morphology. From theses 

studies, it is clear that ATP synthase plays a role in generating the folded mitochondrial cristae. 

Given the importance of ATP synthase in the electron transport chain (ETC), any alterations in 

the complex itself or the supramolecular structure it forms could have functional implications on 



 

3 

Back To Table of Contents 

the efficiency of oxidative phosphorylation and ultimately play a role in pathophysiological 

conditions (59, 76).   

 Different tissue and cell types show variability in mitochondrial arrangement and 

morphology. For instance, neuronal mitochondria are very dynamic and use various cytoskeletal 

components and specific motor proteins to move to different areas of the cell when needed (71). 

On the other hand, mitochondria of cardiomyocytes display a regular and fixed intracellular 

arrangement similar to a crystal (6). Mitochondria can also be found in close association with the 

endoplasmic reticulum (ER), which has functional implications that are discussed in a later 

section (66). In addition to variance among cell types, mitochondria can be dynamic in number 

and morphology within a single cell during times of development, cell cycle stages, or when 

exposed to stressors. Mitochondria can be long and filamentous, short and rod-like, and under 

conditions of compromised function, small and spherical (42, 35). Fusion and fission reactions 

control the number of mitochondria within a cell, and can also control mitochondrial morphology 

and organization (5). The heterogeneity in these organelles with regards to shape and 

intercellular arrangement can most often be attributed to the various functions and energy 

demands required of them by the cell in which they occupy. 

 

 2. Function 

A recent flourish in mitochondrial research has led to the discovery of additional 

important mitochondrial functions. As previously stated, the ER has a special membrane domain 

that interacts with the mitochondria referred to as the mitochondria-associated ER membrane. 

The proteins and enzymes within this region play important roles in calcium signaling (64). 

Mitochondrial calcium uptake has been shown to increase ATP production (53, 9), as well as 
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buffer the cytosolic calcium concentration (67). Regulation of the intracellular calcium 

concentration is critical for transcriptional regulation, metabolic processes, hormone release, and 

maintaining cell life or cell death signals (58, 30). Mitochondria also exhibit mechanisms of 

either inducing or inhibiting apoptosis. 

Apoptosis is a process where cells activate an organized cell suicide pathway leading to 

their breakdown and eventual phagocytosis. This is distinct from necrosis, and displays the 

morphological characteristics of cell shrinkage, membrane blebbing, and DNA cleavage and 

separation into apoptotic bodies with cell surface markers bringing about phagocytosis (39). 

Although additional mechanisms exist, the two most commonly characterized are the death 

receptor pathway, also known as the extrinsic pathway, and the mitochondrial pathway, also 

known as the intrinisic pathway. Both pathways ultimately lead to the activation of caspases, 

cysteine proteases that cleave after aspartate residues, which selectively cleave intracellular 

components resulting in cell death (65). Numerous cell stresses initiate the mitochondrial 

pathway including developmental cues, growth factor deprivation, ER stress, and DNA damage 

(27). The mitochondria respond by releasing the apoptosis inducing cytochrome c, as well as 

proapoptotic (Bax, Bak) and antiapoptotic (Bcl-2, Bcl-xL) members of the Bcl-2 family. The 

delicate interplay of these mitochondrial factors results in a controlled activation of caspases 

leading to apoptosis (48, 96, 21).  

Mitochondria also play a key role in maintaining cellular redox potential. In order to 

establish the electrochemical gradient and generate ATP, a series of redox reactions must take 

place, wherein electrons pass along a series of enzymes located in the inner membrane causing 

the release of free energy allowing the proton flux from the matrix to the intermembrane space. 

The coupling of ATP synthesis to the mitochondrial redox environment remains a topic of 
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debate. However, these redox reactions leading to oxidative phosphorylation, particularly the 

reoxidation of nicotinamide adenine dinucleotide (NADH) to NAD+, have clear implications on 

the mitochondrial redox environment (52). Alterations in the mitochondrial redox environment 

occur in numerous pathological conditions such as ischemic reperfusion injury and various 

cancers highlighting the importance of this mitochondrial function (43, 46).  

Mitochondria are most noted for their energy producing capabilities. Rightfully so, as on 

average the human body requires 50 kg of ATP turnover daily and the majority of this ATP is 

generated by oxidative phosphorylation in the mitochondria (3).  The enzyme complexes that 

comprise the ETC are comprised of multiple subunits that can be encoded for by the nuclear 

DNA or the mtDNA. 

 3. Genetics 

Almost all of the over 3000 proteins in mitochondria are coded for by nuclear DNA, 

transcribed, translated by cytosolic ribosomes, and then transported into the mitochondria. 

Effective nuclear-mitochondria cross talk is absolutely essential for normal mitochondrial 

function (94). Although nuclear DNA encodes for most of the human mitochondrial proteins, the 

circular, double stranded, and 16,569 bases in length human mtDNA molecule is responsible for 

37 genes including 22 tRNAs, 2 rRNAs, and 13 proteins. Human mtDNA contains very few 

introns, and is transcribed polycistronically. There are slight differences in the translation code 

that prevent nuclear DNA from being translated by mitoribosomes and vice versa (74). All 13 

proteins encoded for by mtDNA form subunits of ETC complexes, and are essential for normal 

oxidative phosphorylation.  

Mitochondrial genes are not inherited in the same fashion as nuclear genes. There is 

evidence to suggest that paternal mitochondria are actively tagged for degradation after 
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fertilization, and thus only the maternal mtDNA is inherited. This is known as a maternal 

inheritance pattern (33, 80). The complete mechanism of inheritance is not entirely understood, 

but it is widely accepted to follow a maternal lineage with only rare instances of paternal mtDNA 

being present after fertilization. 

The total number of mitochondrial genomes varies within different cell types, as well as 

within the mitochondria of one cell. Through a video-intensified photon counting microscope 

system, it was determined in human ovarian carcinoma cells that mitochondria contain a mtDNA 

copy number between 1 and 15 with most of the mitochondria containing between 2 and 6 copies 

(70). The total number of genomes per cell of course depends upon the number of mitochondria 

in the cell, which is largely dependent on the energy needs of the tissue type. For instance, 

leukocytes average 350 mtDNA copies per cell (49); where as myocardial cells average more 

than 6,000 mtDNA copies per cell (54). The mitochondrial genome also exhibits heteroplasmy, 

which is the presence of more than one type of mtDNA genome within a cell or individual.  

Heteroplasmy contributes heavily to certain genetic diseases, where the mutation burden 

of mtDNA determines the presence of the disease and occasionally the severity of the condition. 

The amount of mutated mtDNA must reach a certain threshold for certain diseases to occur. 

