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Abstract 

DISCRIMINATIVE STIMULUS PROPERTIES OF ENDOGENOUS CANNABINOID 

DEGRADATIVE ENZYME INHIBITORS 

By Allen Owens, Ph.D. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2016 

Major Director: Dr. Aron Lichtman, Professor, Department of Pharmacology & Toxicology; 

Associate Dean for Research and Graduate Studies, School of Pharmacy 

 

Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), 

the chief degradative enzymes of N-arachidonoyl ethanolamine (anandamide; AEA) and 2-

arachidonoylglycerol (2-AG), respectively, elicits no or partial substitution for Δ9-

tetrahydrocannabinol (THC) in drug discrimination procedures. However, combined inhibition 

of both enzymes fully substitutes for THC, as well as produces a full constellation of 

cannabimimetic effects. Because no published report to date have investigated whether an 

inhibitor of endocannabinoid hydrolysis will serve as a discriminative stimulus, the purpose of 

this doctoral dissertation was to investigate whether C57BL/6J mice would learn to discriminate 

SA-57 (4-[2-(4-Chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl 
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ester), a dual inhibitor of FAAH and MAGL, from vehicle in the drug discrimination paradigm. 

Also, we sought to determine whether inhibiting both enzymes, or inhibiting one enzyme was 

necessary to generate the SA-57 discriminative stimulus. Initial experiments showed that SA-57 

fully substituted for either CP 55,940 ((-)-cis-3-[2-Hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-

4-(3-hydroxypropyl)cyclohexanol), a high efficacy CB1 receptor agonist in C57BL/6J, mice or 

AEA in FAAH (-/-) mice. The majority (i.e., 23 of 24) of subjects achieved criteria of 

discriminating SA-57 (10 mg/kg) from vehicle within 40 sessions, with full generalization 

occurring 1-2 h post injection. CP 55,940, the dual FAAH-MAGL inhibitor JZL195 (4-

nitrophenyl 4-(3-phenoxybenzyl)piperazine-1-carboxylate), the MAGL inhibitors MJN110 (2,5-

dioxopyrrolidin-1-yl 4-(bis(4-chlorophenyl)methyl)piperazine-1-carboxylate) and JZL184 (4-

[Bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) fully 

substituted for SA-57. Although, the FAAH inhibitors PF-3845 and URB597 did not substitute 

for SA-57, PF3845 produced a two-fold leftward shift in the MJN110 substitution dose-response 

curve. In addition, the CB1 receptor antagonist rimonabant blocked the generalization of SA-57 

as well as substitution of CP 55,940, JZL195, MJN110, JZL184 for the SA-57 discriminative 

stimulus. These findings taken together indicate that the inhibition of endocannabinoid-

regulating enzymes serve as breaks to prevent overstimulation of CB1 receptors, and MAGL 

inhibition is the major driving force for generating the SA-57 discriminative stimulus. 
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Chapter 1. Introduction 

 

Cannabis sativa (marijuana) has been cultivated for thousands of years for its therapeutic 

benefits, but its rewarding properties contribute to it being the most widely abused illicit drug in 

the United States (NIDA-SAMHSA, 2014). Currently, half of the United States permit legal 

provisions for the use of cannabis for assorted therapeutic purposes (i.e. nausea, glaucoma, pain, 

chemotherapy-induced nausea and vomiting). Recently, Colorado, Washington and the District 

of Columbia decriminalized the recreational use of marijuana and on November 8th 2016, the 

state of California will enter a ballot initiative to decriminalize marijuana. 

Marijuana contains over 500 identified constituents, and approximately 109 of its 

constituents are classified as cannabinoids (Mehmedic et al., 2010). Δ9-Tetrahydrocannabinol 

(THC) is the most widely investigated cannabinoid, and is the main psychoactive constituent in 

marijuana. Other widely investigated cannabinoids include cannabinol (CBN), which was 

discovered from the Indian hemp at the end of the 19th century (Wood et al., 1899) and the non-

psychoactive cannabinoid cannabidiol (CBD) (Mechoulam and Gaoni, 1965) and Δ9-

tetrahydrocannabivarin (THCV) (Merkus, 1971) (see table 1). In 1964, the chemical structure of 

THC was elucidated (Gaoni and Mechoulam, 1964a), which led to a renaissance in the 

cannabinoid field of research. 

The recreational use of marijuana in the 1960s sparked research efforts to investigate the 

pharmacological and physiological effects of marijuana. Cannabinoids produce a variety of 
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pharmacological effects in humans and laboratory animals. Collectively, several effects are more 

unique to cannabinoids than drugs from other classes such as elevated heart rate, ataxia, 

analgesia, and hypothermia. An early hypothesis to explain the mechanism by which THC 

produces its effects was that it disrupted neurotransmission by perturbing neuronal cell 

membranes (Hillard et al., 1985). When evaluating newly synthesized cannabinoids for 

behavioral activity, a battery of four tests known as the tetrad (hypoactivity, hypothermia, 

antinociception, catalepsy) is used to distinguish cannabinoids from drugs in different classes 

(Little et al., 1988), which was later useful in providing functional evidence for a receptor 

mechanism of action. Also, cannabinoids were evaluated in rodents trained to discriminate THC 

(Martin et al., 1991), which also provided additional evidence for a receptor mechanism of 

action.  

Following the elucidation of the structure of THC, medicinal chemists developed 

synthetic cannabinoids (see table 2), which enabled further research to investigate structure 

activity relationships (SARs). These SAR studies were instrumental in demonstrating that small 

changes in drug structure dramatically altered drug potency, which greatly supported a receptor 

mechanism of action. One synthetic cannabinoid, CP 55,940 which was synthesized by Pfizer 

(Koe et al., 1985) along with other synthetic compounds such as HU-210 (Howlett et al., 1990), 

and WIN55-212-2 (D’Ambra et al., 1992) helped advance cannabinoid research and understand 

the mechanisms that generate their physiological effects. Synthetic cannabinoids as well as THC 

have different binding affinities for the CB1 and CB2 receptors that result in differences in their 

individual potencies. Unlike THC, which is a partial efficacy agonist in vitro, synthetic 
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cannabinoids produced full agonist like properties (Howlett et al., 1988; Breivogel et al., 1998).   

Although these early structure activity relationship studies provided important insights, 

the specific mechanism of cannabinoids in the brain remained unknown. This gap in our 

understanding was overcome by the discovery that cannabinoids inhibit adenylyl cyclase activity 

in model neuronal systems (Howlett and Fleming, 1984; Howlett, 1985). Also, CP 55, 940 (Ki = 

25 nM) (Howlett, 1987) was more potent than THC (Ki = 430 nM) at inhibiting adenylyl cyclase 

(Howlett et al., 1988) and was used in the first radioligand binding studies that identified that 

cannabinoids bind to a specific receptor (Devane et al., 1988). In addition, (-)-CP 55, 940 was 

found to be 200-fold more potent than its positive enantiomer CP 56, 667 at inhibiting adenylate 

cyclase activity and have higher affinity (Matsuda et al., 1990). Also, the inactive enantiomer 

WIN 55, 212-3 of WIN 55, 212-2 was devoid of pharmacological effects in the tetrad assay 

(Martin et al., 1991; Compton et al., 1992). These collective findings provided strong evidence 

that cannabinoids produced their effects by through a receptor mechanism of action. 

In combination with the receptor binding data, the tetrad assay was beneficial in 

determining that CB1 receptors mediated the central effects of cannabinoids (Compton et al., 

1993), by comparing the structural features of cannabinoids with their in vivo activity (Wiley et 

al., 2014). The pharmacological effects of cannabinoid receptor agonists showed high 

correlations between the tetrad in vivo measures and CB1 receptor binding affinity, as follows: 

decrease in spontaneous locomotor activity (r = 0.91), antinociception (r = 0.9), hypothermia (r = 

0.89), and catalepsy (r = 0.85) (Compton et al., 1993). For example, nearly 60 different 

cannabinoids were found to displace [3H] CP 55-940 from its binding site (Compton et al., 
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1996), and produced tetrad effects that correlated with binding affinity. 

Receptor autoradiography studies led to the discovery that the CB1 receptor is 

heterogeneously located throughout the central nervous system (CNS) (Herkenham et al., 1991), 

and is responsible for the cannabimimetic side-effect profile of marijuana, which includes abuse, 

dependence, and memory impairment (Lichtman et al., 1995; Hampson and Deadwyler, 1999; 

Justinova et al., 2003). These effects are produced by activating G-protein coupled CB1 receptors 

that inhibit adenylyl cyclase activity and dampen cAMP production (Howlett et al., 1990). In 

addition, cannabinoid receptor activation attenuates N and P/Q-type calcium channels activity, 

inhibits cAMP production, and the release of excitatory and inhibitory neurotransmitters. CB1 

receptors are located on presynaptic GABAergic and glutamatergic neurons (Katona et al., 1999) 

and the stimulation of CB1 receptors leads to a reduction in the respective neurotransmitters 

GABA and glutamate.  

Using both CB1 (-/-) mice and pharmacological antagonists of CB1 receptors (Rinaldi-

Carmona et al., 1994; Compton et al., 1996), revealed that the pharmacological effects of THC 

as well as synthetic cannabinoids in the tetrad are CB1 receptor mediated. Also, pharmacological 

antagonists of CB1 receptors attenuate the behavioral effects of cannabinoids in the tetrad (Long 

et al., 2009; Blankman and Cravatt, 2013). In addition, these genetic and pharmacological tools 

were used to show that CB1 receptor activation can be attributed to several common features of 

marijuana including increased feeding (Smart et al., 2000), reduced emesis and nausea (Darmani 

and Pandya, 2000; Darmani, 2001), reductions in pain (Ignatowska-Jankowska et al., 2015; 

Ghosh et al., 2015) and impairments in memory (Lichtman and Martin, 1996; Niyuhire et al., 
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2007).  

The second major binding site for cannabinoids is the cannabinoid receptor type-2 (CB2) 

receptor (Munro et al., 1993). CB2 receptors are involved in the immune and hematopoietic 

systems. CB2 receptor messenger RNA and protein are predominately expressed in microglia 

(Carlisle et al., 2002) brainstem neurons (Van Sickle et al., 2005; Onaivi et al., 2006) and the 

periphery (Cabral and Marciano-Cabral, 2005). Also, activation of CB2 receptors modulates 

cytokine production (Klein et al., 2003), suppresses the proliferative response of T and B cells to 

mitogens through the induction of apoptosis (Lombard et al., 2007), and reduces monocyte 

chemotaxis through PI3K/Akt and ERK1/2 signaling (Montecucco et al., 2008). Finally, CB1 and 

CB2 receptors share approximately 44% homology (Munro et al., 1993).  

 

 

Table 1. Prevalent phytocannabinoids found in marijuana  

Phytocannabinoid Structure Reference 

Tetrahydrocannabinol (THC)  

  
		

(Gaoni & Mechoulam, 1964)  

Tetrahydrocannabivarin 
(THCV)  

  

(Merkus, 1971)  
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Cannabichromene (CBC)  

	   
	

(Gaoni & Mechoulam, 1966)  

Cannabidiol (CBD)  

  
		

(Michoulam and Shvo, 1963) 

Cannabigerol (CBG) 

 

(Gaoni and Mechoulam, 1964b) 

Cannabinol (CBN)  

  
		

(Wood et al., 1899)  
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Table 2. Synthetic cannabinoids  

Synthetic 
Cannabinoid Structure Reference 

CP 55,940  

 
	

Koe et al., 1985  

HU-210  

 

Howlett et al., 1990 

WIN 55-212  

  
 

 D’Ambra et al., 1992 

JWH-018 

	

Huffman et al., 1994 
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Table 3. Endocannabinoid catabolic enzyme inhibitors.  

Enzyme Inhibitor Structure Reference Target Enzyme 

URB597 

  
		

 (Boger et al., 2005, 
Piomelli et al., 2006)  

 FAAH 
(IC50 = 5 nM) 

PF-3845    
		

(Ahn et al., 2009)  FAAH 
(IC50 = 230 nM) 

URB524 
 

(Mor et al., 2008) FAAH 
(IC50 = 63 nM) 

OL-92 
 

(Boger et al., 2005) FAAH 
(IC50 = 0.28 nM) 

OL-135 
 

(Boger et al., 2005) FAAH 
(IC50 = 2.1 nM) 

KML29 

 

(Chang et al., 2012) MAGL 
(IC50 = 15 nM) 
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JZL184  

  
		

(Labar et al., 2010) JZL184 
(IC50 = 8 nM) 

N-
arachidonylmaleimide 

 
(Labar et al., 2010) MAGL 

(IC50 = 140 nM) 

JZL195 

 

(Long et al., 2009) FAAH (IC50 = 2 nM) 
MAGL (IC50 = 4 nM)  

SA-57 

 
(Niphakis et al., 2011) FAAH (IC50 = <10 nM) 

MAGL (IC50 = 410 nM) 

MJN110 

  
 		

 
 

(Niphakis et al., 2013) 
MAGL 

(IC50 = 2.1 nM) 

 

 

The discovery of endogenous marijuana-like molecules (endocannabinoids) represented a 

significant breakthrough in cannabinoid research. The first endocannabinoid isolated from 

porcine brain and identified by mass spectrometry and nuclear magnetic resonance spectroscopy 

was N-arachidonylethanolamide and was named anandamide (AEA) after the Sanskrit word for 

bliss (Devane et al., 1992) (see table 4). Anandamide competed with the specific binding of the 

radiolabeled cannabinoid probe [3H] HU-243. The second endocannabinoid identified was 2-

arachidonoylglycerol (2-AG), isolated from canine intestines, and rat brain synaptysomes 
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(Mechoulam et al., 1995; Sugiura et al., 1995) (see table 4). 2-AG inhibited adenylate cyclase 

production in mouse spleen, with a similar potency as THC (Mechoulam et al., 1995). Also, 

intravenous administration of 2-AG produces effects commonly observed with THC in the tetrad 

assay including immobility, antinociception, reduced spontaneous activity, and decreased rectal 

temperature. AEA and 2-AG are synthesized on post-synaptic neurons from phospholipids and 

released on demand (i.e. as needed) and travel in a retrograde manner from the post-synaptic 

neuron terminal to pre-synaptic neuronal CB1 receptors.  

