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 In many clinical studies, continuous variables such as age, blood pressure and 

cholesterol are measured and analyzed. Often clinicians prefer to categorize these 

continuous variables into different groups, such as low and high risk groups. The goal of 

this work is to find the cutpoint of a continuous variable where the transition occurs from 

low to high risk group. Different methods have been published in literature to find such a 

cutpoint. We extended the methods of Contal and O’Quigley (1999) which was based on 
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the log-rank test and the methods of Klein and Wu (2004) which was based on the Score 

test to find the cutpoint of a continuous covariate. Since the log-rank test is a 

nonparametric method and the Score test is a parametric method, we are interested to see if 

an extension of the parametric procedure performs better when the distribution of a 

population is known. We have developed a method that uses the parametric score residuals 

to find the cutpoint. The performance of the proposed method will be compared with the 

existing methods developed by Contal and O’Quigley and Klein and Wu by estimating the 

bias and mean square error of the estimated cutpoints for different scenarios in simulated 

data. 
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CHAPTER 1:  INTRODUCTION 
 

1.1 Introduction 

 In Survival analysis or time-to-event data analysis, different covariates are 

measured and analyzed in order to predict the time until the occurrence of an event of 

interest. In the medical research, the event of interest can be death of a patient, failure of an 

organ or remission of a disease. In engineering, the event can be failure of a mechanical 

engine or reduction on the performance of a device, and, in the meteorology, the event of 

interest can be onset of snowfall or rain.  

Often in medical research, clinicians wish to categorize a continuous covariate into 

two different groups such as low and high risk. Although categorizing into more than two 

groups can occasionally be of interest for some variables, for example, blood pressure, 

cholesterol or Body-Mass-Index, the stated goal of the proposed methodology is to 

categorize the continuous variable into two groups.  

The term “cutpoint” refers to the point that bifurcates the continuous covariate. 

There are different methods published in the literature regarding the estimation of a 

cutpoint, but none are recognized as a standard method. Some of the published methods 

determine a cutpoint by maximizing a test statistic. The different types of test statistics 

used in the published literature include the chi-square test statistic, two-sample test 

statistic, linear rank statistic (Log-rank or Wilcoxon) and score statistic. Most of these test 
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statistics are based on the non-parametric methods or semi-parametric methods. In 2004, 

Klein and Wu extended the non-parametric method of Contal and O’Quigley (1999) to 

both semi-parametric and parametric method. The ultimate goal of the work presented in 

the following chapters is to find a method that has similar or better performance than the 

methods developed by Contal and O’Quigley (1999) and Klein and Wu (2004). 

 In addition to the output oriented methods mentioned above, some graphical and 

descriptive methods are also available in the literature. Some of these graphical methods 

are based on residuals to determine a cutpoint. Since residuals are based on the 

difference(s) between observed and expected number of deaths, any obvious large 

difference(s) or pattern between observed and expected number of deaths can indicate the 

possibility of a cutpoint. Martingale residuals are one of the most popularly used residuals 

to determine the functional relationship between survival outcome and a continuous 

covariate. 

 Other commonly used residuals are Cox-Snell residuals, the Score residuals and the 

Schoenfeld residuals. The Martingale and Cox-Snell residuals are similar and are based on 

the differences in observed number of deaths vs expected number of deaths at each event 

time. The Score residuals and Schoenfeld residuals are based on the difference between the 

observed value of a covariate and the expected value of a covariate at each event time. 

 

1.2 Prospectus 

 In Chapter 2, an overview of survival analysis will be presented. This chapter gives 

a short introduction on time-to-event data, censoring, survival functions, hazard functions, 
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and density functions. Chapter 2 also covers Kaplan-Meier survival curve estimation, Log-

rank and Wilcoxon rank-statistics to test the equality of survival curves for two or more 

groups, the Cox Proportional hazard model, parametric models and the Accelerated Failure 

Time model.  In Chapter 3, a literature review of the existing methods will be presented. In 

this chapter, methods developed by Miller and Siegmund (1982), Lausen and Schumacher 

(1992, 1996), Contal and O’Quigley (1999) and Klein and Wu (2004) will be described 

briefly. Chapter 4 presents the proposed method of finding a cutpoint. The first part of 

Chapter 4 provides the mathematical definition of the research question and the second 

part describes a method to compute the test statistics and determine a cutpoint. Chapter 5 

presents a method to simulate data for different scenarios and application of the methods to 

the simulated data. The performance of the proposed method will be compared with the 

existing methods by computing bias, mean square error and 95
th

 percentile of the estimated 

cutpoint. Chapter 6 provides the application and result of the proposed method and existing 

methods to a real world dataset. Finally, Chapter 7 provides the conclusion and the future 

direction of the research. An appendix containing the results for individual tables for 

simulated data and SAS codes used for the cutpoint computation and the simulations is 

provided. 
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CHAPTER 2: BACKGROUND  

 

2.1 Time-to-Event Data 

 In survival analysis, the response variable is typically defined as time to an event 

of interest. In biological or medical research, examples of an event of interest include 

death of a subject, failure of an organ or the remission of a disease. An important feature 

of survival data is that the response variable, time to the event of interest, is positive and, 

in general, the event of interest occurs toward the end of the study. In the case that the 

event was not observed by the end of the study the data are said to be right censored, 

which results in a right skewed or positively skewed distribution. Hence, the normal 

distribution assumption is not suitable for the outcomes in survival analysis. Thus, an 

important and unique feature of survival analysis is that it incorporates the information on 

censoring, which cannot be taken into account in simple linear regression or logistic 

regression.  

 

2.2 Censoring 

 A subject is said to be censored if (i) they did not experience the event of interest 

by the end of the study (ii) they dropped out or were lost to follow up during the study 

period or (iii) experienced an event that prevented them from experiencing the event of 

interest (for example: if we are interested in the death of a patient from a lung cancer but 
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a patient died due to heart attack during the study). The last example of censoring is also 

called the competing risk. Three different types of censoring are: (i) Right censoring (ii) 

Left censoring and (iii) Interval censoring.  

 

2.2.1 Right Censoring 

 Let iT  denotes the event time of the i
th

 individual in the study and let iC  be the 

censoring time of that subject. If iT  is less than iC  then exact lifetime of the individual 

will be observed and that individual will be known to have an event but if iT  is greater than 

iC  then the lifetime of that individual will be unobserved and is called the right censored 

observation. The right censored data can be represented by a pair of random variables 

   , ,  where, min , ,i i i i i iX X T C X  is also called the observed event time. The failure 

indicator variable i  is denoted by: 

1 if 

0 if 

i i

i

i i

T C

T C



 



 

For example, if a study is observing the death from a lung cancer patients receiving 

chemotherapy, but some patients were still alive by the end of study, the patients who were 

still alive at the end of the study are said to be right censored individuals. The work 

presented in the following chapters will be focused on right censored data. 
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2.2.2 Left Censoring 

 Let a random variable iT  denotes the event time of the i
th

 subject in the study and 

let iC  be the censoring time of that subject. If iT  is less than iC , then the event has already 

occurred for the individual before that person was observed at time iC , but the exact event 

time is unknown. The data from this study can be represented by pairs of random 

variable  ,i iX  , where  max , ,i i i iX T C X is also called observed event time. The 

failure indicators i  are denoted as: 

1 if

0 if

i i

i

i i

C T

C T



 



 

This type of study is called the left censoring. For example, suppose a study is teaching 

some learning skills to children and if some children enrolled in the study already had 

learned the skills, in this case the individuals who had learned the skills before the 

enrollment are called left censored individuals. Note that the work in the following 

chapters will not consider left censoring. 

 

2.2.3 Interval Censoring 

 In interval censoring, the event of interest occurs within some interval of time. For 

example, in a study of leukemia, some healthy participants with family history of leukemia 

were recruited and follow up was scheduled after 6 month. During the first 6 month follow 

up some previously healthy participants were found to develop the leukemia. In such cases, 

the investigator does not know the exact date of onset but knows that it occurred during the 
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previous 6 month period. Note that the work in the following chapters will not be focused 

on interval censoring. 

 

2.3 The Mathematical Model for Survival Analysis 

 Let T represent a non-negative random variable representing the failure time of an 

individual from a homogeneous population. Associated with T is ( )f t , the probability 

density function (p.d.f.) of T and ( )F t  the cumulative distribution function of a random 

variable T . We know that 
0

( ) Pr( ) ( ) .

t

F t T t f u du     We will define the survival 

function, ( )S t , as the probability that the survival time is greater than or equal to t . That is, 

( ) Pr( ) ( ) 1 ( ).
t

S t T t f u du F t



      Note that since ( )f t  is a p.d.f., we know that 

(0) 1.S   

Another important function is the hazard function, ( ).h t  The hazard function 

represents the probability that an individual dies at time ,t  conditional upon survival to that 

point. Therefore the hazard function represents the instantaneous death rate for an 

individual surviving to time .t  If T  is a continuous random variable, the hazard function 

can be written as: 

0 0

Pr( / ) Pr( and
( ) lim lim

Pr( ) tt t

t T t t T t t T t T t
h t

t T t   

          
    

     
 

0 0

Pr( [ , ] ( ) ( )
lim lim

Pr( ) ( )t t

T t t t F t t F t

T t t S t t   

        
    

     
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 

 

 0

( ) ( ) 1
lim

t

f tF t t F t

t S t S t 

  
  

 
 

Thus we see that  
 

 
 

  log
.

S tf t
h t h t

S t t


  


 The cumulative hazard function 

( )H t  can be defined as follows: 

  

     

0
0 0

0 0

log ( )
( ) ( ) log

log log 0 log( ( ))

log( ( )) ( ) ( ) exp ( ) (2.3.1)

t t
t

t t

S u
H t h u du du S u

u

S t S S t

S t h u du S t h u du


    



     

 
     

 

 

 

 

 Since survival time and hazard function are related with equation in (2.3.1), we can 

calculate the hazard function and convert it to survival function or vice versa. 

 

2.4 Non Parametric Methods 

 Time-to-event for subjects in a study can be analyzed using non-parametric 

methods, semi-parametric methods or parametric methods. Non-parametric methods can be 

an important alternative to parametric and semi-parametric method, when the distribution 

of survival times is unknown.  

 

2.4.1 Estimating the Survivor Function using Non Parametric Methods 

Previously it was stated that: 

( ) Pr( ) ( ) 1 ( ) (2.4.1)
t

S t T t f u du F t



      
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If T is a continuous random variable, then the survival function in equation (2.4.1) is 

defined as the probability of surviving for time t  or greater than time t . If no individual is 

censored, the empirical survivor function may be written as: 

#of individuals with survival timesˆ( )
#of individuals in thedata set

t
S t


  

In other words, the empirical survival function is the ratio of the total number of 

individuals alive at time t  to the total number of individuals in the study. The empirical 

survival function ˆ( )S t  is equal to one at the beginning of the study when all individuals are 

alive and is zero when the last observation experienced the event. It should be noted that 

the survival function is a step function, which decreases immediately after each observed 

failure time. However we cannot use the empirical survival function if the data contains 

any censored observations. 

 

2.4.2 Non Parametric Methods that Incorporate Censoring 

 Two other non-parametric methods that do incorporate censoring include life-tables 

and Kaplan-Meier survival curve. 

 

2.4.3 Life Table Estimate 

 The life-table estimate of the survival function divides time into a series of time 

intervals of interest. Life-tables estimates are possible even when actual failure times are 

unknown and the only information available is the number of failures in a series of 

consecutive intervals. When the failure times are observable, the Kaplan-Meier approach is 

preferred over life-table estimation. 
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2.4.4 Kaplan-Meier Estimator of the Survival Function 

 Let 
1,..., nt t  be n times until an event of interest in the dataset. Suppose there are r  

unique time-to-events such that .r n  Let (1) ( )... rt t   be the r  ordered failure times. Let 

jn  be the number of individuals still alive at time ( )jt  including those who are about to fail 

at time ( )jt  and jd  be the number of deaths at time ( )jt for 1,2,..., .j r  The quantity 

(j) (j)/d n  is called the conditional probability of failure between ( )jt   and ( ) ,jt where   is 

some infinitesimal time interval that includes at least one failure time. The estimator of 

survival function is also called product-limit estimator or the Kaplan-Meier estimator and 

it is calculated as:  

 1

( ) ( 1)

1

1                                 if 

ˆ( ) (2.5.1)
1 if

k
j

k k

j j

t t

S t d
t t t

n







  
   

   


 

where 1, 2,...,k r  ordered survival times. The Kaplan-Meier estimator is also a step 

function like the empirical function but the censored observations are taken into account 

when calculating the number of persons at risk. If a censored and failure event occurs at 

the same time ( ) ,jt  it is assumed that the censored observation is censored immediately 

after the failure time ( )jt  and is included in number of risk .jn  The variance of the Kaplan-

Meier estimator is given by Greenwood’s formula:  

2

1

ˆ ˆˆ ( ) ( ) (2.5.2)
(n )

k
j

j j j j

d
V S t S t

n d

  
  

  
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Using Greenwood’s formula we can construct a confidence interval for the survival 

function ˆ( )S t  given by:    

1/2 1/2

1 /2 1 /2
ˆ ˆˆ ˆ( ) ( ) , ( ) ( ) (2.5.3)S t z V t S t z V t  

  
 

 

 

Example 2.1 – Leukemia data 

6-MP (n=21):  6
+
, 6, 6, 6, 7, 9

+
, 10

+
, 10, 11

+
, 13, 16, 17

+
, 19

+
, 20

+
, 22, 23, 25

+
, 32

+
, 32

+
, 

34
+
,35

+
 

Control (n=21): 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23 

 

The pluses (+) indicate that at the end of the study no reoccurrence of leukemia had taken 

place; these are censored observations.   
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Figure 2.1: Kaplan-Meier Survival curves for placebo and treatment group 

 

In Figure 2.1 above, the treatment (6-MP) group appears to have better survival than the 

control group because the survival probabilities at different event times are higher for 

treatment group as compared to control group. 

 

2.5 The Log-Rank Test 

 The log-rank test is a useful tool to compare the survival distribution between two 

or more groups in the presence of right censoring. As a nonparametric procedure, no 

assumption on the distribution of the outcome variable is required to make inferences on 

the population. Previously presented, the survival curves derived from the Kaplan-Meier 

(KM) estimator allows for a graphical comparison of the survival probabilities between 

two groups, but it does not provide a formal test of statistical significance. The log-rank 
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test and the associated Wilcoxon test allow for this formal statistical comparison of the 

curves. 

The null hypothesis for the log-rank test is written as: 0 1 2: ( ) ( )H S t S t  (no 

difference in the survival between two groups) versus    1 1 2:H S t S t (there is a 

difference in the survival between the groups). The log-rank test for two groups is 

calculated as follows: 

Let 1iO  be the observed number of failures in group 1 at time of event i and let 1iE  be the 

expected number of failures in group 1 at the same event time. Let the time of events be 

ordered such that    1
...

r
t t   for r distinct event times. It can be shown that when number 

of deaths is not too small and number of subject n  is large, the sum of the differences in 

observed and expected failures  1 1

1

r

i i

i

O E


 
 

 
 follows a normal distribution. Combine the 

data from both groups. Then, find the number of distinct event times in the combined 

group. Let r be the number of distinct event time in the combined dataset. Construct a 

2 2  table at each distinct failure time. For the event time i , the 2 2  table is constructed 

as: 

 # Failure(deaths) #Survival Number at risk 

Group1  
1id  1 1i in d  1in  

Group2 
2id  2 2i in d  2in  

Total 
id  i in d  in  
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 In the above table, 1id  is the number of failures in group 1 at time point ,i  1in  is the 

number of people at risk in group 1 at time point 1 2, i i ii n n n    number of people at risk 

in both groups at time point 1 2, i i ii d d d   number of failures in both groups at time 

point .i  

 If the marginal totals in above table are considered to be fixed, then all the other 

entries in the table can be obtained by 1id . Here 1id  follows hypergeometric distribution, 

i.e.,  

  1 1 1

1

1

i i i

i i i

i

i

i

d n d

d n d
p d

n

n

  
  
    


 
 
 
 

  

with mean 1
1

i i
i

i

n d
e

n
  and the variance of 1id is given by:  

1 2
1 2

( )

( 1)

i i i i i
i

i i

n n d n d
V

n n





. 

Now, LU = sum of differences in the observed and expected failure at each time 

point given by: 

 1 1 1 1

1 1

.
r r

i
L i i i i

i i i

d
U d e d n

n 

 
    

 
   

The chi-square statistics is: 

 

2
2 2 ,L

df

L

U

Var U
   
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if G  is number of groups in the sample then degrees of freedom 1.G    

Since the failure times are independent, the variance of LU  is the sum of the 

variance of 1id  given by:  

 1 1

1 1

( ) .
r r

L i i L

i i

Var U Var d V V
 

     

Here, LU  has approximately normal distribution when n  is large, it implies:  

 0,1L

L

U
N

V
. 

Hence, 
2

2

1
L

L

U

V
 . The ratio 

2

L

L

U

V
 is called the log-rank statistics. 

 While the log-rank test is a powerful tool, it does have some disadvantages. Some 

of the disadvantages of the log-rank test include: 

1. The log-rank test detects the difference only in the case of constant differences 

across time and it may not show the difference if the survival curves are crossed at 

some point (Bland & Altman, 2004). 

2. The log-rank test provides a test of significance but does not provide information 

on the size of the difference between the two groups. Also, it cannot provide a 

confidence interval on the difference (Bland & Altman, 2004). 

 

2.6 The Wilcoxon Test 

 Wilcoxon test is a modification of the log-rank test that can also be used to test the 

difference in survival between two groups. The Wilcoxon test is based on the statistics 
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 1 1

1

( )
r

w j j j

j

U n d e


   and, as such, can be seen to be a weighted version of the log-rank 

test. The Wilcoxon test provides weight at each time point by multiplying the number of 

people at risk at each event time with the difference in observed and expected number of 

failures. The variance of the Wilcoxon statistic is given by 2

1

1

r

w j j

j

V n v


 , where:  

 
 

1 2

1 2 1

j j j j

j

j j

n n n d
v

n n





 

which is same as in the log-rank test. The Wilcoxon test statistics is given by: 

2
2

1
w

w

w

U
W

V
 . 

 

2.7 The Cox-Proportional Hazards Model 

 In the previous section, we discussed the use of log-rank test to conduct a 

hypothesis test in two different groups without adjusting for any other covariates. When 

we have several covariates that we wish to include in the model, the Cox Proportional 

hazards model may be used. The Cox-proportional hazards model allows us to control for 

multiple variables. The Cox-proportional hazard model, developed by D.R. Cox in 1972, is 

a semi-parametric approach to estimating the survival function that makes no distributional 

assumptions on the baseline hazard function. While there are no distributional assumptions 

on the model, there is an assumption on the hazard function. The assumption states that the 

hazards in any groups are constant over time.  
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The proportional hazard model for two different individuals i  and j  with covariate 

vectors ix  and jx  can be written as:  

0
( ) ( ) exp( ' )

i ih t h t x  

 0
( ) ( ) exp '

j jh t h t x   

0

0

( ) ( )exp( ' )

( ) ( )exp( ' )

i i

j j

h t h t x

h t h t x




   

 
( )

exp '( ) (2.7.1)
( )

i
i j

j

h t
x x

h t
   

The ratio of the hazard function in equation (2.7.1) does not depend on time, i.e. the hazard 

ratio is constant regardless of the time elapsed, hence Cox’s model is also called the 

proportional-hazard (PH) model. The only difference between parametric proportional 

hazard regression and the Cox proportional hazard regression model is the shape of the 

baseline hazard function. The baseline hazard function  0h t  is specified in parametric 

proportional hazard regression but not in the Cox model, hence the Cox model is also 

called the semi-parametric model. For estimating the parameters in the model the partial 

likelihood functions in Cox-proportional hazard model are given by: 

 
 
 

 

1

exp
(2.7.2)

exp z

i

i

T
n

i

T
i j

j R t

z
L










 
 

  
 
 




 

Where, n  denotes the total number of observations,    :i j iR t j t t   denotes the risk set 

at time ,it i  is censoring variable (1 if the event of interest occurs and 0 if observation is 
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censored), and, ̂  is the maximum (partial) likelihood estimate of   obtained by 

maximizing the partial log-likelihood function    ln .l L   Taking the log on both 

sides of equation (2.8.2) yields: 

     
1 1 ( )

ln ln exp (2.7.3)
i

n n
T T

i i i j

i i j R t

L z z    
  

  
   

  
    

For Cox’s model, the partial likelihood equation is valid only when there are no ties in the 

data, i.e., when no two individuals have an event of interest at the same time. When ties are 

present in the dataset, the Exact, Breslow or Efron’s adjustment to the likelihood is 

commonly used. 

 

2.7.1 Exact Method 

 The exact method for adjusting for ties is based on the idea that ties are due to the 

imprecision in measurements and that two events of interest cannot occur at the exact same 

time. The method assumes different ordering for the events that occurred at the same time. 

For illustrating the exact method consider the example data from below: 

Example data:  

Patient Time-to-event event (1=death,0=censored) Covariate 

1 
1t  1 

1Z  

2 
2t  0 

2Z  

3 
3t  1 

3Z  

4 
3t  1 

4Z  

5 
4t  1 

5Z  
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Here, the first patient died at time 1t  and second patient is censored at time 2 ,t  the third and 

fourth patient died exactly same time, let us say 3t . And 5
th

 patient died at time 4t .  

The partial likelihood function for patient 1  1L  and patient 5  5L  can be written 

as:  

51

53 51 2 4
51  and 

e e
1

ee e e e e

z z

z zz z z z
L L

 

    
  

   
 

For patient 3 and 4 the likelihood function can be written as: 

         3 3 3 4 3 4observe twodeathsat timeL P t P A A P A P A       

3 4

53 5 44
3

e e
( )

e ee e e

Z Z

Z Z ZZ Z
P A

 

   
 

 
  

 
34

3 5 3 54
4

e e

e e e e e

ZZ

Z ZZ Z Z
P A



   
 

  
  

 
3 34 4

53 5 4 3 5 3 54 4
3

e e e e

e ee e e e e e e e

Z ZZ Z

Z Z Z Z ZZ Z Z Z Z
L

  

        
    

    
  

 
     

3 34 4

5 3 5 3 5 3 54 4 4
3

e e e e

e e e e e e e e e e

Z ZZ Z

Z Z ZZ Z Z Z Z Z Z
L

  

        
  

     
  

3 5 34 4Let, e e e , e , eZ ZZ Z ZA B C          

54Then,e eZ Z A B      

3 5e eZ Z A C      

 
   3

B C C B
L

A A B A A C
    

 
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 
   3

BC BC
L

A A B A A C
  

 
  

         1 2 3
1

n

i
i

L L L L L    


    

 

     

1

3 51 2 4

3 3 54 4

55 3 5 3 5 3 54 4 4

e

e e e e e

e e e e e

ee e e e e e e e e e

Z

ZZ Z Z Z

Z ZZ Z Z

ZZ Z ZZ Z Z Z Z Z Z

L


   

   

        



 
 
 
 

 
   

 
     

 

After the likelihood  L   is constructed the estimation of   can be done in the same 

manner as in the method with no ties. 

 

2.7.2 Breslow’s and Efron’s approximation to the Log Likelihood  

 The Breslow’s approximation is based on the approximation of likelihood 

functions. For the example data above, the approximation can be written as: 

4 4

54 3 54

Z Z

Z Z Z Z Z

e e

e e e e e

 

    


  
 

3 3

3 5 3 54

Z Z

Z ZZ Z Z

e e

e e e e e

 

   


  
  

   
3 4

3 5 3 54 4
3( )

Z Z

Z ZZ Z Z Z

e e
P A

e e e e e e

 

    
 

   
  

 
   

34

3 5 3 54 4
4

ZZ

Z ZZ Z Z Z

e e
P A

e e e e e e



    
 

   
  



21 

 

Here,  3P A  and  4P A  are equal hence, 

 
   

3 4

3 5 3 54 4
3

Z Z

Z ZZ Z Z Z

e e
L

e e e e e e

 

    
  

   
 

 
 

 

3 4

3 54

3 2

Z Z

Z Z Z

e
L

e e e



  





 

  

If there are jd  tied event times at the j
th

 distinct event time, then  jL   is approximated 

by: 

 

  

ll D j

j

l

Z

j d
Z

l R j

e
L

e















 

where  R j is the risk set at the  j
th

 survival time and jD  is the event set at the j
th

  distinct 

failure time. So, the overall likelihood can be written as: 

   

  1 1

ll D j

j
l

z
r r

j d
zj j

l R j

e
L L

e




 



 





  


 

Here, r  is the number of total distinct events and jd  is number of events at each distinct 

failure time .j  Breslow’s approximation is preferred when the number of events jd  is 

small and number of person at risk jn  is large. Thus, if ties are relatively small Breslow’s 

approximation works well, otherwise, the next approximation called Efron’s 

approximation is better.  

From the example in the Exact test: 
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 
   

3

BC BC
L

A A B A A C
  

 
 

which can be approximated by: 

 
  3

2

/ 2

BC
L

A A B C
 

 
. 

Based on the above equation, Efron’s approximation can be written as: 

 
3

3

1 3

3

1 3

1

ll D

l l

z

d
z z

l R l Dj

e
L

j
e e

d



 




 

 
 
 
 






 

 

 

2.7.3 Hypothesis Testing in Cox-Proportional Hazards Model: 

 There are three main global tests for hypotheses about the regression parameters 

, where   is a p-dimensional column vector of regression parameters. For testing the 

null hypothesis 0 0: ,H    first define  1
ˆ ˆ ˆ,..., p    as partial maximum likelihood 

estimate of  . Let  I   be the p p  information matrix calculated by taking the second 

derivative of the log likelihood function of ,  it can be written as: 

 
 2

2

ln L
I E






 
 
 
 


 


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2.7.3.1 Wald Test for Multiple Parameters: 

 For large samples the Wald test is based on the asymptotic distribution of ˆ , i.e., 

̂  follows p-variate normal distribution with mean ˆ( )E    and    1ˆ .Var I   For 

testing 0 0: ,H   the Wald test statistics may be written as: 

    2

0 0
ˆ ˆ ˆ

T

W I         

where ̂  is the maximum likelihood estimate (MLE) and  ˆI   is expected Fisher 

information evaluated at the MLE ˆ ,  
2

w  follows an asymptotic 
2  distribution with p  

degrees of freedom under 0H .  

 

2.7.3.2 Likelihood Ratio Test for Multiple Parameters:  

 For testing 0 0: ,H    the likelihood ratio test is given by:  

 2
0

ˆ2 LogL( ) LogL( )LR     

where LogL  ̂  is the log likelihood of   evaluated at the MLE ˆ ,  and LogL  0  is log 

likelihood of   evaluated at the null value 0.  
2

LR  follows an asymptotic chi-square 

distribution with p degrees of freedom under 0H . 
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2.7.3.3 Score Test for Multiple Parameters:  

 The score test is based on the vector of efficient scores   ,U  where 

   1 2( ),U ( ),..., ( )pU U U    . The scores are calculated by taking the first derivative 

of the log likelihood function of .   

 
 lnd L

U
d





  

In Cox-partial log likelihood the scores are given by: 

 

   
1 1 ( )

ln exp
i

n n
T T

i i i j
i i j R t

U

d z z

d


   



  

   
  
    





  
  

 
 

( )

1 1
( )

exp

exp

i

i

T
n n

j jj R t

i i i T
i i jj R t

z z
z

z


 





 


 


 


  

where 1,...,i n  is number of subjects in the study and  ij R t  is number of people at 

risk at time .it   

 
 ln

for 1,...,
k

k

d L
U k p

d





   

For large samples,  U   is asymptotically distributed p-variate normal with mean 0 and 

covariance  .I   For testing 0 0:H    the score test statistic is given by 

     2 1

0 0 0 ,
T

SC U I U     which follows 
2  distribution with p degrees of freedom 

under the null hypothesis. 
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 For testing a hypothesis about a subset of the ' ,s the null hypothesis is 

0 1: 0H    where   is partitioned as  1 2, .    There are three types of local tests 

named the Likelihood Ratio, Wald and Score tests. 

 

2.7.3.4 Likelihood Ratio Test for Subset of Parameters:  

 The likelihood ratio test statistics for 0 1: 0H    is given by: 

   2

0
ˆ ˆ2LogL 2LogLLR     

where,   0 2
ˆ ˆ0 , 0 ,

T
T T  0  is 1q  dimensional vector and  2

ˆ 0  is the ( ) 1p q   

dimensional vector. For this case,  2
ˆ 0  is also called restricted partial maximum 

likelihood estimate for 2 ,  since it can be obtained by substituting the null hypothesis 

value 1 0   in the partial log-likelihood function. The asymptotic distribution of the 

likelihood ratio test statistics is chi-square with q degrees of freedom  2

q  under null 

hypothesis. This can be written as:   

      2 2

( 1) ( 1) 2 ( ) 1
ˆ ˆ2 LogL LogL 0 , 0 .LR p q qp q

      
  
 

 

-valuesp may be calculated by  2 2 .q LRP    

 

2.7.3.5 Wald Test for Subset of Parameters:  

 Let  1 2
ˆ ˆ ˆ,

T
T T    be the maximum partial likelihood estimate of the full 

parameter vector  1 2 .,
T

T T    The variance of   is the inverse of the observed 
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information evaluated at ˆ ,  i.e.,  
1

ˆ ˆ( ) .Var I 


  The observed information matrix 

 I   is given by the negative of the second derivative of log-likelihood function or: 

 

   

2

2

2

1 1 ( )

2

ln exp
i

n n
T T

i i i j

i i j R t

d l
I

d

d z z

d




   



  

 

   
       

  
 

Next, the variance of   (inverse of information matrix  I  ) is partitioned into: 

 
   

   

11 12

1

21 22

I I
I

I I

 

 


 
 
 
 

  

where,  11I   is q q  submatrix of  1I 
and  22I   is ( ) ( )p q p q    submatrix of 

 1 .I 
 Finally, the Wald test statistics for 0 1: 0H    is given by: 

   
1

2 11

1
ˆ ˆ ˆ0 ( ) 0

T

W I   


   
 

. 

Under the null hypothesis, the Wald statistics is distributed as an asymptotic chi-square 

with q degrees of freedom  2 .q  

 

2.7.3.6 Score Test for Subset of Parameters: 

 Let  1U   denote the first 1q  vector of score function   ,U   where  U   is 

defined as the first derivative of log likelihood function  l   and can be written as: 
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 
dl

U
d




  

The score test statistics for 0 1: 0H    is given by: 

        2 11

1 2 2 1 2
ˆ ˆ ˆ0, 0 0, 0 0, 0 .

