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Abstract  

 

EFFECTS OF OLFACTORY CUES ON THE MOVEMENT BEHAVIOR OF THE 

PREDATORY BEETLE CALOSOMA WILCOXI 

 

By Kennesha Myrick-Bragg, M.S.  

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science, 

at Virginia Commonwealth University.  

 

Virginia Commonwealth University, 2016.   

 

Major Director: Derek M Johnson, Assistant Professor, Department of Biology 

 

Arthropod predators often use prey and conspecific cues to make foraging decisions.  

Calosoma wilcoxi (Leconte) is a voracious predatory beetle that specializes on lepidopteran 

larvae often found in the forest canopy, including the fall cankerworm.  This study tested the 

hypothesis that C. wilcoxi uses olfactory cues to detect prey and conspecifics.  A Y-tube 

olfactometer was used to test attractiveness to larvae, larval frass, conspecific cues, and 

volatiles from herbivore-damaged white oak leaves.  C. wilcoxi did not preferentially choose 

the treatment in any of the experiments.  There was no difference in mean time spent in the 

treatment or control arm for any of the cues assayed.  The time to choose the treatment was 

significantly shorter in the female conspecific experiment only.  I found no evidence that C. 

wilcoxi uses olfaction to locate prey; however, C. wilcoxi is attracted to conspecifics.  C. 

wilcoxi may use conspecific cues to make informed foraging decisions.  
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Introduction 

Predators face the challenge of searching for prey that vary in abundance both spatially and 

temporally. Using environmental information to locate prey can help mitigate those challenges 

(Dill 1983, Mitani 2004) and can ultimately increase fitness (Danchin et al. 2004, Page and Ryan 

2005, Kielty et al. 1996).  The use of environmental cues has been observed in a broad range of 

predators, including barn owls, beetles, and spiders (Blamires et al. 2011, Page and Ryan 2005).  

These cues could be tactile, visual, acoustic, gustatory, olfactory, or some combination of these 

(Catania et al. 2008, Olberg et al. 2000, Payne 1971, Hansen 1983).  In arthropod systems, location 

of feeding sites is commonly influenced by olfactory or visual cues from prey, resources utilized 

by prey, or other conspecifics (Hassel and Southwood 1978, Sternlicht 1973, Coolen et al. 2005).  

In tri-trophic systems composed of plants, herbivores, and their predators, both constitutive 

and induced defense mechanisms are employed by many plant species (Amo et al. 2013).  Plants 

have evolved numerous types of responses to herbivore attack; these include decreasing 

palatability, intoxication, and increased emission of plant volatiles (Amo et al. 2013, Pare and 

Tumlinson 1999).  Plants typically release small amounts of volatiles, however when some plants 

are attacked by herbivores, the diversity of volatiles and rate of release increases.  The release of 

plant volatiles can attract parasitoids and arthropod predators (Pare and Tumlinson 1999).  Pearse 

et al. (2012) found evidence that a number of oak species, produce altered volatile profiles when 

mechanically damaged to simulate herbivory.  Volatiles produced in the greatest quantities were 

those that have been shown to be highly bioactive in attraction of natural enemies (Pearse et al. 

2012, Rose et al. 1998).  Staudt and Lhoutellier (2007) investigated the effects of herbivore feeding 

on volatile production from holm oak trees; herbivore feeding induced new volatile emission at 

increased rates.  In a recent study, the carabid beetle Pterostichus melanarius was shown to be 
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attracted to the volatile producing damaged leaves of prey host plants (Oster et al. 2014).  P. 

melanarius was not attracted to the undamaged leaves, which did not emit any volatile organic 

compounds.  This study demonstrated the importance of volatile production in predator attraction. 