The endocannabinoid (AEA) is synthesized and degraded through distinct biosynthetic 

and degradative enzymatic pathways. The synthesis of AEA is not completely understood, but 

one candidate enzyme is NAPE-phospholipase D (NAPE-PLD) (Nyilas et al., 2008) however, 

NAPE-PLD (-/-) mice do not show reductions in N-acylethanolamines (NAES) (Simon and 

Cravatt, 2010). After on demand synthesis and release into the synapse, AEA is rapidly degraded 

in postsynaptic neurons by the enzyme fatty acid amide hydrolase (FAAH) (Cravatt et al., 1996; 

Giang and Cravatt, 1997; Gulyas et al., 2004). Efforts to determine the molecular identity of the 

enzyme that degraded AEA were facilitated by a structurally related bioactive lipid oleamide 

(Cravatt et al., 1995). Anandamide and the sleep-inducing lipids oleamide, had similar 

hydrolysis activities in N18 neuroblastoma cells (Maurelli et al., 1995). Expression of rat brain 

oleamide hydrolase confirmed that anandamide was an additional substrate of this enzyme 

(Cravatt et al., 2001). In addition to AEA, FAAH regulates the levels of other ethanolamides 

including palmitoylethanolamide (PEA), oleamide, and oleoylethanolamide (OEA) (Cravatt et 
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al., 1995). The endogenous fatty acid amide PEA isolated from soybeans and peanuts was 

discovered to have anti-inflammatory properties (Kuehl et al., 1957).   

 

 

 

Table 4. Endogenous cannabinoids 

Endogenous cannabinoid Structure Reference 

 

 

  

 

 

 

 

 

 

N-arachidonoylethanolamine 
(AEA) 

  

(Devane et al., 1992) 

2-Arachidonoylglycerol 
(2-AG) 

	

(Mechoulam et al., 1995; 
Sugiura et al., 1995) 
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 The biosynthesis of neuronal 2-AG is much better understood than the biosynthesis of 

AEA. The synthesis of 2-AG occurs by the cleavage of diacylglygerol (DAG) by DAG lipase-

alpha (DAGLα) (Bisogno et al., 2003) and DAG lipase-beta (DAGLβ). These two enzymes are 

differentially expressed on cells in the nervous system and peripheral tissue (Hsu et al., 2012). 

DAGLα is expressed more abundantly than DAGLβ throughout the CNS (e.g. amygdala, 

cerebellum, hippocampus, frontal cortex, and spinal cord). DAGLα is expressed on postsynaptic 

neurons in various brain regions (Katona et al., 2006; Yoshida et al., 2006; Lafourcade et al., 

2007) and is abundant around dendritic spines which are present in postsynaptic neurons in the 

cerebellum and hippocampus, and DAGLβ is expressed on macrophages and microglia (Hsu et 

al., 2012). Also, brain levels of 2-AG are significantly reduced in mice devoid of (DAGLα) 

compared to mice without (DAGLβ) (Gao et al., 2010; Tanimura et al., 2010).  

Several studies implicated MAGL as a key regulator of 2-AG and arachidonic acid levels 

in CNS. For example, overexpression of MAGL in rat neurons attenuates the accumulation of 2-

AG (Dinh et al., 2002). Also, depletion of MAGL in rat brain proteomes decreases 2-AG 

hydrolysis by 50% (Dinh et al., 2004). The degradation of 2-AG (approximately 85%) is 

regulated on the presynaptic neuron by MAGL (Blankman et al., 2007). In the rat brain, MAGL 

is largely expressed in the cerebellum, cortex, thalamus, and hippocampus (Dinh et al., 2002) 

and is primarily localized to presynaptic terminals (Gulyas et al., 2004). The remaining 2-AG is 

degraded by the enzymes alpha/beta hydrolase domain 6 and 12 (Blankman et al., 2007). 

Degradation of 2-AG results in an increase in available arachidonic acid levels in the brain, 

which is a major source of prostanoids and prostaglandins (Nomura et al., 2011). 
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Later, the synthesis of pharmacological inhibitors of eCB hydrolysis, and mice devoid of 

the endocannabinoid regulating enzymes provided abundant research opportunities (see table 3). 

For example, FAAH inhibitors have proven to have therapeutic potential in a wide variety of pre-

clinical assays (Piomelli et al., 2006). The FAAH inhibitor PF-3845 reduces a subset of somatic 

withdrawal signs in opioid dependent mice (jumps and paw flutters) (Ramesh et al., 2011). The 

FAAH inhibitor URB597 shows anxiolytic-like activity in the elevated zero maze (Kathuria et 

al., 2003) and also produces antidepressant effects in forced swim assay (Gobbi et al., 2005). 

Also, FAAH inhibitors display similar analgesic properties in a variety of animal models of pain 

(see review)(Schlosburg et al., 2009) and reduces inflammation-induced edema (Cravatt et al., 

2004; Holt et al., 2005; Wise et al., 2008). One benefit of FAAH inhibitors is the absence of the 

full set of cannabimimetic effects or THC-like subjective effects as measured in the tetrad and 

drug discrimination assays (see section below on cannabinoid drug discrimination). 

Genetic deletion of FAAH provided the first evidence that FAAH was the principal 

hydrolytic enzyme of anandamide (Cravatt et al., 2001). Mice devoid of FAAH have 

approximately 15 fold-increases in elevations of AEA in the brain of wild-type mice (Cravatt et 

al., 2001) but retain normal levels of 2-AG (Osei-Hyiaman et al., 2005) and CB1 expression 

(Lichtman and Martin, 2002). FAAH (–/–) mice are largely indistinguishable from wild-type mice. 

Exogenous administration of anandamide produces robust effects in the tetrad (analgesia, hypo-

motility, hypothermia, and catalepsy) (Ahn et al., 2008). Also, FAAH regulates the levels of 

other ethanolamides including palmitoylethanolamide (PEA), oleamide, and oleoylethanolamide 

(OEA) (Cravatt et al., 1995).  One benefit of genetically deleting FAAH over pharmacological 
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inhibitors is a more direct examination without off-target drug effects, of the physiological role 

of AEA in the endogenous cannabinoid system. For example, URB597, OL-135, CAY-10402 

inhibits FAAH in the CNS but also target peripheral tissues. There is also the added benefit of 

combining genetic with pharmacological approaches. Specifically, one study using a 

complementary pharmacological and genetic approach observed that administration of AEA 

exogenously to animals treated with URB597 or FAAH (-/-) produce tetrad behavioral effects 

(Cravatt et al., 2001; Fegley et al., 2005), indicating in the absence of FAAH, exogenous AEA 

can produces effects that are similar to THC.  

The development of MAGL inhibitors provided a new approach to prevent 2-AG 

hydrolysis and understand the physiological properties of 2-AG (see table 4). The MAGL 

inhibitor JZL184 is able to elevate 2-AG levels 10-fold without elevating AEA (Long, et al., 

2009). Previous work in the Lichtman lab observed that the MAGL inhibitor JZL184 attenuated 

somatic withdrawal signs (i.e. spontaneous jumping, paw flutters, wet-dog shakes) in opioid 

dependent mice (Ramesh et al., 2011). In contrast to FAAH inhibition, The MAGL inhibitor 

JZL184 produced increased cannabimimetic effects including antinociception, hypomotility, 

hyper-reflexia, and partial THC-like subjective effects which are attenuated by the CB1 

antagonist rimonabant and not observed in CB1 
(-/-) mice (Long, et al., 2009). In addition, 

repeated administration of JZL184 produces pharmacological tolerance and receptor 

desensitization of CB1 receptors (Schlosburg et al., 2010). Genetic deletion of MAGL and 

repeated administration of JZL184 does not retain its analgesic properties and produces cross-

tolerance to WIN 55, 212-2 and PF-3845. 
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MAGL (−/−) knockout mice were developed as a complementary approach to 

pharmacological inhibition of MAGL. MAGL (−/−) mice have downregulated CB1 receptors, 

approximately 90% reductions in enzymatic activity, and about a 10-fold increases in brain 2-AG 

levels (Schlosburg et al., 2010).  Brain levels of arachidonic acid levels are also reduced in 

MAGL (−/−) mice (Schlosburg et al., 2010). The observation that arachidonic acid levels are 

reduced in MAGL (−/−) is consistent with observations that that arachidonic acid levels are 

decreased by organophosphorus agents that inhibit MAGL (Nomura et al., 2008). Later, it was 

discovered that 2-AG is a major endocannabinoid precursor of arachidonic acid in the brain, 

spleen, lung and liver (Nomura et al., 2008). These findings provided the first insights that the 

endocannabinoid and eicosanoid signaling pathways might be interconnected.  

 

Investigating the psychoactive effects of cannabinoids 
	

The psychoactive effects of cannabinoids are attributed to the stimulation of neuronal 

CB1 receptors. Laboratory assays such as intracranial self-stimulation (ICSS), self-administration 

(SA), conditioned place preference (CPP), and drug discrimination (DD) are used to investigate 

the abuse-related effects of drugs (Solinas et al., 2006), and the receptors that contribute to their 

effects (Balster, 1991; Maldonado, 2002). Attempts to study the abuse-related effects of 

cannabinoids in ICSS, SA, and CPP have proven very difficult (Maldonado, 2002), and reports 

indicating that cannabinoids are rewarding or aversive are inconsistent. In the limited number of 

studies that report reinforcing, or rewarding effects of cannabinoids, the observations are limited 
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to one species (squirrel monkeys), one assay (self-administration), a specific lab group, or a strict 

set of experimental parameters (i.e. priming injections in CPP).  

In the drug self-administration paradigm, cannabinoids are not readily intravenously self-

administered in rodents or non-human primates (Mansbach and Nicholson, 1994) (See Table 1). 

One explanation is that cannabinoids have a long duration of effects, with maximal plasma 

concentrations of THC (1000 ng/ml) occurring immediately after exposure to smoke in rhesus 

monkeys and approximately 80 ng/ml 45 minutes after exposure in humans (Slikker et al., 1991). 

Commonly in THC self-administration studies, lab subjects are food-restricted before test 

sessions (Takahashi and Singer, 1979; de la Garza and Johanson, 1987) or administered other 

drugs of abuse (Tanda et al., 2000). The only consistent observation of intravenously self-

administered THC has been in squirrel monkeys (Justinova et al., 2003) in which squirrel 

monkeys with no history of exposure to any other drugs learned to press a lever for intravenous 

THC and the acquisition of THC self-administration was very rapid (Justinova et al., 2003). In 

addition to squirrel monkeys, rats self-administer THC if administered via 

intracerebroventricular route of administration. In these limited examples, self-administration of 

THC can be extinguished either by administering vehicle instead of THC, or the CB1 receptor 

antagonist SR141716A.  

In the ICSS paradigm, animals learn to respond for electrical pulses into medial forebrain 

bundle, the location in the brain responsible for the rewarding effects of ICSS (See Table 2) 

(Kornetsky, 1985). Many studies report that drugs of abuse lower electrical stimulation 

thresholds, which suggests a similar degree of reward can be obtained with less electrical 
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stimulation in the presence of a known drug that produces rewarding effects (Bauzo and 

Bruijnzeel, 2012). Cannabinoid ICSS studies have revealed mixed observations. Particularly, 

some studies reveal that low doses of THC can decrease thresholds for ICSS (Gardner et al., 

1988) but others failed to observe facilitation of ICSS with THC (Vlachou et al., 2007; 

Wiebelhaus et al., 2015). The differences among the studies could be due to the dose, strain of 

animal, or procedural variations. One example is that high, but not lower doses of cannabinoids 

are reported to produce anxiogenic effects in mice (Kinden and Zhang, 2015). 

The conditioned place preference paradigm is based on the principles of Pavlovian 

conditioning. This assay involves three phases (habituation, conditioning and testing) in which 

laboratory subjects are tested in an apparatus with two compartments, where one compartment 

may contain different floors, environmental and drug-related cues. The other compartment is 

paired with the drugs vehicle. During the habituation phase, subjects are allowed to explore 

freely the apparatus before conditioning. During the conditioning phase, an unconditioned 

stimulus (i.e. drug) is administered to the subject and the animal can explore only one 

compartment. Sometimes a 3rd neutral chamber is used but is not paired with a drug, and the 

entrance between both compartments can be opened to allow animal subjects free passage 

between both chambers.  On test days, animals are not administered drug, and the duration of 

time spent in each chamber is scored. Subjects will voluntarily spend more time in the 

compartment associated with the drug-related cues, if the drug is rewarding, and the vehicle side 

if the drug is aversive, and an approximately equal amount of time if the drug is neutral. In the 

CPP paradigm, cannabinoids are reported to produce both conditioned place preference (CPP) 
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and conditioned place aversion (CPA) to THC (Parker and Gillies, 1995; McGregor et al., 1996; 

Chaperon et al., 1998) (See Table 3). Importantly, in most CPP studies, preference or aversive to 

THC and other cannabinoids are mainly attributed to the dose and time between the injection and 

the test session. For example, high doses of THC produce CPP in rats if the interval between 

injection and testing was 24 h. However, if the interval was 48 h, THC produced CPA at high 

doses (Lepore et al., 1995). It could be that 48 h after injection, mice are undergoing withdrawal 

and have aversive internal states.  In mice, THC induces CPP only when the animals were 

previously administered a priming injection of THC 24 h before the first conditioning session 

(Valjent and Maldonado, 2000), although in CD1 mice without A2A adenosine receptors 

utilizing the same methods (Valjent and Maldonado, 2000) THC produced conditioned place 

aversion (Soria et al., 2004). These findings indicate the conditioned place preference paradigm 

does not produce consistent findings to make inferences regarding the rewarding effects of 

cannabinoids.  