T

SC U I U     

Here,  1 2
ˆ0, 0U  

 
 is the 1q  vector of scores for 1  evaluated at 1 0   and the 

restricted partial MLE 2
ˆ .  Here,   11

2
ˆ0, 0I   is the upper q q  submatrix of  

1

0I 


 

evaluated at 1 0   and restricted partial MLE 2
ˆ .  The large sample distribution of the 

score test statistics under the null hypothesis is
2 .q  

 

2.8 Parametric Models 

 We have reviewed non-parametric estimation of the survival function (empirical 

survival function, Kaplan-Meier estimation) and semi-parametric methods of estimating 

the survival function (the Cox proportional Hazards model). If the assumption of a 

particular probability distribution for the data is valid, inferences based on such assumption 

will be stronger. Models in which a specific probability distribution is assumed for the 

observed survival times are known as parametric models.  

 The two most commonly used parametric models are the Weibull distribution and 

the exponential distribution, which is a special case of the Weibull distribution. Other 

common parametric distributions used are the log-normal distribution, the log-logistic 

distribution, the gamma distribution and the generalized gamma distribution. 
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2.8.1 The Exponential Distribution: 

 The Exponential distribution assumes that the hazard is constant over time. That is, 

the hazard of failure at any time after the beginning of the study is same regardless of how 

much time has elapsed. 

The hazard function for exponential distribution is given by:  

( ) for 0  h t t     

where  is a positive constant. Thus, we get: 

0 0

( ) exp( ( )) exp( ( ) ) exp( ) exp( )

t t

tS t H t h u du du t e             . 

Using the previously described relationship between the p.d.f., survival function and 

hazard function, the p.d.f. is: 

( ) ( ) ( ) 0tf t h t S t e for t      . 

For the exponential model, the mean lifetime may be written as: 

0

0

0 0 0

1 1 1
( ) ( ) (u) | ( ) (1 0)

u
u e

E T uf u du S du e du e e




   

   
           

   . 

This gives the mean of the exponential distribution as: 
1


  

The pth quantile of the distribution of T is the smallest value of t   denoted by pt  is such 

that   1 .pS t p   It may also be written as:  inf : ( ) 1 .pt t S t p   The pth percentile of 

the exponential survival distribution is given by:  
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   inf : 1 inf : log(1 )

1 1 1
inf : log( ) inf : log .

1 1

t

pt t e p t t p

t t t t
p p

 




      

    
       

     

 

Hence, the pth percentile of the exponential survival distribution for p=0.5 (median) is: 

0.5

1 1
( ) log

1

1 1 1 1
log log(2) *0.693.

0.5

t p
p

t



  

 
  

 

 
   

 

 

 

2.8.2 The Weibull Distribution 

 The hazard function of the Weibull distribution is given by 
1( )h t t   for 

0 .t   This hazard function depends on the shape parameter   and scale parameter .  

Note that when γ = 1, the hazard function for the Weibull distribution reduces to the 

constant hazard function for the exponential distribution. The survival function for Weibull 

distribution is given by: 

   

1 1

0 0

1 1

0 0

( ) exp exp

exp | exp | exp .
1 1

t t

t t

S t u du u du

u
u t

 


 

  

  


 

 

   
      
   

 
 
 

   

     
 

 
 

The density function of random variable T that has Weibull distribution is given by:  

1( ) ( ) ( ) for 0tf t h t S t t e t
       . 

Without proving the result, we note that the mean of random variable T that has a Weibull 

distribution is given by:  
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1

1( ) ( 1)E T  



   . 

 The p
th

 percentile of Weibull distribution is given by:  

1

1 1
( ) log

1
t p

p





  
   

  
 

 Other parametric models are the log-normal distribution, the log-logistic 

distribution and the gamma distribution. All these distributions can be used to find the 

hazard rate or survival rate when the population is homogeneous. If we want to calculate 

the survival rate in heterogeneous population, we need to account for the different 

covariates such as age, weight, blood pressure, gender, race, treatment group etc. The 

simplest parametric model using a classical linear regression approach is the accelerated 

failure time model or AFT. 

 

2.9 The Accelerated Failure Time Model (AFT) 

 Survival models that can be linearized by taking logs of the survival time T are 

called accelerated failure time models. The reason this terminology is used is that the effect 

of the covariate is multiplicative on the time scale whereas in the PH model the effect of 

covariates is multiplicative on the hazard function.  

Let, log( ),Y T  then the linear model for Y is given by: 'Z ,Y W    where W  

is a random error distribution. If the error distribution is normal the resulting model is the 

log-normal regression model. If we assume the error distribution is the extreme value 

distribution it will yield either the exponential or Weibull regression model.  
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As stated previously, the Weibull regression model is the most commonly used 

parametric distribution. Let  1,..., 'pZ Z Z  is a matrix of p explanatory variables. 

Assuming an intercept for every individual, if 1 1Z    1 2 1, , ,..., p       is a p-

dimensional vector of regression parameters. When there are no covariates in the model, 

log( ) is given by:T   

log( )T W    

 expT W     

If there are covariates in the model, the survival function can be written as: 

 Pr( / ) Pr log( ) log( ) /T t Z T t Z    

 ( / ) Pr log( ) /S t Z Y t Z   

( / ) Pr( ' log( ) / )S t Z Z W t Z       

 ( / ) Pr log( ) ' /S t Z W t Z Z       

 ( / ) Pr(exp( ) exp(log( ) ' ) / )S t Z W t Z Z       

   / Pr exp( ) exp( ' ) / (2.9.1)S t Z W t Z Z       

For no covariate in the model survival function is given by:  

   Pr Pr log logT t T t    

 Pr logW t      

  Pr exp W t      

   0Pr (2.9.2)T t S t    
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From equations (2.9.1) and (2.9.2) we can write: 

  0( / Z) exp 'ZS t S t     

As stated previously, since the original time scale is multiplied by the acceleration factor 

exp( ' ),Z  this model is also called the Accelerated Failure Time model or AFT. 

Depending upon the sign of 'Z  the time is either accelerated by a constant factor or de-

accelerated by a constant factor. This model can also be written in terms of hazard function 

as: 

   0 0exp( 'Z log ( exp( 'Z))H t S t      

   0 0exp( 'Z) exp( 'Z) exp( ' )

( exp( ' ))

H t H t t Z

t t Z t

  



     


   
  

0 ( exp( ' ))exp( ' ). (2.9.3)h t Z Z      

This is the relationship of an individual with a covariate vector Z  to the baseline hazard 

rate. It should be noted that in the Cox-Proportional hazards model, the impact of covariate 

is multiplicative on the hazard while in the AFT model the impact of covariate is 

multiplicative on time. 

 

2.10 Residuals in Survival Analysis 

 As in regression analysis, we need some diagnostic tools for our models in survival 

analysis. The four main reasons for diagnostic tests are: 

1) Testing goodness of fit of the model; 

2) Testing if the assumptions of the model are valid; 
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3) Testing the functional form of the covariate, such as if the covariates need any kind 

of transformation. For example: log, square root , or if the covariate needs to be 

categorized; and 

4) Testing for presence of outliers. 

Although residuals for survival are not as simple as linear regression because of the 

censoring involved, there are some commonly recognized residuals used for diagnostic 

purposes. The residuals used for diagnostic purposes differ depending on if we are using 

the proportional hazard (PH) or AFT model. For the PH model, the commonly used 

residuals include: 

1) Cox-Snell residuals; 

2) Martingale residuals; 

3) Deviance residuals; and 

4) Score residual 

 

2.10.1 Cox-Snell Residuals for the Cox Proportional Hazards Model 

Cox-Snell residuals are useful for finding the goodness of fit of the model. The 

hazard rate for Cox proportional hazard is given by: 

0( ) ( )exp( )ih t h t X   

Integrating on both sides 

0

0 0

( ) ( )exp( )
t t

ih u du h u X du    
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0

0 0

( ) exp( ) ( )
t t

ih u du X h u du    

0( ) ( )exp( ' )iH t H t X   

The estimated cumulative hazard function is given by: 

0
ˆˆ ˆ( ) ( )exp( ' )iH t H t X   

0
ˆˆ ( )exp( ) (2.10.1)

icr H t X  

Based on equation (2.10.1), the Cox-Snell residual given by 
icr  is the estimated cumulative 

hazard. If the model fits appropriately, the Cox-Snell residual are the censored sample 

from a unit exponential distribution. The relationship is illustrated below: 

The survival function for a Cox proportional hazard model is given by:  

   Pr ( ) exp ( )   T t S t H t  

0

0

( ) exp ( )exp( )

t

S t h u X du
 

  
 
  

If the baseline hazard is given by an exponential parameter   then the survival function is: 

   exp exp( )S t X t     

If U  is uniformly distributed on  0,1  then  1 U  is also uniformly distributed on  0,1 .  

The cumulative distribution function (c.d.f.) for a random variable T  is given by:  

  ( )F T t F t  . 

From the Probability integral transformation theorem (Casella and Berger, 2002), 

 TF t U  if U  is uniformly distributed on  0,1 .  Also, 
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  (1 )TF t U   

( )S t U  

  exp exp X t U    

   log expU X t   . 

If we consider, after replacing   and   by the estimates ̂  and ˆ ,  the random variable 

U  still follows uniform distribution on  0,1  for a large sample, then we can write: 

 ˆ ˆlog( ) expU X    

 log
icU r   

Let log( )y U   

exp( y)U    

exp( )
( ) ( ) 1. 

   ydU d y
f y f U e

dy dy
. 

This is the p.d.f. of the unit exponential distribution. Because of the exponential 

distribution, Cox-Snell residuals are not symmetrically distributed about zero. The value of 

the Cox-Snell residuals range from 0  to .   

 

2.10.2 Martingale Residuals for the Cox Proportional Hazards Model: 

 Consider the counting process  iN t  as the number of observed events for the 

thi subject over time .t  The intensity function for  iN t  is given by: 

       '

0, ( ) ( )iZ t

i i iY t d t Z t Y t e d t


    
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where  
1 if the th subject is still at risk at time 

0 if the event has already occured
i

i t
Y t


 


,   vector of regression 

coefficients,  iZ t p  dimensional vector of covariate processes, and 0   Baseline 

cumulative hazard function. 

 Let (.)iM  be a subject specific martingale defined as the difference between the 

counting process and the integrated intensity function (Therneau et al., 1990): 

0

0

( ) ( ) ( )exp( (s)) ( ) ( 1,..., n)

t

i i i iM t N t Y s Z d s i     

Let ̂  be the maximum partial likelihood estimate of   and 
0̂  is the Breslow estimate of 

the baseline cumulative hazard 0  defined by: 

 0 ˆ '
0

( )
ˆ ( )

( ) j

t
i

Z s

j

dN s
t

Y s e


 





 

 Then the martingale residual are given by:  

0

0

ˆ ˆˆ ( ) ( ) ( )exp( ' ( ) ( ).  
t

i i i iM t N t Y s Z s d s  

The martingale residual at each time t  is the excess number of events or deaths, defined as 

the difference in the number of observed events minus the expected number of events. 

The properties of martingale residual are as follows: 

1. The sum of martingale residual is 0, i.e. 
1

ˆ ( ) 0, for any t.
n

i

i

M t


  ; 

2. The martingale residual for each individual is independent; that is:   



37 

 
ˆ ˆcov( , ) 0, for each ,i jM M i j   where ˆ ˆ ( )i iM M   

3. For a PH model the martingale residual is given by: 

 0
ˆˆ ˆ ( ) exp ' ( ) ,i i i iM Z s     

where 
1 if event occurs

0   otherwise
i


 


. 

We know from the previous section that the Cox-Snell residual are given by: 

 0
ˆˆ ( ) exp ( )

ˆ (2.10.2)

i

i

c i i

i i c

r Z s

M r

 



 

 

 

From equation (2.10.2), it can be seen that the martingale residual is simply a linear 

transformation of Cox-Snell residual. The maximum value of the martingale residual can 

be +1 and minimum value can be .  Similar to the Cox-Snell residuals, the martingale 

residuals have skewed distribution. 

 

2.10.3 Score Residuals for the Cox Proportional Hazards Model: 

 The Score residuals are the first derivative with respect to the coefficient j  for the 

partial log-likelihood of Cox-proportional hazard. That is,  

 

 

1 0ˆ

1 0

1

log
ˆ( ) ( , ) ( )

ˆ ˆ( ) ( , ) ( )

ˆ( , )

n
p

ij j i
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ˆwhere , for 1,...,

( )

i

i

n
Z s

i ij

i
j n

Z s

i

i

Y s e Z s

Z s j p

Y s e





 


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Here,  ˆ,jZ s  is a weighted mean of the covariates over the risk set at time .s  According 

to Klein and Moeschberger (2003),  
1

ˆ ˆ( , ) ,
n

j ij
i

U t S t 


   is the score process for the 

thj  covariate and    
0

ˆ ˆ(s) ( , ) ( )ˆ, ij j iij Z Z s dM sS 


     is the score residual for the thi  

subject and the thj  covariate (Therneau et al., 1990). The score residual can be useful in 

finding each subject’s leverage on parameter estimates ̂ . These residuals are also useful 

in the assessment of the proportional hazard model assumption. The score residuals sum to 

zero. By the definition of ˆ ,  ˆ ˆ( ,0) ( , ) 0.j jU U     

 

2.10.4 Deviance Residuals for the Cox Proportional Hazards Model: 

 To overcome the skewness in the martingale residuals, the deviance residuals allow 

some transformation to get the symmetrical distribution. The deviance residuals are based 

on the deviance statistics given by: 

 ˆ ˆ2 logL logLc fD     

where ˆ
cL  is the maximized partial likelihood under the current model and ˆ

fL  is the 

maximized partial likelihood under the full model. If model fits appropriately, the deviance 

would be smaller. The deviance residual are defined as: 
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    
1

2ˆ ˆ ˆsign 2 log (2.10.4)i i i i i iD M M M     
 

 

where ˆ
iM  is the martingale residual defined earlier in chapter 2.10.2and the  sign  is 

the sign function; that is:  

 
1 if 0

1 if 0
sign

x

x
x

 

 

  

The deviance residual has value 0  when martingale residual is zero. The deviance 

residuals provide the more symmetrical values in comparison to the martingale residuals. 

2.11 Residuals in Accelerated Failure Time (AFT) Model 

For the AFT model, some commonly used residuals are: 

1. Standardized residuals 

2. Cox-Snell residuals 

3. Score residuals  

2.11.1 Standardized Residuals: 

If iT  is a random variable associated with the survival time for the thi  subject and 

1 ,...,i pix x  are observed values of p-covariates 1 2, ,...,i i piX X X , then the AFT model for iT  is 

given by: 

  1 1log ...i i p pi iT x x W         

where iW  is a random variable and also called the error distribution. The distribution of iW  

depends on the distribution of survival time .iT  For example, if iT  is distributed as Weibull 

distribution then iW  will have a standard extreme value distribution. Here,   and   are 
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intercept and scale parameter, respectively and 1,..., p  are the unknown coefficients of 

the values of p  explanatory variables. If 1
ˆ ˆˆ , ,..., p   and ̂  are the maximum likelihood 

estimates for the unknown parameters then the standardized residual is defined by: 

1 1
ˆ ˆˆlog( ) ...

ˆi

i i p pi

s

t x x
r

  



    
  
 

 

Although the standardized residuals are the simplest and most closely related with the 

residuals in the linear regression by same relation as in the ‘observed-fitted values of 

outcome variable’ these residuals are not adjusted for censoring. Standardized residuals 

will have the same distribution as that of the error distribution ,iW  if the model were 

correct. 

 

2.11.2 Cox-Snell Residuals in Parametric Model 

The Cox-Snell residuals in the Cox-proportional hazard were given by the 

estimated values of the cumulative hazard, which can be written as: 

 ˆlog ( ) (2.11.2)
ic i ir S t   

where, it  is the event time for the thi individual. The estimated survival function for the 

thi individual in the AFT model is given by:  

ˆ ( ) ( )i i i iS t p T t   

 ˆ ( ) log( ) log( )i i i iS t p T t    

 1 1
ˆ ˆ ˆˆ ˆ( ) ... log( )i i i p pi i iS t p x x W t           
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 1 1
ˆ ˆˆlog( ) ...

ˆ ( )
ˆ i

i i p pi

i i i i S

t x x
S t p W p W r

  



      
     

  
 

 ˆ ( ) . (2.11.3)
i ii i W sS t S r  

From equations  2.11.2   and  2.11.3 : 

ˆlog ( ) log ( )   
i i iC i i W Sr S t S r . 

 The Cox-Snell residual for AFT can also be used to assess the goodness of fit of the 

model. As previously proved in the Cox-Snell residual for Cox proportional hazard, if the 

model is correct the Cox-Snell residual will be distributed as unit exponential distribution. 

 

2.11.3 Score Residuals for Parametric Model 

The score residuals in parametric model are similar to the score residual for the PH 

model. These residuals are calculated by taking the partial derivative of the log-likelihood 

function. The likelihood function for the random variable iW  is given by: 

        

     

1

1

1

, , ( ) ( )

log , , log log ( ) (1 ) log ( )

i ii

i i

i i

n

i W i W i

i

n

i i i W i i W i

i

L t f z S z

L t f z S z

 
   

      









    





 

where  1 1log ... /i i i p piz t x x        , ( )
iW if z  and ( )

iW iS z  are the density and 

survival functions of ,iW  and  i  is the event indicator for the thi  observation, given by: 

1 if event

0 otherwise
i


 


. 
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If the survival times are assumed to have a Weibull distribution, then the log-likelihood 

function is given by: 

 
   

     1

log exp exp
log , ,

(1 ) log exp exp log

n
i i i

i
i i i i

z z
L

z t


  

  

   
  

    

  

       
1

exp (1 ) exp log
n

i i i i i i i

i

z z z t   


       

   
1

exp log
n

i i i i i

i

z z t  


   . 

Differentiating with respect to ,  and :    

 

  

1

1

log 1 1
exp

1
exp (2.11.4)

n
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i

n

i i
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
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






  
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  
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 

  

   

1

1

1

log 1 1
exp

1
exp

1
exp (2.11.5)
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i

i i i i

i

n
i

i i i
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i i i i
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z z
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
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

 
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







       
      

     

   
    
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 

  

1 1

1

1

1

( )log
exp for 1,...,

exp (2.11.6)
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x xL
z j p

x
z


  








   
   

  

 





 

The thi  component of each derivative, evaluated at the maximum likelihood estimates of 

the unknown parameters, is then called the score residual for the corresponding parameter. 
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 We discussed the residuals in both the PH model and AFT model. Residuals in the 

model were used for finding the functional form, model validity, leverage, and fit of 

individual subjects by Therneu et al. (1990). The main goal of presenting these residuals in 

this Chapter is to describe the methods to compute different residuals, since the method 

proposed in the following chapters will be based on the residuals. 
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CHAPTER 3: REVIEW OF EXISTING LITERATURE 

 

 

3.1 Motivation 

 In clinical or medical settings when the relationship between covariates and 

outcome is not known or if the relationship is non-linear, categorizing a continuous 

variable into different groups can assist in the interpretation of the result. Although a 

continuous variable can be categorized into many groups depending on the nature of the 

study and types of covariates, dichotomizing the continuous covariate into high and low 

risk group is a common practice in the clinical literature. In these instances, the question 

arises as to the appropriate cutpoint to bifurcate the continuous covariate. 

 

3.2 Use of Categorization in Clinical Studies 

 In spite of the fact that dichotomizing a continuous covariate is controversial 

ostensibly due to statistical reasons such as loss of information or existence of linear 

relationship, categorization is commonly done in the medical literature. For example, 

blood pressure, body mass index and cholesterol are some of the variables where patients 

are categorized into different groups depending on the value of these variables below the 

cutoff point or higher than the cutoff point. To reduce the controversy among statisticians, 

graphical strategies have been proposed examining the relationships between the outcome 

and independent variable to inform decisions whether or not to categorize. If the graphical 

display between outcome and independent variables shows a linear relationship then 
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categorization may not be required; however if the graphical display shows a clear non-

linear relationship then categorization may be appropriate and effective  for interpretation 

of the relationship. 

 

3.3 Review of Existing Methods 

 Current methods for the dichotomization of a continuous covariate in the literature 

vary. However, the methods generally coalesces around four basic approaches; 1) 

graphical selection of a cutpoint; 2) use of prior information to select a cutpoint; 3) data-

oriented methods; or 4) output oriented methods. 

 

3.3.1 Graphical Methods 

 The use of different forms of the residuals, such as martingale and score residuals, 

from semiparametric proportional hazard model were used to describe the functional form 

of a covariate vector by Therneau et al. (1990).  

 

3.3.1.1 Example of Graphical Methods on a Simulated Data: 

 In Chapter 5, a dataset with four variables was simulated. The four variables were 

ID, censor, age and time, where id indicates unique ID for each participant, censor 0  if 

the event of interest occurred, 1  if censored (event of interest did not occur or was not 

observed). Age was simulated uniformly in the interval 0  to 90  using the “ranuni” 

function in SAS. The survival time t   was simulated using the formula 
 

1

1

log( )

exp

u
t

x



 

 
   
 
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if age 25  and 

1

2

log( )

exp( )

u
t

x



 

 
  
 

 if age 25,  where u  was a uniformly distributed 

random variable in  0,1 ,and  was scale parameter,   was the shape parameter, 

1 2and   were parameters of covariate age. Mean age was 41.02, minimum age was 1 and 

maximum age was 88 in the dataset. No censoring was applied and considered that all 

participants experienced the event of interest before the end of study. The value of 1  was 

0  which indicates the risk ratio was constant per unit increase in age before age 25, and 

the value of 2  was 0.09531,after age 25, which indicates the risk ratio increases by 

exp(0.09531) 1.10 units i.e. 10% per unit increase in age.  

 To illustrate the use of plots, Martingale residuals for covariate age were calculated 

using Cox proportional hazards model. A plot of martingale residual versus covariate 

vector age is shown below in Figure 3.1. For this plot LOESS smoothing parameter of 0.30 

was chosen after looking at different smoothing parameter since the results can vary based 

on different values of the smoothing parameter. 
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Figure 3.1 Plot of martingale residual versus age in simulated data 

Looking at the plot in Figure 3.1, there apprears to be a downward peak at 25 and 40, also 

an upward peak at age 10. Since we are only interested in dichotomizing a covariate but 

not interested in finding the multiple cutpoints, we will apply some estimation methods to 

find a cutpoint. 

 

3.3.2 Prior information 

 In his dissertation, Kuo (1997) discussed the use of existing or published sources in 

determining a cutpoint for a continuous variable. This method is also referred as the prior 

information method. The disadvantage of the prior information method is that the 

information on the cutpoint value may not be available for all of the variables being 
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studied. Also, if the population in the study is different than the general population then the 

prior information method may not be suitable.  For example, the cutpoint for infants and 

adolescents may be different than the cutpoint for adults. While this method is an option, it 

has limited applicability especially when examining potentially new covariates. 

 

3.3.3 Data-oriented Method 

 A common method of determining cutpoints is based on using the descriptive 

statistics such the mean, median, quantile or percentile to categorize a continuous 

covariate. The disadvantage with utilizing a data-oriented method is that the cutpoint 

determined for one study very well may differ from another study. Another disadvantage is 

that even within the same study the cutpoint may be different based on the type of statistic 

(mean or median or quantile) being used to determine the cutpoint. Again, while using a 

data-oriented method is possible, it is certainly not optimal. 

 

3.3.4 Output oriented Method 

 Output oriented methods are the most popular categorization methods in the 

survival analysis literature. Output oriented methods are based on the maximized value of 

some statistic. Four different output oriented methods proposed by Miller and Siegmund 

(1982), Lausen and Schumacher (1992, 1996), Contal and O’Quigley (1999) and Klein and 

Wu (2004) will be discussed here. 

 

 



49 

 

3.4 Miller and Siegmund (1982) 

 In 1982, Miller and Siegmund developed the “maximizing the chi-square” 

approach for finding a cutpoint of the continuous covariate with a binary outcome. This 

approach consists of a series of 2 2  tables (high/low group vs event/no event) at each 

value of the covariate and calculating the chi-square statistics for all respective tables. The 

point with the largest value of the standard chi-square statistic would then be determined to 

be the optimal cutpoint for that continuous covariate. The standard chi-square statistic 

would be defined as: 

 

    

2

2 (3.4.1)
N ad bc

a b c d a c b d





   
 

where a   number of individual in low risk group with event, b   number of individual in 

high risk group with event, c   number of individual in low risk group with no event, d   

number of individual in high risk group with no event, and N a b c d      total 

number of participants in all group. 

The alternative of the chi-square statistic was the standardized log odds ratio given 

by: 

 

 
1

1 1 1 1 2

log /
(3.4.2)

ad bc

a b c d     

 

The theory developed by Miller and Siegmund  1982  was directly applicable to find the 

limiting distribution of the statistic in  3.4.2 .  For a large sample, the chi-square statistic 
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in  3.4.1 can be further modified and presented as the square root of the chi-square statistic 

given by:  

 

 

1
1 2

2 2
1

2

1 2

ˆ ˆ( ) ( )
(3.4.3)

1 1ˆ ˆ( ) 1 ( )

F x F x

F x F x
n n






  
   

  

 

where  1 1
ˆ ( ) Pr

a
F x X x

a b
  


 = estimated probability of being in low risk and having 

the event,  2 2
ˆ ( ) Pr

c
F x X x

c d
   


 estimated probability of being in low risk and not 

having the event,    ˆ Pr
a c

F x X x
N


    estimated probability of being in low risk 

group for both event and no group,  1n a b    total number of participants with the 

event, and  2n c d    total number of participants with no event. 

The null hypothesis for the empirical distribution functions 1 2
ˆ ˆ,F F  and F̂  is given 

by: 

0 1 2:H F F F   

(i.e., probability of being in low risk group for participants with event is same as the 

probability of being in low risk group for participants with no event). Assuming F  is 

continuous and 1 2,n n  , the statistic in equation  3.4.3  converges weakly under 0H  

to: 
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 

0

1

2

( )
(3.4.4)

(1

W t

t t

 

where 0 ( )W t  is a tied-down Wiener process with expectation 0  and variance (1 )t t  on 

 0,1  with ( ).t F x  The distribution of supremum of equation  3.4.3  over values of 

covariate 1 1( ), (1 )x F F       is asymptotically equal to the distribution of supremum 

of equation  3.4.4  over values of  ( ) t ,1 ,0 1.F x        Since the variance at the 

beginning or end can take the value 0  on  0,1 , the supremum needs to be searched in 

 ,1   rather than over  0,1 .  The valuep    for the supremum of statistic in  3.4.4 as 

for large w  i.e. as w   is given by: 

 
   

1 2

0 1

2 11

2

( ) 4 ( ) 1
Pr sup ( ) log / ( ) (3.4.5)

(1
t t t

W t w
w w w o w w

w w
t t


   

 

 
            

 

for 1 20 1t t    where / (1 )j j jt t    and ( )w  is the standard normal density given by: 

 
1

2
2

1
( ) 2 exp .

2
w w 

  
  

 
 

 The significance of the chi-square statistics were calculated using equation (3.4.5) to 

determine the validity of the cutpoint. Concerns were raised regarding the use of the 

significance criteria because a large sample size usually detects small differences and vice 

versa. To overcome this concern it was suggested that one should always be aware about 

the magnitude of odds ratio or relative risk in two groups that could be considered 

clinically significant. Miller and Siegmund (1982) also suggested that the cutpoint should 



52 

 

be searched in the defined percentile interval rather than on all possible values of cutpoints. 

Although Miller and Siegmund’s method did not address continuous outcomes, such as 

time to an event, this method was the basis for other methods such as Lausen and 

Schumacher, who developed the maximally selected rank statistics in 1992. 

 

3.5 Lausen and Schumacher (1992, 1996) 

 In 1992, Lausen and Schumacher developed a method called “Maximally Selected 

Rank Statistics”. Let    1 1, ,..., ,n nX Y X Y  be n  bivariate observations where iX  denotes 

the value of a continuous covariate for the thi  observation and iY  denotes the value of the 

dependent variable for the thi  observation. Consider all distinct given values of a covariate 

as potential cutpoints. At each potential cutpoint, divide participants into two groups 

depending upon if the covariate value is higher or lower than the given cutpoint. Let 

1 ,...,n nnR R  denote the ranks for the ordered dependent variable 
(1) ( ),..., nY Y  and 

(1),..., ( )n na a n  denote the associated score. If observation has tied or censored values then 

associated scores will be given by the mid-scores or log-rank scores. The two sample rank 

statistic for fixed   is given by: 

 
1

( ) (3.5.1)
i

n

n nX
i

S I a i 


  

where  
1

iX
I


  for  iX   and 0  otherwise. If the scores are set as rank i.e. ( )na i i  

then the rank statistic nS    is called Wilcoxon two-sample rank statistic. For the estimation 

and test of the significance of the cutpoint, the null hypothesis is defined as: 
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   0 : Pr / Pr / XH Y y X Y y      for all , .y   i.e. no difference in the 

distribution of Y  for all .  An approximation to the location shift model can be written as: 

   Pr / Pr / for all , , (3.5.2)Y y X Y y X v y           

From equation  3.5.2 , the probability density function (p.d.f.) of a random variable Y can 

be written as a two-group mixture model in cluster analysis: 

   / /( ) Pr ( ) Pr ( ) (3.5.3)Y Y X Y Xf y X f y X f y v         

Under the null hypothesis the conditional expectation and conditional variance of the rank 

score nS   in  3.5.1   is given by:  

 / , ( )n nX nE S a X nF a    

 2( / , ) ( ) 1 ( ) (3.5.4)n n nX nXV S a X A nF F     

where  
2

2

1

1
,

1

n

n in n

i

A a a
n 

 

  with 

1

( ), (1/ )
n

in n n in

i

a a i a n a


    and 

  { }

1

(1/ )
i

n

nX X

i

F n I  



   is the empirical distribution function of a covariate .X  The 

standardized test statistic 
nT   for nS   is computed using the expectation and variance 

given above, i.e.:  

 

  
1/2

/ ,

/ ,

n n

n

n

S E S a X
T

Var S a X

 






  

and the maximally selected rank statistic is:  

 
 1 2

1 2
,

, max (3.5.5)n n
x x

M T 


 


  
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where    1 1

1 1 2 2,nX nXx F x F     and 1 20 1.      

The cutpoint is searched in the interval bound given by sample quantiles i.e.: 

   1 1

1 2,nX nXF F       where 1 20 1     and  1( ) min : ( ) ,nX nXF t x F x t   since 

there may be very few number of participants at the both end to assume the asymptotic 

distribution. 

As an alternative to rank statistic above the two-sample statistic was suggested. The 

two-sample t  statistic t

nT    is given by: 

1

2
1 2 1 2t

n

n n Y Y
T

n s

   





  
     
   

 

where    
  

2 2
2

1 2

: :

1
,

( 2)
i i

i

i X i X

s Y Y Y Y
n

  
  

 
       

    1 ,nXn nF   

 2 1 ( ) ,nXn n F     
 

1 1

:

1/ ,
i

i

i X

Y n Y 



   and 
 

2 2

:

(1/ ) .
i

i

i X

Y n Y 


     

A Gaussian statistic can be obtained if variance 
2  is known.  