Copy number and heteroplasmy have also been implicated in age related illnesses, as both 

properties change in a tissue specific manner throughout an individual’s life span (91). The 

constant exposure to reactive oxygen species in the mitochondria makes the mtDNA particularly 

susceptible to mutations. Given the mitochondria’s diverse functional abilities and complex 

genetic control, it is easy to see how slight deviations within mitochondria could lead to 

devastating diseases. 
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B. Mitochondrial Diseases and Dysfunctions  

 1. Age Related Diseases 

Mitochondrial diseases have a wide spectrum of clinical presentations, as well as a 

variety of inheritance patterns such as maternal, Mendelian, or a combination of both. This can 

make generating a diagnosis rather difficult, as the same phenotype could be caused by a 

different mutation, and the same mutation could lead to a completely different condition 

depending on the quantity of the mutated mtDNA, or the cell type in which the mutation resides 

(73, 92). Despite this drastic variability, mitochondrial diseases generally affect tissues with 

high-energy requirements such the central nervous system, liver, kidneys, endocrine system, and 

skeletal and cardiac muscles (19). Dysfunctions within mitochondria most notably contribute to 

age related diseases, neurodegenerative diseases, and early and late onset genetic disorders. 

The process of aging is still somewhat a mystery, but problems in mitochondria have long 

been implicated as a possible causal agent. Aging results in a functional decline in various organ 

systems that coincide with a functional decline in the mitochondrial respiratory chain. It is also 

known that mtDNA mutations increase in aging animals and humans leading to mitochondrial 

dysfunction. An increase in reactive oxygen species (ROS) production is also observed (79). 

This has led to what is known as the Mitochondrial Free Radical Theory of Ageing (MFRTA). 

This theory attributes an increase in ROS to an increase in mtDNA damage, which leads to 

mitochondrial dysfunction and further ROS production ultimately resulting in aging (34). This 

theory is based on animal studies that suggest lower ROS levels result in longer lifespans. There 

are however some detractors from the MFRTA that suggest an increase in mtDNA mutations is 

the actual cause of aging, and the ROS increase is only supplementary. As evidence, studies have 

not shown a correlation between antioxidant defenses and life span (8). Further studies are 
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needed to elucidate the exact mechanisms of aging, but ROS and mtDNA mutation accumulation 

both seem to contribute. MtDNA mutations also play a role in several neurodegenerative 

diseases. 

 2. Neurodegenerative Diseases 

Spinal Muscular Atrophy (SMA) is a neuromuscular disorder characterized by skeletal 

muscle weakness and atrophy as a result of losing lower motor neurons in the spinal cord. Most 

cases are caused by a mutation in the survival motor neuron gene (SMN1). The quantity of 

mtDNA and respiratory chain enzyme activities are significantly reduced in the patient’s muscle 

tissues, which researchers regard as secondary to the original muscle wasting. However, there 

have been patients exhibiting the various pathologies associated with SMA while lacking a 

mutation in SMN1. These patients have depleted levels of mtDNA or mutations in the 

cytochrome c oxidase assembly gene resulting in their clinical phenotype (36). The entirety of 

this mechanism is not understood. 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. 

Evidence is mounting that mitochondrial dysfunction leads to the nigrostriatal neuronal cell 

death seen in both neurotoxin-induced and genetic mutant-associated forms of PD. Neurotoxins 

such as paraquat, rotenone, and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) directly 

inhibit mitochondrial complex I activities resulting in PD phenotypes. The neurotoxins also 

interfere with mitochondrial dynamic regulations leading to fragmented mitochondria due to 

increased fission reactions. The genetic form of PD sees mutations in nuclear genes that 

associate with vital mitochondrial functions such as mitophagy, mitochondrial dynamics, redox 

signaling, and mitochondrial protein import. As a result, ROS production is increased. Further 

evidence for mitochondrial dysfunction as a contributing factor to PD is seen when PD 
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phenotypes are reduced in animal models as a result of therapeutics targeted to inhibit 

mitochondrial dysfunction (50). Mitochondria are being investigated as a possible area of 

treatment for PD.  

Alzheimer’s Disease (AD) is the most common neurodegenerative disorder, and it is 

characterized by a loss of cholinergic neurons leading to memory loss and behavioral 

impairments. Amyloid precursor protein and amyloid-β, which are found in mitochondrial 

membranes and associate with mitochondrial proteins, are elevated in AD and contribute to 

mitochondrial dysfunction. AD patients have mitochondria that produce excess ROS, have 

increased permeability, and reduced membrane potential. Excess amyloid precursor protein and 

amyloid-β may also affect mitochondrial dynamic fusion/fission, mitophagy, and disrupt the 

ETC (57). Potential therapeutics will likely need to address the mitochondrial dysfunction seen 

in AD patients. 

 3. Early and Late Onset Genetic Diseases 

Mitochondrial diseases as a whole have a prevalence of 1 in 5000 live births (72). 

Diseases may occur as a result of inherited mutations in nDNA or mtDNA, which has a 3-fold 

higher mutation rate respectively (86). Due to the multi-functional nature of mitochondria, 

mutations leading to dysfunction can result in abnormal calcium signaling, excessive ROS 

production, dysregulation of apoptosis, and of course energy deficiencies (97). Many conditions 

are multisystemic in nature, but some diseases are specific to one tissue type such as Leber’s 

hereditary optic neuropathy (LHON) (74). LHON leads to acute loss of central vision, and is 

most commonly the result of one of three possible homoplasmic point mutations in mtDNA 

genes that code for subunits in complex I (69). Most conditions, however, are caused by 

heteroplasmic mutations, where only some copies of the mtDNA have the mutation.  
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This is the case with MELAS (mitochondrial encephalomyopathy with lactic acidosis and 

stroke like episodes). 80% of MELAS cases are caused by the point mutation m.3243A>G, 

which affects mt-tRNALeu(UUR). The mutation results in a decreased rate of protein synthesis 

leading to energy deficiencies in addition to the symptoms included in the name of the disease. 

Although this mutation is shown to cause MELAS, relatively few patients with this mutation 

develop MELAS. Instead, maternally inherited diabetes and deafness (MIDD) is more 

commonly seen, as well as a mixture of symptoms from both MELAS and MIDD (55). This 

highlights the complexity of mitochondrial diseases, as they are dependent on numerous factors 

and often exhibit clinical heterogeneity. 

 Leigh’s disease (also known as subacute, necrotizing encephalopathy) is a mitochondrial 

condition that exhibits the largest genetic heterogeneity, and also shows great phenotypic 

variability. Leigh’s disease is characterized by focal, bilateral lesions in the basal ganglia, 

thalamus, brainstem, and other areas of the brain. Other symptoms associated with Leigh’s 

disease are muscle hypotonia, dystonia, seizures, ataxia, nystagmus, breathing irregularities, 

cardiomyopathy, gastrointestinal distress, and many others (2, 22). Mutations in nuclear or 

mitochondrial genes that code for subunits of the respiratory chain are the cause of Leigh’s 

disease.  

This research project focuses on the mutation m.8993 T>G. The mutation is present in 

the ATP6 gene of mitochondria, which codes for a subunit of the Fo component of ATP synthase. 