In contrast to the above mentioned paradigms, cannabinoids consistently and reliably 

serve as discriminative stimuli in two-lever or two-aperture drug discrimination studies (Balster 

and Prescott, 1992; Barrett et al., 1995; Wiley et al., 1995; Burkey and Nation, 1997; Järbe et al., 

2001, 2014). Cannabinoids are pharmacologically specific in drug discrimination and only drugs 

that stimulate CB1 receptors can fully substitute (produce over 80% of total responses on the 

lever paired with the training drug) for the discriminative stimulus effects of THC and other 

cannabinoids. Likewise, the pharmacological specificity of drug discrimination is observed with 

other classes of drugs (Solinas et al., 2006). Therefore, the drug discrimination paradigm has 
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proven over time to be the most reliable pre-clinical assay to investigate the 

psychoactive/subjective properties of cannabinoids. 

 
Table 1 Evaluation of self-administration (SA) of cannabinoids in laboratory animals 
SA = Self-Administration 
 

Species Drug Dose ROA Outcome Reference 
Rhesus monkeys THC 100–400 µg/kg   No SA Deneau and S, 1971 
Rhesus monkeys THC 25 - 300 µg/kg   No SA Deneau and S, 1971 
Rhesus monkeys THC 100–400 µg/kg   No SA Kaymakcalan, 1973 
Rhesus monkeys THC 17-100 µg/kg   No SA Pickens et al., 1973 
Rhesus monkeys THC 25 - 300 µg/kg I.V. No SA Harris et al., 1974 
Rhesus monkeys THC 3-300 µg/kg I.V. No SA Carney et al., 1977 

Wistar Rat THC 7.5-300 µg/kg I.V. Partial self-
admin Ree et al., 1978 

Rat	 THC 6.25 - 50 µg/kg I.V. Increase SA Takahashi and Singer, 
1979 

Rhesus monkeys CP 55, 940 0.3–3 µg/kg  I.V. No SA Mansbach and 
Nicholson, 1994 

Rhesus monkeys THC 		 I.V. No SA Mansbach and 
Nicholson, 1994 

ICR mice Win 55,212-2 10–500 µg/kg I.V. Increase SA Martellotta et al., 1998 
Squirrel Monkey THC 1 - 16 µg/kg I.V. Increase SA Tanda et al., 2000 
Squirrel Monkey Win 55,212-2 6.25 - 50 µg/kg I.V. Increase SA Fattore et al., 2001 

Wistar Rat Win 55,212-2   I.V. Increase SA Fattore et al., 2001 

Wistar Rat CP 55,940 0.1 - 1.6 
mg/2µ1 I.C.V SA Braida et al. 2001 

Squirrel Monkey THC 2 - 8 mg/kg I.V. Increase SA Justinova et al., 2003 
Wistar Rat THC 0.01-1 µg/kg I.C.V Increase SA Braida et al., 2004 

Squirrel Monkey AEA 40 mg/kg I.V. Increase SA Justinova et al. 2005 

Squirrel Monkey Methanandam
ide 10 - 40 µg/kg I.V. Increase SA Justinova et al. 2005 

Sprague-Dawley 
Rat Win 55,212-2 12.5 µg/kg I.C.V SA Lecca et al. 2006 
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Lister Hooded 
Rat Win 55,212-2 12.5 µg/kg I.V. Increase SA Fadda et al. 2006 

Lister Hooded 
Rat Win 55,212-2 12.5 µg/kg I.V. SA Fattore et al. 2007 

Squirrel Monkey 2 - AG 0.1 - 100 µg/kg I.V. Increase SA Justinova et al. 2011 
Sprague-Dawley 

Rat 2 - AG 25 mg/kg I.V. Increase SA De Luca MA et al. 
2014 

Long - Evans 
rats Win 55,212-2 0.1 mg/kg I.V. SA Lefever TW et al. 

2014 
Squirrel Monkey AM404 10 µg/kg I.V. SA Schindler et al. 2016 
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Table 2 Evaluation of intracranial self-stimulation of cannabinoids in laboratory animals 
 

Species Drug Dose ROA Outcome Reference 
Long-Evan 

Rat 
THC, 

nabilone 0.12-10 mg/kg P.O. Attenuates ICSS Stark and Dews, 
1980 

Lewis rat THC 1.5 mg/kg I.P. Facilitates ICSS Gardner et al., 
1988 

Lewis rat THC 1 and 1.5 mg/kg I.P. Attenuates ICSS Gardner et al., 
1988 

Sprague-
Dawley rat 
Lewis Rat 

THC 1 mg/kg I.P. no effect         
Facilitates ICSS Lepore et al., 1996 

Lewis rat CP 55,940 10 - 50 µg/kg I.P. no effect          Arnold et al., 2001 

Sprague-
Dawley Rat 

SR141716A 
(CB1 

antagonist) 
1 - 10 mg/kg I.P. Attenuates ICSS Deroche-Gamonet 

et al., 2001 

Sprague-
Dawley Rat WIN 55,212-2 0.1 – 1 mg/kg   I.P. Attenuates ICSS Vlachou et al., 

2003 

Sprague-
Dawley Rat 

URB-597 
(FAAH 

inhibitor) 
SR141716A                                                                                                                                                                            

0.3 - 3 mg/kg 
0.02 mg/kg                         I.P. Attenuates ICSS Vlachou et al., 

2006 

Sprague-
Dawley Rat THC 1 - 2 mg/kg I.P. Attenuates ICSS Vlachou et al., 

2007 
Sprague-

Dawley Rat THC 0.5 - 1 mg/kg I.P. no effect Fokos and 
Panagis, 2010 

Sprague-
Dawley Rat WIN 55,212-2 0.1 - 1 mg/kg I.P. Attenuates ICSS Mavrikaki et al., 

2010 
Sprague-

Dawley Rat THC 0.1 mg/kg             
1 mg/kg I.P. Facilitates ICSS           

Attenuates ICSS 
Katsidoni et al., 

2013 

C57bl/6 mice 

THC           
JZL184 
(MAGL 
inhibitor)  
PF3845 
(FAAH 

inhibitor)         
SA-57 

5.6 - 10 mg/kg    
16 - 40 mg/kg       

30 mg/kg               
3 - 17.8 mg/kg 

 N/A Attenuates ICSS Wiebelhaus et al., 
2015 

C57bl/6 mice CP 55,940 0.12 - 0.18 
mg/kg s.c. Attenuates ICSS Grim et al., 2015 
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Table 3 Evaluation of conditioned place preference (CPP) of cannabinoids in laboratory animals 
CPA = conditioned place aversion; CPP = conditioned place preference 

Species Drug Dose ROA Outcome Reference 
Long-

Evans Rat THC 1, 2 & 4 
mg/kg I.P. CPP Lepore et al, 1995 

Sprague-
Dawley 

rats 
THC 10 mg/kg I.P. CPA Parker and Gillies, 1995 

Sprague-
Dawley Rat THC 15 mg/kg I.P. CPA Sañudo-Peña et al., 

1997 

Wistar Rat WIN 55,212-2 1 mg/kg S.C. CPA Chaperon et al., 1998 

ICR mice THC 20 mg/kg I.P. CPA Hutcheson et al., 1998 

Wistar Rat THC 1-1.5 
mg/kg I.P. CPA Mallet and Beninger, 

1998 
Lister 

hooded Rat THC 1.5 mg/kg I.P. CPA Cheer et al., 2000 

ICR mice THC 5 mg/kg I.P. CPA Valjent and Maldonado, 
2000 

ICR mice THC 1 mg/kg I.P. CPP Valjent and Maldonado, 
2000 

Wistar rat CP 55, 940 20 µg/kg I.P. CPP Braida et al., 2001 

Wistar rat THC 0.075-0.75 
mg/kg I.P. CPP Braida et al., 2004 

Rat 

AM-404 
(endogenous 
cannabinoid 

reuptake 
inhibitor) 

1.25-
10mg/kg I.P. CPP Bortolato et al., 2006 

Sprague-
Dawley Rat THC 0.1 mg/kg I.P. CPP Le Foll et al., 2006 

C57bl/6 THC 0, 1 & 3 
mg/kg I.P. no effect Vlachou et al., 2007 

ICR mice THC 10 mg/kg I.P. CPA Vann et al., 2008 
Sprague-

Dawley Rat Win 55,212-2 0.1-1 
mg/kg I.P. no effect Polissidis et al., 2009 

Sprague-
Dawley Rat JWH-175 0.1 mg/kg I.P. CPP Tampus et al., 2015 
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Overview of cannabinoid drug discrimination 
 

In the drug discrimination paradigm, laboratory subjects learn to discriminate a drug from 

its vehicle based on Pavlovian and Skinnerian principles of learning. This principle of learning 

indicates behavior that is reinforced tends to be repeated and behavior that is not reinforced will 

be extinguished. In drug discrimination studies, animal behavior such as nose pokes or lever 

presses are reinforced by the presentation of a positive reward (i.e. food pellet). In drug 

discrimination procedures, laboratory subjects are trained over time to discriminate the 

subjective effects of a drug from its vehicle control. After successful training, subjects will 

typically press a lever, or poke their nose in an aperture for reinforcement (i.e. generally food) 

inside or on the lever or aperture that is paired with the training drug or its vehicle. After 

successful acquisition of a discriminative stimulus, novel drugs can be tested to determine if the 

subjective effects of the training drug and the test drug overlap. If responses occur on the same 

lever or aperture as the training drug, it is interpreted that the training drug and test drug produce 

an overlapping internal stimulus. Usually, test and training drugs will produce overlapping 

internal stimuli if both drugs bind the same receptors (Wiley 1999; Solinas et al., 2006).  

In contrast, the interpretation of a partially overlapping discriminative stimulus (i.e. 

partial substitution) continues to be an ongoing subject of debate in the drug discrimination field 

(Solinas et al., 2006). For example, researchers in one lab speculate that partial generalization of 

opioids depends on the types of opioid receptors that are activated and the level of intrinsic 

activity (Colpaert, 1988). However, if a training drug activates multiple receptors, a test drug that 

activates only one of these receptors might be discriminated by some, but not all laboratory 
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subjects. If the data is averaged, it would appear as a partially overlapping discriminative 

stimulus, but there might not be any individual subject showing a partial effect (Solinas et al., 

2005). Moreover, another study tested whether adenosine A1 receptor antagonists substitute for 

the stimulus effects of caffeine and observed that an A1 antagonist partially overlap with the 

caffeine discriminative stimulus and that half of the rats produced all responses on the lever 

paired with drug and the other half produce no responses on the aperture paired with drug 

(Solinas et al., 2005).  

Drugs within the following classification (i.e. nicotinics, hallucinogens, serotonergics, 

amphetamine-related stimulants, benzodiazepines, aminotetralines, MDA, MDMA, 

cannabinoids, opiates, inhalants) serve as reliable discriminative stimuli (Barrett and Appel, 

1989; Stolerman and Mariathasan, 2003; Solinas et al., 2004). Amphetamine is thought to act as 

an indirect agonist by releasing dopamine and norepinephrine in the brain (Tseng et al., 1976). 

Amphetamine serves as a discriminative stimulus and dopaminergic agonists substitute for the 

amphetamine discriminative stimulus (Young and Glennon, 1986). Also, cocaine, a 

dopaminergic re-uptake inhibitor substitutes for the amphetamine discriminative stimulus 

(Goudie, 1991). In addition to stimulants, many drug discrimination studies have been conducted 

using the anxiolytics.  For example, in rats have been trained to discriminate oxazepam and 

diazepam, but the anxiolytic drug buspirone does not substitute in rats trained to discriminate 

oxazepam nor diazepam (Hendry et al., 1983). Later, it was discovered that buspirone binds 5-

HT receptors, which is distinct from benzodiazepines such as oxazepam and diazepam, which 

produce their effects on GABA receptors. These observations indicate that laboratory subjects 
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can discriminate between drugs from different classes, drugs that produce similar internal states 

(i.e. anxiolytic) and between drugs that produce their subjective effects through distinctly 

different receptors. 

Cannabinoid drug discrimination studies have been conducted for several decades. 

Several species of animals have been used to study the subjective effects of cannabinoids in drug 

discrimination. Unlike other assays that are used to investigate drug psychoactivity (i.e. CPP, 

ICSS, or SA), cannabinoid drug discrimination studies are highly consistent in the observation 

that a drug can serve as a discriminative stimulus. In early studies, pigeons were trained to 

discriminate THC by pecking a key to receive food reinforcement (Henriksson et al., 1975; Järbe 

et al., 1977; Järbe and Hiltunen, 1987). Pigeons are highly sensitive to the subjective effects of 

cannabinoids (ability to discriminate low doses), although they are rarely used today in drug 

discrimination studies. In pigeons, THC does not substitute for psychomotor stimulants (Järbe, 

1982, 1984), which indicates that the subjective effects of psychomotor stimulants are distinctly 

different from THC. In rats and mice, different training doses of THC have served as 

discriminative stimuli (0.25 - 3 mg/kg) (Henriksson et al., 1975; Järbe and McMillan, 1980). 