In 1996, Lausen and Schumacher developed a cutpoint model and test procedure 

for a location shift model. The location shift model with unknown cutpoint    and 

unknown location shift or effect    is given by: 

   Pr / Pr / , (3.5.6)Y y X Y X y          

where Y  is a dependent variable and X  is a continuous covariate. The null hypothesis for 

the location shift model can be written as: 0 : 0.H    The difference between two groups 

separated by unknown cutpoint   can be obtained from the absolute value of a 
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standardized two-sample statistic with normal distribution  (0,1)N after dividing the 

subjects into two groups using an arbitrarily chosen but fixed hypothetical cutpoint .  . 

The two-sample statistic can be calculated for all possible values of cutpoint between   

and  1   sample quantile of covariate ,X where 0 0.5.   The maximally selected 

test statistic is given by: 

 
 ( ), (1 )

max (3.5.7)
n n

np
x x

M T
  


 

  

where (.)nx  is the sample quantile and npT  is the standardized two sample statistics. 

In this method, the standardized rank statistic with the minimum p-value was considered 

the optimal cutpoint. 

For a large sample, the p-value given by Miller and Siegmund (1982) was:  

   (1) 2 2(z) 1/ log (1 ) / 4 ( ) / (3.5.8)cor corP P z z z z         

where  1

min1 / 2 ,z P    is standard normal p.d.f. and   is the standard normal 

distribution function. 

For small sample size, Lausen and Schumacher (1996) suggested a p-value based 

on Bonferroni inequality: 

 
1

(2)

min 1

1

, , (3.5.9)
k

cor cor i i

i

P P P D l l






    
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where il  denote the size of the k  subgroups with values in X  less or equal to  the cutpoint 

,ic  
1

1

,
k

k i

i

l n l




       0.5 2 3( , ) 2 / ( ) / 4 1 ( ) / 6 ,ij ijD i j z t z t      1

min1 / 2z P   and 

 
0.5

1 ( ) / (( ) )ijt i n j n i j    . 

Since the p-values given by (3.5.8) and (3.5.9) can be conservative, the minimum 

of the (3.5.8) and (3.5.9) was suggested by Lausen and Schumacher, i.e.: 

 (1) (2)min , .cor cor corP P P  

This approach allows the correction of p-value for a given interval. 

 

3.6 Contal and O’Quigley (1999) 

Let    1 1, ,..., ,n nZ X Z X  be n  bivariate observation where iZ  denotes a 

continuous covariate value for the thi  observation and iX  denotes the dependent variable 

for the thi  observation. Contal and O’Quigley (1999) aimed to find the estimation of the 

cutpoint as well as the associated inference regarding the cutpoint. Looking back to the 

Miller and Siegmund (1982) and Lausen and Schumacher (1992) both have used the 

variance (1 )t t  of the Brownian bridge process 0 ( )W t to globally standardize the test 

statistic. Since the variance (1 )t t  implies the estimation and testing of the cutpoint in the 

restricted interval  0,1 ,  Contal and O’Quigley focused to find the alternative method to 

not restrict the estimation in this interval. According to Billingsley (1968), if 1,..., n   are 
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exchangeable random variables (that is joint distribution of 1,..., n   is permutation 

invariant for each )n  and if the i  satisfies the following three condition as n   : 

1. 
1

0
n

P

i

i




  (i.e., the sum of the random variable converges in probability to 

zero). 

2. 2

1

1
n

P

i




  (i.e., the sum of square of the random variable converges in 

probability to 1). 

3. 
1
max 0P

i
i n


 

  

then the process defined by:  

 

1

( )

nt

n i

i

S t 


  with  0,1t , 

and 

( ) 0nS t   for 0 1/t n   

where  nt  is the smallest integer greater than  1 ,nt   converges in distribution to the 

Brownian bridge. According to the Brownian bridge property (Billingley, 1968), if 0 ( )W t  

is Brownian bridge Gaussian stochastic process in  0,1 ,  with mean  0 ( ) 0,E W t   and 

covariance  0 0( ), ( ) (1 ),Cov W s W t s t  for s t , the supremum of the absolute value of 

the Brownian bridge is given by:  

 
 0 1 2 2

0;1 1

Pr sup ( ) 2 ( 1) exp 2 (3.6.1)j

t j

W t b j b




 

 
    

 
  
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for 0.b   Contal and O’Quigley(1999) proposed a process that looked like the Brownian 

bridge. According to Contal and O’Quigley (1999), let 1,..., nZ Z  represent the increasing 

ordered covariates so that 1 ... nZ Z  . Let the scores of the outcomes 1,..., nX X  are 

1,..., na a  for n  participants.  

For the tied or censored observation the scores are same as the log-rank score. The 

scores are random variables and the expectation and variance of the score is given by: 

1

1 n

j

j

a a
n 

   and  
2

1

1
var( )

( 1)

n

j

j

a a a
n 

 

  respectively. Using this expectation and 

variance the standardized form of the score is given by:  

1

1 Var( )

i
i

a a

n a






 

 Let iX  denotes the survival time of the thi  individual and i  denotes the censoring 

indicator for the thi individual. If    1 1, ,..., ,n nX X  are independent and identically 

distributed, then the scores given by log-rank statistic are exchangeable random variables. 

The three condition of the Brownian bridge given above can be satisfied by these 

exchangeable score in the following way: 

1. 
   

1

1 1

1 1
0

1 Var( ) 1 Var( )

n

jn n
j j

j

j j

a na
a a

n a n a




 




  
 


    

2. 
   

2

12

1 1

1 1
1

Var( ) 11 Var( )

n

jn n
j j

j

j j

a a
a a

a nn a




 


  

   
  


    
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3. Assuming the third condition is verified for classical rank scores (log-rank, 

Wilcoxon, median...) 

The process defined by 
 

1

( )

nt

n i

i

S t 


  converges in distribution, under 0H  to the Brownian 

bridge. Applying equation (3.6.1), the limiting distribution of max ( )nS t  is given by:  

 
 1 2 2

0;1 1

Pr sup ( ) 2 ( 1) exp 2j

n
t j

p S t b j b




 

 
     

 
  

For 1b   the formula can be written as: 

 22exp 2p b   

Application in Survival analysis:  

Let 
(1) (k)...x x   be k   number of distinct observed death times. Let Z    as 

low risk group and Z   as high risk group for some fixed cutpoint .  Constructing 

 2 2k   table for the each potential cutpoint   in ,Z  a log-rank statistic for a fixed   

can be written as: 

1

k

i
i i

i i

r
U d d

r






 
  

 
  

where id  is the number of deaths at time ( ) ,ix  id 
 is the number of deaths in the high risk 

group, ir

 as the number of patients at risk in high risk group and ir  is number of patients 

at risk in both groups. In such case,  

1

1
( )

1

k

i
n i i

i i

r
S t d d

rk






 
  

  
  
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where 
 

2 2

1

1
,

1

k

j

j

a
k






  has the asymptotic distribution as the Brownian bridge under 

random censoring model. The cutpoint   associated with the maximum value of the 

Brownian process ( )nS t  would be selected as the optimal cutpoint.  

 Contal and O’Quigley (1999) presented a method similar to Lausen and 

Schumacher (1992, 1996). The test statistic was developed based on the asymptotic null 

distribution of a process based on re-scaled rank statistics is same as the distribution of the 

Brownian bridge. The test statistic was applied to the survival analysis with censored data. 

 

3.6.1 Method presented by Contal and O’Quigley (1999) 

 Let Zi be a prognostic factor and Xi be an outcome for i
th

 subject; then a null 

hypothesis of no difference in the outcome when the variable Z lies below the cutpoint μ to 

the outcome when the variable Z lies above the cutpoint μ is given by: 

0 : Pr( / ) Pr( / ) for all ,H X t Z X t Z t         

And the alternative hypothesis that there is a location shift in the outcome by the amount v 

when the variable Z lie above the cutpoint μ is given by: 

1 : Pr(X t/ Z ) Pr(X t/ Z ) for all tH           

This result also can be shown by using non-nested proportional hazards regression model 

(Cox, 1972), in which it is given by: 

0( ; ) ( )exp( ' ) (3.6.1)t Z t Z    
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Here, ( ; )t Z  is the hazard rate, 0 ( )t  is the baseline hazard function,   is a vector of 

parameters and Z is a design matrix for covariates, and t  is the time to the event of 

interest. 

The proportional hazard rate in (3.6.1) is based on the assumption of proportional 

hazards, meaning that the risk of the hazard is constant throughout time. If we specify 

Z    as 1 and Z   as 0, we can write the relation in (3.6.1) as following: 

( / ) exp( ) ( / Z ) (3.6.2)t Z t        

Where,  exp   is the ratio of risk when the factor Z is above the cutpoint    to the 

risk when factor Z   is below the cutpoint .  

Lausen and Schumacher (1992) discussed that to standardize the test statistics, it 

should be divided by 1{ (1 )}t t  , which restrict the subinterval within (0, 1), for 0 1.t    

However, there are some cases when not restricting the estimation and hypothesis testing is 

preferred and Contal and O’Quigley (1999) focused on the approach of not restricting the 

interval to (0, 1). 

 

3.6.2 Test procedure of Contal and O’Quigley (1999) 

Let a Brownian bridge, also called a Gaussian stochastic process, 0 ( )W t  on [0, 1], 

where t  is the time of event. The mean of 0 ( )W t  is given by 0( ( )) 0E W t   and its variance 

is given by 0 0( ( ), ( )) (1 t),Cov W s W t s   for s is the time of event, which is less than t, at 

the boundary 0(0) W (1) 0oW   with probability 1.  
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The probability of the supremum of the absolute value of the Brownian Bridge is 

greater than some positive quantity b  is given by: 

0 1 2 2

[0;1] 1

Pr sup | ( ) | 2 ( 1) exp( 2 ) 0j

t j

W t b j b for b




 

 
     

 
  

Let 1,..., nZ Z  be the values of a covariate and let 1 ... nZ Z   be arranged such that they are 

in the increasing order.  Let 1,..., na a  be the ranked score of the outcomes 1,..., nX X  

associated with the ranked variables. The scores are calculated by using the log-rank 

statistic in the case of censored observations. The expectation and variance of ia  are given 

by: 

1

1
( )

n

i i

j

E a a a
n 

    

2

1

1
( ) ( )

( 1)

n

i j

j

Var a a a
n 

 

  

By subtracting the mean and dividing by the square root of variance, we can obtain the 

standardized score i  given by: 

1

( 1) ( )

i
i

i

a a

n Var a






. 

Under the assumption that outcome X  and covariate Z  are independent and i  

converges, we are interested in the maximization of absolute value of sum ( )nS t . The 

limiting distribution of max | ( ) |nS t  is given by: 

1 2 2

[0;1] 1

Pr sup | ( ) | 2 ( 1) exp( 2 )j

n
t j

p S t b j b




 

 
     

 
 . 
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For values of b  greater than 1, a value slightly less than the 33
rd

 percentile is a good 

approximation to the above formula obtained by simply taking the first terms i.e.: 

22exp( 2 )p b  . 

 

3.7 Klein and Wu (2004) 

In 2004, Klein and Wu extended the method of Contal and O’Quigley to the 

parametric model. The test statistics for this method is based on the score residual for the 

parametric model. The log-likelihood of the accelerated failure time model with a Weibull 

distributed time-to-event is given by: 

    1 1
1

1

log( ) log( )
log , , log exp

n
i i i i

i i i

i

T Z T Z
L t

   
     

 

        
       

    
  

Differentiating with respect to parameter 1   

 1 1

11

log , , log( )
exp (3.7)

n
i i i

i

i

d L Z T Z

d

    


  

     
    

   
  

For the null hypothesis 0 1: 0H    the above equation can be written as: 

   1 1

11

ˆ ˆ ˆlog , 0, log( ) 0
exp

ˆ ˆ

n
i ii

i

i

d L T ZZ

d

      


  

        
     

    
  

The test statistics for Klein and Wu (2004) is given by: 

 
 

 

1
ˆ ˆ, 0,

(3.7.2)j

U
S c

vn



   
  

where jth cutpoint, j=1,...,N, and N=number of distinct covariate values.jc   



64 

 

 

 

1
1

1

1

ˆlog(T ) ( 0) Z1
ˆ ˆ, 0, exp (3.7.3)

ˆ ˆ

n
i i

i

i

n

i i

i

U

I X





 
   

 

 





       
     

   

 





 

The variance in equation (3.7.2) can be estimated consistently by weight 2 , where 2  is 

given by: 

2

2

1

ˆlog(T ) 1
exp (3.7.4)

ˆ ˆ

n
i i

i

i

Z

n


 

 

    
    

   
  

According to Klein and Wu, the cutpoint which provides the maximum value of the 

absolute test statistics denoted by  jS c  will be selected as the optimal cutpoint estimate. 

Klein and Wu (2004) also showed that the partial sum of the ergodic process: 

 
( )

(3.7.1)
U p

S p
v n




  

which converges weakly to the Brownian motion process  W  on the unit interval, when 

1/2
2 .iv E      According to Wu(2001), for a different parametric model such as Weibull, 

log logistic and log normal models, the 'i s  have mean zero and the variance v  can be 

consistently estimated by 2 /i n . Substituting the estimated variance in (3.7.1), 

1

2

1

( )

np

i

i

n

i

i

S p





  









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converges to Brownian bridge and cutpoint associated with the maximum value of ( )S p  

can be selected as the optimal cutpoint. The p-value for the cutpoint can be estimated by 

the equation given by: 

   
1

0 2 2

10 1

( ) 2 1 exp 2 (3.7.2)

j

jp

P Sup W p k j k



 

   
      

  
  
  

In addition to parametric method, Klein and Wu (2004) also provided the test 

statistics for Cox-proportional hazard model. The method developed for Cox-proportional 

hazard regression model is an extension of Contal and O’Quigley (1999), Jespersen (1986) 

and Lausen and Schumacher (1992, 1996), which will not be discussed here. 

The Contal and O’Quigley (1999) and Klein and Wu (2004) are similar in terms of 

calculating the valuep   and finding the statistic that converge to Brownian bridge 

without restriction to the interval  0,1 . In chapter 4, we will discuss the proposed method 

of estimating a cutpoint. The proposed method focuses on estimating the cutpoint rather 

than the inference based on p-value. 
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CHAPTER 4: PROPOSED METHOD 

 

4.1 Introduction 

 The most widely used methods of estimating cutpoints are based on the 

maximization of the test statistic. Although a martingale residual plot with the LOESS 

smoothing may indicate a presence of a cutpoint, it may not provide the exact value of a 

cutpoint. Thus, the maximization of a test statistic approach allows the selection of a 

cutpoint that yields the largest difference between two groups. In an attempt to address 

the controversy about the loss of information due to categorization of the continuous 

covariate of interest, both a continuous covariate and a categorical version of the 

covariate will be utilized in the model.  

 The proposed method will use the derivative of the log-likelihood function with 

respect to unknown parameter ,  with   evaluated at null 0  in the result from the 

parametric model with both the continuous and categorical covariate.  

 

4.2 Mathematical Formulation of the Proposed Method 

 The proposed method of determining a cutoff of a covariate of interest is 

accomplished by searching across the range of the covariate for a significant difference in 

the survival between two groups defined by the cutpoint .  Thus, the null hypothesis 

would be: 
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0 : ( / ) (t/ Z ) (4.1)H S t Z S     

In case of a Cox proportional hazards model, we can rephrase the null hypothesis in (4.1) 

as follows: 

 

0

0 0 0

0

: ( / ) ( / )

: ( )exp( [ ]) ( )exp( [ ])

: exp [ ] exp( [ ]) (4.2)

H h t Z h t Z

H h t I Z h t I Z

H I Z I Z

 

 

 

   

   

   

   

  

 

In equation (4.2), [Z ]I   is an indicator variable for subjects with covariate value less 

than or equal to the cutoff point. 

Similarly, for the accelerated failure time (AFT) model we can rephrase the null 

hypothesis in (4.1) as follows:  

   0

0

: ln / ln /

: [ ] [ ] (4.3)

H T Z T Z

H I Z W I Z W 

 

       

   

      
 

In equation (4.3), ln( )T  denotes the log of the survival time ,T   is the coefficient for 

intercept and   is the coefficient for an indicator variable indicating either the covariate 

value is greater than or equal to some cutpoint   or less than the cutpoint ,   is the 

scale parameter, and W is the error term. There are many possible distributions for ,W but 

the most commonly used are the extreme value distribution, the normal distribution and 

the logistic distribution. 
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Equation (4.2) and (4.3) do not adjust for multiple covariates. If we want to adjust 

for multiple covariates in the model the equations (4.2) and (4.3) can be modified, 

respectively, as:  

  0( / , ) ( )exp (4.4)h t X Z h t X I      

ln( ) [ ] (4.5)T X I Z W          

 

4.3 Proposed method for determining a cutpoint 

 The proposed method is based on the parametric model and is the extension of 

both the Contal and O’Quigley (1999) and Klein and Wu (2004) methods for determining 

a cutpoint. This proposed method is based on the information that the log-rank statistic is 

approximately equal to the score statistic. Thus the score statistic for a parametric 

Weibull model with the continuous covariate of interest will be fit.  In addition to the 

continuous covariate of interest, a categorized version of the continuous covariate will 

also be included in the model.   Each distinct value of the continuous variable will be 

considered as a candidate cutpoint. For each candidate cutpoint this model will calculate 

the score statistic of the continuous covariate.  

The accelerated failure time (AFT) model for the 
thi subject with time to an event 

iT  can be written as: 

1 2log( ) (4.6)i i i iT Z X W        
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In equation (4.6), log( )iT  is the logarithm of the time-to-event for the i
th

 subject in the 

study,   is the parameter for the intercept, 1  is the parameter for a categorical variable, 

2  is the parameter for a continuous covariate, iX  is the value of a continuous covariate 

for the i
th

  subject, iZ  is the value of an indicator variable given by 1 ifi iZ X   and 0 

otherwise,   is a proposed cutpoint,   is a scale parameter, and iW  is a random variable 

also known as random error. The distribution of random error iW  will be dependent upon 

the distribution assumed for time to event .iT  For example, if iT  has a Weibull 

distribution then iW  has an extreme value distribution also known as the Gumbel 

distribution (Collette, 2003).  

Before going into detail about the proposed method, some properties of the score 

function will be discussed. Let  L   be the likelihood function for the parameter   and 

let  l   be the log-likelihood function for a univariate parameter   and data .x  The 

score function  U   is defined as the first derivative of the log-likelihood with respect to 

  and is given by: 

   logU L 



   
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Thus, the mean of the score function is   0E U      and     ,Var U I     where 

 I   is negative of the second derivative of the log-likelihood function with respect to 

,  also known as the Fisher information given by:  

 
 2

2

log L
I E






    
   

  

  

For the null hypothesis 0 0:H   , if 0H  is true then the variance of the score function 

is: 

   0 0Var U I    . 

The score function as a random variable converges to a normal distribution 

asymptotically when 0H  is true. Considering these properties of the score function, the 

score function  2U   may be calculated for the continuous covariate iX  in the model 

and may be written as  

   2 2

2

logU L 



   

. 

For the Weibull distributed time to event, the Score function with respect to 2  

may be shown to be:  

 
  1 2

2

1

log 1
exp

n
i i i

i i

i

T Z X
U X

  
 

 

     
     

    
 , 
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where 1,...,i n  is number of subjects in the study, iT  is the survival time of the i
th

 

subject,   is the parameter for intercept,   is the parameter for scale, 1  is the 

parameter for indicator variable iZ , 2  is the parameter for the continuous covariate ,iX  

and i  is the censoring indicator for the 
thi individual denoting 1i   if event, and 0  

otherwise. For the null hypothesis 0 2: 0H    and assuming 0H  is true, the score 

function with respect to 2  may be written as:  

 
  0 10

2

1 0 0

ˆˆlog 1
0 exp (4.7)

ˆ ˆ

n
i i

i i

i

T Z
U X

 
 

 

    
     

      
  

where 0 10 0
ˆˆ ˆ, ,    are the maximum likelihood estimates for the restricted model. From 

the properties of score function provided earlier in the chapter,  2 0.E U      Also, let 

the inside quantity
  0 10

0 0

ˆˆlog1
exp

ˆ ˆ

i i

i i

T Z 
 

 

   
   

  
  

. Also, it should be noted 

that 
  0 10

0

ˆˆlog
exp

ˆ

i i

i

T Z 




   
  

  
  

 is the negative of the martingale residual and can 

take any values between 1  to .  The equation in (4.7)  can be written as:  

 2

1

0 .
n

i i

i

U X 


   
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Since the interest is in computing the difference regardless of positive or negative 

values, the test statistic using the absolute value of the thi  score function of the 

continuous covariate is calculated for each proposed cutpoint. The cutpoint which 

provides the maximum value of the test statistic is considered as the best (optimal) 

cutpoint. The test statistic for the proposed model is given by: 

 
  0 10 2

2

1 0 0

ˆˆlog ( 0)
0 exp (4.8)

ˆ ˆk

n
i i ii

ic
i

T Z XX
U

  
 

 

     
    

  
  

  

Here, , k 1,...,kc m  denotes the m  distinct values of proposed cutpoints obtained by 

using m distinct values of the continuous covariate. Notice that the proposed test statistic 

is based on the maximum value of the sum of the absolute thi  score function, whereas the 

Klein and Wu (2004) method is based on the maximum value of the ratio, where ratio = 

 0

v

U 
 and v  is the variance of  0U  . 

We have discussed the proposed method for estimating the cutpoint in chapter 4. 

In the following chapter, we will compare the performance of proposed method with 

other two methods existing methods, for different scenarios of simulated data. 
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CHAPTER 5: SIMULATION SET UP AND RESULTS 

 

 

5.1 Simulation Set-Up 

 

 Based on the mathematical definition provided in Chapter 4 for the problem at 

hand, the simulations were constructed in such a way that before a specified value for a 

continuous covariate, say 1 , one hazard function is in effect and after 1  a different 

hazard function is in effect. Thus, the goal is to identify 1.   

 For the simulation study, the Weibull and exponential parametric distribution 

were considered for time-to-event iT  to simulate the data. The SAS function ranuni, with 

a seed of 0, was used to simulate a covariate for a uniformly distributed age between 0  

and 90  years. Using a seed of 0 provided a random seed based on the running time of the 

computer. The inverse transformation method was used to generate the Weibull and 

exponential distributed data from uniform (0, 1) variables. The different scenarios used in 

these simulations were as follows: 

Scenario 1:  

Before 1 , the hazard ratio (HR) was 1.00 indicating 0 percent increase (i.e., no increase 

or decrease) in hazard rate per unit increase in the continuous covariate. After 1 , the 

hazard ratio (HR) was 1.01 indicating that 1 percent increase in hazard rate per unit 

increase in a continuous covariate. 
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Scenario 2:  

Before 1 , the hazard ratio (HR) was 1.01 indicating 1 percent increase in hazard 

rate per unit increase in the continuous covariate. After 1 , the hazard ratio (HR) was 

1.03 indicating that 3 percent increase in hazard rate per unit increase in a continuous 

covariate. 

Scenario 3:  

Before 1 , the hazard ratio (HR) was 1.01 indicating 1 percent increase in hazard 

rate per unit increase in the continuous covariate. After 1 , the hazard ratio (HR) was 

1.06 indicating that 6 percent increase in hazard rate per unit increase in a continuous 

covariate. 

Scenario 4: 

Before 1 , the hazard ratio (HR) was 1.01 indicating 1 percent increase in hazard 

rate per unit increase in the continuous covariate. After 1 , the hazard ratio (HR) was 

1.10 indicating that 10 percent increase in hazard rate per unit increase in a continuous 

covariate. 

Sample size: 

Four different sample sizes were used in the simulations for each of the scenarios 

above: 50, 100, 500 and 1000. 
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Cutpoint:  

Three different cutpoint were used in the simulations for each of the scenarios 

above: τ1=25, τ1=50 and τ1=75.  

Replication: 

For all combinations of the above scenarios and sample sizes 1,000 simulated 

datasets were created.   

Censoring: 

 Two different scenarios were used for censoring. First, it was assumed that all 

observations experienced an event, hence censor 0  was assigned for all individuals. 

Second, it was assumed that 25%  of all individuals were censored. For creating the 

censoring variable, the SAS function ranuni with a seed of 0  was used to simulate a 

uniformly distributed random variable between 0 and 1.  If the value of the simulated 

random variable was less than or equal to 0.25, then that observation was assigned as 

censored, otherwise the observations were assigned as non-censored (i.e., had an event).  

5.2 Description of the Inverse transformation method 

  Let U  follow a uniform distribution on the (0,1) interval. Let T  be a random 

variable that follows the Weibull distribution. The inverse transformation states that the 

cumulative distribution function (c.d.f.)  TF t   of a random variable T should be equal to 

U, given that U has a uniform distribution on (0,1). The c.d.f. of T can be written as 

( ) ( ).P T t F t  Also, if ~ (0,1)U u  then    1 0,1 .U u   According to inverse 

transformation, if TF  is strictly increasing then 
1

TF 
 is well defined by: 
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 1

( )T

T

F T U

F U T




  

Recall that the hazard rate written in terms of proportional hazard model can be written 

as: 

     0 exp (5.1)h t h t X  

In equation (5.1),  h t  is the hazard function at time ,t   0h t  is a baseline hazard, X is a 

vector of covariates,   is a vector of unknown coefficients. Assuming time to event T  

has Weibull distribution, the baseline hazard is given by: 

  1

0 (5.2)h t t    

where   is the scale parameter and   is the shape parameter. Substituting the baseline 

hazard from (5.2) in equation (5.1), hazard function is:  

   1 exp (5.3)h t t X   

The accelerated failure time model can be written as:  

 log (5.4)T x W      

If event time T in equation (5.4) has a Weibull distribution then W  has the standard 

extreme value distribution. Comparing equation (5.3) and (5.4) the parameters are 

 exp / ,     1/   and /j j     where j = 1, …, p. 

The survival function for a random variable T  with a Weibull distribution is 

given by:  
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     1 (5.6)S t F t S t U     

From equation (5.5) and (5.6),  

  exp expU X t     

   exp logX t U     

 

 

log

exp

U
t

X



 


  

 

 
 

1

log
5.7

exp

U
t

X



 

 
  
 

 

For simulation purposes a scale parameter of 0.00011   was provided. The 

shape parameter   was 0.78137. If the shape parameter   equals to 1, then the Weibull 

distribution reduces into the exponential distribution. Because of the baseline hazard 

 1

0( ) ,h t t





  if 1,   baseline hazard decreases as time increases and if 1   then the 

baseline hazard increases as time increases. A figure to illustrate the effect of different 

values of the shape parameter on the probability density function (p.d.f.) is provided 

below: 
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Figure 5.0 Probability density functions for different values of the shape parameter 

 

5.3 Evaluation Criteria for the Estimated Cutpoints 

For evaluating the performance of the cutpoint estimation the statistical indicators 

of bias, mean squared error (MSE), and the 95
th

 percentile intervals were calculated.  

5.3.1 Bias 

Bias is the difference between the true value of the parameter and the estimated 

value of the parameter. The bias can be written as: 

 
1 1

1 1ˆ ˆ
n n

j true j true true

j j

Bias
n n

     
 

        
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where n  is the number of replicates, and ˆ
j  is an estimate of the parameter   from the 

j
th

 replicate and   is the average of estimated cutpoint and is given by: 

1

1 ˆ
n

j

jn
 



  . 

5.3.2 Mean Squared Error: 

Mean squared error (MSE) is the average squared difference between the 

estimator and the true value of the cutpoint and is defined as: 

 
2

1

1 ˆ
n

j true

j

MSE
n

 


  . 

 

5.3.3  95
th

 Percentile Interval 

A percentile indicates that the percentage of time the data points are below the 

resulting value. To calculate the 95
th

 percentile interval, the lower 2.5
th

 and upper 97.5
th

 

percentile will be calculated from the estimated cutpoints. The obtained values of 95
th

 

percentile interval will indicate that 95% of the time the estimated values of the cutpoints 

are within that interval. 
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5.4.1 Cutpoint of 25, Weibull distribution 

The first set of results examine an estimator for 1 25.   The results from the 

proposed score method will be followed by the results from the existing methods.  

Table 5.4.1 Simulation Results from the Weibull distributed data, Overall Comparison of 

three Methods at 1 25   no censoring 

 Proposed Score Method   Klein and Wu Method .    Contal and O’Quigley Method 

N RR Bias MSE p 2.5 

 

p97.5 

 

Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 

50 1 11.37 180.92 25.00 51.00 5.80 58.53 24.00 43.00 9.50 135.40 25.00 48.00 

50 2 11.48 268.60 16.00 60.00 9.67 177.95 19.00 53.00 11.74 220.29 21.00 55.00 

50 3 10.99 193.83 23.00 53.00 7.24 92.06 23.00 46.00 9.91 150.58 24.00 50.00 

50 4 11.57 187.78 25.00 52.00 5.97 61.56 24.00 42.00 9.50 135.20 25.00 48.00 

100 1 10.73 150.81 25.00 48.00 4.83 38.96 25.00 39.00 8.19 94.31 25.00 44.00 

100 2 10.77 204.15 21.00 55.00 9.28 141.41 22.00 50.00 11.11 181.06 23.50 51.00 

100 3 10.08 150.81 25.00 50.00 5.97 58.23 24.00 41.00 8.42 101.85 25.00 45.00 

100 4 10.56 147.12 25.00 47.50 4.75 37.11 25.00 38.00 8.05 90.91 25.00 44.00 

500 1 10.96 134.30 29.00 43.00 3.80 20.61 25.00 34.00 7.24 61.41 27.00 38.00 

500 2 11.67 177.41 25.00 49.00 9.06 104.95 25.00 44.00 10.54 134.67 27.00 45.00 

500 3 10.40 130.41 27.00 45.00 5.49 40.20 25.00 37.00 8.01 76.17 26.00 40.00 

500 4 11.02 135.81 28.00 43.00 3.78 19.99 25.00 34.00 7.26 62.94 26.00 39.00 

1000 1 11.13 133.37 30.00 42.00 3.63 16.80 25.00 32.50 7.10 55.82 27.00 36.00 

1000 2 11.96 171.91 27.00 48.00 9.04 96.03 27.00 41.00 10.61 127.63 28.00 43.00 

1000 3 10.46 124.41 28.00 43.00 5.43 36.02 26.00 35.50 7.97 71.32 27.00 38.00 

1000 4 11.30 137.41 30.00 42.00 3.66 17.12 25.00 32.00 7.09 56.24 27.00 37.00 

Note:  1) RR represents the hazard ratio scenarios 

2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile  

 

For the cutpoint of 25, all three methods overestimate the cutpoint. In particular 

the proposed score method has larger bias and MSE than the other two existing methods. 

The bias for the proposed score method at sample size 1000 and risk ratio 1.00-1.01 is 
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11.13 and whereas the bias for the Klein and Wu and the Contal and O’Quigley methods 

at the same scenario is 3.63 and 7.10 respectively. The sample size 1000 and risk ratio 

1.00-1.01 was chosen because it has the smallest bias and MSE for the Klein and Wu 

method. For all three methods, the risk ratio of 1.01-1.03 had highest MSE and bias at 

each different sample sizes. Also, the 95
th

 percentile interval is wider at sample size of 50 

and risk ratio of 1.01-1.03 for all three methods.  