The m.8993 T>G mutation results in a substitution of arginine for leucine (85). It was originally 

believed that this mutation altered effective proton transfer, as it affects the pore-forming unit of 

ATP synthase (28). Other research suggests that the mutation affects the c ring subunits ability to 

rotate (77). With a mutation load above 95%, this mutation leads to Leigh’s disease typically 
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before the age of two. This same mutation at lower loads leads to an adult onset disorder known 

as NARP (neurogenic muscle weakness, ataxia, and retinitis pigmentosa). The severity of the 

condition is often dependent on the percentage of mutated mtDNA (38). Because the m.8993 

T>G form of Leigh’s disease requires such a high percentage of mutated mtDNA and reduced 

phenotypes are seen at lower mutation loads, it is conceivable that altering the mutation burden 

could serve as a possible therapy. Only palliative care is available for Leigh’s disease and all of 

the previously discussed conditions. Mitochondrial dysfunction can lead to a vast amount of 

complex diseases. Cell based models provide an effective means of studying these diseases, and 

could possibly allow for patient specific treatments.  

 

C. Cell Based Models 

 1. Cybrid Model 

A lack of an effective model for studying mitochondrial disorders has led to a variety of 

inventive cell based model strategies in an attempt to mimic disease states. The first generation 

of these cell based models was the cytoplasmic hybrid (cybrid), which involved fusing mtDNA 

derived from platelets with mtDNA depleted neuroblastoma cells. Cybrids with mtDNA 

extracted from patients with AD, PD, and MELAS have been successful in displaying similar 

disease phenotypes to their respective pathologies including respiratory chain defects, increased 

oxidative stress, and alterations in calcium homeostasis (7, 24, 15). However, the cybrid model 

has the limitation that the host cells are tumor cells. These cells would thus be expected to have 

an altered cell cycle progression and mitochondrial biogenesis. Also, it is not known to what 

degree platelet derived mtDNA matches the genome of other cell types (90).  
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A modification of the cybrid model has been used to generate trans-mitochondrial mito-

mice. In this model, mutated (13997 G>A) mtDNA from mouse lung carcinoma cells was 

implanted in mtDNA depleted mouse embryonic stem cells (ESCs). The engineered ESCs were 

then implanted into pseudopregnant females, and the progeny were characterized as having 

successfully received the mutant mtDNA. The results displayed the expected complex I defects 

and lactate overproduction, but to a lesser degree than the mtDNA donor mouse lung carcinoma 

cells. In addition, other symptoms that were expected such as ROS overproduction, LHON 

phenotypes, and tumor formation were not observed (98). Although this model used ESCs as the 

host for the mutated mtDNA as opposed to tumor cells, the results did not fully display the 

expected disease state due to some compensatory mechanism. A human cell based model would 

need to be produced for further studies.  

 2. Neural Progenitor Model 

An improvement to the cybrid model for investigating neurodegenerative diseases is the 

use of human neural progenitor (hNP) cells. Neural progenitor cells can differentiate into 

neurons, astrocytes, and oligodendrocytes providing possible models for disease states and 

potential therapeutics for various conditions. Neural progenitors can be morphologically 

characterized by the formation of radially organized columnar epithelial cells known as “neural 

rosettes,” and possess a high nuclear-cytoplasmic ratio indicative of actively dividing cells (13, 

20). Gene expression or immunocytochemistry assays for markers such as Nestin, Musashi 1, 

SOX2, and polysialylated neural cell adhesion molecule also confirm cells as neural progenitors 

(14). Uniform neural progenitor populations can be created from hESCs when supplemented 

with select medium components. The development of these procedures was critical in being able 
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to generate an unlimited lineage-restricted cell source that can maintain a stable chromosome 

number for an effective cell based model (14, 78, 32).  

This new technology was used in the development of a model to study the genetic 

mitochondrial disease known as Leber’s hereditary optic neuropathy (LHON). In this study, 

neural progenitors were treated with dideoxycytidine (ddC), which reduces the endogenous 

mtDNA. There was no loss in hNP phenotypic markers after this procedure. The cells were then 

transfected with recombinant human mitochondrial transcription factor A complexed with 

mtDNA that harbored the pathogenic mtDNA G11778A mutation known to be a causal agent for 

LHON. The expression of the pathogenic RNA was confirmed, and the hNPs maintained their 

ability to differentiate after the transfection (31). Although successful in recreating this disease 

state, the challenges of this process are in ddC treating the hNPs while maintaining their hNP 

marker expression, and adequately transfecting the desired mutant DNA. This process may be 

difficult to replicate with more complex conditions, and thus alternatives were investigated. 

 3. Induced Pluripotent Stem Cell Model 

Reprogramming technologies allow researchers to create induced pluripotent stem cells 

(iPSCs) from adult cell types. These cells types exhibit prolonged self-renewal and the ability to 

differentiate into multiple cell lineages. Thus, iPSCs could serve as a cell-based model for drug 

screening, understanding disease mechanisms, and engineering patient specific cell lines for 

possible therapies (87). Reprogramming was first carried out via retroviral-mediated transfection 

of transcription factors known to be necessary for pluripotency (82, 83). Although successful in 

generating iPSCs for basic research, there was concern about using this technology for 

therapeutic applications, as the viral factors integrate with the genome causing the potential for 

cancers to develop. Excisable transposon and non-integrative plasmid strategies were 



 

14 

Back To Table of Contents 

subsequently developed. These methods resolve the problem of genome integration, but are labor 

intensive and produce low yields of iPSCs (93, 68, 51). An improvement to these strategies is the 

use of modified mRNAs encoding the reprogramming factors OCT4, SOX2, c-MYC, KLF4, and 

LIN28A (93). In addition to taking fewer days and generating higher yields, mRNA 

reprogramming allows for dosage control of multiple proteins simultaneously, thus permitting 

much more control of the reprogramming process (51). It is also reasonable to conclude that 

upon further investigation, direct differentiation procedures can be developed using appropriate 

mRNAs (93).   

Reprogramming somatic cells from diseased patients to iPSCs has been used to generate 

effective cell-based models for neurodegenerative disorders such as SMA, PD, and Amyotrophic 

Lateral Sclerosis (99, 1, 16, 11). Recently this method has been applied to the study of cell-type 

specific disease phenotypes in the mitochondrial disease MELAS. As previously stated, it is 

known that the most common cause of MELAS is a mutation in the mtDNA. Reprograming has 

allowed for the study of how the mutation results in varying severities of clinical symptoms (29). 

In order for iPSCs to be used as an effective cell based model, it must be verified that 

reprogramming has not caused significant alterations to the genome. It has been shown that 

retroviral reprogramming led to mtDNA mutations that were not present in parental cells (63). 

This is a very important aspect to monitor before conclusions can be made in future studies. 

D. Summary 

The successful development of reprogramming technologies has enabled researchers to 

investigate diseases in a patient and cell specific manner. This method can be particularly useful 

in studying conditions that display clinical variability among patients, as well as conditions that 

affect certain cell types differently. As both conditions hold true in Leigh’s disease 8993 T>G, it 
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is our hope to develop an iPSC model that accurately reflects the disease characteristics seen in 

the patient from which the original cells were derived.   

Early reprogramming methods led to mutations that were not seen in the parent cell. 

Because mRNA reprogramming methods are still relatively new, it is not known if this process 

alters the genome of the reprogrammed cells. Before more investigative disease studies can be 

conducted with our Leigh’s 8993 T>G reprogrammed cell line, it must first be confirmed that the 

iPSCs maintain this mutation. Based on the background information, we propose to investigate 

the following specific aims. 