Natural enemies of several lepidopteran species use olfactory cues of larval frass to locate 

prey (Reddy et al. 2002, McCall et al. 1993).  During lepidopteran outbreaks, larvae produce high 

volumes of frass, which rains onto the substrate below infested trees (Wesolowski and Rowinski 

2005, Staudt and Lhoutellier 2007).  Large frass inputs resulting from outbreaks of defoliating 

insects can impact plant-herbivore-predator trophic interactions (Barber and Marquis 2009, Lovett 

et al. 2002).  Dibrachys cavus, a larval parasitoid, uses frass to discriminate between potential 

hosts (Chuche et al. 2006).  To my knowledge, the role of larval frass in prey finding has never 

been studied in a forest defoliator system.   

The use of social information has largely been attributed to colonial insects, however, 

recent studies demonstrate the benefits of social information in solitary insects (Coolen et al. 2005, 

Chittka and Leadbeater 2005).  Social information can reduce the risk of predation, increase mating 

success, and reduce the risk of consuming unsuitable food (Danchin 2004, Jones et al. 2013).  

When predators are mobile and prey are relatively immobile, spatial distribution of predator and 

prey are expected to be positively correlated (Sih 1984).  In a study that investigated wasp 

attraction to conspecifics and food, attraction was found to be density-dependent (D’adamo and 

Lozada 2005).  Foraging wasps were more attracted to locations with greater numbers of 

conspecifics.  The results of this study suggest that aggregations of conspecifics are indicative of 

a plentiful quality food source, thus, active predators may exploit conspecific pheromones to locate 

prey. 
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Beetles (Order Coleoptera) are the most diverse insect taxa, consisting of about 400,000 

species worldwide.  Beetles populate all major habitats, excluding marine and polar regions 

(Banerjee 2014).  Many ground beetle species (Family Carabidae) are voracious predators, 

demonstrating an active foraging strategy.  Active foragers have wide ranges and are frequently 

searching the environment for prey (Butler 2005).  Although carabids are generally characterized 

by their use of random search patterns, a previous study has shown that these ground beetles use 

environmental cues to detect prey (Lovei and Sunderland 1996).  Several beetle species are such 

successful active predators that they are used in integrated pest management (IPM) (Banerjee 

2014).  Coccinellid beetles are attracted to the honey dew and plant volatiles produced by aphids 

during feeding (Ninkovec et al. 2001).  Both parasitoids and predators of several arthropod species 

have been shown to use the sex pheromones of their hosts to locate prey (Hassel and Southwood 

1978, Symondson et al. 2002, Sternlicht 1973).  Clerid beetles use the pheromones of their bark 

beetle prey to locate feeding patches (Hansen 1983). Coccinellids, along with other beneficial 

insects are used in pest management worldwide to regulate pest populations.  Regulation of insect 

pest species through IPM is critical to sustainable, profitable, and productive agricultural practices 

(Koul and Cuperus 2007).  Understanding the underlying mechanisms of how predators locate 

prey can help managers make informed decisions in complex systems. 

The objective of this study was to evaluate the ability of the ground beetle Calosoma 

wilcoxi (Carabidae) to detect olfactory cues associated with a lepidopteran larva, Alsophila 

pometeria Harris, commonly known as the fall cankerworm (FCW), a host plant of the FCW, and 

conspecifics.  I expected that C. wilcoxi would detect olfactory cues associated with larval frass, 

herbivore damaged leaves, larvae, and conspecifics, which would be evidenced by the beetles 

moving toward the odor in a laboratory setting. 
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Study System 

Calosoma wilcoxi (LeConte), a North American ground beetle in the family Carabidae, is 

an avid predator that specializes on lepidopteran larvae often found in the forest canopy (Burgess 

and Collins 1917, Allen 1977, Evans 2014).  C. wilcoxi can be found in Canada, and the eastern, 

southern, and central United States (Evans 2014).  Little is known about the natural history of 

Calosoma wilcoxi, but members of the genus Calosoma generally emerge from hibernation from 

early spring to early summer.  It is believed that C. wilcoxi adults feed for several weeks on the 

larvae of various species of Lepidoptera, then females lay eggs in the soil.  Eggs hatch 

approximately one week later and larvae feed ravenously on lepidopteran larvae and pupae.  