Table 5.4.2 Simulation Results from the Weibull distributed data, Overall Comparison of 

three methods for 25% censoring and 1 25    

  Proposed Score Method     Klein and Wu Method  .                Contal and O’Quigley Method 

N RR Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 

50 1 12.44 213.88 25.00 54.00 7.46 99.36 24.00 49.00 9.32 130.84 25.00 49.00 

50 2 13.25 336.14 16.00 65.00 11.12 232.97 19.00 58.00 11.79 228.99 21.00 57.00 

50 3 12.36 237.50 23.00 57.00 8.68 140.20 22.00 52.50 9.97 151.03 23.50 50.00 

50 4 12.40 210.63 25.00 52.00 7.28 98.32 24.00 48.50 9.24 131.63 25.00 49.50 

100 1 11.98 179.89 26.00 48.00 5.91 60.87 24.00 42.00 8.06 94.99 25.00 45.50 

100 2 11.73 231.55 21.00 57.00 9.85 164.67 20.00 52.00 10.06 152.01 23.00 51.00 

100 3 11.39 184.02 25.00 51.00 7.32 90.63 24.00 46.00 8.83 111.63 25.00 46.00 

100 4 12.14 187.20 26.00 49.00 6.04 63.98 25.00 44.00 7.99 91.61 25.00 44.00 

500 1 12.03 160.75 29.00 44.00 4.30 27.87 25.00 36.00 7.08 59.89 26.00 38.00 

500 2 11.93 182.29 25.00 49.00 9.09 110.37 25.00 46.00 10.33 129.13 27.00 45.00 

500 3 11.38 152.42 27.00 45.00 5.76 48.11 25.00 39.00 7.81 72.98 26.00 40.00 

500 4 11.91 157.11 29.00 44.00 4.16 27.10 25.00 36.00 7.20 60.83 26.00 38.00 

1000 1 12.47 165.19 31.00 43.00 4.02 22.61 25.00 34.00 7.19 57.71 28.00 37.00 

1000 2 12.12 177.03 26.50 47.00 9.04 99.00 26.00 42.00 10.49 124.21 28.00 42.00 

1000 3 11.97 159.23 29.00 44.50 5.47 39.06 25.00 37.00 8.06 72.84 28.00 38.00 

1000 4 12.45 165.64 31.00 44.00 4.07 23.98 25.00 35.00 7.11 56.59 27.00 37.00 

Note:  1) RR represents the hazard ratio scenarios 

2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile 
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Looking at Table 5.4.2 above, all three methods overestimated the cutpoint, the 

largest bias for the proposed score method was 13.25 and the smallest bias was 11.38. 

The largest bias for the Klein and Wu method was 11.12 and the smallest bias was 4.07. 

The largest bias for the Contal and O’Quigley method was 11.79 and the smallest bias 

was 7.11. These results are similar to situation with no censoring. 
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5.4.2 Cutpoint of 50, Weibull distribution 

The first set of results examine an estimator for 1 50.   The results from the 

proposed score method will be followed by the results from the existing methods.  

Table 5.4.3 Simulation Results from the Weibull distributed data, Overall Comparison of 

Three Methods at 1 50   no censoring 

 

 Proposed Score Method     Klein and Wu Method Contal and O’Quigley Method 

N RR Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 

50 1 1.93 9.41 50.00 58.50 0.27 7.95 42.50 55.00 -1.48 22.50 37.00 55.00 

50 2 -1.12 108.40 17.50 65.00 -4.35 80.33 24.50 56.00 -3.50 65.63 28.00 57.50 

50 3 2.12 16.33 46.00 60.50 -1.10 20.73 37.00 55.00 -1.87 30.16 34.00 55.00 

50 4 1.87 9.63 50.00 58.00 0.40 8.19 44.00 56.00 -1.51 24.90 36.50 55.00 

100 1 1.04 3.65 50.00 55.50 0.05 2.34 46.00 53.00 -0.99 8.16 42.00 52.00 

100 2 0.21 29.40 36.50 61.00 -2.99 33.28 34.00 53.00 -2.67 30.12 35.00 53.00 

100 3 1.08 4.83 48.00 56.00 -0.63 5.24 44.00 52.00 -1.17 9.05 42.00 52.00 

100 4 0.89 3.03 50.00 55.00 0.05 1.80 47.00 52.00 -0.88 6.73 42.00 52.00 

500 1 0.15 0.26 50.00 52.00 -0.02 0.03 50.00 50.00 -0.17 0.27 48.00 50.00 

500 2 0.49 2.21 49.00 55.00 -0.83 3.49 44.00 51.00 -0.77 3.09 45.00 51.00 

500 3 0.27 0.59 50.00 53.00 -0.15 0.24 48.00 50.00 -0.25 0.49 48.00 50.00 

500 4 0.15 0.25 50.00 51.00 -0.02 0.03 50.00 50.00 -0.18 0.37 48.00 50.00 

1000 1 0.06 0.07 50.00 51.00 -0.00 0.00 50.00 50.00 -0.04 0.04 49.00 50.00 

1000 2 0.34 0.94 49.00 53.00 -0.43 1.04 47.00 50.00 -0.39 0.84 47.00 50.00 

1000 3 0.11 0.16 50.00 51.00 -0.04 0.05 49.00 50.00 -0.08 0.11 49.00 50.00 

1000 4 0.08 0.11 50.00 51.00 -0.01 0.01 50.00 50.00 -0.05 0.02 49.00 50.00 

Note:  1) RR represents the hazard ratio scenarios 

2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile 

Looking at the Table 5.4.3, bias and MSE are large at sample size 50 and risk 

ratio 1.01-1.03. Also, the 95
th

 percentile interval is wider for all three methods at the 

same scenario. The bias and MSE are smaller for a sample size of 500 and 1000. All 

three methods performed well at a sample size 500 and 1000 for the cutpoint of 50. 
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Table 5.4.4 Simulation Results from the Weibull distributed data, overall Comparison of 

three methods at 1 50   with 25% censoring 

 Proposed Score Method       Klein and Wu Method Contal and O’Quigley Method 

N RR bias MSE p2.5 p97.5 bias MSE p2.5 p97.5 bias MSE p2.5 p97.5 

50 1 2.18 11.80 50.00 60.00 0.02 17.32 40.00 58.00 -1.56 23.52 36.00 55.00 

50 2 -0.25 96.82 24.00 69.00 -4.47 98.11 24.00 60.00 -3.53 67.39 27.00 57.00 

50 3 1.97 14.75 46.00 60.00 -1.41 35.13 33.00 58.00 -1.84 27.50 34.50 55.00 

50 4 2.11 11.26 50.00 59.00 0.12 16.07 40.00 58.00 -1.47 23.97 36.00 55.00 

100 1 1.20 4.59 50.00 56.00 -0.06 5.01 44.00 54.00 -0.99 8.36 41.00 52.00 

100 2 0.39 32.38 38.00 61.50 -3.01 43.37 32.00 55.00 -2.90 33.72 34.00 54.00 

100 3 1.23 5.78 48.00 57.00 -1.02 13.82 39.00 54.00 -1.23 10.49 40.00 52.50 

100 4 1.14 4.00 50.00 56.00 -0.13 4.52 44.00 54.00 -0.79 5.96 43.00 53.00 

500 1 0.18 0.30 50.00 52.00 -0.05 0.15 49.00 50.50 -0.17 0.32 48.00 50.00 

500 2 0.65 2.67 49.00 55.00 -1.02 5.39 43.00 52.00 -0.77 3.05 45.00 51.00 

500 3 0.30 0.68 50.00 53.00 -0.29 0.87 47.00 51.00 -0.20 0.34 48.00 50.00 

500 4 0.22 0.43 50.00 52.00 -0.10 0.23 49.00 50.00 -0.19 0.38 48.00 50.00 

1000 1 0.09 0.14 50.00 51.00 -0.02 0.03 50.00 50.00 -0.05 0.06 49.00 50.00 

1000 2 0.35 0.93 49.00 53.00 -0.60 2.03 46.00 51.00 -0.40 0.99 47.00 50.00 

1000 3 0.12 0.16 50.00 51.00 -0.08 0.12 49.00 50.00 -0.06 0.07 49.00 50.00 

1000 4 0.08 0.10 50.00 51.00 -0.02 0.02 50.00 50.00 -0.04 0.04 49.00 50.00 

Note:  1) RR represents the hazard ratio scenarios 

            2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile 

 

From Table 5.4.4, the Klein and Wu and Contal and O’Quigley methods 

underestimated the cutpoint 50 whereas the proposed score method overestimated the 

cutpoint. But the absolute bias is small for the large sample sizes for all three methods. 

The largest bias for the proposed score method is 2.18, the largest absolute bias for the 

Klein and Wu method is 4.47 and largest absolute bias for the Contal and O’Quigley 

method is 3.53. The largest MSE for the proposed score method is 96.82, for the Klein 

and Wu method is 98.11 and for Contal and O’Quigley method it is 67.39. At the sample 
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size 1000, all three methods have small bias and MSE. The proposed score method tends 

to have the lowest bias and MSE. 

5.4.3 Cutpoint of 75, Weibull distribution 

The first set of results examine an estimator for 1 75.   The results from the 

proposed score method will be followed by the results from the existing methods.  

Table 5.4.5 Simulation Results from Weibull distributed data Overall Comparison of Three 

Methods at 1 75   no censoring 

  Proposed Score Method            Klein and Wu Method  Contal and O’Quigley Method 

N RR bias MSE p2.5 p97.5 bias MSE p2.5 p97.5 bias MSE p2.5 p97.5 

50 1 1.16 11.00 74.00 81.00 -14.27 399.94 28.00 78.00 -22.12 735.00 23.00 76.00 

50 2 -20.86 847.94 12.00 79.00 -25.30 889.24 17.00 75.00 -24.75 854.01 19.00 75.00 

50 3 -2.47 115.81 34.00 80.00 -20.42 657.82 23.00 76.00 -23.15 781.81 21.00 76.00 

50 4 0.93 10.58 74.00 81.00 -13.59 363.79 29.00 77.00 -21.23 664.61 22.00 76.00 

100 1 0.45 0.97 75.00 78.00 -12.01 266.17 38.00 76.00 -21.05 614.71 28.00 75.00 

100 2 -17.36 614.79 16.00 78.00 -23.71 742.81 25.00 74.00 -23.60 613.11 25.00 74.00 

100 3 -0.13 8.27 69.00 78.00 -16.49 433.80 30.00 75.00 -20.72 602.90 26.50 75.00 

100 4 0.48 0.97 75.00 78.00 -13.22 316.15 34.00 76.00 -21.70 645.71 27.00 75.00 

500 1 0.01 0.01 75.00 75.00 -8.12 120.13 49.00 75.00 -18.80 436.66 38.00 73.00 

500 2 -10.64 263.42 36.00 75.00 -21.53 544.95 36.00 71.00 -22.12 571.53 35.00 71.00 

500 3 -0.01 0.01 75.00 75.00 -13.53 262.88 43.00 75.00 -18.77 440.92 37.50 74.00 

500 4 0.00 0.01 75.00 75.00 -7.84 113.80 49.50 75.00 -18.44 423.47 38.00 73.50 

1000 1 0.00 0.00 75.00 75.00 -6.30 73.55 55.00 75.00 -18.23 385.80 43.00 71.50 

1000 2 -8.83 202.40 42.00 75.00 -21.00 495.79 39.00 69.00 -21.53 521.10 39.00 69.00 

1000 3 0.00 0.00 75.00 75.00 -12.65 211.45 48.00 75.00 -18.58 402.12 41.50 70.00 

1000 4 0.00 0.00 75.00 75.00 -6.39 75.07 54.00 75.00 -18.61 139.07 41.00 70.00 

Note:  1) RR represents the hazard ratio scenarios 

2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile 

 

For the cutpoint of 75, the Klein and Wu and Contal and O’Quigley methods 

underestimated the cutpoint at all scenarios. The proposed score method has accurate 
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result except at the risk ratio of 1.01-1.03. The cutpoints estimated at that risk ratio has 

high bias and MSE for every sample size. In the proposed score method with sample size 

50 and risk ratio 1.01-1.03, the 95
th

 percentile interval range from 12 to 79 giving highly 

variable  estimates at the lower end. Similarly, Klein and Wu has (17, 75) and Contal and 

O’Quigley has (19, 75) 95
th

 percentile interval at that risk ratio. Overall, for the cutpoint 

75 the proposed score method has lower bias and MSE regardless of the sample size in 

comparison to other two methods. 

Table 5.4.6 Simulation Results from the Weibull distributed data, Overall 

Comparison of three methods, 25% censoring, 1 75   

  Proposed Score Method         Klein and Wu Method Contal and O’Quigley Method 

N RR Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 

50 1 1.09 12.74 75.00 81.00 -16.34 486.37 24.50 78.00 -21.94 705.86 21.00 76.00 

50 2 -15.72 632.62 13.00 80.50 -25.45 924.74 19.00 76.00 -24.78 861.77 19.00 76.00 

50 3 -0.76 66.98 46.00 81.00 -20.36 676.75 20.00 77.00 -22.80 763.44 20.00 76.50 

50 4 1.00 18.90 75.00 81.00 -15.89 484.72 23.50 77.50 -22.15 719.37 22.00 76.00 

100 1 0.47 0.99 75.00 78.00 -14.53 386.74 29.50 76.00 -21.09 616.81 28.00 75.00 

100 2 -11.91 417.09 20.00 78.00 -24.21 802.12 22.00 75.00 -24.13 770.38 22.50 75.00 

100 3 0.11 8.00 72.00 78.00 -18.26 528.74 26.00 75.00 -21.43 645.02 24.00 75.00 

100 4 0.47 0.90 75.00 78.00 -13.87 351.62 31.00 76.00 -21.45 644.71 24.50 75.00 

500 1 0.00 0.00 75.00 75.00 -8.77 144.12 47.00 75.00 -18.48 427.71 37.00 73.50 

500 2 -3.28 66.04 47.50 75.00 -21.23 547.93 36.00 72.50 -22.02 567.62 36.00 71.00 

500 3 -0.00 0.01 75.00 75.00 -14.15 290.90 40.50 75.00 -19.29 458.18 37.00 73.00 

500 4 0.00 0.00 75.00 75.00 -8.81 143.62 47.00 75.00 -18.51 429.14 37.00 74.00 

1000 1 0.00 0.00 75.00 75.00 -7.53 101.53 52.00 75.00 -18.28 389.66 43.00 72.00 

1000 2 -0.99 14.96 62.00 75.00 -21.11 516.11 37.00 71.00 -21.94 536.43 39.00 67.00 

1000 3 0.00 0.00 75.00 75.00 -12.99 235.30 45.00 75.00 -18.18 392.01 41.00 72.00 

1000 4 0.00 0.00 75.00 75.00 -7.34 98.97 52.00 75.00 -18.03 381.22 43.00 71.00 

Note:  1) RR represents the hazard ratio scenarios 

2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile 
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  Looking at the Table 5.4.6, the proposed score method has better performance 

overall. For sample size 50 and relative risk 1.01-1.03, the absolute bias is 15.72 and 

MSE is 632.62. The 95
th

 percentile interval at sample size 50 and relative risk of 1.01-

1.03 for the proposed score method is (13.0, 80.5), the 95
th

 percentile interval for the 

Klein and Wu for that scenario is (19.0, 76.0), similarly the 95
th

 percentile interval for the 

Contal and O’Quigley method for the same scenario is (19.0, 76.0). Since the proposed 

score method has wider percentile interval at sample size 50 and relative risk of 1.01-1.03 

in comparison to other existing methods, but narrower percentile intervals at larger 

sample size, the performance of score method depends upon the relative risk estimates as 

well as sample size. The result is similar to that with no censoring. 

In the section above the proposed score method was compared with the Klein and 

Wu and the Contal and O’Quigley methods for the Weibull distributed data. In the 

section below, performance from the proposed score method will be compared with the 

Klein and Wu and the Contal and O’Quigley methods with data obtained from an 

exponential distribution. 
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5.5.1 Cutpoint of 25, Exponential Distribution 

The result from the proposed method will be compared with the existing methods Klein 

and Wu (2004) and Contal and O’Quigley (1999) for the true cutpoint of 25. 

Table 5.5.1 Overall Comparisons, Exponential distribution, no censoring, 1 25    

 

 Proposed Score Method          Klein and Wu Method Contal and O’Quigley Method 

N RR Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 

50 1 -3.77 94.08 10.00 49.50 0.64 9.44 19.00 31.00 8.81 120.99 25.00 49.00 

50 2 15.71 1006.49 2.50 86.50 7.50 135.95 17.00 51.50 11.90 231.80 21.00 57.50 

50 3 -3.79 318.60 5.00 79.00 2.14 26.57 19.00 38.50 10.02 154.09 24.00 51.00 

50 4 -3.82 90.63 11.00 47.50 0.56 8.88 18.00 31.00 9.74 140.44 25.00 49.50 

100 1 -6.35 65.06 13.00 31.50 0.12 3.12 21.00 29.00 8.23 96.21 25 42.0 

100 2 14.33 1007.60 3.00 88.00 7.10 103.79 20.00 48.00 11.40 189.63 25 50.0 

100 3 -9.22 254.02 5.00 68.50 1.27 10.08 21.00 33.00 8.75 109.65 25 44.0 

100 4 -6.36 60.80 13.00 27.00 0.08 2.19 21.50 28.00 8.20 94.74 25 42.0 

500 1 -7.41 57.11 15.00 20.00 -0.03 0.08 24.00 25.00 7.24 62.77 26.00 38.00 

500 2 -2.27 619.03 4.00 88.00 6.43 59.96 25.00 40.50 10.38 129.66 27.00 45.00 

500 3 -12.97 171.79 9.00 16.00 0.61 1.70 24.00 29.00 7.84 73.24 26.00 40.00 

500 4 -7.49 57.82 15.00 20.00 -0.04 0.07 24.00 25.00 7.03 59.73 26.00 39.00 

1000 1 -7.54 58.46 16.00 19.00 0.02 0.40 25.00 25.00 7.19 57.12 27.50 37.00 

1000 2 -10.48 377.14 5.00 86.50 6.35 54.01 25.00 39.00 10.73 131.65 28.00 43.00 

1000 3 -13.20 176.28 9.00 15.00 0.41 0.84 25.00 28.00 7.92 70.78 27.50 38.00 

1000 4 -7.57 58.25 16.00 19.00 -0.00 0.00 25.00 25.00 7.12 56.34 27.00 37.00 

Note:  1) RR represents the hazard ratio scenarios 

2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile 

 

For the cutpoint of 25, the proposed score method tends to underestimate the 

actual cutpoint, whereas the Contal and O’Quigley method tends to overestimate the 

actual cutpoint. In particular the proposed score method has larger bias and MSE than the 

two existing methods. The bias for the proposed score method at sample size 1000 and 

risk ratio 1.00-1.01 is 7.57 whereas the bias for the Klein and Wu and the Contal and 
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O’Quigley methods at the same scenario is 0 and 7.12 respectively. The sample size 1000 

and risk ratio 1.00-1.01 was chosen because it has the smallest bias and MSE for the 

Klein and Wu method. At the sample size 50 and risk ratio of 1.01-1.03, the proposed 

score has largest bias of 15.71 whereas the Klein and Wu has bias of 7.50 and the Contal 

and O’Quigley has bias of 11.90 at the given scenario. For all three methods, the risk 

ratio of 1.01-1.03 had highest MSE and bias at each sample size. Also, the 95
th

 percentile 

interval is wider at sample size 50 and risk ratio of 1.01-1.03 for all three methods.  

Table 5.5.2 Overall Comparison, Exponential distribution, 25% censoring, 1 25    

 

 Proposed Score Method          Klein and Wu Method   Contal and O’Quigley Method 

N RR Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 

50 1 5.55 284.71 14.00 72.00 1.12 15.42 18.00 35.00 9.44 131.36 25.00 49.00 

50 2 19.93 1015.84 4.00 86.00 8.03 157.99 16.00 55.00 11.62 222.75 21.00 57.00 

50 3 10.26 648.01 9.00 84.00 2.77 33.54 19.00 40.00 9.75 146.50 24.00 50.00 

50 4 5.18 294.86 14.00 75.00 0.90 12.72 18.00 34.00 9.59 137.03 25.00 48.00 

100 1 -0.37 131.72 15.00 59.00 0.43 3.52 21.00 29.00 8.03 90.63 25.00 44.00 

100 2 19.44 1040.80 6.00 87.00 7.84 120.24 21.00 50.00 10.97 179.36 23.00 53.00 

100 3 2.84 426.92 10.00 82.00 1.73 14.71 21.00 36.00 8.32 101.99 25.00 46.00 

100 4 -0.35 131.28 15.00 58.50 0.36 3.45 21.00 29.00 8.33 96.90 25.00 44.00 

500 1 -5.83 38.09 17.00 22.00 0.01 0.20 24.00 26.00 7.28 62.49 26.00 38.00 

500 2 5.01 542.66 8.00 85.00 6.81 67.25 25.00 42.00 10.71 139.52 26.00 45.00 

500 3 -9.21 97.86 12.00 20.00 0.78 2.49 24.00 29.00 8.12 78.37 26.00 41.00 

500 4 -5.88 38.01 17.00 21.00 0.00 0.12 24.00 26.00 7.28 62.31 26.00 38.00 

1000 1 -5.98 37.24 17.00 21.00 0.03 0.86 25.00 25.00 7.11 56.62 28.00 37.00 

1000 2 -4.22 216.97 9.00 68.50 6.47 57.16 25.00 40.00 10.61 127.33 28.00 43.00 

1000 3 -9.75 97.20 13.00 18.00 0.56 1.27 25.00 28.00 7.84 69.29 28.00 38.00 

1000 4 -5.97 36.63 17.00 21.00 0.00 0.01 25.00 25.00 7.24 57.81 28.00 37.00 

Note:  1) RR represents the hazard ratio scenarios 

2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile 
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 For the cutpoint of 25, the Contal and O’Quigley tends to overestimate the 

cutpoint, the proposed score method has mixed results with overestimation of the actual 

cutpoint at smaller sample sizes and underestimation of the actual cutpoint at larger 

sample sizes. The Klein and Wu method has estimates approximately equal to the true 

cutpoint. In particular the proposed score method has larger bias and MSE than the two 

existing methods. The bias for the proposed score method at sample size 1000 and risk 

ratio 1.00-1.01 is 5.97 and whereas the bias for the Klein and Wu and the Contal and 

O’Quigley methods at the same scenario is 0 and 7.24 respectively. The sample size 1000 

and risk ratio 1.00-1.01 was chosen because it has the smallest bias and MSE for the 

Klein and Wu method. For all three methods, the risk ratio of 1.01-1.03 had highest MSE 

and bias at each different sample sizes. Also, the 95
th

 percentile interval is wider at 

sample size 50 and risk ratio of 1.01-1.03 for all three methods.  
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5.5.2 Cutpoint of 50, Exponential distribution 

The result from the proposed method will be compared with the existing methods of 

Klein and Wu (2004) and Contal and O’Quigley (1999) for the true cutpoint of 50. 

Table 5.5.3 Overall Comparison, Exponential distribution, no censoring, 1 50    

 

 Proposed Score Method          Klein and Wu Method   Contal and O’Quigley Method 

N RR Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 

50 1 -4.62 31.66 37.00 49.00 -4.21 64.68 26.00 53.50 -1.49 22.21 36.00 54.00 

50 2 -17.53 788.02 4.00 85.00 -6.09 105.31 24.00 55.00 -4.09 76.30 26.00 57.00 

50 3 -12.53 199.78 24.00 47.00 -4.09 57.58 28.50 54.00 -1.81 26.33 35.00 54.00 

50 4 -4.54 31.37 37.00 49.00 -4.09 61.67 28.50 54.00 -1.46 22.42 35.50 55.00 

100 1 -4.17 22.56 41.00 49.00 -3.05 30.60 34.00 52.00 -1.49 22.21 36.00 54.00 

100 2 -21.43 793.75 8.00 85.00 -4.13 50.06 31.00 52.50 -4.09 76.30 26.00 57.00 

100 3 -12.19 172.46 28.00 46.00 -2.77 25.69 36.00 52.00 -1.81 26.33 35.00 54.00 

100 4 -4.04 21.68 40.00 49.00 -2.87 28.07 35.00 52.00 -1.46 22.42 35.50 55.00 

500 1 -3.78 15.53 44.00 48.00 -0.82 2.80 45.00 50.00 -0.20 0.36 48.00 50.00 

500 2 -28.05 812.25 14.00 31.00 -1.41 6.66 42.00 50.00 -0.83 3.51 44.00 51.00 

500 3 -12.40 159.48 33.00 42.00 -0.69 2.07 46.00 50.00 -0.23 0.45 48.00 50.00 

500 4 -3.81 15.84 44.00 48.00 -0.72 2.18 46.00 50.00 -0.20 0.34 48.00 50.00 

1000 1 -3.72 14.52 45.00 48.00 -0.30 0.56 48.00 50.00 -0.05 0.06 49.00 50.00 

1000 2 -28.77 837.38 15.00 27.50 -0.83 2.84 45.00 50.00 -0.42 1.11 47.00 50.00 

1000 3 -12.47 158.75 34.00 41.00 -0.34 0.72 47.00 50.00 -0.07 0.09 49.00 50.00 

1000 4 -3.72 14.52 45.00 48.00 -0.29 0.53 48.00 50.00 -0.05 0.06 49.00 50.00 

Note:  1) RR represents the hazard ratio scenarios 

2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile 

 For the true cutpoint of 50, the proposed score method underestimates the true 

cutpoint but the Klein and Wu and the Contal and O’Quigley has estimates 

approximately equal to the true cutpoint. In particular the proposed score method has 

larger bias and MSE than the other two methods. The bias for the proposed score method 

at sample size 1000 and risk ratio 1.00-1.01 is 3.72, whereas the bias for the Klein and 
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Wu and the Contal and O’Quigley methods at the same scenario is 0.29 and 0.05 

respectively. The sample size 1000 and risk ratio 1.00-1.01 was chosen because it has the 

smallest bias and MSE for the Klein and Wu method. For all three methods, the risk ratio 

of 1.01-1.03 had highest MSE and bias at each different sample sizes. Also, the 95
th

 

percentile interval is wider at sample size 50 and risk ratio of 1.01-1.03 for all three 

methods. 

Table 5.5.4 Overall comparisons, Exponential distribution, 25% censoring, 1 50    

 

 Proposed Score Method           Klein and Wu Method   Contal and O’Quigley Method 

N RR Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 

50 1 -4.04 26.15 38.00 49.00 -4.17 70.55 27.00 56.00 -1.35 21.30 37.00 55.00 

50 2 -10.98 553.75 7.00 84.00 -5.51 117.45 22.00 58.00 -3.73 65.97 28.00 57.00 

50 3 -9.73 142.37 26.00 49.00 -4.69 81.94 25.00 56.00 -1.71 25.30 35.00 55.00 

50 4 -4.13 27.67 38.00 49.00 -4.00 68.55 27.00 56.00 -1.46 22.33 37.00 54.00 

100 1 -3.37 15.06 42.00 49.00 -2.96 30.87 34.00 52.50 -0.93 6.66 43.00 52.00 

100 2 -15.13 561.45 11.00 84.00 -4.48 65.53 28.00 54.50 -2.59 31.74 34.00 54.00 

100 3 -9.50 111.14 30.00 48.00 -3.14 36.21 32.00 53.00 -1.20 9.90 40.00 52.00 

100 4 -3.41 15.97 41.50 49.00 -2.69 28.02 35.00 52.50 -0.96 7.03 42.00 52.00 

500 1 -3.05 10.31 45.00 49.00 -0.86 3.45 45.00 50.00 -0.17 0.26 48.00 50.00 

500 2 -22.37 523.68 19.00 37.00 -1.55 8.76 41.50 51.00 -0.73 2.60 45.00 51.00 

500 3 -9.55 96.57 35.50 44.00 -0.96 4.09 44.00 50.00 -0.25 0.46 48.00 50.00 

500 4 -3.04 10.24 45.00 49.00 -0.83 2.96 45.00 50.00 -0.17 0.32 49.00 50.00 

1000 1 -2.97 9.35 46.00 48.00 -0.35 0.74 47.00 50.00 -0.05 0.06 49.00 50.00 

1000 2 -23.00 542.16 21.00 34.00 -0.82 3.06 44.00 50.00 -0.34 0.84 47.00 50.00 

1000 3 -9.52 93.62 37.00 44.00 -0.40 0.85 47.00 50.00 -0.07 0.10 49.00 50.00 

1000 4 -2.97 9.41 46.00 48.00 -0.41 0.93 47.00 50.00 -0.05 0.07 49.00 50.00 

Note:  1) RR represents the hazard ratio scenarios 

2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile 

At the actual cutpoint of 50 and 25% censoring, the Contal and O’Quigley method 

has the smallest bias and MSE among three methods. For sample size 50 and risk ratio of 
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1.01-1.03, the 95
th

 percentile for the proposed score method is (7, 84) which shows high 

variability in the estimate at that scenario. The 95
th

 percentile interval for the Klein and 

Wu method at the same scenario is (22, 58) and the 95
th

 percentile interval for the Contal 

and O’Quigley method is (28, 57). This indicates the Contal and O’Quigley is best 

performer for a cutpoint of 50 for exponentially distributed data. 
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5.5.3 Cutpoint of 75, Exponential distribution 

 

 The result from the proposed method will be compared with the existing methods 

of Klein and Wu (2004) and Contal and O’Quigley (1999) for the true cutpoint of 75. 