Specific Aim (I) Detect the presence of the 8993 T>G mtDNA mutation in iPSCs of various 

passage numbers and differentiated derivatives.  

This preliminary data is essential to ensure that the disease-causing agent is still present in the 

reprogrammed cells and differentiated cell types. 

Specific Aim (II) Quantify the mutation burden in patient derived fibroblasts, iPSCs of 

various passage numbers, and differentiated derivatives. 

This data will display the exact percentage of the 8993T>G mutation that is present in the 

mtDNA of the original patient derived fibroblasts, iPSCs, and differentiated derivatives. 

Experiments under this specific aim focus on investigating if the mutation burden is maintained 

through reprogramming, several passages, and differentiation into various cell types. The results 

of these experiments could provide support for this method as a viable option of developing 

patient specific cell based models to investigate Leigh’s disease 8993 T>G.  
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CHAPTER 2:  MATERIALS AND METHODS 

 

 

 

 

A. MtDNA Isolation 

Before the mtDNA can be sequenced, it must be isolated from whole cell pellets, 

purified, and quantified. 

 

Control Cell Lines Experimental Cell Lines 

Human Foreskin Fibroblast passage 13 
(BJ fib p13) 

Leigh’s Patient Fibroblast passage 7 
(FB1 fib p7) 

Induced Pluripotent Stem Cell passage 21 
(BJ iPSC p21) 

Leigh’s Induced Pluripotent Stem Cell 
passage 9 (FB1 iPSC p9) 

 Leigh’s Induced Pluripotent Stem Cell 
passage 15 (FB1 iPSC p15) 

 Leigh’s Induced Pluripotent Stem Cell 
passage 21 (FB1 iPSC p21) 

Induced Pluripotent Stem Cell that has been 
spontaneously differentiated passage 24 

(BJ Diff p24) 

Leigh’s Induced Pluripotent Stem Cell that 
has been spontaneously differentiated 

passage 24 (FB1 Diff p24) 
 

Table 1: List of cell samples used in all experiments. 

The FB1 samples were derived from a Leigh’s patient donor, and are expected to have the 8993 

T>G mutation. All of the BJ samples are expected to have the wild type 8993 T, thus, serving as 

the control. All samples will undergo the same processing. 
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Figure 1: Schematic of sample derivation prior to our experiments. 

The mRNA based reprogramming procedure was carried out according to established protocols 

(62), resulting in the generation of iPSCs. Spontaneous differentiation was carried out by 

embryoid body formation according to established protocols (37). This form of differentiation 

results in cell types from all three germ layers. These procedures were carried out prior to our 

experiments. 
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Figure 2: Schematic of mtDNA extraction. 

First, total DNA was extracted from whole cell pellet. MtDNA was then extracted by 

enzymatically degrading all non-circular forms of DNA. Finally, the region of interest within the 

ATP6 gene was PCR amplified.  
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 1. Extracting MtDNA From Whole Cell Pellets 

Cell pellets containing approximately 500,000 cells were removed from the freezer to 

thaw. The QIAamp DNA mini kit manufacturer protocol was followed to extract total DNA, and 

the details can be seen in Appendix i (Qiagen, Valencia, CA, USA). This results in an elution of 

80 µL of distilled water (dH2O) and total DNA from all cells. In order to obtain the circular 

mtDNA, all other DNA was degraded using the Plasmid-Safe ATP-Dependent DNase 

(Epicentre, Madison, WI, USA). This product selectively degrades all non-circular DNA 

molecules. The manufacturer recommended mini-preparation protocol was followed, details of 

which can be found in Appendix i. The 50 µL solutions containing the mtDNA were further 

treated with 1 µL of RNaseA for 1 hour at 37°C to further avoid any non-mtDNA nucleic acids. 

It is expected that at this point, the mtDNA should be intact, and all other forms of DNA should 

be degraded. The samples were further processed prior to use in sequencing protocols. 

 2. Further Purification and Gel Extraction 

In order to rid the mtDNA samples of previously used enzymes, salts, etc., the samples 

were cleaned using the UltraClean 15 DNA Purification Kit (Mo Bio, Carlsbad, CA, USA), 

details of the protocol can be found in Appendix ii. To ensure the mtDNA was maintained in a 

16kb circle, the samples were run on a 0.8% agarose gel, and the 16kb band that appeared for 

each sample was extracted from the gel. The methods for creating and running the gel, as well as 

the results can be found in Appendix ii. Because the samples were extracted from an agarose gel, 

they needed to be cleaned again using the UltraClean 15 DNA Purification Kit with a slightly 

modified protocol to get rid of the agarose, details of which are present in Appendix ii. With the 

mtDNA isolated and purified, the samples were prepared for sequencing. 
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B. Sample Preparation for Sequencing 

The previous procedures resulted in a 30 µL solution of dH2O with an unknown quantity 

of mtDNA. The amount of mtDNA needed to be quantified and diluted to meet the specifications 

for Sanger sequencing and whole exome next-gen sequencing. 

 1. Quantification and Dilution 

The mtDNA was quantified using a NanoDrop One UV/Vis Spectrophotometer (Thermo 

scientific, Wilmington, DE, USA). A blank of 1.5 µL of dH2O was used to establish a zero, and 

1.5 µL of each sample was used to find the concentration. Concentration results can be found in 

Appendix iii. Exome sequencing requires approximately 25 ng of DNA, and the samples were 

diluted accordingly. Sanger sequencing, however, requires the area of interest (Region of ATP6 

gene containing 8993) to be PCR amplified, purified, and diluted to a concentration of 10ng/µL. 

 2. PCR and Preparations for Sanger Sequencing 

Primers were generated using the human mtDNA sequence provided by mitomap.org, 

and IDT’s PrimerQuest tool (IDT, Coralville, Iowa).  
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Gene  Direction Sequence GC% Product Length 

ATP 6 
Forward 

Reverse 

TATCGAAACCATCAGCCTACTC 

GCTTCCAATTAGGTGCATGAG 

45.5 

47.6 
100 bp 

 

Table 2. Primer information for region of ATP 6 

The 100 bp amplified sequence contains the 8993 site. 
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A standard PCR was carried out using the Takara Taq PCR Amplification Kit (Clontech, 

Mountain View, CA, USA). A detailed protocol of the reaction mixture and the cycle 

information can be seen in Appendix iv. 10 µL of the PCR product for each sample was run on a 

2% agarose gel to confirm proper amplification of the region of interest. The methods for 

creating and running the gel, as well as the results can be found in Appendix ii. After gel 

confirmation, the PCR products were cleaned again using the UltraClean 15 DNA Purification 

Kit (Mo Bio, Carlsbad, CA, USA). The cleaned PCR products were quantified using a NanoDrop 

One UV/Vis Spectrophotometer (Thermo scientific, Wilmington, DE, USA), and diluted to 10 

ng/µL with dH2O for Sanger sequencing. Also, the primers were diluted to 20ng/µL for Sanger 

sequencing. The results from the NanoDrop analysis are presented in Appendix iii. 
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Figure 3: Sequence of amplified product.  