Larvae enter pupation after approximately 28 days and emerge later as adults.  Adults live up to 3 

years (Burgess and Collins 1917).   

C. wilcoxi adults have been observed climbing trees and co-occurring on branches while 

feeding on FCW (Derek Johnson, pers. comm.).  The FCW is an herbivorous forest lepidopteran 

(Geometridae) that is native to eastern North America (Schneider 1980).  In 2012-14, populations 

of FCW caused considerable forest defoliation in central Virginia, showing a preference for mature 

Quercus alba (white oak) stands. Oaks are both economically and ecologically valuable, having 

important uses in construction and playing a role in promoting biodiversity (Asaro and Chamberlin 

2015).  Oaks provide habitat and food for over 200 species of herbivores, as well as several species 

of insectivorous birds, rodents, ungulates, and bears (Wold and Marquis 1997, McShea et al. 

2007).  Considering the implications of the effects of insect outbreaks, understanding the factors 

that influence predator movement around the forest may prove both economically and ecologically 

beneficial.   
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Materials & Methods 

Behavioral Assays 

I tested orientation responses of C. wilcoxi to multiple FCW and white oak olfactory cues 

in six treatments: damaged leaves, frass, larvae, female beetles, male and female beetles together, 

and a mixed factor treatment.  Damaged leaves, frass, and female beetle experiments were 

conducted in 2015.  All six treatments were tested in 2016.  Damaged white oak leaves had been 

fed on by FCW caterpillars for a period of 1-2 hours.  In the experiments, I used a damaged leaf 

approximately 20cm2 in area.  The frass treatment used approximately 0.5g of frass collected from 

FCW rearing cups during a 24-hour period.  In the larvae treatment, caterpillars were removed 

from leaves 1 hour prior to use in treatment to decrease the likelihood of frass production during 

trials.  I also tested attraction to conspecifics.  The female beetle treatment consisted of 2 females 

and the mixed sex treatment consisted of 1 male and 1 female beetle.  Only male beetles were used 

in the Y-tube for the female experiment.  Caterpillars, damaged leaves, and frass were also 

combined in the mixed factor treatment.    

Olfactometer Design 

I conducted the behavioral assays using a Y-tube olfactometer based on the design of Oster 

et al. (2014). There were differences in materials and methods between years 1 and 2.  In 2015, 

the Y-tube was constructed using three plastic tubes, inner diameter (ID) 50.8mm, that were 

connected using a Y PVC joint (120° angle). In 2016, the Y-tube was a Pyrex Y-tube, ID 32mm, 

having two arms (90° angle), each connected to an Erlenmeyer flask using Vinyl-Flex tubing. We 

used glass Y-tubes in 2016 to increase visibility, as it was difficult to observe entry into an arm 

with the PVC joint in the previous year.  Each Erlenmeyer flask was then connected to a 1.2 LPM 

flowmeter (Cole-Parmer), which was in turn connected to another Erlenmeyer flask containing a 
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water and carbon solution for purifying the air.  The Erlenmeyer flasks containing the solution 

were each connected to 115V air pumps (Tetra) using airline tubing.  The air pumps were used to 

propel air through the first flasks for air purification, then through the treatment/control flasks, and 

finally to the two arms of the Y-tube.  A treatment stimulus was placed in one flask while the other 

flask acted as the control.  The control for each treatment was odorless air.  All stimulants were 

placed in sealed flasks at least 30 minutes prior to experiments to ensure concentration of cues.  