Also, genetic approaches employing FAAH (-/-) mice have become available to understand the 

role of FAAH and AEA in the endocannabinoid system (Vann et al., 2009; Ignatowska-

Jankowska et al., 2015). One very important connection between pre-clinical drug discrimination 

and human drug discrimination studies is that pre-clinical studies are a very good predictor of 

drug psychoactivity in humans. (Jones and Stone, 1970; Waskow et al., 1970; Fabian et al., 

1983; Chait et al., 1988). This highlights a major advantage of the drug discrimination paradigm, 
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which is the high degree of sensitivity, specificity, and cross-species consistencies in the 

subjective effects of drugs, in particular, cannabinoids. 

Currently, there are no examples that the discriminative stimulus effects of a test drug can 

completely substitute for the discriminative stimulus effects of THC without activating central 

CB1 receptors. For example, rimonabant blocks the discriminative stimulus effects of THC and 

synthetic cannabinoids, but not SR140098, a CB1 antagonist that does not cross the blood-brain 

barrier. However, anti-psychotic drugs (i.e. clozapine, haloperidol, thioridazine, and 

chlorpromazine) produce all four measures assessed in the tetrad asssay (i.e. catalepsy, 

antinociception, hypothermia, hypolocomotion) which is a highly predictive assay to screen for 

CB1 receptor activity (Wiley, 2003). These observations of cannabinoids in both the drug 

discrimination and tetrad assay indicate that drug discrimination paradigm is the more 

pharmacological and behaviorally selective assay for screening the cannabimimetic effects of 

drugs. Early THC discrimination studies reported cannabidiol, a non-psychoactive cannabinoid, 

did not substitute for the discriminative stimulus effects of THC (Järbe, 1989; Balster and 

Prescott, 1992). In addition, drugs that are not considered cannabinoids (i.e. ketamine, alcohol, or 

cocaine) did not substitute for THC in mice even at very high doses (McMahon et al., 2008). 

However, several studies observed that diazepam, a benzodiazepine, which does not bind CB1 

receptors, produces average responses that are consistently above 40% for the aperture/lever 

paired with THC (Mokler et al., 1986; Balster and Prescott, 1992; Wiley and Martin, 1999). CB1 

receptors are located on glutamatergic neurons, and activating CB1 receptors on glutamatergic 

neurons can reduce neuronal activity, and may explain these findings, further highlighting the 
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high degree of sensitivity and selectivity of drug discrimination. Interestingly, CB1 receptors do 

not contribute to the partial substitution of diazepam for THC because this effect is attenuated by 

the benzodiazepine antagonist flumazenil, and not by the CB1 receptor antagonist rimonabant 

(Wiley and Martin, 1999).  

Finally, cross-substitution of drugs is an important concept in cannabinoid discrimination 

because it occurs within drugs of the same class, and through a shared mechanism of action. In 

combination with receptor antagonist studies, cross-substitution studies can provide strong 

evidence supporting the involvement of a specific receptor mechanism of action of a 

discriminative stimulus. Cross substitution is observed among many different cannabinoids 

(Barrett et al., 1995). For example, FAAH (-/-) mice have been trained to discriminate Δ9-THC, 

and AEA fully substitutes for THC in FAAH (-/-). However, AEA is rapidly degraded in FAAH 

(+/+) mice and dose not substitute for THC, suggesting that in the presence of FAAH, AEA cannot 

produce similar subjective effects as THC. Previous studies have shown that synthetic 

cannabinoids such as CP 55, 940 and WIN 55,212-2 dose-dependently substitute for THC and 

cross-substitutes for THC (Wiley, 1999; McMahon et al., 2008). In addition, the synthetic 

cannabinoid JWH-018 serves as a discriminative stimulus in rhesus monkeys (Ginsburg et al., 

2012). THC and JWH-073 substitutes for JWH-018, but GABA receptor agonists such as the 

benzodiazepines do not substitute for JWH-018 (Rodriguez and McMahon, 2014). One 

important observation is that when two different drugs fully substitute for each other (cross 

substitution), it usually occurs through the same receptor mechanism of action. In one reported, 

mice were trained to discriminate a high dose of methanandamide (70 mg/kg), a drug known to 
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bind several receptors (i.e. TRPV1, PPAR α) in addition to the CB1 receptor. In mice trained to 

discriminate methanandamide (70 mg/kg) the discriminative stimulus was partially attenuated 

(60% mAEA-like responses) by a large dose of rimonabant (30 mg/kg) (Wiley et al., 2011). 

Also, a high dose of THC (60 mg/kg) approached full substitution (70% THC-like responses) in 

mice trained to discriminate methanandamide (70 mg/kg). The results from this set of 

experiments (Wiley et al., 2011) indicate that higher doses of THC and mAEA have similar but 

not completely overlapping subjective effects. Given the results in this study, it is plausible that 

higher doses of mAEA can produce subjective effects through multiple receptors (i.e. CB1, 

TRPV1) and the subjective effects of THC are produced through only one receptor (i.e. CB1). 

Because cross substitution was not observed at higher doses (only partial substitution), these 

findings validate the idea that cross substitution usually occurs if the mechanism that produces 

the subjective effects of two different drugs are exactly the same. 

 
 
Discriminative Stimulus Properties of Cannabinoid Antagonists 
 

The synthesis of the first antagonist of the CB1 receptor (rimonabant) allowed 

investigators to determine the role of this receptor in cannabinoid discrimination (Rinaldi-

Carmona, 1994). Rimonabant attenuates the discriminative stimulus effects of THC in pigeons, 

rats, and mice (Wiley et al., 1995; Mansbach et al., 1996; Pério et al., 1996). Antagonist studies 

in combination with cross-substitution observations with other cannabinoids provide strong 

evidence that CB1 receptors are largely responsible for cannabinoid discrimination.  
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Early reports found that rimonabant fails to serve as a discriminative stimulus using food 

as a reinforcer (Pério et al., 1996).  Interestingly, Rhesus monkeys can learn to discriminate 

rimonabant if given chronic administration of THC before training sessions (Stewart and 

Mcmahon, 2010), and discontinuation of chronic THC results in a higher number of responses on 

the rimonabant associated lever (Stewart and Mcmahon, 2010). Pre-treatment with THC, AEA, 

CP 55, 940 or WIN 55, 212-2 before rimonabant on test sessions resulted in responses on the 

vehicle-paired lever and not the rimonabant paired lever, suggesting these other cannabinoids 

replace the internal subjective effects produced in the absence of chronically administered THC 

(Stewart and Mcmahon, 2010). Interestingly, the CB1 antagonist AM251 substituted for 

discriminative stimulus effects of rimonabant (McMahon, 2006). The above findings may 

indicate CB1 antagonists on their own do not produce subjective effects, but they may induce an 

internal state of withdrawal, that may serve as a discriminative stimulus. Additionally, it is 

possible that CB1 antagonist produces a non-drug state.  

 
Discriminative Stimulus Properties of Phytocannabinoids 
	

The most commonly investigated cannabinoids in marijuana (i.e. phytocannabinoids) are 

THC, cannabidiol (CBD) (Michoulam and Shvo, 1963) cannabinol (CBN) (Wood et al., 1899) 

cannabichromene (CBC) (Gaoni and Mechoulam, 1966), Δ9-tetrahydrocannabivarin (THCV) 

(Merkus, 1971). THC and CBN are the only phytocannabinoids in marijuana that are reported to 

substitute for the discriminative stimulus effects of THC (Browne and Weissman; Järbe and 
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Hiltunen, 1987). However, some reports suggest the non-psychoactive cannabinoid CBD can 

inhibit the discriminative stimulus effects of THC (Pertwee, 2008; Vann et al., 2008).  

THC discrimination was used in early studies to screen for THC-like subjective effects of 

phytocannabinoids (i.e. CBN and CBD), and their metabolites (11-OH-THC; 8ß-OH-∆9-THC; 

8α-OH-∆9-THC; 8α,11 di-OH-∆9-THC, and 8ß,11 di-OH-∆9-THC) in several different species 

(pigeon, gerbil, rodent, non-human primates, human). CBD is generally thought to have no 

psychoactive properties on its own, and does not substitute for the discriminative stimulus effects 

of THC (Järbe and Hiltunen, 1987; Vann et al., 2008). In addition, drug discrimination was used 

to investigate the subjective effects of inhaled marijuana (Marshell et al., 2014b). When 

marijuana is inhaled, many constituents (i.e. phytocannabinoids) can interact and different 

studies have investigated the discriminative stimulus effects of interacting phytocannabinoids. 

Cannabinoid drug discrimination can also been used to rank order the potency of the subjective 

effects of phytocannabinoids, and indicates the CBN stimulus is less potent than THC, but the 

combination of CBN and THC increases the percentage of responses for THC (Järbe and 

Hiltunen, 1987; Järbe et al., 2014). Thus, THC discrimination has been a very useful to 

investigate the phytocannabinoids in marijuana that may contribute to the subjective effects of 

smoked marijuana. 
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Discriminative Stimulus Properties of Endogenous Cannabinoids 
	

Our understanding of the discriminative stimulus properties of endocannabinoids 

cannabinoids has been limited until recently because endocannabinoids are rapidly degraded by 

FAAH and MAGL. Accordingly, early attempts to discover if the subjective effects of AEA 

overlapped with THC were limited in success (Deutsch and Chin, 1993). In one study, 

intraperitoneal injections of AEA substituted for the discriminative stimulus effects of THC and 

CP 55,940 in rats, but not mice, and only at doses that drastically suppressed response rates 

(Wiley et al., 1995; Wiley et al., 2014), indicating the rapid hydrolysis of AEA prevented an 

overlapping stimulus in both species. 

The synthesis of metabolically stable AEA analogues presented an opportunity to 

overcome the challenge of rapid degradation. Although, AEA analogues are distinctly different 

molecules from endogenous (AEA), they have some similarities in their structure. Methylations 

at carbon 1 and 2 on AEA prevent degradation without significant alterations in affinity or 

behavioral activity (Adams et al., 1995). For example, (R)-methanandamide, a metabolically 

stable analogue of AEA dose-dependently substituted for the THC (2 mg/kg) discriminative 

stimulus in rats (Burkey and Nation, 1997). Interestingly, (R)-methanandamide only produces 

full substitution in rats that discriminate lower dose of THC (≤ 3.0 mg/kg) (Järbe et al., 1998). 

(R)-methanandamide substituted partially or not at all in rats trained to discriminate 5.6 or 30 

mg/kg THC (Järbe et al., 1998, 2000; Wiley et al., 2011). Although methanandamide is 
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considered a cannabinoid (Ki = 28.3 ± 3) (Goutopoulos et al., 2001), it also binds TRPV1 

receptors that are involved in anandamide-induced reductions in locomotion (de Lago et al., 

2004). This observation offers the possibility that methanandamide produces a discriminative 

stimulus at higher doses that could be mediated by TRPV1 receptors, and lower doses is 

mediated by CB1 receptors. These findings indicate that lower doses of THC that produce 

weaker subjective effects can generate overlaping with the subjective effects with (R)-

methanandamide. It is possible that (R)-methanandamide is less potent than THC, or is 

metabolized before it can occupy the same number of CB1 receptors. Also, THC is more potent 

than both O-1812 and 2-methylarachidonyl-2’-fluoroethylamide (analogues of AEA) in mice 

trained to discriminate O-1812, and substitutes for THC to a greater degree than exogenous AEA 

in rats and monkeys (Wiley et al., 1997, 2004). These observations indicate differences in the 

intrinsic activity between various AEA analogues and THC, or that their discriminative stimulus 

effects occur through a separate receptor mechanism. More illuminating, the CB1 receptor 

antagonist rimonabant (0.3 and 1 mg/kg) completely attenuates the ability of (R)-

methanandamide (doses ≤ 30 mg/kg) to occasion the lever paired with THC in rats (Järbe et al., 

2001). However, extremely high doses of methanandamide (≥ 70 mg/kg) failed to substitute in 

mice trained to discriminate a high dose of THC (30 mg/kg), and rimonabant did not block the 

generalization of methanandamide in mice trained to discriminate a high dose of 

methanandamide (70 mg/kg). This raises the possibility that a non-CB1 receptor mechanism 

generates the discriminative stimulus effects of methanandamide (70 mg/kg) (Wiley et al., 

2011).  
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Although short half-lives of the endocannabinoids make it difficult to investigate their 

effects, FAAH and MAGL inhibitors preventing the rapid hydrolysis of AEA and 2-AG, provide 

tools to prevent their rapid hydrolysis and understand their general pharmacological properties. 

Complete blockade of FAAH produces large increases of AEA in mouse brain (Fegley et al., 

2005; Ahn et al., 2009; Long et al., 2009; Niphakis et al., 2012). Exogenous administration of 

AEA does not undergo rapid hydrolysis after FAAH inhibition and produces physiological 

effects. For example, the FAAH inhibitor URB597 (0.3 mg/kg) or AEA (10 mg/kg) alone does 

not substitute for THC in Sprague-Dawley rats, however, co-administration of URB597 and i.v. 

AEA (3 mg/kg) completely substitutes for THC (Solinas et al., 2007). These findings suggest 

that low doses of exogenously administered AEA are sufficient to produce a THC-like 

discriminative stimulus if its primary hydrolytic enzyme is inhibited. Moreover, FAAH (-/-) mice 

successfully learn to discriminate both AEA and THC, and cross-substitution occurs with THC 

and AEA in FAAH (-/-) mice, indicating in the absence of FAAH, AEA can produce internal 

subjective states that are similar to THC (Walentiny et al., 2011). The cross-substitution of THC 

and AEA in FAAH (-/-) mice was attenuated by the CB1 receptor antagonist rimonabant, 

indicating a shared contribution of CB1 receptors in the AEA and THC discriminative stimulus 

(Walentiny et al., 2011, 2015). 