Table 5.5.5 Overall comparison, Exponential distribution, no censoring, 1 75    

 

 Proposed Score Method                 Klein and Wu Method                 Contal and O’Quigley Method 

N RR Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 

50 1 -4.84 70.78 50.00 74.00 -24.49 860.50 16.50 76.00 -22.07 732.16 21.50 76.00 

50 2 -27.73 1045.27 12.00 74.00 -26.73 976.33 17.00 75.00 -24.07 818.14 19.00 75.00 

50 3 -10.26 212.16 33.00 74.00 -25.80 925.29 17.00 75.00 -23.19 780.26 21.00 76.00 

50 4 -4.62 64.24 50.50 74.00 -24.93 872.42 20.00 75.00 -22.01 705.03 23.00 75.50 

100 1 -2.35 10.84 66.00 74.00 -23.07 718.20 23.00 75.00 -22.07 732.16 21.50 76.00 

100 2 -27.64 952.06 20.00 71.00 -25.42 831.52 24.00 74.00 -24.07 818.14 19.00 75.00 

100 3 -7.28 96.75 47.00 74.00 -23.94 771.37 23.00 74.00 -23.19 780.26 21.00 76.00 

100 4 -2.36 11.15 67.00 74.00 -23.21 736.16 24.00 75.00 -22.01 705.03 23.00 75.50 

500 1 -1.25 1.80 73.00 74.00 -21.94 567.77 34.50 71.50 -18.57 425.21 38.00 73.00 

500 2 -28.81 889.47 32.00 61.00 -23.96 663.39 32.00 69.00 -21.52 546.40 35.00 71.00 

500 3 -4.99 29.71 65.00 73.00 -21.82 563.54 35.00 72.00 -19.06 450.18 38.00 73.00 

500 4 -1.22 1.71 73.00 74.00 -21.66 555.73 34.00 70.50 -18.70 432.33 38.00 73.00 

1000 1 -1.09 1.28 73.00 74.00 -21.85 536.55 38.00 68.00 -18.44 402.04 41.00 73.00 

1000 2 -29.20 891.24 35.00 58.00 -23.45 602.60 37.00 65.50 -21.88 531.67 39.00 67.00 

1000 3 -4.71 24.56 67.00 73.00 -21.64 523.12 38.00 68.00 -18.73 405.21 42.00 71.00 

1000 4 -1.10 1.31 73.00 74.00 -21.28 505.68 39.50 68.00 -18.10 380.27 43.00 71.00 

Note:  1) RR represents the hazard ratio scenarios 

2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile 

For the cutpoint of 75 with no censoring, the proposed score method has lowest 

bias and MSE for all risk ratios except for 1.01-1.03. The 95
th

 percentile interval for the 

proposed score method at sample size 50 and risk ratio 1.01-1.03 is (12, 74), whereas the 

95
th

 percentile interval for the Klein and Wu method at the same scenario is (17, 75) and 

for the Contal and O’Quigley method the 95
th

 percentile interval is (19, 75) for that 
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scenario. For all relative risks other than 1.01-1.03, proposed score method has less 

variability in terms of percentile intervals and MSE. 

Table 5.5.6 Overall comparison, Exponential distribution, 25% censoring, 1 75   

Note:  1) RR represents the hazard ratio scenarios 

2) p2.5 refers to lower 2.5
th

 percentile and p97.5 refers to upper 97.5
th

 percentile 

 

For the actual cutpoint of 75, the proposed score method has better results than 

the two existing methods. For the relative risk 1.01-1.03, the proposed score method has 

larger bias and MSE than other relative risks. The bias and MSE decreases as the sample 

size increases. The results using a cutpoint of 75 with exponential distributed data are 

similar to the results from Weibull distributed data. 

  Proposed Score Method               Klein and Wu 

Method 

   Contal and O’Quigley 

Method 

N RR Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 Bias MSE p2.5 p97.5 

50 1 -5.22 89.57 45.00 74.00 -25.21 902.90 18.00 75.00 -22.38 741.67 22.00 76.00 

50 2 -24.21 893.22 14.00 79.00 -28.07 1088.59 14.00 76.00 -25.38 903.41 17.00 76.00 

50 3 -8.76 170.85 36.00 74.00 -25.66 943.99 15.50 76.00 -22.84 752.38 23.00 76.00 

50 4 -5.66 102.62 43.00 74.00 -24.53 877.16 17.00 76.00 -21.97 722.32 21.00 76.00 

100 1 -2.42 17.27 66.50 74.00 -24.19 780.76 22.00 74.50 -21.84 649.63 27.00 75.00 

100 2 -23.32 745.48 21.00 73.00 -25.57 890.67 18.00 75.00 -23.98 758.73 23.00 75.00 

100 3 -6.11 76.24 51.00 74.00 -24.02 783.16 23.00 75.00 -21.34 630.68 27.00 75.00 

100 4 -2.35 13.00 67.00 74.00 -24.16 784.65 22.00 75.00 -21.17 628.32 28.00 75.00 

500 1 -1.13 1.42 73.00 74.00 -21.74 565.77 35.00 71.50 -18.79 438.77 38.00 73.00 

500 2 -22.33 575.26 34.00 67.00 -23.96 671.48 32.00 71.00 -22.26 576.13 35.00 71.00 

500 3 -3.67 16.63 67.00 74.00 -21.91 580.77 33.00 71.00 -19.16 453.29 37.00 73.00 

500 4 -1.15 1.50 73.00 74.00 -21.60 560.22 34.00 72.00 -18.79 435.17 38.00 72.50 

1000 1 -1.03 1.09 73.00 74.00 -20.98 506.46 38.50 69.00 -17.99 378.51 43.50 71.00 

1000 2 -22.56 559.24 38.50 65.00 -23.81 634.35 35.00 67.00 -21.82 533.62 39.00 67.00 

1000 3 -3.46 13.55 69.00 73.00 -21.30 521.22 38.00 69.00 -18.76 411.38 41.00 71.00 

1000 4 -1.03 1.10 73.00 74.00 -20.72 492.68 38.00 70.00 -18.23 390.80 42.00 71.50 
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 Looking at all the results from Weibull distributed data and exponentially 

distributed data, the results vary for each distribution. For Weibull distributed data, the 

proposed score method overestimated the cutpoint of 25, but for exponentially distributed 

data, the proposed score has both underestimation and overestimation for the cutpoint. 

The proposed score method has better result for Weibull distributed data for the cutpoint 

of 75. The Klein and Wu method performed better for the cutpoint of 25 for both Weibull 

and exponentially distributed data. At the actual cutpoint of 50, the Klein and Wu and the 

Contal and O’Quigley methods had similar results for both distribution.  

 

In this chapter 5, we discussed the performance of proposed method versus the 

performance of other two existing methods, for different scenarios in simulated data. In 

Chapter 6, results from proposed method will be compared with the Klein and Wu (2004) 

and Contal and O’Quigley (1999) on real dataset to evaluate the performance of these 

methods. 
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CHAPTER 6: APPLICATION TO REAL DATA 

 

6.1 Introduction 

 Data used for the application in the proposed method was also presented in the 

textbook “Survival Analysis: Techniques for Censored and Truncated Data” by Klein and 

Moeschberger (2003). The data set was obtained from a kidney transplant trial of 863 

patients conducted during the period 1982 to 1992 from The Ohio State University, 

Columbus, Ohio. The maximum follow up time for this study was 9.47 years. Patients 

were censored because of loss of follow-up or were still alive at the end of the study in 

June 30, 1992.  

Data from this study were composed of 432 white males, 92 black males, 280 

white females and 59 black females in the study. The age of the patient ranged from 9.5 

months to 74.5 years with mean age of 42.8 years. Seventy three out of 432 (16.9%) 

white males, 14 out of 92 (15.2%) black males, 39 out of 280 (13.9%) white females and 

14 out of 59 (23.7%) black females died during the study. The goal of the following 

analysis is to categorize the patients into low or high risk groups based on their age at 

transplant.  

 

6.2 Method 

 To control the effect of race and gender, separate analysis were conducted for 

each category. To demonstrate the result, a two-step approach consisting of visual plot 
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followed by estimated cutpoints obtained from proposed method and existing method 

will be presented below:  

Visual plot: A graph of Martingale residual versus covariate age will be plotted for each 

category. If there is a pattern such as peaks or saddle in the expected vs observed 

martingale residuals in LOESS smoothed plot, a cutpoint would be required. If there is a 

linear pattern, then cutpoint may not be appropriate. 

Estimation of a cutpoint: The proposed method will be applied to all four categories and 

result will be compared with the existing methods. 

 

6.3 Results 

 For the 92 black males, the number of distinct ages at transplant was 43. The 

possible number of candidate cutpoints for black males were 43 and the number of 

distinct death times was 14. For the 432 white males, the number of distinct ages at 

transplant was 59, which gives the possible number of candidate cutpoints for white 

males as 59. There were 73 deaths but only 70 death times were distinct, since 3 death 

times overlapped.  

 For the 59 black females, there were 32 distinct ages during the time of transplant; 

hence the number of possible candidate cutpoint for black female is 32 and there were 14 

distinct death times. For the 280 white females, there were 59 distinct ages; hence the 

number of possible candidate cutpoint for white females was 59. Because there were 39 

deaths with 1 death time overlapped, only 38 death times were distinct. 
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Table 6.1: Descriptive Statistics for Different Race/Gender 

Group N Distinct 

Ages 

Distinct 

Death Times 

Min 

Age at 

transplant 

Max 

Age at 

transplant 

Mean 

Age at 

transplant 

black males 92 43 14 7 66 43.0 

white males 432 59 70 2 75 40.5 

black females 59 32 38 13 66 42.2 

white females 280 59 14 1 71 39.5 

 

Using the proposed method, the estimation of cutpoint for black males was 57. 

This choice is illustrated in Figure 6.1.  

Figure 6.1: Martingale residuals versus age in black males 

 

In the Figure 6.1 above, the blue dotted line is predicted martingale residuals, 

which was obtained by using a LOESS smoothing parameter of 0.60. It appears 
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increasing upwards until age 41 then it starts decreasing and has a saddle point at age 57. 

With a saddle point of 57, it indicates possibility of a cutpoint at 57.  

Table 6.2: Cutpoint obtained from three methods for black males 

Group Method Optimal Cutpoint Statistic S
2 

p-value 

 

Black 

Males 

Proposed method 57 931.1 NA NA 

Klein and Wu  58 0.7120 0.8268 0.3300 

Contal and O’Quigley 58 0.8029 0.8268 0.3300 

 

In the Table 6.2 above, cutpoints were obtained using three different methods. 

The proposed method provided the cutpoint of 57, whereas Contal and O’Quigley (1999) 

and Klein and Wu (2004) both provided the cutpoint of 58. All three methods had similar 

result. The visual plot also indicated the possible cutpoint of 57 in the Figure 6.1. 

Using the proposed method, the estimation of cutpoint for white males was 41. 

This choice is illustrated in Figure 6.2. 
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Figure 6.2: Martingale residuals versus age in white males 

 

In the Figure 6.2 above, the dotted blue line represents the predicted martingale 

residuals plot, obtained by using a LOESS smoothing parameter of 0.40. The predicted 

line has an increasing trend until age 44, then it has relatively constant trend and starts 

increasing again at age 58. The peak indicates a possible cutpoint at age 44. 

 

Table 6.3: Cutpoint obtained from three methods for white males 

Group Method Optimal Cutpoint Statistic S
2 

p-value 

White 

Males 

Proposed method 41 4204.4 NA NA 

Klein and Wu 41 2.9814 0.9445 0.0000 

Contal and O’Quigley 41 3.1232 0.9445 0.0000 

 

For white males the estimated cutpoint was 44 in the visual plot in the Figure 6.2, 

but using three different methods above the estimated cutpoint was obtained as age 41. 



102 

 

All three methods have similar results and Contal and O’Quigley (1999) has a significant 

p-value for the estimated cutpoint. 

Using the proposed method, the estimation of cutpoint for black females was 64. 

This choice is illustrated in the Figure 6.3 below. 

Figure 6.3: Martingale residual versus age for black females 

 

In Figure 6.3, there are two saddles, one at age 43, and other at age 54. It is 

possible that there exists no unique cutpoint, i.e., there are more than one cutpoint. 

Alternatively, another reason for the multiple peaks in Figure 4.3 could have resulted 

from the relatively small sample size for black females, i.e. only 59. The small sample 

may not have been able to detect the actual difference. Also, from the Contal and 

O’Quigley p-value, estimated cutpoints for black males and black females were not 
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significant. Table 6.4 below provides the estimated cutpoint for black females using all 

three methods: 

Table 6.4: Cutpoint obtained from three methods for black females 

Group Method Optimal Cutpoint Statistic S
2 

p-value 

Black  

Females 

Proposed method 64 909.5 NA NA 

Klein and Wu 48 0.8777 0.8268 0.3300 

Contal and O’Quigley 48 0.9445 0.8268 0.3300 

 

The estimated cutpoint for black females using the proposed method was 64, 

while the estimated cutpoint using Klein and Wu (2004) and Contal and O’Quigley 

(1999) was 48. As indicated in the Figure 6.3 above, there may not be a unique cutpoint 

for age in the black females group. 

Using the proposed method, the estimation of cutpoint for white females was 40. 

This choice is illustrated in Figure 6.4. 
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Figure 6.4: Martingale residuals versus age for white females 

 

In Figure 6.4 above, there appears a straight line with a slight decrease at age 23, 

after age 33 it starts increasing. It appears there is a constant upward linear trend after age 

40, it is possible that the cutpoint exists at age 40. 

Table 6.5: Cutpoint obtained from three methods for White Females 

Group Method Optimal Cutpoint Statistic S
2 

p-value 

White  

Females 

Proposed method 40 1780.6 NA NA 

Klein and Wu 40 1.7829 0.9128 0.0035 

Contal and O’Quigley 36 1.9310 0.9128 0.0012 

 

In the table 6.5 above, the estimated cutpoint using the proposed method and the 

Klein and Wu (2004) method is 40 while the estimated cutpoint using the Contal and 

O’Quigley (1999) method is 36.  
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6.4 Conclusion 

 All three methods have similar results except for black females. A larger sample 

size might be required to find the significant cutpoint if one truly exists. Although the 

martingale residual plot gives a visual idea about the cutpoint, the interpretation can be 

highly subjective and the results can vary depending on different smoothing parameters. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

 

7.1 Conclusion 

In a clinical study it is may be desirable from a clinical standpoint to categorize 

the continuous covariates into different groups. Blood pressure, cholesterol, and BMI are 

some examples where categorization often used in a clinical setting over the continuous 

variable. When the statistical relationship between an outcome and a covariate is non-

linear or if there is a sharp increase or decrease after a particular point then categorizing 

the continuous covariate into two groups may be useful. Before using any numerical 

method to estimate the cutpoint, it is better to use the existing graphical method, to see if 

there is any pattern of a cutpoint for the continuous covariate.  If the graphical method 

supports the possibility of a cutpoint, one would then proceed to apply all of the existing 

methods, as well as the proposed method, to determine the value of the cutpoint.  The 

choice of which method to favor can be determined based upon the results of the 

simulation studies in Chapter 5. 

The proposed method uses the sum of the absolute value of the score residuals, 

whereas the Klein and Wu (2004) method is based on the sum of the score residuals 

divided by the square root of its variance.  Hence, the test-statistic for Klein and Wu uses 

the ratio while the proposed method only utilizes the absolute difference in the score 

residuals. The Contal and O’Quigely method is based on non-parametric methods and 

does not utilize the information about the distribution of the failure time. 
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In the Chapter 5 it was shown through simulations that the proposed score method 

has better performance when the actual cutpoint occurs in the middle to the higher end of 

the continuous covariate under consideration for dichotomization. As the sample sizes 

increased the bias and MSE decreased, but this result also depended upon the size of the 

change in the risk ratio.  

All three methods had less satisfactory performance for small to moderate sample 

sizes and hazard ratio difference of 1.01-1.03. For a cutpoint of 25, the Klein and Wu 

method had the best performance in terms of bias and MSE. For a cutpoint of 50, all three 

methods had similar performance when the data had a Weibull distribution. For a 

cutpoint of 50 and an exponential distribution, the Contal and O’Quigely method 

performed well. For a cutpoint of 75, the proposed score method had better performance 

for the large sample sizes and large risk ratios with both Weibull and exponential 

distributed data.  

For the proposed method, MSE and bias are smaller for larger sample size for 

cutpoint of 50 and 75. For the proposed method and the cutpoint 25, there is not much 

change in the bias after increasing the sample size but MSE decreases as sample size 

increases. For the Klein and Wu and Contal and O’Quigley methods, bias and MSE 

decreases as sample size increases for all cutpoints.  The largest bias and MSE were 

observed for relative risk of 1.01-1.03 in comparison to other relative risks regardless of 

method. Relative risks 1.00-1.01 and 1.01-1.10 had lowest bias and MSE for each method 

regardless of sample size. The reason for the higher bias and MSE at the relative risk of 
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1.01:1.03 can be a result of comparatively smaller changes in the relative risk before and 

after the cutpoint. 

If a cutpoint is not expected to be in the lower end of the covariate, the proposed 

method can be used due to the smaller bias and MSE for cutpoints in the middle to high 

point of the range of the covariate. If there is some reason to believe that the cutpoint 

exist in the lower end of the covariate then Klein and Wu would have lowest bias and 

MSE among all three methods and would be the preferred method to use. 

 

7.2 Limitation and Future direction  

 The proposed score method is extremely sensitive to the size of the risk ratio. If 

the size of risk ratio is large, the proposed score method performed well but if the size of 

relative risk is small, the proposed score method has higher bias and MSE. The proposed 

score method provides the estimation of the cutpoint, but it doesn’t provide inference on 

the estimated value. Both Contal and O’Quigley (1999) and Klein and Wu (2004) have 

adopted the method of calculating the p-value using Jesperson’s method for the estimated 

test statistic. One solution can be obtaining the confidence interval from the bootstrap 

samples for conducting the inference on the estimation. Future direction would be 

developing some scale to satisfy the assumption on the Brownian Bridge and to calculate 

the p-value. 

 Methods were compared on simulated data with no censoring and 25% censoring; 

varying %’s of censoring as well as censoring mechanisms to assess the impact would be 

an interest for the future research. 
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In conclusion, before estimating the cutpoint, it would be recommended to look at 

the martingale residual plot of the continuous covariate. If there appears a pattern in the 

LOWESS Smoothed curve of martingale residual, we can assume an existence of a 

cutpoint and estimate the cutpoint using all three methods. After estimating a cutpoint 

using all three methods, we can look for an agreement between the estimated cutpoint 

and the possible cutpoint based on graphical method. If a cutpoint looks reasonable based 

on the estimated methods and a graphical method, we can make a conclusion about the 

cutpoint. On the other hand, if there is no pattern in the LOWESS Smoothed curve, we 

can safely assume a linear relationship between a covariate and the response variable. In 

that case, an estimation of a cutpoint is not needed. 
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APPENDIX A 

 

Table A.5.4.1 Simulation Results from the Weibull distributed data using the Proposed Score 

Method with no censoring at 1 25    

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

  

percentile 

50 1.00-1.01 36.37 7.19 11.37 180.92 25.00 51.00 

50 1.01-1.03 36.48 11.71 11.48 268.60 16.00 60.00 

50 1.01-1.06 35.99 8.55 10.99 193.83 23.00 53.00 

50 1.01-1.10 36.57 7.34 11.57 187.78 25.00 52.00 

100 1.00-1.01 35.73 5.98 10.73 150.81 25.00 48.00 

100 1.01-1.03 35.77 9.40 10.77 204.15 21.00 55.00 

100 1.01-1.06 35.08 7.01 10.08 150.81 25.00 50.00 

100 1.01-1.10 35.56 5.97 10.56 147.12 25.00 47.50 

500 1.00-1.01 35.96 3.77 10.96 134.30 29.00 43.00 

500 1.01-1.03 36.67 6.43 11.67 177.41 25.00 49.00 

500 1.01-1.06 35.40 4.71 10.40 130.41 27.00 45.00 

500 1.01-1.10 36.02 3.78 11.02 135.81 28.00 43.00 

1000 1.00-1.01 36.13 3.08 11.13 133.37 30.00 42.00 

1000 1.01-1.03 36.96 5.37 11.96 171.91 27.00 48.00 

1000 1.01-1.06 35.46 3.89 10.46 124.41 28.00 43.00 

1000 1.01-1.10 36.30 3.12 11.30 137.41 30.00 42.00 

 

Looking at the Table A.5.4.1, the proposed score method seems to overestimate the 

cutpoint 25. The minimum bias was 10.08 at sample size 100 and the risk ratio of 1.01-

1.06. Maximum bias of 11.96 was observed at sample size 1000 and risk ratio of 1.01-1.03.  

Bias didn’t decrease for the increased sample size, The lowest MSE of 124.41 was 

observed at sample size 1000 and risk ratio 1.01-1.06. The largest MSE of 268.60 was 
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observed at sample size 50 and risk ratio 1.01-1.03. The lowest observed value for 2.5
th

 

percentile was 16.0 at the sample size 50 and risk ratio of 1.01-1.03, which indicates 2.5% 

of estimates for that scenario were below 16. The highest value observed for 97.5
th

 

percentile was 60 at sample size 50 and risk ratio of 1.01-1.03, which means 2.5% of 

estimates were even higher than the 60 at that scenario. Overall the distribution of cutpoint 

estimate seems wide for the true cutpoint of 25. 
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Table A.5.4.2 Simulation Results from the Weibull distributed data using the Proposed Score 

method and 25% censoring at 1 25   

 

N Scenario 

 

Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

  

percentile 

50 1.00-1.01 37.44 7.69 12.44 213.88 25.00 54.00 

50 1.01-1.03 38.25 12.68 13.25 336.14 16.00 65.00 

50 1.01-1.06 37.36 9.21 12.36 237.50 23.00 57.00 

50 1.01-1.10 37.40 7.54 12.40 210.63 25.00 52.00 

100 1.00-1.01 36.98 6.04 11.98 179.89 26.00 48.00 

100 1.01-1.03 36.73 9.70 11.73 231.55 21.00 57.00 

100 1.01-1.06 36.39 7.38 11.39 184.02 25.00 51.00 

100 1.01-1.10 37.14 6.32 12.14 187.20 26.00 49.00 

500 1.00-1.01 37.03 4.00 12.03 160.75 29.00 44.00 

500 1.01-1.03 36.93 6.33 11.93 182.29 25.00 49.00 

500 1.01-1.06 36.38 4.79 11.38 152.42 27.00 45.00 

500 1.01-1.10 36.91 3.91 11.91 157.11 29.00 44.00 

1000 1.00-1.01 37.47 3.13 12.47 165.19 31.00 43.00 

1000 1.01-1.03 37.12 5.49 12.12 177.03 26.50 47.00 

1000 1.01-1.06 36.97 4.00 11.97 159.23 29.00 44.50 

1000 1.01-1.10 37.45 3.25 12.45 165.64 31.00 44.00 

 

Looking at the Table A.5.4.2 above (Score method, 25% censoring), the proposed 

score method over-estimates the cutpoint at 25. The bias ranges from 11.38 at sample size 

500 to 13.25 at sample size 50, and MSE ranges from 152.42 at sample size 500 and risk 

ratio of 1.01-1.06 to 336.14 at sample size 50 and risk ratio of 1.01-1.03. The result is 

similar to the case with no censoring. The 95
th

 percentile interval for sample size 50 and 

risk ratio 1.01-1.03 is (16, 65), denoting that 95% of sample estimate were between 16 and 

65.  
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Table A.5.4.3 Simulation Results from the Weibull distributed data using the Klein and Wu 

Method with no censoring at 1 25   

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

  

percentile 

50 1.00-1.01 30.80 5.00 5.80 58.53 24.00 43.00 

50 1.01-1.03 34.67 9.19 9.67 177.95 19.00 53.00 

50 1.01-1.06 32.24 6.30 7.24 92.06 23.00 46.00 

50 1.01-1.10 30.97 5.10 5.97 61.56 24.00 42.00 

100 1.00-1.01 29.83 3.95 4.83 38.96 25.00 39.00 

100 1.01-1.03 34.28 7.44 9.28 141.41 22.00 50.00 

100 1.01-1.06 30.97 4.76 5.97 58.23 24.00 41.00 

100 1.01-1.10 29.75 3.82 4.75 37.11 25.00 38.00 

500 1.00-1.01 28.80 2.49 3.80 20.61 25.00 34.00 

500 1.01-1.03 34.06 4.79 9.06 104.95 25.00 44.00 

500 1.01-1.06 30.49 3.18 5.49 40.20 25.00 37.00 

500 1.01-1.10 28.78 2.38 3.78 19.99 25.00 34.00 

1000 1.00-1.01 28.63 1.90 3.63 16.80 25.00 32.50 

1000 1.01-1.03 34.04 3.77 9.04 96.03 27.00 41.00 

1000 1.01-1.06 30.44 2.55 5.43 36.02 26.00 35.50 

1000 1.01-1.10 28.66 1.93 3.66 17.12 25.00 32.00 

 

 Looking at the Table A.5.4.3 (Klein and Wu method with no censoring, 

cutpoint=25), the cutpoint is again overestimated for the true cutpoint of 25. The smallest 

bias is 3.63 at sample size 1000 and risk ratio of 1.00-1.01. The largest bias 9.67 was 

observed at sample size 50 and risk ratio of 1.01-1.03. The smallest MSE was 16.80 at the 

sample size of 1000 and the risk ratio of 1.00-1.01. The largest MSE was 177.95 at the 

sample size of 50 and risk ratio of 1.01-1.03. The risk ratio 1.01-1.03 has larger bias and 

MSE in comparison to other risk ratios at each sample size. Overall, bias decreases as 
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sample size increases. The lowest observed value for lower 2.5
th

 percentile was 19.0 at 

sample size 50 and risk ratio 1.01-1.03, which means at given scenario 2.5% of cutpoint 

estimates were lower than 19. The highest observed value for upper 97.5
th

 percentile was 

53 at sample size 50 and risk ratio of 1.01-1.03, which indicates 2.5% of cutpoint estimates 

were higher than 53. The percentile interval is narrower than the proposed score method. 
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Table A.5.4.4 Simulation Results from the Weibull distributed data using the Klein and Wu 

method and 25% censoring at 1 25   

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 32.46 6.62 7.46 99.36 24.00 49.00 

50 1.01-1.03 36.12 10.47 11.12 232.97 19.00 58.00 

50 1.01-1.06 33.68 8.06 8.68 140.20 22.00 52.50 

50 1.01-1.10 32.28 6.74 7.28 98.32 24.00 48.50 

100 1.00-1.01 30.91 5.09 5.91 60.87 24.00 42.00 

100 1.01-1.03 34.85 8.23 9.85 164.67 20.00 52.00 

100 1.01-1.06 32.32 6.09 7.32 90.63 24.00 46.00 

100 1.01-1.10 31.04 5.25 6.04 63.98 25.00 44.00 

500 1.00-1.01 29.30 3.06 4.30 27.87 25.00 36.00 

500 1.01-1.03 34.09 5.27 9.09 110.37 25.00 46.00 

500 1.01-1.06 30.76 3.87 5.76 48.11 25.00 39.00 

500 1.01-1.10 29.16 3.13 4.16 27.10 25.00 36.00 

1000 1.00-1.01 29.02 2.54 4.02 22.61 25.00 34.00 

1000 1.01-1.03 34.04 4.15 9.04 99.00 26.00 42.00 

1000 1.01-1.06 30.47 3.03 5.47 39.06 25.00 37.00 

1000 1.01-1.10 29.07 2.72 4.07 23.98 25.00 35.00 

 

 From the Table A.5.4.4 above, using Klein and Wu method with 25% censoring, 

cutpoint was overestimated. The result is similar to that with no censoring with slightly 

higher bias and MSE than no censoring case. The lowest bias and MSE were 4.02 and 

22.61 respectively at sample size 1000 and risk ratio of 1.00-1.01. The highest bias and 

MSE were 11.11 and 232.96 respectively at sample size 50 and risk ratio 1.01-1.03. The 

widest 95
th

 percentile interval was (19, 58) at sample size 50 and risk ratio of 1.01-1.03.  
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Table A.5.4.5 Simulation Results from the Weibull distributed data using Contal and 

O’Quigley Method with no censoring at 1 25   

 

N Scenario 

 

Mean SD Bias MSE 

Lower2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 34.50 6.72 9.50 135.40 25.00 48.00 

50 1.01-1.03 36.74 9.08 11.74 220.29 21.00 55.00 

50 1.01-1.06 34.91 7.23 9.91 150.58 24.00 50.00 

50 1.01-1.10 34.50 6.70 9.50 135.20 25.00 48.00 

100 1.00-1.01 33.19 5.22 8.19 94.31 25.00 44.00 

100 1.01-1.03 36.11 7.59 11.11 181.06 23.50 51.00 

100 1.01-1.06 33.42 5.57 8.42 101.85 25.00 45.00 

100 1.01-1.10 33.05 5.11 8.05 90.91 25.00 44.00 

500 1.00-1.01 32.25 2.99 7.24 61.41 27.00 38.00 

500 1.01-1.03 35.54 4.87 10.54 134.67 27.00 45.00 

500 1.01-1.06 33.01 3.47 8.01 76.17 26.00 40.00 

500 1.01-1.10 32.26 3.21 7.26 62.94 26.00 39.00 

1000 1.00-1.01 32.10 2.33 7.10 55.82 27.00 36.00 

1000 1.01-1.03 35.61 3.88 10.61 127.63 28.00 43.00 

1000 1.01-1.06 32.97 2.81 7.97 71.32 27.00 38.00 

1000 1.01-1.10 32.09 2.45 7.09 56.24 27.00 37.00 

 

From the Table A.5.4.5 above (Contal and O’Quigley method and no censoring), 

the cutpoint is overestimated for the true cutpoint of 25. The lowest bias was 7.09 at 

sample size 1000 and risk ratio of 1.01-1.10. The highest bias was 11.74 at sample size 50 

and risk ratio of 1.01-1.03. The lowest MSE was 55.82 at sample size 1000 and risk ratio 

1.00-1.01. The highest MSE was 220.29 at sample size 50 and risk ratio of 1.01-1.03. The 

lowest observed value for 2.5
th

 percentile was 21.0, which means 2.5% of the estimates 
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were below 21.0 years. The highest observed value of 97.5
th

 percentile estimate was 55.0, 

which means 2.5% of estimates were above 55.  

Table A.5.4.6 Simulation Results from the Weibull distributed data using Contal and 

O’Quigley method and 25% censoring at 1 25    

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 34.32 6.63 9.32 130.84 25.00 49.00 

50 1.01-1.03 36.79 9.50 11.79 228.99 21.00 57.00 

50 1.01-1.06 34.97 7.19 9.97 151.03 23.50 50.00 

50 1.01-1.10 34.24 6.80 9.24 131.63 25.00 49.50 

100 1.00-1.01 33.06 5.49 8.06 94.99 25.00 45.50 

100 1.01-1.03 35.06 7.13 10.06 152.01 23.00 51.00 

100 1.01-1.06 33.83 5.80 8.83 111.63 25.00 46.00 

100 1.01-1.10 32.99 5.27 7.99 91.61 25.00 44.00 

500 1.00-1.01 32.08 3.12 7.08 59.89 26.00 38.00 

500 1.01-1.03 35.33 4.74 10.33 129.13 27.00 45.00 

500 1.01-1.06 32.81 3.46 7.81 72.98 26.00 40.00 

500 1.01-1.10 32.20 3.00 7.20 60.83 26.00 38.00 

1000 1.00-1.01 32.19 2.45 7.19 57.71 28.00 37.00 

1000 1.01-1.03 35.49 3.75 10.49 124.21 28.00 42.00 

1000 1.01-1.06 33.06 2.82 8.06 72.84 28.00 38.00 

1000 1.01-1.10 32.11 2.45 7.11 56.59 27.00 37.00 

 

Looking at the Table A.5.4.6 (Contal and O’Quigley, 25% censoring), the lowest 

bias of 7.08 was observed at sample size 500 and risk ratio of 1.00-1.01. The 

highest bias was 11.79 at sample size 50 and risk ratio of 1.01-1.03. Similarly, the 

lowest MSE of 56.59 was observed at sample size 1000 and risk ratio of 1.01-1.10. 