The 8993 position is denoted with an asterisk. We are expecting all of the BJ derived samples to 

have a T at this site, and all of the FB1 samples to have a G at this site.  
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C. Sanger Sequencing, Next-gen Sequencing for Whole Exome, and Accompanying 

Sequence Analysis 

All sequencing was carried out in collaboration with the Virginia Commonwealth 

University Nucleic Acids Research Facility. 

 1. Sanger Sequencing and Analysis 

Sequencing reactions were carried out with the forward and reverse primers. The cycle 

sequencing reaction was carried out on a 96-capillary 3730XL (Applied Biosystems, Foster City, 

CA, USA) with BigDye Taq FS Terminator V 3.1. The genotyping and fragment sizing was done 

on a 3130XL (Applied Biosystems, Foster City, CA, USA). Details of the cycle sequencing 

reaction and the precipitation protocol can be seen in Appendix v. The files generated from the 

sequencing were observed using CodonCode Aligner (CodonCode Corporation, Centerville, 

MA, USA). 

 2. Next-gen Sequencing of Whole Exome and Analysis 

The DNA concentration was verified using a Qubit fluorometer (Thermo scientific, 

Wilmington, DE, USA). Instead of the standard DNA fragmentation, an enzymatic 

fragmentation was performed using the KAPA Frag Enzyme from the KAPA HyperPlus Library 

Preparation Kit (KAPA Biosystems, Wilmington, MA, USA). This alternative was performed in 

order to increase yield during the fragmentation step. Fragmented DNA was purified using 

Ampure beads (Beckman Coulter, Brea, CA, USA). DNA libraries were prepared using the 

Accel-NGS 2S Plus DNA Library Kit (Swift Biosciences, Ann Arbor, MI, USA). 10 PCR cycles 

were carried out during the Library Amplification step. The final libraries were analyzed with a 

2100 Bioanalyzer to assess library size distribution (Agilent Technologies, Santa Clara, CA). 
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DNA libraries were quantified with the KAPA Library Quantification Kit to ensure accuracy 

(KAPA Biosystems, Wilmington, MA, USA). Based on the qPCR results, the DNA libraries 

were compiled in equimolar amounts and sequenced with the HiSeq 2500 using TruSeq v3 

reagents according to the 2 x 100 bp protocol (Illumina, San Diego, CA, USA). 

The file generated from sequencing was separated out into FASTQ files using bcl2fastq 

software version 2.17 (Illumina, San Diego, CA, USA). These files were aligned to the mtDNA 

reference human genome 19 with Burrows-Wheeler Alignment Tool (45). The alignment tool 

generates Sequence Alignment Map (SAM) files, which are sorted based on the coordinates of 

the sequence. The SAM files are then converted to a compressed form, BAM format, using 

SAMTools. PCR duplicates were removed from the alignment using the Picard toolkit (Broad 

Institutes, Cambridge, MA, USA). Finally, the BAM format files were sent to Atlas2 to generate 

variant calling files (VCFs) (Human Genome Sequencing Center, Houston, TX, USA). 

Integrative Genomics Viewer (IGV) was used to view the sequences (88), while the VCFs were 

viewed with a word processor. The filter settings on the VCFs can be seen in Appendix vi.  
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CHAPTER 3:  RESULTS 

 

 

 

 

A. Sanger Sequencing Results 

It was expected that the 8993 T>G mutation would be present in the original fibroblast 

taken from the Leigh’s disease patient, as well as in the iPSCs of various passage numbers and 

differentiated cells derived from the patient fibroblast. In order to confirm the presence of the 

mutation, the mtDNA was extracted from whole cell pellets, and our region of interest within the 

ATP6 gene was PCR amplified. The PCR product was purified and quantified to the appropriate 

specification. This allowed for Sanger sequencing of the specific ATP6 region containing the 

8993 site. All procedures were conducted as outlined in the materials and methods section. 

Sanger sequencing of our samples was necessary to confirm the presence of the disease causing 

mutation after reprogramming and spontaneous differentiation. The results demonstrate that the 

8993 T>G mutation is present in all FB1 samples (FB1 fib p7, FB1 iPSC p9, FB1 iPSC p15, FB1 

iPSC p21, and FB1 Diff p24). (Figure 4-6). Verifying the presence of the mutation was a 

necessary step prior to the quantification of mutation burden using Next-gen sequencing for 

whole exome. 

  



 

27 

Back To Table of Contents 

 

 

Figure 4: Sanger sequencing results of FB1 fibroblast (BJ fibroblast control).  

PCR amplified products were Sanger sequenced, and the sequencing results were viewed using 

CodonCode Aligner. The mutation is seen in the FB1 fibroblast sample, and not in the BJ 

fibroblast sample. The asterisk mark the point mutation. 
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Figure 5: Sanger sequencing of FB1 iPSC across multiple passages (BJ iPSC control).  

PCR amplified products were Sanger sequenced, and the sequencing results were viewed using 

CodonCode Aligner. The mutation is seen in all FB1 iPSC samples, and not in the BJ iPSC 

sample. The asterisks mark the point mutations. 
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Figure 6: Sanger sequencing of FB1 differentiated (BJ Diff control).  

PCR amplified products were Sanger sequenced, and the sequencing results were viewed using 

CodonCode Aligner. The mutation is seen in the FB1 differentiated sample, and not in the BJ 

differentiated sample. The asterisk marks the point mutation.   
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B. Next-gen Sequencing for Whole Exome Results 

With the presence of the mutation confirmed, the percentage of mutation burden in each 

sample was measured using high-throughput Next-gen sequencing for whole exome. This 

strategy has previously been utilized to effectively measure heteroplasmies in the mitochondrial 

genome (10, 84, 47). The mtDNA was extracted from whole cell pellets, and then purified before 

sequencing. The sequencing results yielded a range of total sequence reads between 388 and 

2031 at the 8993 position in the different cell samples. This large of a sample size allows us to be 

confident about the percentages measured. As expected, BJ fib, BJ iPSC, and BJ Diff possessed 

mostly the wild type thymine with only a few sequences containing the mutated guanine. The 

Leigh’s patient sample FB1 fibroblast exhibited the mutation in 85 % of the sequences read. The 

iPSCs of various passage numbers and the differentiated cell sample displayed similar mutation 

levels with a range of 80-88% (Figure 7 and Table 3). 
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Position 8993 Mutation Percentages 

  

Figure 7: Heteroplasmy data for all samples at position 8993. 

The extracted mtDNA was Next-gen sequenced for whole exome. The sequencing results were 

compiled, and the results were analyzed with the Integrative Genomics Viewer. This allows us to 

view heteroplasmic sequences with an exact measure of the variants. The BJ samples exhibited 

very low amounts of the T>G mutation at the 8993 position, and the FB1 samples exhibited a 

8993 T>G mutation burden in the range of 80-88%. The variant calling files filter settings can be 

seen in Appendix vi. 
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Sample Name Total Number 
Sequenced 

8993 
T       

8993 
G 

Percentage of 
Mutation 

BJ fibroblast 689 689 0 0 
BJ iPSC 1812 1801 11 1 

BJ Differentiated 388 377 9 3 
     

FB1 fibroblast 548 84 464 85 
FB1 iPSC p9 1987 234 1753 88 

FB1 iPSC p15 2031 305 1726 85 
FB1 iPSC p21 589 92 497 84 

FB1 iPSC 
Differentiated 1000 203 797 80 

 

Table 3: Heteroplasmy data for all samples at position 8993. 