Most drug discrimination research with endocannabinoids has focused on AEA instead of 

2-AG. There is one study (Wiley, et al., 2014) in which 2-AG was evaluated in mice trained to 

discriminate THC and 2-AG did not substitute for THC (Matuszak et al., 2009). Genetically 

modified mice, specifically MAGL(-/-) mice have not been evaluated in a drug discrimination 
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procedure, but several pharmacological inhibitors of MAGL activity have been investigated. The 

MAGL inhibitor JZL184 partially substitutes for THC in wild-type mice, and rats trained to 

discriminate THC from vehicle (Long et al., 2009; Walentiny et al., 2015). However, one report 

indicates JZL184 produced responses on the lever paired with vehicle in mice trained to 

discriminate THC (Hruba et al., 2015). Regardless, MAGL inhibition does not produce an 

overlaping discriminative stimulus with THC.  

Simultaneous blockade of FAAH and MAGL can be obtained by several approaches 

which include administering mice the dual FAAH and MAGL inhibitors JZL195 or SA-57 (Long  

et al., 2009; Niphakis et al., 2012; Hruba et al., 2015), and co-administering mice selective 

FAAH and MAGL inhibitors (Long et al., 2009; Ghosh et al., 2015), or administering MAGL 

inhibitors in FAAH(-/-) mice (Long et al., 2009). Dual inhibition produces robust cannabimimetic 

effects including antinociception, hypomotility, hyper-reflexia, catalepsy (Long et al., 2009), and 

a completely overlapping THC-like discriminative stimulus that are mediate by CB1 receptors 

(Long et al., 2009; Hruba et al., 2015). The analgesic effects of dual inhibition are greater than 

the effects generated by single enzyme inhibition, and catalepsy is only observed after inhibiting 

both enzymes.  

Taken together, these observations indicate the discriminative stimulus/subjective effects 

of AEA in the presence of FAAH can partially overlap with THC, or completely overlap with 

THC in the absence of FAAH. Additionally, inhibiting 2-AG degradation can produce increase 

responses for lever/aperture paired with THC. These observations could be due to 2-AG acting 

as a full CB1 agonist, while AEA acts as a partial CB1 agonist (Sugiura et al., 2002) indicating 2-
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AG produces greater intrinsic effects at CB1 receptors than AEA. Elevated levels of 2-AG may 

achieve greater occupancy of CB1 receptors in the brain than AEA because bulk brain levels of 

2-AG are approximately three orders of magnitude higher than AEA (Ahn et al., 2009; Long et 

al., 2009). 

 
 
Table 4 Evaluation of discriminative stimulus properties of cannabinoids in laboratory animals 
 

Species Training 
Drug 

Training 
Dose 

Substitution 
Drug ROA Outcome Response 

rates Reference 

Pigeon THC .15 - .20 
mg/kg THC I.M. 

Complete 
Generalizati

on 
Decrease (Henriksson 

et al., 1975) 

Sprague 
Dawley 

Rat/Pigeo
n 

THC 

Rats = 3 
mg/kg   

Pigeon  = 
1 mg/kg 

SP-111                     
11-OH-Δ9-

THC                             
11-OH-Δ8-

THC 

I.M. = 
90 min     
I.P. = 

30 min 

Complete 
Generalizati

on 
Decrease 

(Järbe and 
McMillan, 

1980) 

Sprague-
Dawley 

Rat 
Rhesus 
Monkey 

THC 3 mg/kg THC                   
CP 55,940 

I.P. in 
rats                      

I.M. in 
Monke

y 

Generalizati
on               

More potent 
than THC 

Decrease Gold et al., 
1992 

Sprague-
Dawley 

Rat 
Rhesus 
Monkey 

THC 3 mg/kg            
1 mg/kg 

THC                           
THC I.P. 

 Complete 
Generalizati

on 
Decrease Wiley et al., 

1993 

Sprague-
Dawley 

Rat 

CP 
55,940 

0.1 
mg/kg 

THC                      
WIN 55,212-2 I.P. 

Complete 
Substitution 
Complete 

substitution 

Decrease Wiley et al., 
1995 
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Sprague-
Dawley 

Rat 

WIN 
55,212-2 

0.3 
mg/kg 

CP 55,940             
THC          

Rimonabant 
S.C. 

Complete 
Substitution     
Complete 

Substitution  
Complete 

Antagonism 

  Pério et al., 
1996 

Sprague-
Dawley 

Rat 

R-
Methana
ndamide 

(AEA 
analogue) 

THC 

10 mg/kg          
3 mg/kg 

SR141716A 
Anandamide I.P. 

Complete 
Antagonism 

Complete 
Substitution  

Decrease Järbe et al., 
2001 

Wistar Rat CP 
55,940 

0.03 - 
0.014 
mg/kg 

THC           
Rimonabant I.P. 

Complete 
Substitution  
Complete 

Antagonism 

No effect 
De Vry and 

Jentzsch, 
2003 

Sprague-
Dawley 

Rat 
THC 3.2 

mg/kg 

Anandamide              
R-

Methanandami
de 

I.P. 

 Partial 
Substitution  
Complete 

Substitution 

Decrease Alici and 
Appel, 2004 

Sprague-
Dawley 

Rat 
THC 3 - 10 

mg/kg 
B - endorphin             
SR141716A I.P. 

 Potentiate 
Generalizati
on of THC                 
Complete 

Attenuation 

Decrease Solinas et al., 
2004 

Sprague-
Dawley 

Rat 

THC                                    
O-1812 

(CB1 
agonist) 

3 mg/kg 
0.3 

mg/kg 

O-1812                  
THC  I.P. 

Complete 
Substitution 
Complete 

Substitution 

Decrease Wiley et al., 
2004 

Sprague-
Daley Rat 

THC                                    
R-

Methana
ndamide 

1.8 - 5.6  
mg/kg         

10  
mg/kg 

Rimonabant         
AM251 I.P. Complete 

Antagonism No effect Järbe et al., 
2006 



 49 

Rhesus 
Monkey THC 0.32 

mg/kg 
Rimonabant         

AM251 I.V. Complete 
Antagonism 

Statistics 
not 

reported 

McMahon, 
2006 

Rhesus 
Monkey THC 0.1 

mg/kg 

CP 55,940                  
WIN 55,212-2              

R - 
Methanandami

de     
Rimonabant          

I.V. 

Complete 
substitution               
Complete 

substitution      
Complete 

substitution   
Complete 

Antagonism 

Decrease McMahon, 
2006 

Sprague-
Dawley 

Rat 
THC 3 mg/kg 

I.V.Anandamid
e  I.V. 

Anandamide + 
URB597 

I.V. Complete 
substitution Decrease Solinas et al., 

2007 

Sprague-
Dawley 

Rat 

AM1346 
(AEA 

analogue) 
3 mg/kg  AM1346                 

mAEA  I.P. 

Complete 
substitution               
Complete 

substitution      
Complete 

substitution    

AM1346 
= no 

change              
mAEA = 
decrease 

Järbe et al., 
2009 

C57BL/6 
mice  THC 10 mg/kg 

JWH-202                  
JWH-204                
JWH-205 

S.C. 

No 
substitution               
Complete 

substitution      
Complete 

substitution    

JWH-205 
= decrease 

THC = 
decrease  

Vann et al., 
2009 

C57BL/6 
mice    THC 5.6 

mg/kg 

THC                  
JZL195                
JZL184 

I.P. 

 Complete 
Generalizati

on             
Complete 

substitution      
Partial 

substitution    

Statistics 
not 

reported 

Long et al., 
2009 
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  FAAH (-/-
) mice THC 5.6 

mg/kg 

THC                      
JZL195                    
JZL184 

I.P. 

 Complete 
Generalizati

on             
Complete 

substitution      
Complete 

substitution    

Statistics 
not 

reported 

Long et al., 
2009 

Sprague-
Dawley 

Rat 
THC 1.8 

mg/kg WIN 55,212-2 I.P. Complete 
substitution   

Statistics 
not 

reported 

Järbe et al., 
2010 

Sprague-
Dawley 

Rat 
mAEA 10 mg/kg mAEA                          

THC I.P. 

Complete 
substitution              
Complete 

substitution    

Statistics 
not 

reported 

Järbe et al., 
2010 

  FAAH (-/-
) mice 

Anandam
ide 6 mg/kg THC I.P. Complete 

substitution   Decrease Walentiny et 
al., 2011 

C57BL/6 
mice  THC              30 mg/kg           

AEA             
methanandami

de                                       
THC                             

CP 55,940 

I.P. 

No 
substitution                

No 
substitution            
Complete 

substitution                     
Complete 

substitution             

Decrease Wiley et al., 
2011 

C57BL/6 
mice  

 
methanan
damide 

 70 
mg/kg 

methanandami
de               

THC                                      
I.P. 

Complete 
Generalizati
on          No 
substitution 

Decrease Wiley et al., 
2011 

Sprague-
Dawley 

Rat 
THC 3 mg/kg 

AM598                           
AM678                         
AM2233               

WIN55212-2 

I.P. 

Complete 
substitution              
Complete 

substitution    

Statistics 
not 

reported 

Järbe et al., 
2011 
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Rhesus 
Monkey THC 0.1 

mg/kg 
JWH-018                     
JWH-073 I.V. Complete 

substitution   

Statistics 
not 

reported 

Ginsburg et 
al., 2012 

Sprague-
Dawley 

Rat 

AM2389 
(CB1 

agonist) 

0.18 
mg/kg 

and                 
0.56 

mg/kg 

THC                    
AM5983 I.P. Complete 

substitution   

Statistics 
not 

reported 

Järbe et al., 
2012 

C57BL/6 
mice  THC 5.6 

mg/kg 
UR-144                     
XLR-11 I.P. Complete 

substitution   Decrease Wiley et al., 
2013 

C57BL/6 
mice  THC 5.6 

mg/kg KML29 S.C. No 
substitution    No effect 

Ignatowska-
Jankowska et 

al., 2014 

C57BL/6 
mice   

FAAH (-/-) 
mice 

THC                           
AEA 

5.6 
mg/kg           

6 mg/kg 

Org27569 + 
Veh Org27569 

+ AEA 
I.P. No 

substitution    No effect Gamage et 
al., 2014 

Sprague-
Dawley 

Rat 

THC                       
JWH-018 

3 mg/kg            
0.3 
mg/kg 

JWH-018                        
THC I.P. 

Complete 
substitution  
Complete 

substitution 

Decrease Wiley et al., 
2014 
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Sprague-
Dawley 

Rat 
THC 3 mg/kg 

JWH-018                       
JWH-073                   
JWH-200                     
JWH-203                       
JWH-250                     

AM-2201 CP 
47,497 

I.P. 

Complete 
substitution  
Complete 

substitution    
Complete 

substitution  
Complete 

substitution    
Complete 

substitution  
Complete 

substitution 

JWH-073 
= 

Decrease   
CP 47,497 

= 
Decrease 

Gatch and 
Forster, 2014 

C57BL/6 
mice  THC 5.6 

mg/kg 

JZL184 + PF-
3845        SA-

57                        
JZL195 

I.P. 

Complete 
substitution  
Complete 

substitution    
Complete 

substitution 

Statistics 
not 

reported 

Hruba et al., 
2015 

C57BL/6 
mice  

CP 
55,940 

0.1 
mg/kg 

MJN110                    
JZL184 I.P. 

Complete 
substitution  
Complete 

substitution     

MJN110 = 
increase 

Ignatowska-
Jankowska et 

al., 2015 

C57BL/6 
mice  

CP 
55,940                           
AEA 

0.1 
mg/kg                

6 mg/kg 

ZCZ-011 + CP 
55,940           

ZCZ-011 + 
AEA 

I.P. Augments 
substitution No effect 

Ignatowska-
Jankowska et 

al., 2015 
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Sprague-
Dawley 

Rat 
THC 3 mg/kg 

ADB-PINACA                  
THJ-2201                  

RCS-4                             
JWH-122                                
JWH-210  

I.P. 

Complete 
substitution  
Complete 

substitution    
Complete 

substitution  
Complete 

substitution    
Complete 

substitution   

JWH-210 
= decrease      
MDMA = 
decrease 
RCS-4 = 
decrease 

Gatch and 
Forster, 2016 

Sprague-
Dawley 

Rat 
THC 3 mg/kg AM2201 I.P. Complete 

substitution   

Statistics 
not 

reported 

Järbe et al., 
2016 
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Rationale and Hypothesis 

 

Overall Hypothesis 

The overall hypothesis of this dissertation is that an inhibitor of the primary 

endocannabinoid regulating enzymes FAAH and MAGL will serve as a discriminative stimulus 

via a CB1 receptor mechanism of action, and inhibiting both FAAH and MAGL are necessary to 

generate the discriminative stimulus.  