All tubing, with the exception of that connected to the arms of the Y-tube and the air pump, were 

connected to stainless steel dip tubes using metal cable ties and fit into one of two openings in a 

rubber stopper; one opening was fit with a dip tube that allowed inflow of air while the other 

opening allowed an outflow of air.  The arms of the Y-tube and the opening of the air pump were 

closed with a rubber stopper having only one opening for air flow through the dip tubing. Y-tubes 

were oriented at an upward angle to mimic the slope of a tree trunk.  To improve traction in 2015, 

texture was added to plastic tubing using sand paper, similarly, in 2016, traction was provided 

using tread strips.  I used vapor trail testing to visualize airflow through the apparatus and ensure 

that there was no mixing of air beyond the juncture of the Y-tube.  The vapor trail was produced 

by placing solid CO2 (dry ice) in flasks with water and turning airflow on.  Airflow was adjusted 

to 0.25 LPM at which rate there was no mixing beyond the juncture. 

All trials were conducted in a dark room to mimic the beetle’s natural foraging period. A 

lamp containing a red light was placed near the juncture of the Y-tube to eliminate effects of 

external light that may be directional and influence the beetle to walk in the direction of the Y-

tube.  The red light was used because C. wilcoxi is nocturnal and insects are unable to see in the 

red color spectrum. All beetles were sexed prior to the experiment.  Each trial offered a choice 

between one of the six treatment stimuli and a control.  The Y-tube was cleaned between each trial 



8 
 

with ethanol and allowed to dry completely before use in subsequent trials.  Treatment arms were 

randomly assigned in each trial to control for bias.  In 2015, a beetle was placed in a small plastic 

cup and allowed a 2-minute acclimation period.  Prior to release, the airflow was turned on to 0.25 

LPM in each arm.  After 2 minutes the beetle was introduced into the Y-tube via an elbow PVC 

joint.  In 2016, beetles were not allowed an acclimation period, due to beetles repeatedly flipping 

on their elytra in the holding cup observed in 2015.  In 2015 beetles were allowed 15 minutes to 

make a choice; first choice (treatment or control) and time to choose was recorded. In 2016, 

because the majority of beetles in the previous year that made a choice made it within 5 minutes, 

beetles were allowed 5 minutes to make a choice; I recorded first choice and time spent in the 

treatment and control arms during each trial.  Additionally, in 2016, beetle elytra were marked in 

order to record individual responses.  A choice was recorded upon entry into an arm.  If beetles 

did not move beyond the Y-juncture, response was recorded as no choice. 

Insects 

Adult beetles and FCW larvae were collected April-May of 2015 and 2016 from Rockwood 

Park (37.4526N, 77.5800W), Chesterfield County, VA, Forest Hill Park (37.5175N, 77.4722W) 

and Bryan Park (37.5889N, 77.4777W), Richmond VA, the Virginia Commonwealth University 

Rice Rivers Center (37.3306N, 77.2085W), Charles City County, VA, and one residential property 

(37.5285N, 77.5743W) in Bon-Air, VA.  Larvae were reared on white oak leaves in paper 

containers with plastic lids.  Beetles were housed in plastic containers that were filled with 

approximately 1 inch of organic garden soil.  Beetles were kept on an 11:13 L:D photoperiod and 

fed FCW larvae every 48 hours.  In 2016, previously infested white oak leaves were introduced 

into the containers during feeding sessions to encourage feeding associations.  This practice was 

not included in the 2015 rearing protocol.  Additionally, in 2016, Y-tubes were left in beetle 
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containers 24 hours prior to trials to desensitize beetles to tubes.  This system is ephemeral and as 

such insect collection and behavioral assays were conducted within 3-4 weeks.   

Statistical Analyses 

I performed a one-tailed exact binomial test to determine significance in preference for 

treatment or control, analyzing the proportion of beetles that chose treatment for each experiment.  

First choice data from the frass, damaged leaf, and female treatments in 2015 and 2016 were 

combined because I found no difference in responses using the different mechanisms and 

protocols.  A one-tailed paired t-test was used to determine whether the mean time spent in the 

treatment arm was significantly greater than the mean time spent in the control arm of the Y-tube.  

This test was used for each experiment except the mixed factor and mixed sex experiments.  