The extracted mtDNA was Next-gen sequenced for whole exome. The sequencing results were 

compiled, and the results were analyzed with the IGV. This allows us to view heteroplasmic 

sequences with an exact measure of the variants. The total number of reads per sample at the 

8993 position ranged between 388 and 2,031. This is more than enough reads to make accurate 

determinations for sample 8993 T>G mutation burden. The BJ samples displayed a mutation 

burden between 0-3%, and the FB1 samples displayed a mutation burden between 80-88%. The 

variant calling files filter settings can be seen in Appendix vi.    
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CHAPTER 4:  DISCUSSION AND FUTURE DIRECTIONS 

 

 

 

 

Despite the mitochondrial genome being rather small, effectively researching the 

pathogenesis of mitochondrial diseases caused by mtDNA mutations has been difficult. Leigh’s 

disease has the added complexity of being dependent upon reaching a threshold of mutation 

burden in a tissue specific manner. Our methods included the use of Sanger sequencing, Next-

gen sequencing, and subsequent analysis of the results to confirm the presence of the 8993 T>G 

mutation in all Leigh’s patient derived cell samples. The mutation was detected in all FB1 

samples, and the mutation burden was maintained at a consistently elevated percentage through 

reprogramming, several passages, and spontaneous differentiation. Thus, our experiments have 

resulted in the creation of an iPSC line with a comparable mutation burden to that of the Leigh’s 

patient fibroblast from which it was derived. Generating this cell line with the disease-causing 

mutation intact is a very important step in confirming reprogramming technologies as a viable 

option of creating a cell based model for Leigh’s disease.  

Clinically, Leigh’s disease displays variability among patients and variability among 

different tissues within individual patients, which can complicate research. Our cell based model 

addresses both of these issues. An iPSC model can be created specific to a patient. The stem cells 

could then be directly differentiated into specific cell types of interest such as neurons or 

myocytes. Further experiments can be carried out to determine how the disease affects specific 

tissues on a molecular basis. This is a promising approach for the investigation of patient and 
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tissue specific pathophysiology, and for generating possible therapeutics for individual patients 

affected by Leigh’s disease and other mitochondrial diseases. The methods used in this study to 

successfully create this disease model could also be slightly altered in order to investigate other 

mitochondrial diseases. 

In addition to confirming the consistent mutation burden of 8993 T>G, the Next-gen 

sequencing results also identified a number of other heteroplasmic variants (Table 4). Due to the 

highly polymorphic nature of the mitochondrial genome, a number of these variants are 

characterized as normal sequence variants that are not likely to contribute to Leigh’s disease. 

Some of the variants displayed in the FB1 patient samples were also present in the BJ control 

samples in similar quantites (Table 5). Thus, it is unlikely that these sequence variants contribute 

to Leigh’s disease. Two other variants in the FB1 patient samples were also present in the BJ 

control samples, but in lower quantities (Table 6). When cross examined with the MitoMap 

reference, both of these sites were determined to be normal polymorphisms. Also, a number of 

sequence variants were associated with previously defined mitochondrial haplogroups. It is 

widely known that haplogroup designations are used in population genetics to denote people 

with a common ancestory. The haplogroups connected to the FB1 cell line are indicative of 

European ancestory, which correlates with the origin of the cell line used in this study (Table 7). 

It would be interesting to see if other patients with Leigh’s disease could be connected to similer 

haplogroups. This information could be beneficial in identifying at risk populations for Leigh’s 

disease. 

With the normal variants identified, there were a few remaining sites of interest for 

possible future studies (Table 8). The 310 T>C mutation is in the hypervariable II region of the 

mitochondrial genome. This control region of the genome is heavily concentrated with 
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polymorphisms that have inconclusive affects, but the 310 T>C mutation has been implicated in 

malignant melanoma, colorectal cancer, and breast cancer (17, 25, 89). The presence of this 

mutation is detected in these types of cancer patients at a statistically higher amount when 

compared to control populations. This mutation is expected to hinder replication or transcription 

of the mitochondrial genome, which could elevate ROS production (89). It is unclear how this 

mutation might affect Leigh’s disease. 

Another possible variant of interest is 12358 A>G, which is in the ND5 gene coding for 

subunit five of NADH dehydrogenase. This mutation  is present in a statistically significant 

higher number of sporadic Creutzfeldt-Jakob disease cases compared to controls. The mutation is 

reported to be correlated with altered brain pH values. It is hypothesized that this could be 

caused by a lack of coupling in complex I of the electron transport chain. This variant has not 

previously been implicated in Leigh’s disease. 

Our research was focused on the 8993 T>G mutation in the ATP6 gene, however, many 

Leigh’s disease cases are caused by mutations in genes that code for subunits of complex I. 

Next-gen sequencing of the FB1 Leigh’s patient cell line revealed ten sequence variants in genes 

that code for subunits of complex I. None of these variants have previously been mentioned as 

causes of Leigh’s disease, but it is not inconceivable that they could in some way contribute to 

the disease state. Cross referencing these variants with other Leigh’s patient sequencing results 

could allow for the determination of their importance to Leigh’s disease.  

  Our results have opened up a few avenues for future areas of research. Because Leigh’s 

disease has more drastic affects on neural cells and myocytes, a possible area of research would 

be to directly differentiate our iPSC line into these cell types. Specific transcription factors have 

been used to direct differentiation into neural cell types (40). Direct differentiation to 
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cardiomyocytes has been difficult in humans, but mouse embryonic fibroblasts have been 

directed into cardiomyocytes (18). Differentiation strategies are constantly improving. 

Sequencing studies could be performed again to ensure the 8993 T>G mutation is still intact.  

In addition to sequencing for heteroplasmies, another interesting area of research could 

be connecting the level of mutation burden to the degree of mitochondria dysfunction. Select 

biomarkers for mitochondrial dysfunction such as carnitine, pyruvic acid, and lactic acid have 

been used in the past to assess mitochondrial respiration. However, a technology has been 

developed that allows mitochondrial respiration and glycolysis to be measured simultaneously in 

live cells. The Seahorse XF(e)24 Extracellular Flux Analyzer can measure the oxygen 

consumption rate and lactic acid production rate, which are very accurate measures of 

mitochondrial function. It would be interesting to see if the level of mutation burden 

quantitatively altered these measurements (44).       
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Heteroplasmic 
Variant 

Site  
Locus FB1 fib 

% 
FB1 p9 

% 
FB1 p15 

% 
FB1 p21 

% 
FB1 Diff 

% 
MitoMap 
Reference 

72 G>A HVII 86 100 100 99 97 T 
149 T>C HVII 90 100 100 100 100 T 
*310 T>C HVII 20 18 28 25 18 T 
1720 G>A RNR2 87 97 98 99 96 C 
2707 G>A RNR2 88 100 100 100 96 A 
4793 A>G ND2 83 97 99 100 85 A 
*5231 G>A ND2 20 0 0 0 1 G 
*5417 G>A ND2 21 0 0 1 0 G 
7028 T>C COX1 67 99 99 100 94 C 

*10325 G>A ND3 1 0 0 0 18 G 
11719 A>G ND4 82 100 98 100 99 G 
*11914 G>A ND4 28 0 0 0 0 G 
*12358 A>G ND5 18 0 1 0 1 A 
*12372 G>A ND5 21 0 1 0 0 G 
12705 T>C  ND5 87 99 99 99 98 C 
12879 T>C ND5 10 0 0 1 0 T 
14766 T>C CYTB 81 100 100 99 86 C 
15067 T>C CYTB 11 0 0 0 0 T 
16172 C>T HVI 89 100 99 100 100 T 
16184 C>A HVI 83 84 98 99 80 C 
16257 C>T HVI 86 99 99 100 97 C 
16295 C>T HVI 88 99 98 100 95 C 

 

Table 4: Other sites of heteroplasmic variants in Leigh’s patient cell line. 