Selection of SA-57 

The dual FAAH-MAGL inhibitor SA-57 was selected as the training drug in this 

dissertation research because it is one of two available pharmacological inhibitors (i.e. SA-57, 

JZL195) of the endocannabinoid regulating enzymes FAAH and MAGL. SA-57 has the added 

benefit over JZL195 because it is more potent for FAAH than MAGL (Niphakis et al., 2012), 

which provides a tool to examine the consequences of inhibiting FAAH with varying degrees of 

inhibiting MAGL. In addition, SA-57 produces around (10-fold) elevations of AEA and 2-AG in 

the brain and inhibits FAAH (IC50 = 1-3 nM) and MAGL (IC50 = 10 µM). At low doses (≤ 

1mg/kg) SA-57 produces maximum AEA elevation and at higher doses it incrementally elevates 

2-AG. This allows us to investigate the dose-related effects of full FAAH inhibition (i.e., 

maximized increases in endogenous AEA levels in brain) combined with incremental increases 

of 2-AG.  
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Chapter 2. Characterization of the SA-57 discriminative stimulus  

To test the hypothesis that the FAAH and MAGL inhibitor SA-57 would serve as a novel 

discriminative stimulus, we employed the drug discrimination paradigm. First, we trained 

C57BL/6J mice to discriminate CP 55,940, and then FAAH (-/-) mice trained to discriminate AEA 

in order to select a training dose of SA-57. Then, we administered SA-57 in a double alternation 

schedule to determine if SA-57 could be discriminated from its vehicle. We anticipated SA-57 

would serve as a discriminative stimulus because the dual FAAH and MAGL inhibitor JZL195 

fully substitutes for THC (Long et al., 2009) and elicits cannabimimetic effects, as assessed in 

the tetrad assay (Long et al., 2009; Anderson et al., 2014; Ghosh et al., 2015), as well as 

impaired performance in a Morris water maze spatial memory task (Wise et al., 2012). We 

continued our characterization of the SA-57 discriminative stimulus by conducting a time course 

study. We anticipated maximum responding for SA-57 would occur at approximately 2h, which 

corresponds to maximal brain levels of AEA and 2-AG. Finally, we sought to determine if CB1 

receptors were required for the SA-57 discriminative stimulus. In order to determine the receptor 

mechanism of action, mice were administered the CB1 receptor antagonist rimonabant.  

The second major goal of this dissertation was to determine if inhibiting both FAAH and 

MAGL in combination, or inhibiting FAAH or MAGL separately was necessary to generate the 

SA-57 discriminative stimulus. To test this hypothesis, we investigated each enzyme targets of 

SA-57 (FAAH, MAGL, ABHD6) to delineate the contribution of each enzyme.  First we 

administered the dual inhibitor, JZL195 to determine if the subjective effects of different dual 

FAAH and MAGL inhibitors would overlap. We expected JZL195 to substitute for SA-57 
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because both inhibitors completely block FAAH and MAGL activity, and fully elevate AEA and 

2-AG. Next we administered two selective FAAH inhibitors (PF3845 and URB597) to test 

whether FAAH inhibition alone, would substitute for SA-57. Then, we administered two 

selective MAGL inhibitors (JZL184 and MJN110) determine whether MAGL inhibition alone, 

would substitute for SA-57. These studies revealed that MAGL inhibitors but not FAAH did in 

fact fully substitute for SA-57. Also, we employed rimonabant to determine whether CB1 

receptors mediate these effects. Furthermore, we sought to determine if the substitution of 

MAGL inhibitors was mediated through CB1 receptors. Finally, because FAAH inhibition 

elevates other lipids in addition to AEA (i.e., PEA and OEA) and AEA also binds TRPV1 and 

PPARα receptors (Lo Verme et al., 2005) we employed a selective receptor antagonist of each 

receptor to investigate their role in the SA-57 discriminative stimulus.  
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Chapter 2. Characterization of the SA-57 discriminative stimulus  

 
Introduction 
 

Cannabinoid CB1 (Devane et al., 1988; Matsuda et al., 1990) and CB2 receptors (Munro 

et al., 1993) and their endogenous ligands N-arachidonoyl ethanolamine (anandamide; AEA) 

(Devane et al., 1992) and 2-arachidonoylglycerol (2-AG) (Mechoulam et al., 1995; Sugiura et 

al., 1995) represent primary elements of the endocannabinoid system. This system modulates 

many physiological processes, including pain (Hohmann et al., 2005; Kinsey et al., 2010; 

Woodhams et al., 2012; Ignatowska-Jankowska et al., 2014), memory (Hampson and 

Deadwyler, 1999), appetite (Kirkham and Tucci, 2006), and reward (Tsou et al., 1998; 

Marsicano and Lutz, 1999). The primary psychoactive constituent of Cannabis, Δ9-

tetrahydrocannabinol (THC) (Gaoni and Mechoulam 1964), produces its psychotomimetic 

effects through CB1 receptors (Huestis et al., 2001), and induces dopamine release in the nucleus 

accumbens (Chen et al., 1991), though to a substantially lower magnitude than other abused 

drugs. Curiously, THC produces reinforcing effects in some (Gardner et al., 1988; Lepore et al., 

1996; Justinova et al., 2003, 2005), but not all (Vlachou et al., 2007; Wiebelhaus et al., 2015) 

preclinical laboratory animal models. In contrast, THC serves as a reliable discriminative 

stimulus in the drug discrimination paradigm (Henriksson et al., 1975; Järbe, 1989; Wiley et al., 

1997; Vann et al., 2009), an assay that is highly predictive of drug psychoactivity in humans 

(Chait et al., 1988; Kamien et al., 1993; Lile et al., 2012).  
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Whereas THC elicits relatively long-lasting pharmacological effects, AEA and 2-AG 

produce short-lived effects because of rapid hydrolysis by their respective primary catabolic 

enzymes fatty acid amide hydrolase (FAAH) (Cravatt et al., 1996, 2001) and monoacylglycerol 

lipase (MAGL) (Di Marzo et al., 1999; Dinh et al., 2002). Accordingly, inhibitors of these 

enzymes elevate endocannabinoid brain levels, and represent useful investigative tools. Although 

the selective FAAH inhibitors URB597 (Fu et al., 2005) and PF-3845 (Ahn et al., 2009) elevate 

AEA brain levels and produce antinociceptive effects, neither compound substitutes for THC 

(Gobbi et al., 2005;Wiley et al., 2014). Similarly, the MAGL inhibitor JZL184 elevates 

endogenous 2-AG brain levels and produces antinociception, but only partially substitutes for 

THC (Long et al. 2008; Long et al. 2009; Wiley et al. 2014; Walentiny et al. 2015). Conversely, 

the dual FAAH-MAGL inhibitor JZL195 fully substitutes for THC, elicits a constellation of 

cannabimimetic effects (Long et al., 2009; Wise et al., 2012; Hruba et al., 2015) and produces an 

increased magnitude of antinociceptive effects compared with single enzyme inhibition (Long et 

al., 2009; Ghosh et al., 2015). Similarly, the dual FAAH-MAGL inhibitor SA-57 fully 

substitutes for THC in wild-type mice (Hruba et al. 2015). 

As it has yet to be established whether an inhibitor of endocannabinoid hydrolysis can 

serve as the training drug in drug discrimination procedures, the present study investigated 

whether mice will learn to discriminate SA-57 from vehicle. SA-57 inhibits FAAH much more 

potently than it inhibits MAGL or ABHD6, another serine hydrolase that degrades 2-AG, but to 

a much less extent than MAGL (Blankman et al., 2007). Thus, SA-57 possesses utility to 

investigate the consequences of maximally elevating brain AEA levels, while dose-dependently 
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increasing brain 2-AG levels (Niphakis et al., 2012). To select the SA-57 training dose, initial 

experiments examined its dose-effect relationship to substitute for the potent CB1 receptor 

agonist CP 55,940 in C57BL/6J mice and AEA in FAAH (-/-) mice (to prevent rapid hydrolysis). 

Having established that mice learn to discriminate SA-57 from vehicle, we then assessed its 

dose-response relationship and time course. Because various substrates of FAAH (e.g., AEA, 

palmitoylethanolamide (PEA), and oleoylethanolamide (OEA)) and MAGL (e.g., 2-AG) bind 

CB1, CB2, TRPV1(Smart et al., 2000), and peroxisome proliferator-activated receptor-alpha 

(PPARα) receptors (Lo Verme et al., 2005), we tested whether antagonists for these receptors 

would block the discriminative stimulus effects of SA-57. Additionally, we conducted an 

extensive series of drug substitution tests to gain further insight into the training dose of the SA-

57 discriminative stimulus. Specifically, we tested whether CP 55,940, as well as the non-

cannabinoid psychoactive drugs nicotine and diazepam would substitute for the SA-57. As 

MAGL also plays a rate limiting role in the production of arachidonic acid and prostanoids in 

brain (Nomura et al., 2011), we examined whether the COX-2 inhibitor valdecoxib, which 

reduces prostanoid synthesis but does not affect brain endocannabinoid levels, would substitute 

for SA-57. The final goal of the present study was to elucidate the degree to which relevant 

endocannabinoid hydrolytic enzyme inhibitors contribute to the SA-57 training dose. 

Accordingly, we investigated whether individual FAAH, MAGL, and ABHD6 inhibitors, we 

well as simultaneous inhibition of FAAH and MAGL would substitute for SA-57.  
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Materials and methods 
 
Subjects 

Male C57BL6/J mice (Jackson Laboratory; Bar Harbor, ME) and male FAAH (-/-) mice 

served as subjects. The FAAH (-/-) mice were backcrossed >14 generations on to a C57BL6/J 

background. The mice were 9-11 weeks of age at the beginning of training and were individually 

housed in a temperature-controlled (20-22°C) vivarium in accordance with Virginia 

Commonwealth University Institutional Animal Care and Use Committee guidelines. Mice were 

given water ad libitum, and were food restricted to 85-90% of free-feed body weight, which was 

established during a two-week period of ad libitum food every six months. 

 

Drugs 

SA-57, MJN110, KT182, KT195, and JZL195 were synthesized in the Cravatt laboratory, 

as previously described (Long, Nomura, et al., 2009; Niphakis et al., 2012, 2013; Hsu et al., 

2013). N-arachidonoyl ethanolamine (AEA) was provided by Organix Inc. (Woburn, MA), and 

valdecoxib was provided by Sigma-Aldrich (Saint Louis, MO). CP 55,940, JZL184, PF-3845, 

rimonabant, and SR144528 were generously supplied by the National Institute on Drug Abuse 

(NIDA) (Rockville, Maryland, USA). Capsazepine was purchased from Cayman Chemical, and 

GW6471 was purchased from Tocris Bioscience. Each compound was dissolved in a vehicle 

consisting of ethanol, emulphor-620 (Rhodia, Cranbury, New Jersey, USA), and saline in a ratio 
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of 1:1:18. All injections were given via the intraperitoneal (i.p.) route of administration in a 

volume of 10 µl per 1 g of body weight. 

 

Apparatus 

Drug discrimination was conducted in eight sound-attenuating operant conditioning 

boxes (18 x 18 x 18 cm) (MED Associates, St. Albans, VT). Each operant box contained two 

nose poke apertures, and a food dispenser delivering 14-mg food pellets to a receptacle chamber 

located between apertures. Computer software (MED-PC® IV, MED Associates, St. Albans, VT) 

was used to record nose pokes and to control stimulus presentations and food deliveries. 

 

Drug Discrimination Paradigm 
 
Training 

Separate groups of mice were trained to discriminate each of the following three training 

drugs from vehicle. Groups 1 and 2 consisted of C57BL6/J mice (n=8) trained to discriminate 

CP 55,940, and FAAH (-/-) mice (n=11) trained to discriminate AEA, respectively. The third 

group of mice consisted of three cohorts of C57BL6/J mice (n=8/cohort) trained to discriminate 

SA-57 from vehicle. The treatment conditions for each cohort are described below under 

Testing. The pretreatment times for the training drugs were 120 min for SA-57 and 30 min for 

CP 55,940 and AEA. During each 15 min training session, both nose poke apertures were 

available, but only responses into the correct aperture associated with the appropriate training 
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drug or vehicle resulted in food reinforcement. Each incorrect response reset the response 

requirement. Injections before training sessions were conducted (Monday-Friday) in a double 

alternation sequence of drug (SA-57, CP 55,940, or AEA) and vehicle (e.g., vehicle, vehicle, 

drug, drug).  

 

Testing 

Test sessions were scheduled twice per week, with a minimum of 72 h between test days. 

To be eligible for testing, subjects were required to meet the following three criteria on nine of 

the previous ten consecutive training sessions: 1) correct completion of the first FR10 (i.e., first 

10 consecutive responses into the appropriate aperture); 2) ≥ 80% correct responding; and 3) 

maintain response rates ≥ 10 responses/min. During the 15-min test sessions, responses in either 

aperture resulted in the delivery of food reinforcement according to an FR10 schedule of 

reinforcement, without a limitation on the number of reinforcers earned within a session. Before 

conducting substitution tests, dose-response tests with SA-57, CP 55,940 or AEA were 

conducted to characterize their generalization gradients to their respective discriminative 

stimulus. For time course studies, animals were injected with SA-57 (10 mg/kg) and tested at 

0.25, 1, 2, 4, or 8 h after injection. In order to assess whether CB1 receptors mediated the 

discriminative effects of SA-57, and the substitution of CP 55,940, MJN110, JZL184, and 

JZL195, we challenged with the CB1 antagonist rimonabant (3 mg/kg; Rinaldi-Carmona, 1994). 