Because t-test assumptions were not met, a one-tailed Mann-Whitney test was used in the mixed 

factor and mixed sex experiments to test for differences in the mean time spent in treatment and 

control arms, respectively.  The individual beetle was the unit of measure, thus, time was averaged 

for each individual beetle prior to analysis for all experiments.  I used a generalized linear model 

to test for differences in the time to choose treatment or control in the frass, damaged leaf, and 

treatment experiments from 2015.  A generalized linear model was used to test for the effect of 

sex on proportion of beetles choosing the treatment in each experiment.  All analyses were run 

using the software R version 3.1.1. 

Results 

Beetles did not preferentially chose the stimulus in the caterpillar (p=0.43, 50 trials: 15 

treatment, 13 control, 22 no choice), mixed factor (p=0.30, 20 trials: 7 treatment, 6 control, 7 no 

choice), damaged leaf (p=0.15, 90 trials: 27 treatment, 19 control, 44 no choice), female (p=0.50, 

73 trials: 23 treatment, 22 control, 28 no choice), frass (p=0.80, 66 trials: 15 treatment, 19 control, 
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32 no choice), or mixed sex (p=0.50, 22 trials: 9 treatment, 6 control, 7 no choice) experiments 

(Fig. 1).  Beetle responses varied among trials. Some beetles walked up the Y-tube in a behavior 

similar to natural foraging movement, others moved rapidly in an erratic fashion, while others 

moved very little or not at all from the release point. Beetles did not spend more time in either of 

the experimental arms in the caterpillar (p=0.60, t11=-0.25), mixed factor (p=0.15, V=32), damaged 

leaf (p=0.63, t11=0.3306), female (p=0.79, t7=-0.87), frass (p=0.25, t11=0.69), or mixed sex 

(p=0.13, V=67) experiments (Fig. 2).  Beetles that moved beyond the Y juncture often entered an 

arm, moved to the terminal end, and then returned to investigate the other arm.  Beetles that first 

choose the stimulus in the female experiment (p<0.001) chose considerably faster than those that 

first chose the control, but this was not reflected in the frass (p=0.469) and damaged leaf (p=0.599) 

experiments (Fig 3).  Sex of the foraging beetle had no effect on the proportion of beetles choosing 

the treatment in any of the experiments (Fig. 4, Table 1).   

Discussion 

Insect predators commonly use olfactory cues to locate prey (Kielty et al. 1996). Aphids, 

ants, and honeybees release alarm pheromones when exposed to predator attack (Verheggen et al. 

2010), and trail pheromones have been identified in trail-following lepidopteran larvae. In this 

study, I found no evidence that C. wilcoxi uses olfaction to locate FCW caterpillars.  This is 

consistent with the idea that larval pheromones are not typically expected in primitively social 

lepidopteran larvae (Capinera 1980).  Larval pheromones may be advantagous for colonial insects 

where aggregation proves beneficial to the colony, but for non-colonial insects like the FCW, the 

cost of emitting pheromones may outweight the benefits (Verheggen et al. 2010, Capinera 1980); 

thus, unintentional olfactory cues are likely to be fewer and in lower concentrations in solitary 

species.  
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Host plant volatiles attract predators and parasitoids to encourage predation on herbivores 

(Pare and Tomlinson 1999); however, in this study there was no attraction to damaged leaves, nor 

to the combination of leaves and herbivores.  Past olfaction studies have focused primarily on 

agriculturally important plant species.  To my knowledge, there are no previous studies that 

investigated the relationship between volatiles and natural enemies of insect herbivores in oak 

species.  Kielty et al. (1996) found that three species of carabid were attracted to aphid alarm 

pheromone, springtail, and plant odors.  Maeda and Takabayashi (2001) showed a positive 

relationship between predator attractiveness and the magnitude of volatiles produced; volatile 

amount was similarly related to density of herbivores.  There may be some distinct density of FCW 

feeding at which C.wilcoxi responds to volatiles.  Whether the concentrations of volatiles in this 

study were too low to illicit a response from C. wilcoxi is unclear because there is a lack of 

information on olfaction sensitivity in C. wilcoxi.  