The extracted mtDNA was Next-gen sequenced for whole exome. The sequencing results were 

compiled, and the results were analyzed with the Integrative Genomics Viewer. This allows us to 

view heteroplasmic sequences with an exact measure of the variants. In addition to the 8993 site, 

the sequencing results yielded a number of other variants when compared to the human genome 

19 reference. Yellow highlighted variant sites indicate that the control samples contained this 

variant with similar percentages. Green highlighted variant sites indicate that the control samples 

contained this variant, however, the percentages of the variant in the control samples were much 
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lower than the percentages in the FB1 samples. The MitoMap nucleotide was included to 

provided a secondary reference sequence. The variant calling files filter settings can be seen in 

Appendix vi. 
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Heteroplasmic 
Variant 

Site  
Locus 

FB1 
fib  
% 

FB1 
p9 
% 

FB1 
p15 
% 

FB1 
p21 
% 

FB1 
Diff 
% 

BJ  
fib  
% 

BJ 
iPSC 

% 

BJ  
Diff  
% 

MitoMap 
Reference 

149 T>C HVII 90 100 100 100 100 99 100 100 T 
12705 T>C  ND5 87 99 99 99 98 99 100 100 C 
16172 C>T HVI 89 100 99 100 100 100 100 100 T 
16184 C>A HVI 83 84 98 99 80 97 88 91 C 

 

Table 5: Heteroplasmic variants in Leigh’s patient cell line similar in BJ control. 

The extracted mtDNA was Next-gen sequenced for whole exome. The sequencing results were 

compiled, and the results were analyzed with the Integrative Genomics Viewer. These four sites 

are the same yellow highlighted sites from Table 4. Because the BJ control samples contain these 

variants at similar quantities, it is likely that these are natural variants that do not contribute to 

Leigh’s disease. Cross referencing the variants with the MitoMap reference revealed that the 

12705 and 16172 sequences are considered normal polymorphisms. The variant calling files 

filter settings can be seen in Appendix vi. 
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Heteroplasmic 
Variant 

Site  
Locus 

FB1 
fib  
% 

FB1  
p9  
% 

FB1  
p15  
% 

FB1  
p21  
% 

FB1 
Diff  
% 

BJ 
Fib 
% 

BJ  
iPSC 

% 

BJ 
Diff 
% 

MitoMap 
Reference 

2707 G>A RNR2 88 100 100 100 96 0 1 27 A 
14766 T>C CYTB 81 100 100 99 86 2 0 18 C 

 

Table 6: Heteroplasmic variants in Leigh’s patient cell line different in BJ control. 

The extracted mtDNA was Next-gen sequenced for whole exome. The sequencing results were 

compiled, and the results were analyzed with the Integrative Genomics Viewer. These sites are 

the same green highlighted sites from Table 4. Cross referencing the variants with the MitoMap 

reference revealed that both 2707 and 14766 are considered normal polymorphisms. The variant 

calling files filter settings can be seen in Appendix vi.   
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Sequence Variant Associated Haplogroup(s) 
4793 H7 
7028 Pre-HV, HV, N, R, U 
11719 N, R, U, HV 
12372 U 
12705 N 
12879 U1 
14766 Pre-HV, N, R, U 
16172 U6 
16257 T3 

 

Table 7: Leigh’s patient sequence variant and associated haplogroup. 

The extracted mtDNA was Next-gen sequenced for whole exome. The sequencing results were 

compiled, and the results were analyzed with the Integrative Genomics Viewer. A number of the 

detected variants are associated with defined haplogroups. These haplogroups are associated with 

people of European descent, which makes sense as the Leigh’s patient donor is from Europe. It is 

unclear as to whether these specific haplogroups are connected to Leigh’s disease.  
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Heteroplasmic 
Variant 

Site  
Locus FB1 fib 

% 
FB1 p9 

% 
FB1 p15 

% 
FB1 p21 

% 
FB1 Diff 

% 
MitoMap 
Reference 

310 T>C HVII 20 18 28 25 18 T 
5231 G>A ND2 20 0 0 0 1 G 
5417 G>A ND2 21 0 0 1 0 G 
10325 G>A ND3 1 0 0 0 18 G 
11914 G>A ND4 28 0 0 0 0 G 
12358 A>G ND5 18 0 1 0 1 A 
12372 G>A ND5 21 0 1 0 0 G 

 

Table 8: Heteroplasmic variants possibly implicated in Leigh’s disease.  

The extracted mtDNA was subjected to whole exome next-gen sequencing. The sequencing 

results were compiled, and the results were analyzed with the Integrative Genomics Viewer. This 

table includes variants that were not ruled out by virtue of being consistent with the BJ control, 

MitoMap reference, or a known haplogroup. Sites 310 and 12358 are associated with other 

diseases, but it is unknown as to whether these variants or the any of the others contribute to 

Leigh’s disease. The variant calling files filter settings can be seen in Appendix vi. 
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APPENDIX 

 

Appendix i: DNA mini kit protocol and mini-preparation ATP-Dependent DNase protocol 

 

Mini kit protocol 

1. Centrifuge thawed cell pellet for 5 minutes at 300 x g in a 1.5mL microcentrifuge tube. 

2. Remove the supernatant completely and discard without disturbing the cell pellet. 

3. Resuspend the cell pellet in 200 µL of phosphate buffered saline (PBS). 

4. Add 20 µL of proteinase K. 

5. Add 200 µL of buffer AL. Mix by pulse-vortexing for 15 seconds. 

6. Incubate solution at 56°C for 10 minutes 

7. Centrifuge to remove condensation from the lid. 

8. Add 200 µL of 100% ethanol, and pulse-vortex for 15 seconds. Centrifuge to remove 

drops from the lid. 

9. Apply mixture to QIAamp Mini spin column, and centrifuge at 6,000 x g for 1 minute.  

10. Discard the filtrate, and place the spin column in a new collecting tube. 

11. Add 500 µL of AW1 buffer to the spin column, and centrifuge at 6,000 x g for 1 minute.  

12. Discard the filtrate, and place the spin column in a new collecting tube. 

13. Add 500 µL of AW2 buffer to the spin column, and centrifuge at full speed 

(approximately 20,000 x g) for 3 minutes. 