We also examined whether the CB2 receptor antagonist SR144528 (3 mg/kg; Rinaldi-Carmona et 
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al., 1998), the TRPV1 receptor antagonist capsazepine (5 mg/kg; Kinsey et al. 2009), and the 

PPARα receptor antagonist GW6471 (2 mg/kg; Lo Verme et al. 2005) would block the 

discriminative stimulus effects of SA-57. Each antagonist was administered 15 min prior to 

injections of 10 mg/kg SA-57. The three cohorts of mice trained to discriminate SA-57 were 

employed in the following experiments. All cohorts were included in the SA-57 acquisition 

curve. Cohort 1 was used in the time-course study, the MJN110 (0.25 – 5 mg/kg), KT182 (1 and 

2 mg/kg), KT195 (40 mg/kg), valdecoxib (10 mg/kg), and MJN110 (2.5 mg/kg) + PF3845 (10 

mg/kg) substitution studies; cohort 2 was used to test the psychoactive non-cannabinoid drugs 

nicotine (1.5 mg/kg) and diazepam (10 mg/kg), and in substitution tests with JZL195 (2-20 

mg/kg), JZL184 (4-100 mg/kg), PF3845 (10 and 30 mg/kg), and URB597 (10 mg/kg); and 

cohort 3 was used in the receptor antagonist experiments (rimonabant, SR144528, capsazepine, 

GW6471).  

 

[3H] SR141716A binding assay 

Cerebella were dissected from adult male ICR mice, stored at -80°C, and membranes 

were prepared as described previously (Selley et al., 2004). Membrane protein (15 µg) was 

incubated with 0.94 nM [3H] SR141716A in assay buffer (50 mM Tris-HCl, pH 7.4, 3 mM 

MgCl2 and 0.2 mM EGTA) with 0.5% (wt./vol) bovine serum albumin (BSA) in the presence 

and absence of 5 µM unlabeled SR141716A to determine non-specific and specific binding, 

respectively. The assay was incubated for 90 min at 30°C and terminated by rapid filtration 

under vacuum through Whatman GF/B glass fiber filters that were pre-soaked in Tris buffer 
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containing 0.5% (wt./vol) BSA (Tris-BSA), followed by five washes with cold Tris-BSA. Bound 

radioactivity was determined by liquid scintillation spectrophotometry at 45% efficiency in 

ScintiSafe Econo 1 scintillation fluid after a 12-h delay. 

 

Data analysis 

The percentage of drug appropriate responses and response rates (responses/min) were 

recorded for each experiment. Full substitution was defined as greater than or equal to 80% nose 

pokes that occurred into the aperture associated with the training drug. Partial substitution was 

defined as greater than or equal to 20% and less than 80% nose pokes in the training drug-paired 

aperture. Less than 20% nose pokes on the drug-paired aperture was defined as no substitution 

(Solinas et al., 2006). ED50 values (and 95% confidence intervals) for generalization or 

substitution were calculated using least squares linear regression analysis. Behavioral data are 

depicted as mean ± S.E.M. The data were analyzed using one-way or two-way ANOVA. 

Dunnett's tests or Bonferroni post hoc analyses were used following a significant ANOVA for 

the response rate data. GraphPad Prism 6.0 statistical software (Graph Pad Software, Inc., La 

Jolla, CA) was used for data analysis. 

Binding data were determined in triplicate and are reported as specific binding. Each 

competition dataset was analyzed by one-way ANOVA to determine concentration-dependence. 

Rimonabant competition curves were analyzed by non-linear regression to determine IC50 and 

Hill coefficients using a four parameter fit with GraphPad Prism 6.0. The IC50 values were then 

converted to Ki values using the Cheng-Prusoff equation.  
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Results 
 

SA-57 substitutes for CP 55,940 in C57BL/6J mice and AEA in FAAH (-/-) mice 

Figure 1 shows that SA-57 fully substituted for CP 55,940 and AEA in mice trained to 

discriminate each of these drugs. C57BL/6J mice administered either CP 55,940 or SA-57 

completely occasioned the discriminative stimulus effects of CP 55,940 (Figure 1A). SA-57 did 

not affect response rates; however, CP 55,940 significantly reduced response rates [F (4,55) = 

4.7; p < 0.01], with 0.2 mg/kg yielding significant reductions in response rates compared with 

vehicle (Figure 1B). In FAAH (-/-) mice trained to discriminate AEA (6 mg/kg) from vehicle, 

SA-57 also fully substituted for AEA (Figure 1C). FAAH (-/-) mice administered AEA (1-30 

mg/kg) or SA-57 (1-10 mg/kg) dose-dependently selected the aperture associated with AEA 

(Figure 1C). Both AEA [F (4, 50) = 27.5; p < 0.001] and SA-57 [F (5, 46) = 15.27; p < 0.001] 

significantly reduced response rates (Figure 1D). The highest doses tested of AEA (i.e., 30 

mg/kg) and SA-57 (i.e., 17 mg/kg) significantly depressed response rates compared with vehicle 

in FAAH (-/-) mice.  
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Figure 1. Effects of CP 55,940, AEA and SA-57 on percentage of responses in training drug-

paired apertures and response rates in C57BL/6J mice trained to discriminate CP 55,940 (0.1 

mg/kg) or FAAH (-/-) mice trained to discriminate AEA (6 mg/kg).  

A) Dose-dependent generalization of CP 55,940 and dose-dependent substitution of SA-57 for 

the CP 55,940 discriminative stimulus. The respective ED50 (95% CI) values for CP 55,940 

generalization and SA-57 substitution in C57BL/6J mice were 0.04 (0.03 - 0.05) mg/kg and 2.4 

(1.6 – 3.6) mg/kg. B) Respectively, CP 55,940 (0.2 mg/kg), but not SA-57, significantly 

decreased rates of responding compared to vehicle. C) Dose-dependent generalization of AEA 

and dose-dependent substitution of SA-57. The respective ED50 (95% CI) values for AEA and 

SA-57 in FAAH (-/-) mice were 2.7 (2.3-3.1) mg/kg and 3.1 (2.8-3.4) mg/kg. D) SA-57 (17 
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mg/kg) and AEA (30 mg/kg) decreased rates of responding. Values represent mean ± SEM. 

Filled symbols indicate significant difference (p < 0.001) vs. vehicle; n = 7-10 mice/group.  

 

The SA-57 discriminative stimulus 

Because 10 mg/kg SA-57 fully substituted for CP 55,940 in C57BL/6J mice and for 

FAAH (-/-) mice, this dose of SA-57 was selected as the training dose in three naïve cohorts of 

mice (n = 8 mice/group). As shown in Figure 2, 50% of mice achieved the criteria to 

discriminate SA-57 from vehicle by the 27th training session, and 23 of 24 mice acquired the 

discrimination by day 40. The final mouse achieved criteria on day 74 of training, but was 

excluded from subsequent experiments because of its substantial delay in acquisition. Similar 

rates of acquisition were found for CP 55,940 in C57BL/6J mice and AEA in FAAH (-/-) mice.  
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Figure 2. Acquisition rates of SA-57 (10 mg/kg) in C57BL/6J mice, AEA (10 mg/kg) in FAAH 

(-/-) mice, and CP 55,940 (0.1 mg/kg) in C57BL/6J mice trained in drug discrimination.  

Values represent percentage of mice that achieved criteria (see text) across days. n = 24 mice for 

SA57, 12 for AEA, and 12 for CP 55,940.  
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Figure 3 shows the time course effects of 10 mg/kg SA-57 vs. vehicle for selecting the 

aperture associated with SA-57 (Figure 3A) and response rates (Figure 3B). Whereas mice that 

received vehicle responded consistently on the vehicle-associated aperture at each of the time 

points, mice administered 10 mg/kg SA-57 selected the SA-57 aperture ≥ 80% at 1 and 2 h post 

injection, showed partial substitution at 0.25 and 4 h, and responded predominantly on the 

vehicle aperture 8 h after injection. There were no differences in rates of responding between 

mice injected with vehicle or SA-57 at any time point (Figure 3B; p = 0.48).  
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Figure 3. Time course effects for occasioning the 10 mg/kg SA-57 training dose.  

A) Percentage of responses in the SA-57-associated aperture 0.25, 1, 2, 4, or 8 h following an 

injection of vehicle or SA-57 (10 mg/kg). B) SA-57 did not affect response rates at any time 

point after administration. Values represent mean ± SEM; n = 7 mice/group.  
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As shown in Figure 4, the CB1 receptor antagonist rimonabant (0.03-3 mg/kg), significantly 

blocked the SA-57 training dose. In contrast, the CB2 receptor antagonist SR144528 (3 mg/kg), 

the TRPV1 receptor antagonist capsazepine (5 mg/kg), and the PPARα receptor antagonist 

GW6471 (2 mg/kg) did not block the SA-57 training dose (Table 1).  
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Figure 4. CB1 receptors play a necessary role in the SA-57 discriminative stimulus.  

A) Rimonabant (0.03-3 mg/kg) significantly attenuated the SA-57 training dose. B) Rimonabant 

doses (i.e., 0.1, 0.3, 1, 3 mg/kg) that blocked the SA-57 training dose did not reduce response 

rates. Triangles represent vehicle controls, and open circles represent injections of SA-57. Values 

represent mean ± SEM; n = 3-6 mice/group. 
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Table 1. CB1 receptors mediate the discriminative stimulus effects of the SA-57 (10 mg/kg) 

training dose. The CB1 receptor antagonist rimonabant (3 mg/kg) significantly blocked the 

discriminative stimulus effects of SA-57 (10 mg/kg) as well as substitution of CP 55,940 (0.1 

mg/kg). The CB2 receptor antagonist SR144528 (3 mg/kg), the TRPV1 receptor antagonist 

capsazepine (5 mg/kg), and the PPARα receptor antagonist GW6471 (2 mg/kg) did not block the 

SA-57 (10 mg/kg) discriminative stimulus. The vehicle-vehicle and rimonabant-vehicle 

conditions are the same as those used in Figure 9. Values represent mean ± SEM. n = 6-8 

mice/group. 

Drug Antagonist 
% SA-57 Substitution +/- 

SEM Nose Pokes/min +/- SEM 

Vehicle 

Vehicle 

Rimonabant 

SR144528 

Capsazepine 

GW6471 

12.8 ± 9.4 

4.0 ± 1.2 

0.7 ± 0.3 

1.3 ± 0.4 

0.3 ± 2.6 

38.9 ± 3 

24.9 ± 3 

36.6 ± 3.8 

20.1 ± 2.6 

24.6 ± 3.1 

SA-57 

Vehicle 

Rimonabant 

SR144528 

Capsazepine 

GW6471 

95.7 ± 1.7 

3.4 ± 1.2 

98 ± 1.5 

86 ± 12.2 

96.5 ± 1.3 

27.3 ± 1.9 

20.1 ± 2.5 

30.5 ± 5.4 

15.7 ± 2.9 

19.0 ± 2 
CP 55,940 Vehicle 

Rimonabant 
82.5 ± 11 

10.4 ± 5.7 
33.1 ± 3.3 

20.7 ± 4.9 
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SA-57 does not bind CB1 receptors 

As the SA-57 discriminative stimulus required CB1 receptor activation, we next 

examined whether this compound interacts directly with CB1 receptors. Accordingly, we tested if 

SA-57 would displace [3H] SR141716A binding in mouse cerebellar membranes. As shown in 

Figure 5, rimonabant (i.e., unlabeled SR141716A) inhibited [3H] SR141716A binding in a 

concentration-dependent manner (p < 0.001, F = 17.36, df = 7), with a Ki value of 0.75 ± 0.16 

nM and Hill coefficient of 0.97 ± 0.08. In contrast, SA-57 (0.01 to 10 µM) did not inhibit [3H] 

SR141716A binding (p = 0.96; Figure 5), indicating that this compound does not directly interact 

with CB1 receptors.  
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Figure 5. SA-57 does not compete with [3H] SR141716A binding to CB1 receptors in mouse 

cerebellum.  

Data represent mean [3H] SR141716A bound (pmol/mg) ± SEM in the presence of varying 

concentrations of rimonabant or SA-57 (n = 3). Specific binding of [3H] SR141716A in the 

absence of competing ligand was 1.65 ± 0.26 pmol/mg. Similar results were obtained with [3H] 

CP 55,940 binding in membranes prepared from Chinese hamster ovary cells stably expressing 

the mouse CB1 receptor, in which concentrations of up to 10 µM SA-57 did not affect binding 

(data not shown). 
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Substitution tests in SA-57 discriminating mice 

We next tested whether the non-cannabinoid, psychoactive compounds, nicotine and 

diazepam, would substitute for SA-57. As shown in Figure 6A, nicotine did not substitute for 

SA-57, but diazepam produced partial substitution. Both drugs significantly reduced response 

rates [Figure 6B; F (3,28) = 14.01; p < 0.001], demonstrating that behaviorally active doses were 

reached. 
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Figure 6. Substitution experiments of non-cannabinoid psychoactive drugs nicotine (1.5 mg/kg) 

and diazepam (10 mg/kg) for the SA-57 training dose.  

A) Nicotine did not substitute, while diazepam partially substituted for the SA-57 training dose. 

B) Nicotine (1.5 mg/kg) and diazepam (10 mg/kg) significantly reduced rates of responding. 

Values represent mean ± SEM. Asterisks indicate significant difference (p < 0.05) vs. vehicle; n 

= 7-8 mice/group. 
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Figure 7 shows the dose-effect curves of the mixed CB1/CB2 receptor agonist CP 55,940, 

the dual FAAH-MAGL inhibitor JZL195, and SA-57 in mice trained to discriminate SA-57 (10 

mg/kg) from vehicle. CP 55,940, JZL195, and SA-57 produced dose-related responding into the 

aperture associated with SA-57 (Figure 7A). CP 55,940 [F (3,28) = 2.99, p < 0.05] and SA-57 [F 

(4,42) = 2.78, p < 0.05], but not JZL195, reduced response rates (Figure 7B).  
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Figure 7. Evaluation of the dose-response relationships of SA-57, CP 55,940, and JZL195 to 

occasion the SA-57 (10 mg/kg) discriminative stimulus.  