In 2015 and 2016 C. wilcoxi adults emerged shortly after FCW larvae were observed 

feeding on leaves, and were undetectable soon after FCW larvae dropped to the soil to pupate 

(Personal Observation).  Upon hatching, C. wilcoxi larvae feed on lepidopteran pupae (Burgess 

and Collins 1917). This  suggests that the FCW and C. wilcoxi life stages are closely synchronized.  

Given this relationship between life cycles, it is reasonable to infer that C. wilcoxi may be 

specializing on the FCW.  In the mixed factor experiment, I expected that caterpillar regurgitant 

would stimulate a desired response from C. wilcoxi.  Caterpillar regurgitant may be exploited by 

predators of insect larvae, as regurgitant triggers the production of green leaf volatiles associated 

with predator attraction.  It is consequently the interaction of the regurgitant with the damaged 

plant that indirectly illicits the predator response (Stowe et al. 1995).  The FCW is known to feed 

on several hundred species of trees and shrubs (Asaro and Chamberlin 2015).  If C. wilcoxi is 
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specializing on the FCW, volatiles associated with white oak may not be important, because the 

FCW is a generalist herbivore feeding on a wide range of woody species.   

Natural enemies that target the larval stage of insect prey are often attracted to the frass of 

prey when frass is located close to developing larvae (Chuche et al. 2006, McCall 1993). 

Microplitis croceipes (Cresson), a parasitoid wasp, is attracted to the frass of several lepidopteran 

larvae that feed on cowpea and cotton plants (McCall 1993). Similarly, green lacewings use larval 

frass of the diamondback moth, whose host plant is cabbage, to detect larvae (Reddy et al. 2002).  

Cabbage, cotton, and cowpea foliage grow close to the soil, thus, the prey remain in close 

proximity to their frass. In this study, I found no evidence that C.wilcoxi is attracted to olfactory 

cues emitted by larval frass.  Fall cankerworms feed in the forest canopy and frass falls to the forest 

floor, far from larvae feeding sites; thus, frass is less likely to be a reliable cue for locating fall 

cankerworm larvae. Moreover, C. wilcoxi is brightly colored green, making this species  

conspicuous to predators on the ground. Thus, it may be advantageous for C. wilcoxi to quickly 

ascend into and remain in the forest canopy, moving from tree to tree in search of prey, providing 

little opportunity to encounter FCW frass.   

In both the female and mixed sex experiments, beetles did not preferentially choose the 

stimulus over the control.  This response was the most unexpected because pheromones play a 

vital role in sexual communication in many arthropod species (Witzgall et al. 2010). However, the 

time it took a male beetle to choose a female beetle was significantly faster than time to choose 

the control.  This is evidence that some males are responding to female sex pheromones. The 

combination of these two results may be due to some females not releasing pheromones in the 

choice trials.  Beetles of the genus Calosoma can live for 3 or more years.  As egg production is 

related to food supply, females may forgo mating in one year, if conditions are not favorable (Lövei 
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and Sunderland 1996).  The laboratory feeding regime and living conditions may have affected 

female pheromone emission. 

If C. wilcoxi is not responding to olfactory cues, then what is the mechanism of prey 

location? Carabids may rely on visual, tactile, or gustatory cues (Lövei and Sunderland 1996, 

Negro et al. 2008).  During feeding sessions, beetles were observed passing larvae in their 

immediate vicinity many times without attempting to subdue them.  These observations, along 

with what is known about the natural history of this nocturnal organism, suggest that vision is of 

minimal importance in prey detection for this species.  Specifically, many species of carabid 

characteristically forage for prey by walking in random search patterns (Lövei and Sunderland 

1996).  This behavior is often associated with olfactory-tactile predators (Negro et al. 2008).  