14. Discard the filtrate, and centrifuge again at full speed for 1 minute. 

15. Place the spin column in a clean 1.5 mL microcentrifuge tube, and add 80 µL of nuclease 

free water. Incubate for 5 minutes. 
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16. Elute by centrifuging at 6,000 x g for 1 min.  

 

Mini-preparation ATP-Dependent DNase protocol 

Reaction Mixture  Amount (µL) 

Nuclease free H2O with total DNA 42 
25 mM ATP  2 

10X Reaction Buffer 5 
Plasmid-Safe DNase (10U) 1 

Total volume  50 
 

1. Incubate the reaction mixture for 30 minutes at 37°C. 

2. Inactivate DNase by incubating at 70°C.  

 

 

Appendix ii: UltraClean 15 DNA Purification protocol and gel protocols 

 

UltraClean 15 DNA purification protocol 

Purifying DNA from a solution 

1. Determine DNA solution volume (51 µL). 

2. Add 3 volumes of ULTRA SALT (153 µL) and mix well. 

3. Resuspend ULTRA BIND by vortexing for 1 minute or until homogenous. 

4. Add ULTRA BIND. 5 µL plus 1 µL per µg of DNA you expect to recover (6 µL). 

5. Incubate for 5 minutes at room temperature. Flick the tube, or invert the tube several time 

to insure proper mixing. 

6. Centrifuge for 5 seconds, and discard the supernatant. 
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7. Let the pellet soak in 1 ml of ULTRA WASH/ETHANOL for 5 minutes. Do not vortex 

DNA larger than 15 kb to avoid shearling.  

8. Centrifuge for 5 seconds, and discard supernatant.  

9. Centrifuge for 5 seconds again, and remove all traces of the ULTRA WASH/ETHANOL. 

10. Resuspend the pellet in 30 µL of nuclease free H2O by gently pipetting.  

11. Incubate for 5 minutes at room temperature. 

12. Centrifuge for 1 minute. 

13. Remove supernatant and transfer to a new clean 1.5 mL microcentrifuge tube. 

 

Purifying DNA from a TBE buffered agarose gel 

1. Determine weight of agarose gel band slice. 

2. Add ½ volume of ULTRA MELT and 4.5 volumes of ULTRA SALT, and mix well. 

3. Incubate at 55°C for approximately 5 minutes, or until gel is completely melted. 

4. Follow steps 3-13 from the above protocol on purifying DNA from solution. 

 

0.8% agarose gel preparation  

1. Dissolve 1.4g of ultra-pure agarose in 175 ml of TBE buffer. Heat until agarose dissolves 

completely into solution. Let the solution cool to approximately 50°C. 

2. Add 10.5 µL of ethidium bromide and stir under exhaust hood. 

3. Pour the gel solution into a gel with the appropriate size gel comb in place. Let the 

solution cool. 

4. Once the gel has solidified, pull the comb out without breaking the gel. 
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5. Mix 20 µL of cleaned up mtDNA with 3.33 µL of loading dye, and load the mix into the 

wells. 

6. Load an appropriate gel ladder. Run the gel at 30 V for 8-10 hours. Low voltage run to 

avoid smearing the large 16 kb band. 

7. Use the gel dock reader to extract the band. 

 

2.0% agarose gel preparation 

1. Dissolve 2g of ultra-pure agarose in 100 ml of TBE buffer. Heat until agarose dissolves 

completely into solution. Let the solution cool to approximately 50°C. 

2. Add 6 µL of ethidium bromide and stir under exhaust hood. 

3. Pour the gel solution into a gel with the appropriate size gel comb in place. Let the 

solution cool. 

4. Once the gel has solidified, pull the comb out without breaking the gel. 

5. Mix 10 µL of PCR amplified product with 1.67 µL of loading dye, and load the mix into 

the wells. 

6. Load an appropriate gel ladder. Run the gel at 80 V for 1.5 hours.  

7. Use the gel dock reader to record the size of the PCR products. 
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0.8% agarose gel results 

 

 

 

λ EcoT14i was used as a reference (Clontech, Mountain View, CA, USA) 
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2.0 % agarose gel results 

 

 

Hyperladder ii was used as a reference (Bioline, Taunton, MA, USA). 
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Appendix iii: NanoDrop results  

 

NanoDrop concentration results after gel extraction 

Sample Name Concentration (ng/µL) 
H9 p54 73.1 

BJ FB p13 58.7 
BJ iPSC p21 281.1 
BJ Diff p24 35.6 

FB1 p7 125.1 
FB1 iPSC p9 79.0 
FB1 iPSC p15 24.6 
FB1 iPSC p21 44.1 
FB1 Diff p24 31.7 

 

 

 

 

NanoDrop concentration results after PCR amplification 

Sample Name Concentration (ng/µL) 
H9 p54 88.3 

BJ FB p13 62.5 
BJ iPSC p21 62.7 
BJ Diff p24 35.3 

FB1 p7 128.8 
FB1 iPSC p9 104.7 
FB1 iPSC p15 38.6 
FB1 iPSC p21 34.3 
FB1 Diff p24 62.5 
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Appendix iv: PCR protocol and cycle information 

 

PCR Reaction Setup  Stock 
Conc. 

 Volume per 
50 µl Rxn  

Final 
Conc. 

10x PCR buffer 10 5 1 
dNTP mixture 2.5 4 0.2 

10uM Forward primer 10 1 0.2 
10uM Reverse primer 10 1 0.2 

Takara Taq 250 0.25 1.25 
dd H20   38.25   

0.5 ng/50µl DNA  1 0.5 7.5 
Total volume   50   

 

 

Cycling Steps Temperatures 
and Times Cycles 

Denaturation 30 sec at 94°C 
25  Annealing 30 sec at 55°C 

Extension 30 sec at 72°C 

Final Extension 2 min at 72°C 1 
 

 

  



 

59 

Back To Table of Contents 

Appendix v: Cycle sequencing reaction and precipitation protocol 

Cycle sequencing reaction for standard quarter reaction 

Sequencing Reaction Setup  Amount 

Big Dye 2 µl 

Primer X µl 3.2 pmol 

Sequencing buff (5X)  1 µl 

dd H20 X µl 

DNA  X µl 60-100 ng 

Total volume 10  
 

Precipitation Protocol 

1. Prepare 3 µl sodium acetate anhydrous (3M pH 4.6), 62.5 µl Ethanol (100 %), 14.5 µl 

water. 

2. Add 10 µl of water to make the sequencing samples up to 20 µl. 

3. Mix the sodium acetate anhydrous and ethanol with each sequencing sample. 

4. Centrifuge for 30 minutes. 

5. Remove the supernatant and add 250 µl of 70% ethanol. 

6. Centrifuge for 3-5 minutes. 

7. Remove supernatant and repeat 70% ethanol wash. 

8. Remove supernatant completely. 

9. Dry samples to remove ethanol. 
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Appendix vi: Variant Calling Files filter settings 

In order to be included, sequences must be: 

1. SNP posterior probability higher than 0.95 

2. Number of variant reads greater than 3 

3. Variant read ratio greater than 0.1 

4. All variants are in a single strand direction 

5. Total coverage must be greater than 30 

6. Total coverage must be less than 100,000 
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