The highest bias was 228.99 at sample size 50 and risk ratio of 1.01-1.03. The 

results from 25% censoring and no censoring were similar.  
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Table A.5.4.7 Simulation Results from the Weibull distributed data using the 

Proposed Score Method with no censoring at 1 50   

N scenario Mean Sd Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

  

percentile 

50 1.00-1.01 51.93 2.38 1.93 9.41 50.00 58.50 

50 1.01-1.03 48.88 10.36 -1.12 108.40 17.50 65.00 

50 1.01-1.06 52.12 3.44 2.12 16.33 46.00 60.50 

50 1.01-1.10 51.87 2.48 1.87 9.63 50.00 58.00 

100 1.00-1.01 51.04 1.60 1.04 3.65 50.00 55.50 

100 1.01-1.03 50.21 5.42 0.21 29.40 36.50 61.00 

100 1.01-1.06 51.08 1.91 1.08 4.83 48.00 56.00 

100 1.01-1.10 50.89 1.50 0.89 3.03 50.00 55.00 

500 1.00-1.01 50.15 0.49 0.15 0.26 50.00 52.00 

500 1.01-1.03 50.49 1.40 0.49 2.21 49.00 55.00 

500 1.01-1.06 50.27 0.72 0.27 0.59 50.00 53.00 

500 1.01-1.10 50.15 0.47 0.15 0.25 50.00 51.00 

1000 1.00-1.01 50.06 0.25 0.06 0.07 50.00 51.00 

1000 1.01-1.03 50.34 0.91 0.34 0.94 49.00 53.00 

1000 1.01-1.06 50.11 0.38 0.11 0.16 50.00 51.00 

1000 1.01-1.10 50.08 0.32 0.08 0.11 50.00 51.00 

                                                                                                                                 

From Table A.5.4.7, the proposed score method estimates are approximately equal 

to the true cutpoint of 50 with smaller bias and MSE. The largest absolute bias was 2.12 at 

sample size 50 and risk ratio of 1.01-1.06. The smallest bias was 0.06 at sample size 1000 

and risk ratio of 1.00-1.01. The largest MSE was 108.40 at sample size 50 and smallest 

MSE was 0.07 at sample size 1000. Increasing the sample size decreases both bias and 

MSE for the true cutpoint of 50. The 95
th

 percentile interval for sample size 50 and risk 

ratio of 1.01-1.03 was (17.5, 65.0), which indicates 95% of the time estimated values were 
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in the range between 17.5 and 65, which is a wide range for a cutpoint of 50 but for sample 

size 1000, 95
th

 percentile are narrow for all risk ratios.  

Table A.5.4.8 Simulation Results from the Weibull distributed data using the Proposed Score 

method with 25% censoring at 1 50   

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

  

percentile 

50 1.00-1.01 52.18 2.66 2.18 11.80 50.00 60.00 

50 1.01-1.03 49.75 9.84 -0.25 96.82 24.00 69.00 

50 1.01-1.06 51.97 3.30 1.97 14.75 46.00 60.00 

50 1.01-1.10 52.11 2.61 2.11 11.26 50.00 59.00 

100 1.00-1.01 51.20 1.78 1.20 4.59 50.00 56.00 

100 1.01-1.03 50.39 5.68 0.39 32.38 38.00 61.50 

100 1.01-1.06 51.23 2.07 1.23 5.78 48.00 57.00 

100 1.01-1.10 51.14 1.65 1.14 4.00 50.00 56.00 

500 1.00-1.01 50.18 0.52 0.18 0.30 50.00 52.00 

500 1.01-1.03 50.65 1.50 0.65 2.67 49.00 55.00 

500 1.01-1.06 50.30 0.77 0.30 0.68 50.00 53.00 

500 1.01-1.10 50.22 0.62 0.22 0.43 50.00 52.00 

1000 1.00-1.01 50.09 0.36 0.09 0.14 50.00 51.00 

1000 1.01-1.03 50.35 0.90 0.35 0.93 49.00 53.00 

1000 1.01-1.06 50.12 0.39 0.12 0.16 50.00 51.00 

1000 1.01-1.10 50.08 0.31 0.08 0.10 50.00 51.00 

 

 Looking at the Table A.5.4.8 (Score method, 25% censoring) for cutpoint 50, the 

estimated cutpoint was approximately equal to the true cutpoint. The lowest bias was 0.08 

at sample size 1000 and risk ratio 1.01-1.10. The highest bias was 2.18 at sample size 50 

and risk ratio of 1.00-1.01. The lowest MSE was 0.10 at sample size 1000 and risk ratio 

1.01-1.10 and highest MSE was 96.82 at sample size 50 and risk ratio 1.01-1.03. The 
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results were similar to the previous result from no censoring for the proposed score 

method.  

Table A.5.4.9 Simulation Results from the Weibull distributed data using the Klein and Wu 

Method with no censoring at 1 50    

N scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 50.27 2.81 0.27 7.95 42.50 55.00 

50 1.01-1.03 45.65 7.84 -4.35 80.33 24.50 56.00 

50 1.01-1.06 48.90 4.42 -1.10 20.73 37.00 55.00 

50 1.01-1.10 50.40 2.84 0.40 8.19 44.00 56.00 

100 1.00-1.01 50.05 1.53 0.05 2.34 46.00 53.00 

100 1.01-1.03 47.01 4.94 -2.99 33.28 34.00 53.00 

100 1.01-1.06 49.37 2.20 -0.63 5.24 44.00 52.00 

100 1.01-1.10 50.05 1.34 0.05 1.80 47.00 52.00 

500 1.00-1.01 49.98 0.16 -0.02 0.03 50.00 50.00 

500 1.01-1.03 49.17 1.67 -0.83 3.49 44.00 51.00 

500 1.01-1.06 49.85 0.46 -0.15 0.24 48.00 50.00 

500 1.01-1.10 49.98 0.18 -0.02 0.03 50.00 50.00 

1000 1.00-1.01 50.00 0.04 -0.00 0.00 50.00 50.00 

1000 1.01-1.03 49.57 0.92 -0.43 1.04 47.00 50.00 

1000 1.01-1.06 49.96 0.22 -0.04 0.05 49.00 50.00 

1000 1.01-1.10 49.99 0.08 -0.01 0.01 50.00 50.00 

 

 From the Table A.5.4.9 (Klein and Wu method, no censoring), the estimated 

cutpoint is approximately equal to the true cutpoint. The largest absolute bias was 4.35 at 

sample size 50 and relative risk of 1.01-1.03. The smallest absolute bias was 0.00 at 

sample size 1000 and risk ratio 1.01-1.01. The smallest MSE was 0.00 at sample size 1000 

and risk ratio 1.00-1.01 and largest MSE was 80.33 at sample size 50 and risk ratio 1.01-

1.03. Increasing the sample size decreases both bias and MSE for the true cutpoint of 50. 
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The 95
th

 percentile interval at sample size 50 and risk ratio of 1.01-1.03 was (24.5, 56.0), 

which indicates 95% of the times the estimated cutpoint were between 24.5 and 56.0. The 

narrowest range for 95
th

 percentile interval was (50, 50) at sample size 1000 and sample 

size 500 for risk ratio of 1.00-1.01 and 1.01-1.10, means the estimation was almost exact 

for the larger sample size and larger risk ratios. 

Table A.5.4.10 Simulation Results from the Weibull distributed data using the Klein and Wu 

method with 25% censoring at 1   50 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 50.02 4.16 0.02 17.32 40.00 58.00 

50 1.01-1.03 45.53 8.84 -4.47 98.11 24.00 60.00 

50 1.01-1.06 48.59 5.76 -1.41 35.13 33.00 58.00 

50 1.01-1.10 50.12 4.01 0.12 16.07 40.00 58.00 

100 1.00-1.01 49.94 2.24 -0.06 5.01 44.00 54.00 

100 1.01-1.03 46.99 5.86 -3.01 43.37 32.00 55.00 

100 1.01-1.06 48.98 3.58 -1.02 13.82 39.00 54.00 

100 1.01-1.10 49.87 2.12 -0.13 4.52 44.00 54.00 

500 1.00-1.01 49.95 0.38 -0.05 0.15 49.00 50.50 

500 1.01-1.03 48.98 2.08 -1.02 5.39 43.00 52.00 

500 1.01-1.06 49.71 0.89 -0.29 0.87 47.00 51.00 

500 1.01-1.10 49.90 0.47 -0.10 0.23 49.00 50.00 

1000 1.00-1.01 49.98 0.16 -0.02 0.03 50.00 50.00 

1000 1.01-1.03 49.40 1.29 -0.60 2.03 46.00 51.00 

1000 1.01-1.06 49.92 0.34 -0.08 0.12 49.00 50.00 

1000 1.01-1.10 49.98 0.15 -0.02 0.02 50.00 50.00 

 

From the Table A.5.4.10 above (Klein and Wu, 25% censoring, 1 50  ), the 

highest absolute bias and MSE were 4.47 and 98.11 respectively at sample size 50 and risk 
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ratio 1.01-1.03. The lowest absolute bias was 0.02 and lowest MSE was 0.02 at sample 

size 1000 and risk ratio of 1.01-1.10. The 95
th

 percentile interval was (24.0, 60.0) at sample 

size 50 and risk ratio of 1.01-1.03, indicating that 95% of the times the estimated cutpoints 

were between 24 and 60. At sample size 1000, the 95
th

 percentile was (50, 50), which 

indicates for larger sample the estimation was approximately close to the true cutpoint. The 

results from censoring are similar to the results with no censoring.  

Table A.5.4.11 Simulation Results from the Weibull distributed data using Contal and 

O’Quigley Method with no censoring at 1 50    

 

N scenario Mean Sd Bias MSE 

Lower2.5
th

 

percentile 

Upper97.5
th

 

percentile 

50 1.00-1.01 48.52 4.51 -1.48 22.50 37.00 55.00 

50 1.01-1.03 46.50 7.31 -3.50 65.63 28.00 57.50 

50 1.01-1.06 48.13 5.17 -1.87 30.16 34.00 55.00 

50 1.01-1.10 48.49 4.76 -1.51 24.90 36.50 55.00 

100 1.00-1.01 49.01 2.68 -0.99 8.16 42.00 52.00 

100 1.01-1.03 47.33 4.80 -2.67 30.12 35.00 53.00 

100 1.01-1.06 48.83 2.77 -1.17 9.05 42.00 52.00 

100 1.01-1.10 49.12 2.44 -0.88 6.73 42.00 52.00 

500 1.00-1.01 49.83 0.49 -0.17 0.27 48.00 50.00 

500 1.01-1.03 49.23 1.58 -0.77 3.09 45.00 51.00 

500 1.01-1.06 49.75 0.65 -0.25 0.49 48.00 50.00 

500 1.01-1.10 49.82 0.58 -0.18 0.37 48.00 50.00 

1000 1.00-1.01 49.96 0.20 -0.04 0.04 49.00 50.00 

1000 1.01-1.03 49.61 0.83 -0.39 0.84 47.00 50.00 

1000 1.01-1.06 49.92 0.32 -0.08 0.11 49.00 50.00 

1000 1.01-1.10 49.95 0.22 -0.05 0.02 49.00 50.00 
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The Contal and O’Quigley method consistently underestimates the cutpoint of 50. 

The largest absolute bias was 3.50 at sample size 50 and risk ratio of 1.01-1.03. The 

smallest absolute bias was 0.04 at sample size 1000 and risk ratio of 1.00-1.01. The 

smallest MSE was 0.02 for sample size 1000 and risk ratio of 1.01-1.10 and largest MSE 

was 65.63 for sample size 50. The 95
th

 percentile interval was  28.0, 57.5  at sample size 

50 and risk ratio of 1.01-1.03, which means 95% of the times the estimates were between 

28.0 and 57.5 at that scenario.  

Table A.5.4.12 Simulation Result from the Weibull distributed data using Contal and 

O’Quigley method with 25% censoring at 1 50   

N scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 48.44 4.60 -1.56 23.52 36.00 55.00 

50 1.01-1.03 46.47 7.42 -3.53 67.39 27.00 57.00 

50 1.01-1.06 48.16 4.91 -1.84 27.50 34.50 55.00 

50 1.01-1.10 48.53 4.67 -1.47 23.97 36.00 55.00 

100 1.00-1.01 49.01 2.72 -0.99 8.36 41.00 52.00 

100 1.01-1.03 47.10 5.04 -2.90 33.72 34.00 54.00 

100 1.01-1.06 48.77 3.00 -1.23 10.49 40.00 52.50 

100 1.01-1.10 49.21 2.31 -0.79 5.96 43.00 53.00 

500 1.00-1.01 49.83 0.54 -0.17 0.32 48.00 50.00 

500 1.01-1.03 49.23 1.57 -0.77 3.05 45.00 51.00 

500 1.01-1.06 49.80 0.55 -0.20 0.34 48.00 50.00 

500 1.01-1.10 49.81 0.59 -0.19 0.38 48.00 50.00 

1000 1.00-1.01 49.95 0.23 -0.05 0.06 49.00 50.00 

1000 1.01-1.03 49.61 0.92 -0.40 0.99 47.00 50.00 

1000 1.01-1.06 49.94 0.26 -0.06 0.07 49.00 50.00 

1000 1.01-1.10 49.96 0.21 -0.04 0.04 49.00 50.00 
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From the Table A.5.4.12 above (Contal and O’ Quigley method, 25% censoring), 

the estimated cutpoints were approximately equal to the true cutpoint 50. The highest 

absolute bias and MSE were 3.53 and 67.39 at sample size 50 and risk ratio 1.01-1.03. The 

lowest absolute bias and MSE were 0.04 and 0.04 at sample size 1000 and risk ratio of 

1.01-1.10. The 95
th

 percentile interval at sample size 50 and risk ratio 1.01-1.03 was (27.0, 

57.0) and at sample size 1000 the 95
th

 percentile interval was (49, 50) for all risk ratios 

except 1.01-1.03. Hence for the large sample the estimates were approximately equal to the 

true cutpoint with little or no variation.  

Table A.5.4.13 Simulation Results from the Weibull distributed data using the Proposed 

Score Method with no censoring at 1 75   

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 76.16 3.11 1.16 11.00 74.00 81.00 

50 1.01-1.03 54.14 20.33 -20.86 847.94 12.00 79.00 

50 1.01-1.06 72.53 10.48 -2.47 115.81 34.00 80.00 

50 1.01-1.10 75.93 3.12 0.93 10.58 74.00 81.00 

100 1.00-1.01 75.45 0.87 0.45 0.97 75.00 78.00 

100 1.01-1.03 57.64 17.72 -17.36 614.79 16.00 78.00 

100 1.01-1.06 74.87 2.87 -0.13 8.27 69.00 78.00 

100 1.01-1.10 75.48 0.86 0.48 0.97 75.00 78.00 

500 1.00-1.01 75.01 0.08 0.01 0.01 75.00 75.00 

500 1.01-1.03 64.36 12.26 -10.64 263.42 36.00 75.00 

500 1.01-1.06 74.99 0.11 -0.01 0.01 75.00 75.00 

500 1.01-1.10 75.00 0.07 0.00 0.01 75.00 75.00 

1000 1.00-1.01 75.00 0.00 0.00 0.00 75.00 75.00 

1000 1.01-1.03 66.17 11.16 -8.83 202.40 42.00 75.00 

1000 1.01-1.06 75.00 0.03 0.00 0.00 75.00 75.00 

1000 1.01-1.10 75.00 0.00 0.00 0.00 75.00 75.00 
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Looking at the Table A.5.4.13, the proposed score method has estimated the values 

close to the true cutpoint. The smallest absolute bias was 0.00 for sample size 1000 for all 

risk ratios except the risk ratio of 1.01-1.03. The largest absolute bias was 20.86, which 

was observed at sample size 50 and risk ratio of 1.01-1.03. The 95
th

 percentile interval at 

sample size 50 and risk ratio 1.01-1.03 was  12,79  which seems to have high variability, 

and indicates that 95% of estimates were between 12 and 79. The smallest MSE of 0 was 

observed at sample size 1000 for all risk ratios except the 1.01-1.03. The largest MSE was 

847.94 for sample size 50 and risk ratio of 1.01-1.03. For small sample size a smaller 

change such as 1.03 from 1.01 probably will not be detected with this method.  
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Table A.5.4.14: Simulation Results from the Weibull distributed data using the Proposed 

Score method and 25% censoring at 1 75    

N scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 76.09 3.40 1.09 12.74 75.00 81.00 

50 1.01-1.03 59.28 19.64 -15.72 632.62 13.00 80.50 

50 1.01-1.06 74.24 8.15 -0.76 66.98 46.00 81.00 

50 1.01-1.10 76.00 4.23 1.00 18.90 75.00 81.00 

100 1.00-1.01 75.47 0.87 0.47 0.99 75.00 78.00 

100 1.01-1.03 63.09 16.60 -11.91 417.09 20.00 78.00 

100 1.01-1.06 75.11 2.83 0.11 8.00 72.00 78.00 

100 1.01-1.10 75.48 0.82 0.47 0.90 75.00 78.00 

500 1.00-1.01 75.00 0.06 0.00 0.00 75.00 75.00 

500 1.01-1.03 71.72 7.44 -3.28 66.04 47.50 75.00 

500 1.01-1.06 75.00 0.09 -0.00 0.01 75.00 75.00 

500 1.01-1.10 75.00 0.06 0.00 0.00 75.00 75.00 

1000 1.00-1.01 75.00 0.00 0.00 0.00 75.00 75.00 

1000 1.01-1.03 74.01 3.74 -0.99 14.96 62.00 75.00 

1000 1.01-1.06 75.00 0.04 0.00 0.00 75.00 75.00 

1000 1.01-1.10 75.00 0.00 0.00 0.00 75.00 75.00 

 

 From the Table A.5.4.14 (the proposed method, 25% censoring, cutpoint 75), the 

estimated cutpoints were approximately equal except at the sample size 50, relative risk 

1.01-1.03 and at sample size 100, relative risk 1.01-1.03. The largest absolute bias and 

MSE were 15.72 and 632.62 respectively at sample size 50 and relative risk 1.01-1.03. The 

95
th

 percentile interval was (13.0, 80.5) at sample size 50 and relative risk of 1.01-1.03. 

The smallest bias and MSE were observed for sample size 1000. The results were similar 

to the proposed method with no censoring. 
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Table A.5.4.15 Simulation Results from the Weibull distributed data using the Klein and Wu 

Method with no censoring at 1 75    

N scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 60.73 14.01 -14.27 399.94 28.00 78.00 

50 1.01-1.03 49.70 15.80 -25.30 889.24 17.00 75.00 

50 1.01-1.06 54.58 15.53 -20.42 657.82 23.00 76.00 

50 1.01-1.10 61.41 13.39 -13.59 363.79 29.00 77.00 

100 1.00-1.01 63.00 11.05 -12.01 266.17 38.00 76.00 

100 1.01-1.03 51.29 13.45 -23.71 742.81 25.00 74.00 

100 1.01-1.06 58.51 12.73 -16.49 433.80 30.00 75.00 

100 1.01-1.10 61.78 11.90 -13.22 316.15 34.00 76.00 

500 1.00-1.01 66.88 7.36 -8.12 120.13 49.00 75.00 

500 1.01-1.03 53.47 9.04 -21.53 544.95 36.00 71.00 

500 1.01-1.06 61.47 8.94 -13.53 262.88 43.00 75.00 

500 1.01-1.10 67.16 7.24 -7.84 113.80 49.50 75.00 

1000 1.00-1.01 68.70 5.82 -6.30 73.55 55.00 75.00 

1000 1.01-1.03 54.00 7.41 -21.00 495.79 39.00 69.00 

1000 1.01-1.06 62.35 7.17 -12.65 211.45 48.00 75.00 

1000 1.01-1.10 68.61 5.85 -6.39 75.07 54.00 75.00 

 

 From Table A.5.4.15 (Klein and Wu method), the true cutpoint of 75 was 

consistently underestimated for all different scenarios. The largest absolute bias was 25.3 

for sample size 50 and risk ratio of 1.01-1.03. The smallest absolute bias was 6.30 at 

sample size 1000 and risk ratio 1.00-1.01. The largest MSE was 889.24 for sample size 50 

and risk ratio of 1.01-1.03 and smallest MSE was 73.55 for sample size 1000 and risk ratio 

1.00-1.01. The 95
th 

percentile interval was  17,75  for sample size 50 and risk ratio of 

1.01-1.03. The percentile interval is wider at sample size 50 and risk ratio of 1.01-1.03, 
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which suggests larger variability in the estimates for the cutpoint of 75 at that scenario. 

But, for sample size 1000, the 95
th

 percentile is relatively narrow with (55, 75) at risk ratio 

of 1.00-1.01. 

Table A.5.4.16 Simulation Result from the Weibull distributed data using Klein and Wu 

method, 25 % censoring at 1 75    

N scenario Mean SD bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 58.66 14.82 -16.34 486.37 24.50 78.00 

50 1.01-1.03 49.55 16.66 -25.45 924.74 19.00 76.00 

50 1.01-1.06 54.64 16.20 -20.36 676.75 20.00 77.00 

50 1.01-1.10 59.11 15.24 -15.89 484.72 23.50 77.50 

100 1.00-1.01 60.48 13.26 -14.53 386.74 29.50 76.00 

100 1.01-1.03 50.79 14.70 -24.21 802.12 22.00 75.00 

100 1.01-1.06 56.74 13.99 -18.26 528.74 26.00 75.00 

100 1.01-1.10 61.13 12.63 -13.87 351.62 31.00 76.00 

500 1.00-1.01 66.23 8.20 -8.77 144.12 47.00 75.00 

500 1.01-1.03 53.77 9.87 -21.23 547.93 36.00 72.50 

500 1.01-1.06 60.85 9.53 -14.15 290.90 40.50 75.00 

500 1.01-1.10 66.19 8.13 -8.81 143.62 47.00 75.00 

1000 1.00-1.01 67.47 6.70 -7.53 101.53 52.00 75.00 

1000 1.01-1.03 53.89 8.40 -21.11 516.11 37.00 71.00 

1000 1.01-1.06 62.01 8.16 -12.99 235.30 45.00 75.00 

1000 1.01-1.10 67.66 6.72 -7.34 98.97 52.00 75.00 

 

 From the Table A.5.4.16 (Klein and Wu method, 25% censoring), the true cutpoint 

of 75 was consistently underestimated. The highest absolute bias was 25.45 and highest 

MSE was 924.74 at sample size 50 and risk ratio 1.01-1.03. The lowest absolute bias was 

7.34 and lowest MSE was 98.97 at sample size 1000 and relative risk 1.01-1.10. The 95
th

 

percentile interval at sample size 50 and relative risk 1.01-1.03 was (19, 76), indicating 
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2.5% of estimates were below 19 and 2.5% of estimates were higher than 76. For a sample 

size of 1000 and relative risk of 1.01-1.10 the 95
th

 percentile interval was (52, 75), which is 

relatively narrower.  

Table A.5.4.17 Simulation Results from the Weibull distributed data using the Contal and 

O’Quigley Method with no censoring at 1 75    

N scenario Mean SD bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 52.89 15.69 -22.12 735.00 23.00 76.00 

50 1.01-1.03 50.25 15.54 -24.75 854.01 19.00 75.00 

50 1.01-1.06 51.85 15.68 -23.15 781.81 21.00 76.00 

50 1.01-1.10 53.77 14.64 -21.23 664.61 22.00 76.00 

100 1.00-1.01 53.95 13.11 -21.05 614.71 28.00 75.00 

100 1.01-1.03 51.40 13.45 -23.60 613.11 25.00 74.00 

100 1.01-1.06 54.28 13.18 -20.72 602.90 26.50 75.00 

100 1.01-1.10 53.30 13.23 -21.70 645.71 27.00 75.00 

500 1.00-1.01 56.20 9.14 -18.80 436.66 38.00 73.00 

500 1.01-1.03 52.88 9.08 -22.12 571.53 35.00 71.00 

500 1.01-1.06 56.23 9.42 -18.77 440.92 37.50 74.00 

500 1.01-1.10 56.56 9.14 -18.44 423.47 38.00 73.50 

1000 1.00-1.01 56.77 7.31 -18.23 385.80 43.00 71.50 

1000 1.01-1.03 53.47 7.58 -21.53 521.10 39.00 69.00 

1000 1.01-1.06 56.42 7.55 -18.58 402.12 41.50 70.00 

1000 1.01-1.10 56.39 7.16 -18.61 139.07 41.00 70.00 

 

 From the Table A.5.4.17 above, the Contal and O’Quigley method consistently 

underestimated cutpoints at all scenarios for true cutpoint of 75. The smallest absolute bias 

was 18.23 for sample size 1000 and risk ratio 1.00-1.01 and largest absolute bias was 24.75 

at sample size 50 and risk ratio 1.01-1.03. The smallest MSE was 139.07 at sample size 

1000 and risk ratio 1.01-1.10 and largest MSE was 854.01 at sample size 50 and risk ratio 
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1.01-1.03. Unlike proposed method and Klein and Wu method, for the large sample size 

and larger difference in risk ratio, this method still underestimates the cutpoint. The 95
th

 

percentile interval was  19,75  for the sample size 50 and risk ratio of 1.01-1.03, which 

indicates 95% of estimates were between 19 and 75. This indicates the high variability in 

the estimates when the sample size and the difference in risk ratio both are small. For a 

sample size of 1000 and risk ratio of 1.00-1.01 the 95
th

 percentile was (43.0, 71.5), which 

is narrower than the 95
th

 percentile at sample size 50. 
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Table A.5.4.18 Simulation Results from the Weibull distributed data using the Contal and 

O’Quigley method, 25% censoring at 1 75    

N Scenario  Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 53.07 15.00 -21.94 705.86 21.00 76.00 

50 1.01-1.03 50.22 15.75 -24.78 861.77 19.00 76.00 

50 1.01-1.06 52.20 15.62 -22.80 763.44 20.00 76.50 

50 1.01-1.10 52.85 15.14 -22.15 719.37 22.00 76.00 

100 1.00-1.01 53.91 13.12 -21.09 616.81 28.00 75.00 

100 1.01-1.03 50.87 13.72 -24.13 770.38 22.50 75.00 

100 1.01-1.06 53.57 13.64 -21.43 645.02 24.00 75.00 

100 1.01-1.10 53.56 13.60 -21.45 644.71 24.50 75.00 

500 1.00-1.01 56.52 9.29 -18.48 427.71 37.00 73.50 

500 1.01-1.03 52.98 9.09 -22.02 567.62 36.00 71.00 

500 1.01-1.06 55.71 9.28 -19.29 458.18 37.00 73.00 

500 1.01-1.10 56.49 9.30 -18.51 429.14 37.00 74.00 

1000 1.00-1.01 56.72 7.44 -18.28 389.66 43.00 72.00 

1000 1.01-1.03 53.07 7.44 -21.94 536.43 39.00 67.00 

1000 1.01-1.06 56.82 7.84 -18.18 392.01 41.00 72.00 

1000 1.01-1.10 56.97 7.49 -18.03 381.22 43.00 71.00 

 

From the Table 5.4.18, the Contal and O’Quigley method with 25% censoring 

consistently underestimates the true cutpoint of 75. The largest absolute bias and MSE 

were 24.78 and 861.77 respectively at sample size 50 and relative risk 1.01-1.03. The 

smallest bias was 18.03 and smallest MSE was 381.22 at sample size 1000 and relative risk 

1.01-1.10. The 95
th

 percentile interval for sample size 50 and relative risk 1.01-1.03 is 

given by (19, 76), indicating the large variability in the estimate for smaller sample size. 
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Table A.5.5.1 Simulation Results from the Exponential distribution using the Proposed Score 

method, with no censoring, at 1 25    

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 21.23 8.94 -3.77 94.08 10.00 49.50 

50 1.01-1.03 40.71 27.58 15.71 1006.49 2.50 86.50 

50 1.01-1.06 21.21 17.45 -3.79 318.60 5.00 79.00 

50 1.01-1.10 21.19 8.73 -3.82 90.63 11.00 47.50 

100 1.00-1.01 18.65 4.98 -6.35 65.06 13.00 31.50 

100 1.01-1.03 39.33 28.34 14.33 1007.60 3.00 88.00 

100 1.01-1.06 15.78 13.01 -9.22 254.02 5.00 68.50 

100 1.01-1.10 18.64 4.51 -6.36 60.80 13.00 27.00 

500 1.00-1.01 17.59 1.49 -7.41 57.11 15.00 20.00 

500 1.01-1.03 22.74 24.79 -2.27 619.03 4.00 88.00 

500 1.01-1.06 12.03 1.88 -12.97 171.79 9.00 16.00 

500 1.01-1.10 17.51 1.33 -7.49 57.82 15.00 20.00 

1000 1.00-1.01 17.46 1.27 -7.54 58.46 16.00 19.00 

1000 1.01-1.03 14.52 16.36 -10.48 377.14 5.00 86.50 

1000 1.01-1.06 11.80 1.41 -13.20 176.28 9.00 15.00 

1000 1.01-1.10 17.43 0.99 -7.57 58.25 16.00 19.00 

 

Looking at the Table A.5.5.1 above (Score method, no censoring), the proposed 

score method under-estimates the cutpoint at 25, except at sample size 50 and sample size 

100 and risk ratio of 1.01-1.03. The absolute bias ranges from 2.27 at sample size 500 to 

15.71 at sample size 50 and risk ratio of 1.01-1.03, and MSE ranges from 60.80 at sample 

size 100 and risk ratio of 1.01-1.10 to 1007.60 at sample size 100 and risk ratio of 1.01-

1.03. The 95
th

 percentile interval for sample size 50 and risk ratio 1.01-1.03 is (2.50, 

86.50), denoting that 95% of the times the estimates were between 2.50 and 86.50, which 

indicates very large variability for the cutpoint estimate of 25.  
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Table A.5.5.2 Simulation Results from the exponential distribution using the Proposed Score 

method, 25% censoring, 1 25   

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 30.55 15.94 5.55 284.71 14.00 72.00 

50 1.01-1.03 44.93 24.88 19.93 1015.84 4.00 86.00 

50 1.01-1.06 35.26 23.31 10.26 648.01 9.00 84.00 

50 1.01-1.10 30.18 16.38 5.18 294.86 14.00 75.00 

100 1.00-1.01 24.63 11.48 -0.37 131.72 15.00 59.00 

100 1.01-1.03 44.44 25.76 19.44 1040.80 6.00 87.00 

100 1.01-1.06 27.84 20.48 2.84 426.92 10.00 82.00 

100 1.01-1.10 24.65 11.46 -0.35 131.28 15.00 58.50 

500 1.00-1.01 19.17 2.03 -5.83 38.09 17.00 22.00 

500 1.01-1.03 30.01 22.76 5.01 542.66 8.00 85.00 

500 1.01-1.06 15.79 3.60 -9.21 97.86 12.00 20.00 

500 1.01-1.10 19.12 1.87 -5.88 38.01 17.00 21.00 

1000 1.00-1.01 19.02 1.20 -5.98 37.24 17.00 21.00 

1000 1.01-1.03 20.79 14.12 -4.22 216.97 9.00 68.50 

1000 1.01-1.06 15.25 1.47 -9.75 97.20 13.00 18.00 

1000 1.01-1.10 19.03 1.00 -5.97 36.63 17.00 21.00 

 

From the Table A.5.5.2 above (proposed score method, 25% censoring), the 

proposed score method both over and under-estimates the cutpoint at 25. The absolute bias 

ranges from 0.35 at sample size 100, risk ratio 1.01-1.10 to 19.93 at sample size 50 and 

risk ratio 1.01-1.03, and MSE ranges from 36.63 at sample size 1000 and risk ratio of 1.01-

1.10 to 1015.84 at sample size 50 and risk ratio of 1.01-1.03. The 95
th

 percentile interval 

for sample size 50 and risk ratio 1.01-1.03 is (4.0, 86.0), denoting that 95% of the times the 

estimates were between 4.0 and 86.0, which indicates very large variability for the cutpoint 

estimate of 25. MSE decreases as the sample size increases.  
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Table A.5.5.3 Simulation Results from the exponential distribution using the Klein and Wu 

method, no censoring, 1 25   

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 25.64 3.01 0.64 9.44 19.00 31.00 

50 1.01-1.03 32.50 8.94 7.50 135.95 17.00 51.50 

50 1.01-1.06 27.14 4.69 2.14 26.57 19.00 38.50 

50 1.01-1.10 25.56 2.93 0.56 8.88 18.00 31.00 

100 1.00-1.01 25.12 1.76 0.12 3.12 21.00 29.00 

100 1.01-1.03 32.10 7.31 7.10 103.79 20.00 48.00 

100 1.01-1.06 26.27 2.91 1.27 10.08 21.00 33.00 

100 1.01-1.10 25.08 1.48 0.08 2.19 21.50 28.00 

500 1.00-1.01 24.97 0.28 -0.03 0.08 24.00 25.00 

500 1.01-1.03 31.43 4.32 6.43 59.96 25.00 40.50 

500 1.01-1.06 25.62 1.15 0.61 1.70 24.00 29.00 

500 1.01-1.10 24.96 0.25 -0.04 0.07 24.00 25.00 

1000 1.00-1.01 25.02 0.63 0.02 0.40 25.00 25.00 

1000 1.01-1.03 31.35 3.70 6.35 54.01 25.00 39.00 

1000 1.01-1.06 25.41 0.82 0.41 0.84 25.00 28.00 

1000 1.01-1.10 25.00 0.04 -0.00 0.00 25.00 25.00 

 

Looking at the Table A.5.5.3 above (Klein and Wu method, no censoring), the 

Klein and Wu method provides estimates approximately equal to the true cutpoint, except 

at the sample size 50 and sample size 100 and risk ratio of 1.01-1.03. The absolute bias 

ranges from 0.0 at sample size 1000, risk ratio 1.01-1.10 to 7.50 at sample size 50 and risk 

ratio of 1.01-1.03, and MSE ranges from 0 at sample size 1000 and risk ratio of 1.01-1.10 

to 135.95 at sample size 50 and risk ratio of 1.01-1.03. The 95
th

 percentile interval for 

sample size 50 and risk ratio 1.01-1.03 is (17.0, 51.5), denoting that 95% of the times the 
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estimates were between 17.0 and 51.5, indicating small variability in comparison to the 

proposed score method. The MSE decreases as the sample size increases.  