Unlike many animals, arthropods do not taste in the oral cavity.  Tiny sensilla cover the appendages 

of many insects.  Insects rely on these sensilla for gustatory information that is perceived through 

contact (Chapman 2003).  Thus, gustation and touch are inherently bound together.  It may be that 

C. wilcoxi requires olfactory information combined with gustatory and tactile information to 

effectively locate prey.   

First choice may not be the defining measure of preference in olfactometer experiments 

using highly mobile species (Kielty 1996).  Members of the genus Calosoma are active searchers, 

and by definition are inclined to be in motion during feeding intervals.  Additionally, the time 

spent in each arm may not be reliable, because beetles were not rewarded for choosing the 

treatment.  In fact, in many of the trials, beetles searched all arms, including the stem of the Y-

tube, after failing to locate the source of the stimulus in the treatment arm.  Recording the time to 

choose for individuals that have positive experiences with the stimuli may be the best measure for 

active insects. 
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This study provides the first assessment of the mechanisms of prey finding of FCW by C. 

wilcoxi.  The results of this study suggest that olfaction is not the key underlying factor in prey 

detection in FCW, yet, it is evident that olfactory information is important in locating conspecifics.  

Information acquired from conspecifics allows inexperienced individuals to make informed 

decisions about mating, predator avoidance, and feeding (Chittka and Leadbeater 2005, Coolen et 

al. 2005).  It remains to be seen whether cues associated with conspecifics play a significant role 

in foraging behavior of C. wilcoxi.  Future studies investigating levels of predator experience and 

the differences in behavior in and out of the presence of conspecifics are needed to determine the 

relationship of conspecifics in this host-herbivore-predator complex. 
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Tables 

 

Table 1. Results of generalized linear model for effect of sex on proportion of beetles choosing the 

experimental arm of the Y-tube.  The experimental arm had one of the following treatments: (1) 

caterpillar, (2) mixed factor—caterpillar, herbivore damaged leaves, and herbivore frass 

combined, (3) herbivore damaged leaves, (4) herbivore frass, or (5) female and male beetle pair.   

Treatment Estimate SE z P 

Caterpillar -1.07 0.84 -1.28 0.20 

Mixed Factor 1.10 1.38 0.79 0.43 

Damaged -0.50 0.66 -0.76 0.45 

Frass 0.15 0.73 0.21 0.83 

Mixed Sex -0.92 1.30 -0.70 0.48 
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Figures 

 

 

 

Figure 1. Proportion ± SE of beetles that chose the experimental arm of the Y-tube.  Error bars are 

based on the binomial distribution.  The experimental arm had one of the following treatments: (1) 

caterpillar, (2) mixed factor—caterpillar, herbivore damaged leaves, and herbivore frass 

combined, (3) herbivore damaged leaves, (4) female beetle pair, (5) herbivore frass, or (6) female 

and male beetle pair.  The gray line indicates the point where fifty percent of beetles chose the 

experimental arm of the Y-tube. 
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Figure 2. Mean ± SE of the time beetles spent in the experimental and control arms of the Y-tube 

during five minute trials.  The experimental arm had one of the following treatments: (1) 

caterpillar, (2) mixed factor—caterpillar, frass, and herbivore damaged leaves combined, (3) 

herbivore damaged leaves, (4) a female beetle pair, (5) herbivore frass, or (6) a male and female 

beetle pair.   

 

 

 

 

 

 



22 
 

 

Figure 3. Mean ± SE of the time it took beetles to choose the experimental or control arms of the 

Y-tube.  The experimental arm had one of the following treatments: (1) herbivore damaged leaves, 

(2) a female beetle pair, or (3) herbivore frass.   
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Figure 4. Proportion ± SE of female and male beetles choosing the experimental arm of the Y-tube 

first.  The experimental arm had one of the following treatments: (1) caterpillar, (2) mixed factor—

caterpillar, herbivore damaged leaves, and herbivore frass combined, (3) herbivore damaged 

leaves, (4) herbivore frass, or (5) female and male beetle pair.  Error bars are based on the binomial 

distribution.   
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