Table A.5.5.4 Simulation Results from the Exponential distribution using the Klein 

and Wu method, 25% censoring, 1 25   

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 26.12 3.77 1.12 15.42 18.00 35.00 

50 1.01-1.03 33.03 9.68 8.03 157.99 16.00 55.00 

50 1.01-1.06 27.77 5.09 2.77 33.54 19.00 40.00 

50 1.01-1.10 25.90 3.45 0.90 12.72 18.00 34.00 

100 1.00-1.01 25.43 1.83 0.43 3.52 21.00 29.00 

100 1.01-1.03 32.84 7.67 7.84 120.24 21.00 50.00 

100 1.01-1.06 26.73 3.42 1.73 14.71 21.00 36.00 

100 1.01-1.10 25.36 1.82 0.36 3.45 21.00 29.00 

500 1.00-1.01 25.01 0.45 0.01 0.20 24.00 26.00 

500 1.01-1.03 31.81 4.57 6.81 67.25 25.00 42.00 

500 1.01-1.06 25.78 1.37 0.78 2.49 24.00 29.00 

500 1.01-1.10 25.01 0.35 0.00 0.12 24.00 26.00 

1000 1.00-1.01 25.03 0.93 0.03 0.86 25.00 25.00 

1000 1.01-1.03 31.47 3.92 6.47 57.16 25.00 40.00 

1000 1.01-1.06 25.56 0.98 0.56 1.27 25.00 28.00 

1000 1.01-1.10 25.00 0.10 0.00 0.01 25.00 25.00 

 

 For 25% censoring and cutpoint 25, the Klein and Wu method estimates are 

approximately equal to the true cutpoint 25, except for the relative risk 1.01-1.03. At 

relative risk of 1.01-1.03, the Klein and Wu method overestimated the cutpoint. MSE and 

bias both decreases for the large sample size. The largest bias is 8.03 and largest MSE is 

157.99 at sample size 50 and relative risk 1.01-1.03. The smallest bias is 0 at sample size 
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500 and sample size 1000 for the risk ratio of 1.01-1.10. The smallest MSE is 0.01 for the 

sample size 1000 and risk ratio of 1.01-1.10. The 95
th

 percentile interval at sample size 50 

and relative risk 1.01-1.03 is (16, 55), which is the wideset interval among all other 

scenarios. 

Table A.5.5.5 Simulation Results from the Exponential distribution using the Contal and 

O’Quigley method, no censoring, 1  25 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 33.81 6.59 8.81 120.99 25.00 49.00 

50 1.01-1.03 36.90 9.50 11.90 231.80 21.00 57.50 

50 1.01-1.06 35.02 7.33 10.02 154.09 24.00 51.00 

50 1.01-1.10 34.74 6.76 9.74 140.44 25.00 49.50 

100 1.00-1.01 33.23 5.33 8.23 96.21 25.00 42.0 

100 1.01-1.03 36.40 7.74 11.40 189.63 25.00 50.0 

100 1.01-1.06 33.75 5.75 8.75 109.65 25.00 44.0 

100 1.01-1.10 33.20 5.24 8.20 94.74 25.00 42.0 

500 1.00-1.01 32.24 3.22 7.24 62.77 26.00 38.00 

500 1.01-1.03 35.38 4.68 10.38 129.66 27.00 45.00 

500 1.01-1.06 32.84 3.43 7.84 73.24 26.00 40.00 

500 1.01-1.10 32.03 3.21 7.03 59.73 26.00 39.00 

1000 1.00-1.01 32.19 2.34 7.19 57.12 27.50 37.00 

1000 1.01-1.03 35.73 4.08 10.73 131.65 28.00 43.00 

1000 1.01-1.06 32.92 2.84 7.92 70.78 27.50 38.00 

1000 1.01-1.10 32.12 2.37 7.12 56.34 27.00 37.00 

 

Looking at the Table A.5.5.5 above (Contal and O’Quigley, no censoring), the 

Contal and O’Quigley method overestimates the true cutpoint. The absolute bias ranges 

from 7.03 at sample size 500, risk ratio 1.01-1.10 to 11.90 at sample size 50 and risk ratio 

of 1.01-1.03, and MSE ranges from 56.34 at sample size 1000 and risk ratio of 1.01-1.10 to 
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231.80 at sample size 50 and risk ratio of 1.01-1.03. The 95
th

 percentile interval for sample 

size 50 and risk ratio 1.01-1.03 is (21.0, 57.5), denoting that 95% of the times the estimates 

were between 21.0 and 57.5, indicating small variability in comparison to the proposed 

score method. MSE decreases as the sample size increases.  

Table A.5.5.6 Simulation Results from the Exponential distribution using the Contal 

and O’Quigley method, 25% censoring, 1 25    

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 34.44 6.51 9.44 131.36 25.00 49.00 

50 1.01-1.03 36.62 9.37 11.62 222.75 21.00 57.00 

50 1.01-1.06 34.75 7.18 9.75 146.50 24.00 50.00 

50 1.01-1.10 34.59 6.72 9.59 137.03 25.00 48.00 

100 1.00-1.01 33.03 5.12 8.03 90.63 25.00 44.00 

100 1.01-1.03 35.97 7.69 10.97 179.36 23.00 53.00 

100 1.01-1.06 33.32 5.73 8.32 101.99 25.00 46.00 

100 1.01-1.10 33.33 5.25 8.33 96.90 25.00 44.00 

500 1.00-1.01 32.28 3.08 7.28 62.49 26.00 38.00 

500 1.01-1.03 35.71 4.99 10.71 139.52 26.00 45.00 

500 1.01-1.06 33.12 3.53 8.12 78.37 26.00 41.00 

500 1.01-1.10 32.28 3.05 7.28 62.31 26.00 38.00 

1000 1.00-1.01 32.11 2.47 7.11 56.62 28.00 37.00 

1000 1.01-1.03 35.61 3.84 10.61 127.33 28.00 43.00 

1000 1.01-1.06 32.84 2.81 7.84 69.29 28.00 38.00 

1000 1.01-1.10 32.24 2.32 7.24 57.81 28.00 37.00 

 

Looking at the Table A.5.5.6 above (Contal and O’Quigley, 25% censoring), the 

Contal and O’Quigley method overestimates the true cutpoint. The absolute bias ranges 

from 7.11 at sample size 1000, risk ratio 1.00-1.01 to 11.62 at sample size 50 and risk ratio 

of 1.01-1.03, and MSE ranges from 56.62 at sample size 1000 and risk ratio of 1.00-1.01 to 
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222.75 at sample size 50 and risk ratio of 1.01-1.03. The 95
th

 percentile interval for sample 

size 50 and risk ratio 1.01-1.03 is (21.0, 57.0), denoting that 95% of the times the estimates 

were between 21.0 and 57.0, indicating small variability in comparison to the proposed 

score method. MSE decreases as the sample size increases.  

Looking at all three methods, at the lower cutpoint ( 1   25), the proposed score 

method underestimated the cutpoint (downward bias) for non-censored data, and it both 

under and over estimates for censored data. The Klein and Wu method has estimates close 

the true cutpoint and the Contal and O’Quigley overestimated the true cutpoint. Of the 

three methods, the Klein and Wu is best performer in terms of Bias, MSE and 95
th

 

percentile intervals. 
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Table A.5.5.7 Simulation Results from the Exponential distribution using the proposed Score 

method, with no censoring, at 1 50    

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 45.38 3.21 -4.62 31.66 37.00 49.00 

50 1.01-1.03 32.47 21.94 -17.53 788.02 4.00 85.00 

50 1.01-1.06 37.47 6.54 -12.53 199.78 24.00 47.00 

50 1.01-1.10 45.46 3.28 -4.54 31.37 37.00 49.00 

100 1.00-1.01 45.83 2.27 -4.17 22.56 41.00 49.00 

100 1.01-1.03 28.57 18.30 -21.43 793.75 8.00 85.00 

100 1.01-1.06 37.81 4.88 -12.19 172.46 28.00 46.00 

100 1.01-1.10 45.96 2.32 -4.04 21.68 40.00 49.00 

500 1.00-1.01 46.22 1.12 -3.78 15.53 44.00 48.00 

500 1.01-1.03 21.95 5.06 -28.05 812.25 14.00 31.00 

500 1.01-1.06 37.60 2.38 -12.40 159.48 33.00 42.00 

500 1.01-1.10 46.19 1.14 -3.81 15.84 44.00 48.00 

1000 1.00-1.01 46.28 0.84 -3.72 14.52 45.00 48.00 

1000 1.01-1.03 21.23 3.12 -28.77 837.38 15.00 27.50 

1000 1.01-1.06 37.53 1.80 -12.47 158.75 34.00 41.00 

1000 1.01-1.10 46.28 0.84 -3.72 14.52 45.00 48.00 

 

Looking at the Table A.5.5.7 above (Score method, no censoring), the proposed 

score method under-estimates the cutpoint at 50. The absolute bias ranges from 3.72 at 

sample size 1000 and risk ratio of 1.01-1.10 to 28.77 at sample size 1000 and risk ratio of 

1.01-1.03, and MSE ranges from 14.52 at sample size 1000(relative risk 1.01-1.10) to 

837.38 at sample size 1000 and risk ratio of 1.01-1.03. The 95
th

 percentile interval for 

sample size 1000 and risk ratio 1.01-1.03 is (15.0, 27.5), denoting that 95% of sample 
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estimate were between 15 and 27.5, which indicates that for cutpoint 50, score method 

underestimates the cutpoint even for large sample size. 

The absolute bias and MSE both are large regardless of the sample size. It can be 

concluded that if risk ratio is small, then the proposed score method may not be the best 

method to obtain a cutpoint. 

Table A.5.5.8 Simulation Results from the Exponential distribution using the proposed Score 

method, 25% censoring, 1 50   

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 45.96 3.14 -4.04 26.15 38.00 49.00 

50 1.01-1.03 39.02 20.82 -10.98 553.75 7.00 84.00 

50 1.01-1.06 40.27 6.91 -9.73 142.37 26.00 49.00 

50 1.01-1.10 45.87 3.26 -4.13 27.67 38.00 49.00 

100 1.00-1.01 46.63 1.92 -3.37 15.06 42.00 49.00 

100 1.01-1.03 34.87 18.24 -15.13 561.45 11.00 84.00 

100 1.01-1.06 40.50 4.57 -9.50 111.14 30.00 48.00 

100 1.01-1.10 46.59 2.08 -3.41 15.97 41.50 49.00 

500 1.00-1.01 46.95 1.01 -3.05 10.31 45.00 49.00 

500 1.01-1.03 27.63 4.84 -22.37 523.68 19.00 37.00 

500 1.01-1.06 40.45 2.30 -9.55 96.57 35.50 44.00 

500 1.01-1.10 46.96 0.99 -3.04 10.24 45.00 49.00 

1000 1.00-1.01 47.04 0.75 -2.97 9.35 46.00 48.00 

1000 1.01-1.03 27.00 3.65 -23.00 542.16 21.00 34.00 

1000 1.01-1.06 40.48 1.71 -9.52 93.62 37.00 44.00 

1000 1.01-1.10 47.03 0.75 -2.97 9.41 46.00 48.00 

 

Looking at the Table A.5.5.8 above (Score method, 25% censoring), the proposed 

score method under-estimates the cutpoint at 50. The absolute bias ranges from 2.97 at 
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sample size 1000 (relative risk 1.01-1.10) to 23 at sample size 1000(relative risk 1.01-

1.03), and MSE ranges from 9.35 at sample size 1000 (relative risk 1.01-1.10) to 542.16 at 

sample size 1000 and risk ratio of 1.01-1.03. The 95
th

 percentile interval for sample size 

1000 and risk ratio 1.01-1.03 is (21, 34), denoting that 95% of the times the sample 

estimates were between 21 and 34. With censoring the result from the proposed score 

method is better than with no censoring. It still has underestimation at relative risk 1.01-

1.03 but the estimation for all other relative risk looks better.  
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Table A.5.5.9 Simulation Results from the Exponential distribution using the Klein and Wu 

method,, no censoring, 1 50    

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 45.79 6.85 -4.21 64.68 26.00 53.50 

50 1.01-1.03 43.91 8.27 -6.09 105.31 24.00 55.00 

50 1.01-1.06 45.91 6.39 -4.09 57.58 28.50 54.00 

50 1.01-1.10 45.91 6.71 -4.09 61.67 28.50 54.00 

100 1.00-1.01 46.95 4.62 -3.05 30.60 34.00 52.00 

100 1.01-1.03 45.87 5.75 -4.13 50.06 31.00 52.50 

100 1.01-1.06 47.24 4.25 -2.77 25.69 36.00 52.00 

100 1.01-1.10 47.13 4.46 -2.87 28.07 35.00 52.00 

500 1.00-1.01 49.18 1.46 -0.82 2.80 45.00 50.00 

500 1.01-1.03 48.59 2.16 -1.41 6.66 42.00 50.00 

500 1.01-1.06 49.31 1.26 -0.69 2.07 46.00 50.00 

500 1.01-1.10 49.28 1.29 -0.72 2.18 46.00 50.00 

1000 1.00-1.01 49.70 0.68 -0.30 0.56 48.00 50.00 

1000 1.01-1.03 49.17 1.47 -0.83 2.84 45.00 50.00 

1000 1.01-1.06 49.66 0.78 -0.34 0.72 47.00 50.00 

1000 1.01-1.10 49.71 0.67 -0.29 0.53 48.00 50.00 

 

Looking at the Table A.5.5.9 above (Klein and Wu method, no censoring), the 

Klein and Wu method under-estimates the cutpoint at 50 but the absolute bias is very 

small. The absolute bias ranges from 0.29 at sample size 1000(relative risk 1.01-1.10) to 

6.09 at sample size 50 (relative risk 1.01-1.03), and MSE ranges from 0.53 at sample size 

1000 (relative risk 1.01-1.10) to 105.31 at sample size 50 and risk ratio of 1.01-1.03. The 

95
th

 percentile interval for sample size 50 and risk ratio 1.01-1.03 is (24, 55), denoting that 

95% of sample estimate were between 24 and 55. For cutpoint 50 and no censoring, the 

Klein and Wu method has very small bias and MSE for large sample size. It also has small 
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bias for small sample size 50 and 100 but MSE is relatively large in comparison to sample 

size 500 and 1000.  

Table A.5.5.10 Simulation Results from the Exponential distribution using the Klein and Wu 

method, 25% censoring, 1 50    

N Scenario Mean SD Bias MSE 

 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 45.83 7.29 -4.17 70.55 27.00 56.00 

50 1.01-1.03 44.49 9.34 -5.51 117.45 22.00 58.00 

50 1.01-1.06 45.31 7.74 -4.69 81.94 25.00 56.00 

50 1.01-1.10 46.00 7.25 -4.00 68.55 27.00 56.00 

100 1.00-1.01 47.04 4.71 -2.96 30.87 34.00 52.50 

100 1.01-1.03 45.53 6.75 -4.48 65.53 28.00 54.50 

100 1.01-1.06 46.86 5.14 -3.14 36.21 32.00 53.00 

100 1.01-1.10 47.31 4.56 -2.69 28.02 35.00 52.50 

500 1.00-1.01 49.14 1.65 -0.86 3.45 45.00 50.00 

500 1.01-1.03 48.45 2.52 -1.55 8.76 41.50 51.00 

500 1.01-1.06 49.04 1.78 -0.96 4.09 44.00 50.00 

500 1.01-1.10 49.17 1.51 -0.83 2.96 45.00 50.00 

1000 1.00-1.01 49.65 0.79 -0.35 0.74 47.00 50.00 

1000 1.01-1.03 49.18 1.55 -0.82 3.06 44.00 50.00 

1000 1.01-1.06 49.60 0.83 -0.40 0.85 47.00 50.00 

1000 1.01-1.10 49.59 0.88 -0.41 0.93 47.00 50.00 

 

Looking at the Table A.5.5.10 above, the Klein and Wu method estimates values 

approximately equal to the actual cutpoint at 50. The absolute bias ranges from 0.35 at 

sample size 1000 (relative risk 1.00-1.01) to 5.51 at sample size 50 (relative risk 1.01-

1.03), and MSE ranges from 0.74 at sample size 1000 (relative risk 1.00-1.01) to 117.45 at 

sample size 50 and risk ratio of 1.01-1.03. The 95th percentile interval for sample size 50 
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and risk ratio 1.01-1.03 is (28, 58), denoting that 95% of the times the sample estimates 

were between 28 and 58.For sample size 500 and 1000 bias and MSE are smaller. Also the 

95
th

 percentile interval is narrower for the large sample size. 

Table A.5.5.11 Simulation Results from the Exponential distribution using the Contal and 

O’Quigley method, no censoring, 1 50   

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 48.51 4.47 -1.49 22.21 36.00 54.00 

50 1.01-1.03 45.92 7.72 -4.09 76.30 26.00 57.00 

50 1.01-1.06 48.19 4.80 -1.81 26.33 35.00 54.00 

50 1.01-1.10 48.54 4.51 -1.46 22.42 35.50 55.00 

100 1.00-1.01 48.51 4.47 -1.49 22.21 36.00 54.00 

100 1.01-1.03 45.92 7.72 -4.09 76.30 26.00 57.00 

100 1.01-1.06 48.19 4.80 -1.81 26.33 35.00 54.00 

100 1.01-1.10 48.54 4.51 -1.46 22.42 35.50 55.00 

500 1.00-1.01 49.81 0.57 -0.20 0.36 48.00 50.00 

500 1.01-1.03 49.17 1.68 -0.83 3.51 44.00 51.00 

500 1.01-1.06 49.77 0.63 -0.23 0.45 48.00 50.00 

500 1.01-1.10 49.81 0.55 -0.20 0.34 48.00 50.00 

1000 1.00-1.01 49.95 0.23 -0.05 0.06 49.00 50.00 

1000 1.01-1.03 49.58 0.97 -0.42 1.11 47.00 50.00 

1000 1.01-1.06 49.93 0.30 -0.07 0.09 49.00 50.00 

1000 1.01-1.10 49.95 0.24 -0.05 0.06 49.00 50.00 

 

Looking at the Table A.5.5.11 above (Contal and O’Quigley method, no 

censoring), the Contal and O’Quigley method has estimated values approximately equal to 

the true cutpoint of 50. The absolute bias ranges from 0.05 at sample size 1000(risk ratio 

1.01-1.10) to 4.09 at sample size 50(risk ratio 1.01-1.03), and MSE ranges from 0.06 at 
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sample size 1000 (relative risk 1.01-1.10) to 76.30 at sample size 50 and risk ratio of 1.01-

1.03. The 95
th

 percentile interval for sample size 50 and risk ratio 1.01-1.03 is (26, 57), 

denoting that 95% of the times the sample estimates were between 26 and 57.  

Table A.5.5.12 Simulation Results from the Exponential distribution using the Contal and 

O’Quigley method, 25% censoring, 1 50   

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 48.65 4.42 -1.35 21.30 37.00 55.00 

50 1.01-1.03 46.28 7.22 -3.73 65.97 28.00 57.00 

50 1.01-1.06 48.29 4.73 -1.71 25.30 35.00 55.00 

50 1.01-1.10 48.54 4.50 -1.46 22.33 37.00 54.00 

100 1.00-1.01 49.07 2.41 -0.93 6.66 43.00 52.00 

100 1.01-1.03 47.41 5.01 -2.59 31.74 34.00 54.00 

100 1.01-1.06 48.80 2.91 -1.20 9.90 40.00 52.00 

100 1.01-1.10 49.04 2.47 -0.96 7.03 42.00 52.00 

500 1.00-1.01 49.83 0.48 -0.17 0.26 48.00 50.00 

500 1.01-1.03 49.28 1.44 -0.73 2.60 45.00 51.00 

500 1.01-1.06 49.75 0.63 -0.25 0.46 48.00 50.00 

500 1.01-1.10 49.83 0.54 -0.17 0.32 49.00 50.00 

1000 1.00-1.01 49.95 0.24 -0.05 0.06 49.00 50.00 

1000 1.01-1.03 49.66 0.85 -0.34 0.84 47.00 50.00 

1000 1.01-1.06 49.93 0.30 -0.07 0.10 49.00 50.00 

1000 1.01-1.10 49.95 0.26 -0.05 0.07 49.00 50.00 

 

Looking at the Table A.5.5.12 above (Contal and O’Quigley method, 25% 

censoring), the Contal and O’Quigley method has results approximately equal to the true 

cutpoint of 50. The absolute bias ranges from 0.05 at sample size 1000(risk ratio 1.01-

1.10) to 3.73 at sample size 50(risk ratio 1.01-1.03), and MSE ranges from 0.06 at sample 
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size 1000 (relative risk 1.01-1.10) to 65.97 at sample size 50 and risk ratio of 1.01-1.03. 

The 95
th

 percentile interval for sample size 50 and risk ratio 1.01-1.03 is (28, 57), denoting 

that 95% of the times the sample estimates were between 28 and 57. The results of 

censoring were similar with the result from non-censoring. Bias and MSE decreases with 

increasing sample size. 

Looking at all three methods, at the middle cutpoint ( 1   50), the existing methods 

provide better estimates than the proposed score method. Of the three methods, the Klein 

and Wu is best performer in terms of Bias, MSE and 95
th

 percentile intervals. 
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Table A.5.5.13 Simulation Results from the Exponential distribution using the proposed 

Score Method, no censoring, 1 75    

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 70.16 6.88 -4.84 70.78 50.00 74.00 

50 1.01-1.03 47.28 16.64 -27.73 1045.27 12.00 74.00 

50 1.01-1.06 64.74 10.35 -10.26 212.16 33.00 74.00 

50 1.01-1.10 70.38 6.55 -4.62 64.24 50.50 74.00 

100 1.00-1.01 72.65 2.31 -2.35 10.84 66.00 74.00 

100 1.01-1.03 47.36 13.72 -27.64 952.06 20.00 71.00 

100 1.01-1.06 67.72 6.62 -7.28 96.75 47.00 74.00 

100 1.01-1.10 72.64 2.37 -2.36 11.15 67.00 74.00 

500 1.00-1.01 73.75 0.49 -1.25 1.80 73.00 74.00 

500 1.01-1.03 46.19 7.71 -28.81 889.47 32.00 61.00 

500 1.01-1.06 70.01 2.20 -4.99 29.71 65.00 73.00 

500 1.01-1.10 73.78 0.47 -1.22 1.71 73.00 74.00 

1000 1.00-1.01 73.91 0.30 -1.09 1.28 73.00 74.00 

1000 1.01-1.03 45.80 6.22 -29.20 891.24 35.00 58.00 

1000 1.01-1.06 70.29 1.55 -4.71 24.56 67.00 73.00 

1000 1.01-1.10 73.90 0.31 -1.10 1.31 73.00 74.00 

 

Looking at the Table A.5.5.13 above (Score method, no censoring), the proposed 

score method provides the estimate approximately equal to the true cutpoint of 75, except 

at the relative risk of 1.01-1.03. The bias ranges from 1.10 at sample size 1000 (relative 

risk 1.01-1.10) to 27.73 at sample size 50 (relative risk 1.01-1.03), and MSE ranges from 

1.31 at sample size 1000 (relative risk 1.01-1.10) to 1045.27 at sample size 50 and risk 

ratio of 1.01-1.03. The 95
th

 percentile interval for sample size 50 and risk ratio 1.01-1.03 is 

(12, 74), denoting the high variability at sample size 50 and relative risk 1.01-1.03.  
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Table A.5.5.14 Simulation Results from the Exponential distribution using the proposed 

Score method, 25% censoring, 1 75   

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 69.78 7.90 -5.22 89.57 45.00 74.00 

50 1.01-1.03 50.79 17.54 -24.21 893.22 14.00 79.00 

50 1.01-1.06 66.24 9.71 -8.76 170.85 36.00 74.00 

50 1.01-1.10 69.34 8.40 -5.66 102.62 43.00 74.00 

100 1.00-1.01 72.58 3.38 -2.42 17.27 66.50 74.00 

100 1.01-1.03 51.68 14.21 -23.32 745.48 21.00 73.00 

100 1.01-1.06 68.89 6.24 -6.11 76.24 51.00 74.00 

100 1.01-1.10 72.65 2.74 -2.35 13.00 67.00 74.00 

500 1.00-1.01 73.87 0.36 -1.13 1.42 73.00 74.00 

500 1.01-1.03 52.67 8.77 -22.33 575.26 34.00 67.00 

500 1.01-1.06 71.33 1.77 -3.67 16.63 67.00 74.00 

500 1.01-1.10 73.85 0.41 -1.15 1.50 73.00 74.00 

1000 1.00-1.01 73.97 0.17 -1.03 1.09 73.00 74.00 

1000 1.01-1.03 52.44 7.10 -22.56 559.24 38.50 65.00 

1000 1.01-1.06 71.54 1.26 -3.46 13.55 69.00 73.00 

1000 1.01-1.10 73.97 0.18 -1.03 1.10 73.00 74.00 

 

Looking at the Table A.5.5.14 above (Score method, 25% censoring), the proposed 

score method provides the estimate approximately equal to the true cutpoint of 75, except 

at the relative risk of 1.01-1.03. The bias ranges from 1.03 at sample size 1000 (relative 

risk 1.01-1.10) to 24.21 at sample size 50 (relative risk 1.01-1.03), and MSE ranges from 

1.10 at sample size 1000 (relative risk 1.01-1.10) to 893.22 at sample size 50 and risk ratio 

of 1.01-1.03. The 95
th

 percentile interval for sample size 50 and risk ratio 1.01-1.03 is (14, 
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79), denoting the high variability at sample size 50 and relative risk 1.01-1.03. The result 

from censoring is similar with the result from non-censoring. 

Table A.5.5.15  Simulation Results from the Exponential distribution using the Klein and Wu 

method, no censoring, 1 75    

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 50.51 16.16 -24.49 860.50 16.50 76.00 

50 1.01-1.03 48.27 16.19 -26.73 976.33 17.00 75.00 

50 1.01-1.06 49.20 16.12 -25.80 925.29 17.00 75.00 

50 1.01-1.10 50.07 15.85 -24.93 872.42 20.00 75.00 

100 1.00-1.01 51.93 13.65 -23.07 718.20 23.00 75.00 

100 1.01-1.03 49.58 13.62 -25.42 831.52 24.00 74.00 

100 1.01-1.06 51.06 14.09 -23.94 771.37 23.00 74.00 

100 1.01-1.10 51.79 14.06 -23.21 736.16 24.00 75.00 

500 1.00-1.01 53.06 9.30 -21.94 567.77 34.50 71.50 

500 1.01-1.03 51.04 9.46 -23.96 663.39 32.00 69.00 

500 1.01-1.06 53.18 9.36 -21.82 563.54 35.00 72.00 

500 1.01-1.10 53.34 9.31 -21.66 555.73 34.00 70.50 

1000 1.00-1.01 53.15 7.68 -21.85 536.55 38.00 68.00 

1000 1.01-1.03 51.55 7.27 -23.45 602.60 37.00 65.50 

1000 1.01-1.06 53.36 7.42 -21.64 523.12 38.00 68.00 

1000 1.01-1.10 53.72 7.27 -21.28 505.68 39.50 68.00 

 

Looking at the Table A.5.5.15 above (Klein and Wu method, no censoring), the 

Klein and Wu method consistently under-estimates the true cutpoint of 75. The bias ranges 

from 21.28 at sample size 1000 (relative risk 1.01-1.10) to 26.73 at sample size 50 (relative 

risk 1.01-1.03), and MSE ranges from 505.68 at sample size 1000 (relative risk 1.01-1.10) 

to 976.33 at sample size 50 and risk ratio of 1.01-1.03. The 95
th

 percentile interval for 
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sample size 50 and risk ratio 1.01-1.03 is (17, 75), denoting the high variability at sample 

size 50 and relative risk 1.01-1.03.  

Table A.5.5.16 Simulation Results from the Exponential distribution using the Klein and Wu 

method, 25% censoring, 1 75   

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile  

50 1.00-1.01 49.79 16.36 -25.21 902.90 18.00 75.00 

50 1.01-1.03 46.93 17.35 -28.07 1088.59 14.00 76.00 

50 1.01-1.06 49.34 16.91 -25.66 943.99 15.50 76.00 

50 1.01-1.10 50.47 16.61 -24.53 877.16 17.00 76.00 

100 1.00-1.01 50.81 13.99 -24.19 780.76 22.00 74.50 

100 1.01-1.03 49.43 15.39 -25.57 890.67 18.00 75.00 

100 1.01-1.06 50.98 14.37 -24.02 783.16 23.00 75.00 

100 1.01-1.10 50.84 14.18 -24.16 784.65 22.00 75.00 

500 1.00-1.01 53.26 9.65 -21.74 565.77 35.00 71.50 

500 1.01-1.03 51.04 9.88 -23.96 671.48 32.00 71.00 

500 1.01-1.06 53.10 10.05 -21.91 580.77 33.00 71.00 

500 1.01-1.10 53.40 9.67 -21.60 560.22 34.00 72.00 

1000 1.00-1.01 54.02 8.15 -20.98 506.46 38.50 69.00 

1000 1.01-1.03 51.19 8.21 -23.81 634.35 35.00 67.00 

1000 1.01-1.06 53.70 8.23 -21.30 521.22 38.00 69.00 

1000 1.01-1.10 54.29 7.98 -20.72 492.68 38.00 70.00 

 

Looking at the Table A.5.5.16 above (Klein and Wu method, 25% censoring), the 

Klein and Wu method consistently under-estimates the true cutpoint of 75. The bias ranges 

from 20.72 at sample size 1000 (relative risk 1.01-1.10) to 28.07 at sample size 50 (relative 

risk 1.01-1.03), and MSE ranges from 492.68 at sample size 1000 (relative risk 1.01-1.10) 

to 1088.59 at sample size 50 and risk ratio of 1.01-1.03. The 95
th

 percentile interval for 
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sample size 50 and risk ratio 1.01-1.03 is (14, 76), denoting the high variability at sample 

size 50 and relative risk 1.01-1.03. The result from censoring is similar to result from non-

censoring. 

Table A.5.5.17 Simulation Results from the Exponential distribution using the Contal and 

O’Quigley method, no censoring, 1 75   

 

N Scenario Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 52.93 15.66 -22.07 732.16 21.50 76.00 

50 1.01-1.03 50.93 15.45 -24.07 818.14 19.00 75.00 

50 1.01-1.06 51.81 15.58 -23.19 780.26 21.00 76.00 

50 1.01-1.10 53.00 14.87 -22.01 705.03 23.00 75.50 

100 1.00-1.01 52.93 15.66 -22.07 732.16 21.50 76.00 

100 1.01-1.03 50.93 15.45 -24.07 818.14 19.00 75.00 

100 1.01-1.06 51.81 15.58 -23.19 780.26 21.00 76.00 

100 1.01-1.10 53.00 14.87 -22.01 705.03 23.00 75.50 

500 1.00-1.01 56.43 8.98 -18.57 425.21 38.00 73.00 

500 1.01-1.03 53.48 9.13 -21.52 546.40 35.00 71.00 

500 1.01-1.06 55.94 9.33 -19.06 450.18 38.00 73.00 

500 1.01-1.10 56.30 9.10 -18.70 432.33 38.00 73.00 

1000 1.00-1.01 56.57 7.89 -18.44 402.04 41.00 73.00 

1000 1.01-1.03 53.12 7.27 -21.88 531.67 39.00 67.00 

1000 1.01-1.06 56.27 7.38 -18.73 405.21 42.00 71.00 

1000 1.01-1.10 56.90 7.26 -18.10 380.27 43.00 71.00 

 

Looking at the Table 5.5.17 above (Contal and O’Quigley, no censoring), the 

Contal and O’Quigley method consistently under-estimates the true cutpoint of 75. The 

bias ranges from 18.10 at sample size 1000 (relative risk 1.01-1.10) to 24.07 at sample size 

50 (relative risk 1.01-1.03), and MSE ranges from 380.27 at sample size 1000 (relative risk 

1.01-1.10) to 818.14 at sample size 50 and risk ratio of 1.01-1.03. The 95th percentile 
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interval for sample size 50 and risk ratio 1.01-1.03 is (19, 75), denoting the high variability 

at sample size 50 and relative risk 1.01-1.03. 

Table A.5.5.18 Simulation Results from the Exponential distribution using the Contal 

and O’Quigley method, 25% censoring, 1 75 
 

 

N Scenario Cut Mean SD Bias MSE 

Lower 2.5
th

 

percentile 

Upper 97.5
th

 

percentile 

50 1.00-1.01 75 52.62 15.52 -22.38 741.67 22.00 76.00 

50 1.01-1.03 75 49.62 16.12 -25.38 903.41 17.00 76.00 

50 1.01-1.06 75 52.16 15.20 -22.84 752.38 23.00 76.00 

50 1.01-1.10 75 53.04 15.50 -21.97 722.32 21.00 76.00 

100 1.00-1.01 75 53.17 13.15 -21.84 649.63 27.00 75.00 

100 1.01-1.03 75 51.02 13.55 -23.98 758.73 23.00 75.00 

100 1.01-1.06 75 53.66 13.25 -21.34 630.68 27.00 75.00 

100 1.01-1.10 75 53.84 13.44 -21.17 628.32 28.00 75.00 

500 1.00-1.01 75 56.21 9.26 -18.79 438.77 38.00 73.00 

500 1.01-1.03 75 52.74 8.98 -22.26 576.13 35.00 71.00 

500 1.01-1.06 75 55.84 9.29 -19.16 453.29 37.00 73.00 

500 1.01-1.10 75 56.21 9.07 -18.79 435.17 38.00 72.50 

1000 1.00-1.01 75 57.01 7.41 -17.99 378.51 43.50 71.00 

1000 1.01-1.03 75 53.18 7.59 -21.82 533.62 39.00 67.00 

1000 1.01-1.06 75 56.24 7.72 -18.76 411.38 41.00 71.00 

1000 1.01-1.10 75 56.77 7.64 -18.23 390.80 42.00 71.50 

 

Looking at the Table A.5.5.18 above (Contal and O’Quigley, 25% censoring), the 

Contal and O’Quigley method under-estimates the true cutpoint of 75. The bias ranges 

from 18.23 at sample size 1000 (relative risk 1.01-1.10) to 25.38 at sample size 50 (relative 

risk 1.01-1.03), and MSE ranges from 390.80 at sample size 1000 (relative risk 1.01-1.10) 

to 903.41 at sample size 50 and risk ratio of 1.01-1.03. The 95
th

 percentile interval for 
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sample size 50 and risk ratio 1.01-1.03 is (17, 76), denoting the high variability at sample 

size 50 and relative risk 1.01-1.03. The result from censoring is similar to the result from 

non-censoring. 

Looking at all three methods, at the upper cutpoint ( 1   75), the existing methods 

tend to under-estimate the cutpoint (downward bias). Of the three methods, the proposed 

score method has smaller bias and MSE than the existing methods and the proposed score 

method is best performer in terms of Bias, MSE and 95
th

 percentile intervals for the 

cutpoint of 75. 
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APPENDIX B 

SAS Code 

1. Code for simulation of data. 

 

/***********************************************************************/ 

/* Simulation of data **************************************************/ 

/** Set I **/ 

%Let numsim=1000; 

%Let lambda=0.00011;  /* Baseline Hazard Function */ 

%Let gamma =0.78137; 

%Let nobs  =50;      /* How many subjects to simulate                                

*/ 

%Let beta1 =0.0; /* Beta coefficient for Age HR=1.00 */ 

%Let beta2 =0.00995; /* Beta coefficient for Age HR=1.01 */ 

libname kabita50 'C:\for survival\simulated data'; 

 

%Macro Sim1; 

data survival1_50&i; 

 do id=1 to &nobs; 

   sigma=1/&gamma; 

   mu   =-log(&lambda)/&gamma; 

   alpha1=-&beta1/&gamma; 

   alpha2=-&beta2/&gamma; 

   censor=0;/*censor=0 is event*/ 

   u=ranuni(0);                            /* Seed=0 allows me to 

get the different random numbers for U[0,1] values everytime   */ 

   age=round(0+(90)*ranuni(0));             /* Seed=0 allows me to 

get the different random numbers for U[25,90] values everytime */ 

   if (age lt 50) then t=exp(mu+alpha1*age)*(-log(u))**sigma; 

                  else t=exp(mu+alpha2*age)*(-log(u))**sigma; 

   output; 

 end; 

run; 

 

data kabita50.sampledata1_50&i; 

 set survival1_50&i; 

 keep id censor age t; 

run; 

 

%Mend Sim1; 

/************************************************************************

*****************/ 

/** Set II **/ 

%Macro Sim2; 

%Let beta1 =0.00995; /* Beta coefficient for Age HR=1.01 */ 

%Let beta2 =0.029559; /* Beta coefficient for Age HR=1.03 */ 

 

data survival2_50&i; 
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 do id=1 to &nobs; 

   sigma=1/&gamma; 

   mu   =-log(&lambda)/&gamma; 

   alpha1=-&beta1/&gamma; 

   alpha2=-&beta2/&gamma; 

   censor=0; 

   u=ranuni(0);                            /* Seed=0 allows 

different random numbers at U[0,1] values everytime   */ 

   age=round(0+(90)*ranuni(0));             /* Seed=0 allows me to 

get different random numbers at U[25,90] values everytime */ 

   if (age lt 50) then t=exp(mu+alpha1*age)*(-log(u))**sigma; 

                  else t=exp(mu+alpha2*age)*(-log(u))**sigma; 

   output; 

 end; 

run; 

 

data kabita50.sampledata2_50&i; 

 set survival2_50&i; 

 keep id censor age t; 

run; 

 

%Mend Sim2; 

/************************************************************************

************/ 

/** Set III 

*************************************************************************

******/ 

%Macro Sim3; 

%Let beta1 =0.009950; /* Beta coefficient for Age HR=1.01 */ 

%Let beta2 =0.058269; /* Beta coefficient for Age HR=1.06 */ 

 

data survival3_50&i; 

 do id=1 to &nobs; 

   sigma=1/&gamma; 

   mu   =-log(&lambda)/&gamma; 

   alpha1=-&beta1/&gamma; 

   alpha2=-&beta2/&gamma; 

   censor=0; 

   u=ranuni(0);                            /* Seed=148 allows me to 

get the same U[0,1] values everytime   */ 

   age=round(0+(90)*ranuni(0));             /* Seed= 89 allows me to 

get the same U[25,90] values everytime */ 

   if (age lt 50) then t=exp(mu+alpha1*age)*(-log(u))**sigma; 

                  else t=exp(mu+alpha2*age)*(-log(u))**sigma; 

   output; 

 end; 

run; 

 

data kabita50.sampledata3_50&i; 

 set survival3_50&i; 

 keep id censor age t; 

run; 
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%Mend Sim3; 

/************************************************************************

*****************/ 

/** Set IV **********************/ 

%Macro Sim4; 

%Let beta1 =0.009950; /* Beta coefficient for Age HR=1.01 */ 

%Let beta2 =0.09531; /* Beta coefficient for Age HR=1.10 */ 

 

data survival4_50&i; 

 do id=1 to &nobs; 

   sigma=1/&gamma; 

   mu   =-log(&lambda)/&gamma; 

   alpha1=-&beta1/&gamma; 

   alpha2=-&beta2/&gamma; 

   censor=0; 

   u=ranuni(0);                            /* Seed=0 allows me to 

get the different U[0,1] values everytime   */ 

   age=round(0+(90)*ranuni(0));             /* Seed=0 allows me to 

get the different U[25,90] values everytime */ 

   if (age lt 50) then t=exp(mu+alpha1*age)*(-log(u))**sigma; 

                  else t=exp(mu+alpha2*age)*(-log(u))**sigma; 

   output; 

 end; 

run; 

 

data kabita50.sampledata4_50&i; 

 set survival4_50&i; 

 keep id censor age t; 

run; 

%Mend Sim4; 

/******************************************/ 

 

%Macro RunSim; 

 

%do i=1 %to &NumSim; 

 

%Sim1; 

%Sim2; 

%Sim3; 

%Sim4; 

 

%end; 

 

%Mend RunSim; 

 

%RunSim; 

 

 

/*******************************************************/ 
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2. Code for Proposed Method 
 

 

 

/** SAS Code for Proposed Method**/ 

filename junk dummy; 

proc printto log=junk; 

run; 

options ls=80; 

/** 25% Censoring** Score Method ** ss=50** Weibull distribution**/ 

*libname test1 'C:\for survival\simulated data\samplesize1000\simsample'; 

*libname test2 'C:\for survival\simulated data\samplesize1000\testnov4'; 

libname test1 '/home/joshik2/simulateddata/ss1000/wsample_dec27'; 

libname test2 '/home/joshik2/simulateddata/ss1000/wsc_dec27'; 

title1 'Data for experiment '; 

%macro ages; 

 

%do i=1 %to &max; 

 

data time&i; 

 set ages; 

if (_n_ eq &i); 

 cutpoint=age; 

 keep cutpoint; 

run; 

 

data all&i; 

 set chemo; 

if (_n_ eq 1) then set time&i; 

 if (age ge cutpoint) then high=1; 

                      else high=0; 

 

run; 

 

ods listing close; 

 

proc lifereg data=all&i outest=parms&i(keep=_scale_) noprint; 

 model time*censor1(1)=high/dist=weibull; 

 output out=lf&i sres=rsi cres=rci; 

run; 

 

ods listing; 

 

data lf&i; 

 set lf&i; 

if (_n_ eq 1) then set parms&i; 

rs2i=abs((age*(exp(rsi)-status))/_scale_); 

 *keep rs2i cutpoint; 

run; 

 

proc means data=lf&i sum noprint; 
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var rs2i; 

output out=sum_score&i sum=sum_score; 

run; 

 

data timenew&i;  

 set time&i; 

 if _n_=1 then set sum_score&i; 

 keep sum_score cutpoint; 

 run; 

 

proc append base=lrsummary&j data=timenew&i force; 

run; 

 

%end; 

%Mend Ages; 

 

%macro getlr(m=,ss=,newc=); 

%do j=1 %to 1000; 

 

data t2; 

    set test1.sampledata&m&j._n&ss._cut&newc; 

    time=t; 

    if censor1=0 then status=1; 

    else status=0; 

 run; 

 

 

 data t1; 

    set test1.sampledata&m&j._n&ss._cut&newc; 

    time=t; 

    if censor1=0 then status=1; 

    else status=0; 

 run; 

 

 data chemo; 

  set t1; 

 run; 

************************************************* 

 * Get distinct failure time * 

***************************************************; 

data times; 

 set chemo; 

if (censor eq 0); *Censor=0 is for who had death at the time of study; 

run; 

 

*************************************************** 

* Remove any duplicate time from the times data * 

**************************************************; 

 

proc sort data=times out=times nodupkey; by time; *If any of the time is 

repeated delete the replicated time; 

run; 
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********************************************************** 

* Just keep the time variable in the times data* 

*********************************************************; 

 

data times; 

 set times; 

 keep time; 

run; 

 

*************************************************************** 

* Count the number of distinct times in the times data* 

**************************************************************; 

 

proc means data=times noprint; 

 var time; 

 output out=numtime n=k; 

run; 

 

******************************************************************* 

* Assign the macro variable from the data * 

******************************************************************; 

data numtime; 

 set numtime; 

 call symput('k', trim(k)); 

run; 

 

proc sort data=chemo out=ages nodupkey; by age; 

run; 

 

******************************************************** 

* Find out the minimum age and the maximum age and delete it from the 

data * 

********************************************************************; 

proc means data=ages noprint; 

 var age; 

 output out=minage min=minage max=maxage; 

run; 

********************************************************************* 

* Delete the minimum age and maximum age* 

*************************************************************************

****; 

data ages; 

 set ages; 

if (_n_ eq 1) then set minage; 

if (age eq minage) then delete; 

if (age eq maxage) then delete; 

 keep age; 

run; 

********************************************************************** 

* Count the number of observations in ages data * 

**********************************************************************; 
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proc means data=ages noprint; 

 var age; 

 output out=max n=max; 

run; 

*************************************************************************

*** 

* It will create the variable max for the macro * 

*************************************************************************

; 

data max; 

 set max; 

 call symput('max', trim(max)); 

run; 

 

%ages; 

 

data lrsummary&j; 

 set lrsummary&j; 

 z=abs(sum_score); 

run; 

 

 

 

 

proc means data=lrsummary&j noprint; 

 var z; 

 output out=maxz&j max=maxz; 

run; 

 

data cutpoint&j; 

 set lrsummary&j; 

if (_n_ eq 1) then set maxz&j; 

if (z eq maxz); 

id=&j; 

rr=&m; 

cut=&newc; 

n=&ss; 

run;                                                                                                                    

 

 

 

proc append base=test2.cut&m._cut&newc._n&ss data=cutpoint&j force; 

run; 

 

 

 

 

proc means data=test2.cut&m._cut&newc._n&ss noprint ; 

var cutpoint; 

output out=test2.mean&m._n&ss._cut&newc mean=mean std=std; 

run; 

 



163 

 
data test2.cut&m._cut&newc._n&ss; 

set test2.cut&m._cut&newc._n&ss; 

diff=cutpoint-&newc; 

diff_sq=diff**2; 

run; 

 

proc means data=test2.cut&m._cut&newc._n&ss noprint ; 

var diff_sq; 

output out=test2.sum&m._n&ss._cut&newc sum=sum; 

run; 

 

proc datasets; 

save t2; 

run; 

quit; 

 

 

%end; 

%mend getlr; 

 

 

 

%getlr(m=1,ss=1000,newc=75); 

%getlr(m=2,ss=1000,newc=75); 

%getlr(m=3,ss=1000,newc=75); 

%getlr(m=4,ss=1000,newc=75); 

 

 

 

 

3. Code for Klein and Wu method 
 

/*  Code for Klein and Wu Method **/ 

 

filename junk dummy; 

proc printto log=junk; 

run; 

options ls=80; 

 

libname test1 '/home/joshik2/simulateddata/ss1000/expsample_dec21'; 

libname test2 '/home/joshik2/simulateddata/ss1000/wkw_jan19_exp'; 

title1 'Data for experiment '; 

%macro ages; 

 

%do i=1 %to &max; 

 

data time&i; 

 set ages; 

if (_n_ eq &i); 

 cutpoint=age; 

 keep cutpoint; 

run; 
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data all&i; 

 set chemo; 

if (_n_ eq 1) then set time&i; 

 if (age ge cutpoint) then high=1; 

                      else high=0; 

 

run; 

 

 

/************************************************************************

***/ 

ods listing close; 

 

proc lifereg data=all&i outest=parms&i(keep=_scale_) noprint; 

 model time*censor1(1)=/dist=weibull; 

 output out=lf&i sres=rsi cres=rci; 

run; 

 

ods listing; 

 

data lf&i; 

 set lf&i; 

if (_n_ eq 1) then set parms&i; 

rs2i_up=((high*(exp(rsi)-status))/_scale_); 

rs2i_down=((exp(rsi)-status)/_scale_)**2; 

 *keep rs2i cutpoint; 

run; 

 

proc means data=lf&i sum noprint; 

var rs2i_up rs2i_down; 

output out=sum_score&i sum=sum_up sum_down; 

run; 

 

data timescore&i;  

 set time&i; 

 if _n_=1 then set sum_score&i; 

 snp=(sum_up/sqrt(sum_down)); 

 keep snp cutpoint; 

 run; 

 

proc append base=kwsummary&j data=timescore&i force; 

run; 

 

%end; 

%Mend Ages; 

 

%macro getlr(m=,ss=,newc=); 

%do j=1 %to 1000; 

 

 data t2; 

    *set test1.sampledata&m&j._n&ss._cut&newc; 
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    set test1.sampledata&m&j._n&ss._cut&newc; 

    time=t; 

 run; 

 

 data t1; 

    *set test1.sampledata&m&j._n&ss._cut&newc; 

    set test1.sampledata&m&j._n&ss._cut&newc; 

    time=t; 

    if censor1=0 then status=1; 

    else status=0; 

 run; 

 

 data chemo; 

  set t1; 

 run; 

************************************************* 

 * Get distinct failure time * 

***************************************************; 

data times; 

 set chemo; 

if (censor eq 0); *Censor=0 is for who had death at the time of study; 

run; 

 

*************************************************** 

* Remove any duplicate time from the times data * 

**************************************************; 

 

proc sort data=times out=times nodupkey; by time; *If any of the time is 

repeated delete the replicated time; 

run; 

 

********************************************************** 

* Just keep the time variable in the times data* 

*********************************************************; 

 

data times; 

 set times; 

 keep time; 

run; 

 

*************************************************************** 

* Count the number of distinct times in the times data* 

**************************************************************; 

 

proc means data=times noprint; 

 var time; 

 output out=numtime n=k; 

run; 

 

******************************************************************* 

* Assign the macro variable from the data * 

******************************************************************; 
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data numtime; 

 set numtime; 

 call symput('k', trim(k)); 

run; 

 

proc sort data=chemo out=ages nodupkey; by age; 

run; 

 

******************************************************** 

* Find out the minimum age and the maximum age and delete it from the 

data * 

********************************************************************; 

proc means data=ages noprint; 

 var age; 

 output out=minage min=minage max=maxage; 

run; 

********************************************************************* 

* Delete the minimum age and maximum age* 

*************************************************************************

****; 

data ages; 

 set ages; 

if (_n_ eq 1) then set minage; 

if (age eq minage) then delete; 

if (age eq maxage) then delete; 

 keep age; 

run; 

********************************************************************** 

* Count the number of observations in ages data * 

**********************************************************************; 

proc means data=ages noprint; 

 var age; 

 output out=max n=max; 

run; 

*************************************************************************

*** 

* It will create the variable max for the macro * 

*************************************************************************

; 

data max; 

 set max; 

 call symput('max', trim(max)); 

run; 

 

%ages; 

 

data kwsummary&j; 

 set kwsummary&j; 

 z=abs(snp); 

run; 
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proc means data=kwsummary&j noprint; 

 var z; 

 output out=maxz&j max=maxz; 

run; 

 

data cutpoint&j; 

 set kwsummary&j; 

if (_n_ eq 1) then set maxz&j; 

if (z eq maxz); 

id=&j; 

rr=&m; 

cut=&newc; 

n=&ss; 

run;                                                                                                                    

 

 

 

 

 

data test2.cutkw&m._cut&newc._n&ss; 

set cutpoint&j; 

diff=cutpoint-&newc; 

diff_sq=diff**2; 

run; 

 

proc means data=test2.cutkw&m._cut&newc._n&ss noprint ; 

var cutpoint; 

output out=test2.outkw&m._n&ss._cut&newc mean=mean std=std; 

run; 

 

proc datasets; 

save t2; 

run; 

quit; 

 

 

%end; 

 

%mend getlr; 

 

%getlr(m=1,ss=1000,newc=25); 

%getlr(m=2,ss=1000,newc=25); 

%getlr(m=3,ss=1000,newc=25); 

%getlr(m=4,ss=1000,newc=25); 

 

%getlr(m=1,ss=1000,newc=50); 

%getlr(m=2,ss=1000,newc=50); 

%getlr(m=3,ss=1000,newc=50); 

%getlr(m=4,ss=1000,newc=50); 
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%getlr(m=1,ss=1000,newc=75); 

%getlr(m=2,ss=1000,newc=75); 

%getlr(m=3,ss=1000,newc=75); 

%getlr(m=4,ss=1000,newc=75); 

 

 

 

4. Code for Contal and O’Quigley Method 

 
/** Code for Contal and O’Quigley method **/ 

filename junk dummy; 

proc printto log=junk; 

run; 

 

options ls=80; 

*libname test1 'C:\for survival\simulated data\samplesize50\simsample'; 

*libname test2 'C:\for survival\simulated data\samplesize50\testnov4'; 

libname test1 '/home/joshik2/simulateddata/ss50/esample_dec27'; 

libname test2 '/home/joshik2/simulateddata/ss50/qqexp_dec27'; 

title1 'Data for experiment '; 

%macro ages; 

 

%do i=1 %to &max; 

 

data time&i; 

 set ages; 

if (_n_ eq &i); 

 cutpoint=age; 

 keep cutpoint; 

run; 

 

data all&i; 

 set chemo; 

if (_n_ eq 1) then set time&i; 

 if (age ge cutpoint) then high=1; 

                      else high=0; 

 

run; 

 

ods listing close; 

 

 

proc lifetest data=all&i method=km; 

 time time*censor(1); 

 strata high / test=logrank; 

 ods output homstats=lr&i; 

run; 

 

 

ods listing; 
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data lr&i; 

 set lr&i; 

if (_n_ eq 1) then set time&i; 

 keep logrank cutpoint; 

run; 

 

data lr&i; 

 set lr&i; 

if (_n_ eq 1); 

run; 

 

proc append base=logrank&j data=lr&i force; 

run; 

 

 

%end; 

%Mend Ages; 

 

%macro getlr(m=,ss=,newc=); 

%do j=1 %to 1000; 

 

 data t2; 

    set test1.sampledata&m&j._n&ss._cut&newc; 

    time=t; 

 run; 

 

 data t1; 

    set test1.sampledata&m&j._n&ss._cut&newc; 

    time=t; 

 run; 

 

 data chemo; 

  set t1; 

 run; 

************************************************* 

 * Get distinct failure time * 

***************************************************; 

data times; 

 set chemo; 

if (censor eq 0); *Censor=0 is for who had death at the time of study; 

run; 

 

*************************************************** 

* Remove any duplicate time from the times data * 

**************************************************; 

 

proc sort data=times out=times nodupkey; by time; *If any of the time is 

repeated delete the replicated time; 

run; 

 

********************************************************** 

* Just keep the time variable in the times data* 
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*********************************************************; 

 

data times; 

 set times; 

 keep time; 

run; 

 

*************************************************************** 

* Count the number of distinct times in the times data* 

**************************************************************; 

 

proc means data=times noprint; 

 var time; 

 output out=numtime n=k; 

run; 

 

******************************************************************* 

* Assign the macro variable from the data * 

******************************************************************; 

data numtime; 

 set numtime; 

 call symput('k', trim(k)); 

run; 

 

proc sort data=chemo out=ages nodupkey; by age; 

run; 

 

******************************************************** 

* Find out the minimum age and the maximum age and delete it from the 

data * 

********************************************************************; 

proc means data=ages noprint; 

 var age; 

 output out=minage min=minage max=maxage; 

run; 

********************************************************************* 

* Delete the minimum age and maximum age* 

*************************************************************************

****; 

data ages; 

 set ages; 

if (_n_ eq 1) then set minage; 

if (age eq minage) then delete; 

if (age eq maxage) then delete; 

 keep age; 

run; 

********************************************************************** 

* Count the number of observations in ages data * 

**********************************************************************; 

proc means data=ages noprint; 

 var age; 

 output out=max n=max; 
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run; 

*************************************************************************

*** 

* It will create the variable max for the macro * 

*************************************************************************

; 

data max; 

 set max; 

 call symput('max', trim(max)); 

run; 

 

%ages; 

 

data logrank&j; 

 set logrank&j; 

 z=abs(logrank); 

run; 

 

 

proc means data=logrank&j noprint; 

 var z; 

 output out=maxlz&j max=maxz; 

run; 

 

data cutlr&j; 

 set logrank&j; 

if (_n_ eq 1) then set maxlz&j; 

if (z eq maxz); 

id=&j; 

rr=&m; 

cut=&newc; 

run;                                                                                                                    

 

 

proc append base=test2.cutlr&m._cut&newc data=cutlr&j force; 

run; 

 

data test2.cutlr&m._cut&newc; 

set test2.cutlr&m._cut&newc; 

diff=cutpoint-&newc; 

diff_sq=diff**2; 

run; 

 

proc means data=test2.cutlr&m._cut&newc noprint ; 

var cutpoint; 

output out=test2.outlr&m._n&ss._cut&newc mean=mean std=std; 

run; 

 

proc datasets; 

save t2; 

run; 

quit; 
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%end; 

 

%mend getlr; 

 

 

%getlr(m=1,ss=50,newc=25); 

%getlr(m=2,ss=50,newc=25); 

%getlr(m=3,ss=50,newc=25); 

%getlr(m=4,ss=50,newc=25); 

 

 
 

 

5. Code for compilation of result: 

libname lib "C:\for survival\simulateddata\samplesize50\wsc_dec27_25per"; 

libname test 

"C:\forsurvival\simulateddata\samplesize50\wsc_25censoring_result"; 

 

%macro compile(rr=,cut=,n=); 

data res&rr&cut&n; 

set lib.cut&rr._cut&cut._n&n; 

run; 

 

 

/** find the mean value of cutpoint from 1000 estimated cutpoints*/ 

proc means data=res&rr&cut&n; 

var cutpoint; 

output out=out1&rr&cut&n mean=mean std=std p5=p5 p95=p95; 

run; 

/*mean=30.7950000*/ 

/* Find the bias by subtracting the true cutpoint from mean value of 

estimated cutpoint*/ 

data out1&rr&cut&n; 

set out1&rr&cut&n; 

bias=mean-&cut; 

sq_bias=bias**2; 

run; 

 

/*Find MSE by taking the sum of the diff_sq and dividing the sum by n*/ 

proc means data=res&rr&cut&n sum; 

var diff_sq; 

output out=out2&rr&cut&n sum=sum; 

run; 

 

/* MSE=Sum(diff_sq)/n**/ 

data out2&rr&cut&n; 

set out2&rr&cut&n; 

MSE=sum/1000; 

run; 
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/*MSE=58.533*/ 

data outscore&rr&cut&n; 

merge out2&rr&cut&n out1&rr&cut&n; 

ss=&n; 

rr=&rr; 

cut=&cut; 

run; 

 

proc append base=test.outscore&n data=outscore&rr&cut&n force; 

run; 

 

%mend compile; 

/*Sample size=50*/ 

%compile(rr=1,cut=25,n=50); 

%compile(rr=2,cut=25,n=50); 

%compile(rr=3,cut=25,n=50); 

%compile(rr=4,cut=25,n=50); 

/*************************************/ 

/** Sample size=100**/ 

%compile(rr=1,cut=25,n=100); 

%compile(rr=2,cut=25,n=100); 

%compile(rr=3,cut=25,n=100); 

%compile(rr=4,cut=25,n=100); 

/************************************/ 

/** Sample size=500**/ 

%compile(rr=1,cut=25,n=500); 

%compile(rr=2,cut=25,n=500); 

%compile(rr=3,cut=25,n=500); 

%compile(rr=4,cut=25,n=500); 

/** Sample size=1000**/ 

%compile(rr=1,cut=25,n=1000); 

%compile(rr=2,cut=25,n=1000); 

%compile(rr=3,cut=25,n=1000); 

%compile(rr=4,cut=25,n=1000); 
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