A) SA-57 produced dose-dependent generalization, and CP 55,940 and JZL195 dose-

dependently substituted for SA-57. The respective ED50 (95% CI) values for CP 55,940 

substitution, JZL195, and SA-57 generalization were 0.096 (0.076 – 0.121) mg/kg, 6.2 (3.5 – 

10.9) mg/kg, and 4.4 (3.5 - 5.4) mg/kg. B) Respectively, doses of CP 55,940 (0.2 mg/kg) or SA-

57 (17 mg/kg) significantly reduced response rates. Values represent mean ± SEM. Filled 

symbols indicate significant difference (p < 0.05) vs. vehicle; n = 7-8 mice/group. 
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SA-57 generalized to itself in a dose-dependent fashion, and the MAGL inhibitors 

MJN110 and JZL184 dose-dependently substituted for SA-57 (Figure 8A). Although MJN110 

did not affect response rates [F (6, 48) = 0.33, p = 0.92], the highest doses of SA-57 (17 mg/kg) 

[F (5, 42) = 3.391, p < 0.05] and JZL184 (100 mg/kg) [F (4, 18) = 3.985, p < 0.05] significantly 

reduced response rates (Figure 8B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 81 

 

 

Figure 8. Evaluation of the dose-response relationships of SA-57, MJN110 and JZL184 to 

occasion the SA-57 (10 mg/kg) stimulus.  

A) Dose-dependent generalization of SA-57 and dose-dependent substitution of MJN110 and 

JZL184. The respective ED50 (95% CI) values for MJN110 and JZL184 generalization and SA-

57 substitution in C57BL/6J mice were 0.77 (0.53 – 1.1) mg/kg and 20.44 (11 – 37.97) mg/kg, 

and 4.39 (3.53 – 5.45) mg/kg. B) SA-57 (17 mg/kg) and JZL184 (100 mg/kg), significantly 

decreased rates of responding. Values represent mean ± SEM. ** indicate significant difference 

(p < 0.001) vs. vehicle; n = 7-8 mice/group.  
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As shown in Figure 9A, rimonabant (3 mg/kg) completely blocked substitution of 

MJN110 (5 mg/kg), JZL184 (100 mg/kg), and JZL195 (20 mg/kg) for the SA-57 training dose. 

Also, rimonabant significantly reduced rates of responding [Figure 9B; F (1, 29) = 11.91, p < 

0.01].  
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Figure 9. Substitution of MJN110 (5 mg/kg), JZL184 (100 mg/kg) and JZL195 (20 mg/kg) for 

SA-57 (10 mg/kg) requires CB1 receptors.  

A) Rimonabant (3 mg/kg) completely blocked MJN110, JZL184 and JZL195 substitution. B) 

Rimonabant did affect response rates. Values represent mean ± SEM; n = 7-8 mice/group.  
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In contrast, mice administered high doses of the FAAH inhibitors PF-3845 (10 and 30 

mg/kg) and URB597 (10 mg/kg) selected the vehicle aperture (Table 5). Likewise, mice given 

dosesABHD6 inhibitors that completely block enzyme activity, KT182 (1 and 2 mg/kg) or 

KT195 (40 mg/kg), as well as mice given high dose of the selective COX2 inhibitor valdecoxib 

(10 mg/kg) selected the vehicle aperture. 
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Enzyme Drug (mg/kg) % SA-57 Substitution +/- SEM (Nose Pokes/min) +/-SEM 

FAAH 
Vehicle 

PF-3845 (10) 

PF-3845 (30) 

URB597 (10) 

0.6 ± 0.5 

1.5 ± 0.5 

0.7 ± 0.2 

2.1 ± 1.0 

47.5 ± 4.9 

34.4 ± 3.8 

38.9 ± 3.5 

36.9 ± 5.6 

ABHD6 
Vehicle 

KT182 (1) 

KT182 (2) 

KT195 (40) 

1.1 ± 0.6 

1.4 ± 0.7 

1.4 ± 0.8 

0.8 ± 0.3 

46.5 ± 2.6 

41.1 ± 3.5 

43.5 ± 2.4 

38.1 ± 3.1 
COX2 Vehicle 

Valdecoxib (10) 
1.1 ± 0.6 

1.1 ± 0.7 
46.5 ± 2.6 

31.9 ± 3.9 
 

Table 5. FAAH inhibitors (PF-3845 and URB597), ABHD6 inhibitors (KT182 and KT195), and 

the COX2 selective inhibitor valdecoxib do not substitute for the discriminative stimulus effects 

of SA-57 (10 mg/kg) in C57BL/6J mice and do not affect response rates. Values represent mean 

± SEM; n = 7-8 mice/group.  
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Because MAGL inhibitors, but not FAAH inhibitors, substituted for SA-57, we next 

examined whether full FAAH inhibition would elicit a leftward shift in the MAGL substitution 

dose-response curve. Accordingly, we tested the dose-response relationship of MJN110 with 

PF3845 (10 mg/kg) or vehicle for substitution in mice trained to discriminate SA-57 from 

vehicle. As shown in Figure 10A, PF-3845 elicited a significant leftward shift in the MJN110 

substitution dose-response curve [potency ratio (95% CL) = 1.84 (1.3 – 2.8)] (Colquhoun, 1971). 

The ED50 (95% CI) values for the MJN110 + Veh and MJN110 + PF3845 groups were 0.89 

(0.68 – 1.15) and 0.51 (0.27 – 0.95) mg/kg, respectively. No significant changes were found for 

response rates (Figure 10B).   
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Figure 10. The FAAH inhibitor PF-3845 augments the MJN110 substitution dose-response 

curve for SA-57 (10 mg/kg).  

A) PF-3845 (10 mg/kg) produced a leftward shift of the MJN110 substitution dose-response 

curve. B) None of the drug combinations significantly decreased rates of responding. Values 

represent mean ± SEM; n = 7-8 mice/group.  
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Discussion 
 

The present study demonstrates that mice readily learn to discriminate the dual FAAH-

MAGL inhibitor SA-57 from vehicle. Specifically, the majority (i.e., 23 of 24) of subjects 

learned to discriminate the dual FAAH-MAGL inhibitor SA-57 from vehicle within 40 training 

sessions. The 10 mg/kg SA-57 training dose was previously demonstrated to produce significant 

increases in brain levels of AEA and 2-AG (Wiebelhaus et al., 2015). As SA-57 fully blocks 

FAAH activity at lower doses (0.05-1 mg/kg) than those required to inhibit MAGL (1.25-12.5 

mg/kg) (Niphakis et al., 2012) it provided a useful tool to examine the consequences of full 

FAAH inhibition while incrementally elevating brain 2-AG. The observation that 1 mg/kg SA-

57, which produces maximal increases in endogenous AEA without detectable increases in 2-AG 

(Niphakis et al., 2012), did not generalize to the training dose (10 mg/kg SA-57) indicates that 

FAAH inhibition alone is not sufficient to occasion to the SA-57 training dose. Similarly, neither 

FAAH inhibitor (i.e., PF-3845 or URB597) substituted for SA-57. In contrast, the dual FAAH-

MAGL inhibitor JZL195, and two MAGL inhibitors, MJN110 and JZL184, fully substituted for 

the SA-57 training dose, suggesting that MAGL inhibition alone may be sufficient for 

generalization to the 10 mg/kg SA-57 training dose. Interestingly, PF-3845 produced an 

approximately two-fold leftward shift in the MJN110 substitution dose-response curve. The 

observation that rimonabant completely blocked the discriminative stimulus effects of SA-57 

indicates that CB1 receptors play a necessary role in the subjective effects of SA-57. Similarly, 

rimonabant completely blocked the substitution of both MAGL inhibitors (MJN110 and JZL184) 

and the dual FAAH-MAGL inhibitor JZL195. These findings suggest that elevating 
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endocannabinoid brain levels through the simultaneous blockade of FAAH and MAGL produces 

a CB1 receptor mediated interoceptive stimulus. 

Consistent with previous studies reporting that SA-57 or the dual FAAH-MAGL inhibitor 

JZL195 substitute for the THC discriminative stimulus (Long et al., 2009; Hruba et al., 2015; 

Walentiny et al., 2015), we found that SA-57 (10 mg/kg) fully substituted for the discriminative 

stimulus effects of the potent cannabinoid receptor agonist CP 55,940 in C57BL/6J mice and the 

endogenous cannabinoid AEA (6 mg/kg) in FAAH (-/-) mice. The potency of SA-57 in 

producing a discriminative stimulus was similar to its potency in substituting for either CP 

55,940 or AEA. Furthermore, SA-57’s discriminative stimulus effects occurred at a training dose 

known to produce maximal increases in AEA and 2-AG (Niphakis et al., 2012). In addition, CP 

55,940 fully substituted for SA-57, an effect that was completely blocked by rimonabant, further 

implicating a pivotal role of CB1 receptors in these effects. Similarly, the dual FAAH-MAGL 

inhibitor JZL195 dose-dependently substituted for SA-57. Time-course investigation revealed 

that SA-57 partially generalized at 0.5 h, fully generalized at 1 and 2 h, partially generalized at 4 

h, and by 8 h mice responded mostly on the aperture paired with vehicle.  

It is noteworthy that MJN110 and JZL184 fully substituted for the discriminative 

stimulus effects of SA-57, while mice treated with a low dose of SA-57 (which does not elevate 

2-AG), URB597, or PF-3845 selected the vehicle aperture. These findings suggest that MAGL 

inhibition represents a driving force underlying the SA-57 training dose. However, the 

observation that PF-3845 increased the potency of MJN110 to substitute for SA-57 suggests that 

FAAH inhibition increases the effectiveness of the discriminative stimulus produced by MAGL 
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inhibition alone. The fact that 2-AG levels are approximately three orders of magnitude higher 

than AEA levels in wild type mouse brain (Ahn et al., 2009; Long et al., 2009) is consistent with 

the notion that MAGL inhibition elicits more prominent pharmacological effects than those 

produced by FAAH inhibition. Moreover, as FAAH is expressed on the post-synaptic terminal 

(Gulyas et al., 2004), and MAGL (Dinh et al., 2002) is expressed on the pre-synaptic terminal, it 

is plausible that AEA and 2-AG activate distinct CB1 receptor mediated neuronal circuits. 

Because AEA and 2-AG bind CB1 and CB2 receptors, AEA also binds TRPV1 receptors, 

and other FAAH substrates (i.e., PEA and OEA) bind PPARα receptors (Lo Verme et al., 2005), 

we examined whether selective antagonists for each of these receptors would block the 

discriminative stimulus effects of SA-57. Rimonabant, but not the other receptor antagonists, 

completely blocked the discriminative stimulus effects of SA-57. These findings indicate that 

CB1 receptor activation is required for the subjective effects of SA-57, while CB2, TRPV1, and 

PPARα receptors are dispensable. Moreover, the fact that SA-57 did not affect ligand binding to 

CB1 receptors in either a competitive or non-competitive manner is consistent with the 

hypothesis that it increases brain endocannabinoid levels that then elicit a CB1 receptor-mediated 

discriminative stimulus. 

The present study also assessed whether a variety of psychoactive non-cannabinoid drugs 

would substitute for SA-57. Specifically, nicotine did not substitute for the SA-57 training dose, 

although it significantly reduced response rates. In contrast, diazepam partially substituted for 

SA-57, but did so at a dose that reduced response rates. Similarly, diazepam partially substitutes 

for THC at high doses that produce motor impairment in the rat drug discrimination paradigm 
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(Wiley and Martin, 1999). Taken together, these studies suggest the possibility of a potential 

GABAergic component for CB1 receptor-mediated discriminative stimuli. In addition, because 

MAGL inhibition reduces brain levels of arachidonic acid as well as various prostanoids 

(Nomura et al., 2011), we tested whether the COX2 inhibitor valdecoxib would substitute for 

SA-57. However, valdecoxib was devoid of action in this assay, suggesting that prostaglandins 

do not play a necessary role in the discriminative effects of SA-57. 

It is noteworthy that combined inhibition of FAAH and MAGL attenuates somatic signs 

of opioid withdrawal (Ramesh et al., 2011). However, simultaneous blockade of these enzymes 

also elicits other cannabimimetic effects, as assessed in the tetrad assay including hypomotility, 

antinociception, catalepsy, and hypothermia (Long et al., 2009; Anderson et al., 2014; Ghosh et 

al., 2015), as well as impaired performance in a Morris water maze spatial memory task (Wise et 

al., 2012). These effects of dual FAAH and MAGL inhibition are similar to those of THC, 

whereas single inhibition of either enzyme produces a decreased spectrum and magnitude of 

cannabimimetic effects. Specifically, the MAGL inhibitor JZL184 produces antinociception, 

hypomotility, and dysregulation of thermoregulation when challenged with manipulations that 

elicit hypothermia (Nass et al., 2015), while FAAH inhibition produces antinociception, but not 

other cannabimimetic effects (Long et al., 2009). However, drug discrimination is more sensitive 

in detecting cannabimimetic effects compared with the tetrad assay. For example, THC is more 

potent in producing its discriminative stimulus effects than in eliciting the full set of tetrad 

effects (Long et al., 2009; Marshell et al., 2014a). Given that dual blockade of FAAH and 

MAGL significantly reduces locomotor activity (Long et al., 2009) and SA-57 (10 mg/kg) 
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completely inhibits FAAH and MAGL activity (Niphakis et al., 2012), the lack of rate 

suppressive effects of SA-57 (10 mg/kg) during training session is interesting. Similarly, THC 

(5.6 mg/kg) reduces locomotor activity, but does not reduce response rates during training 

sessions in drug discrimination procedure (Wiley et al., 2005). This lack of apparent motor 

depression is consistent with the idea that rate suppressive effects of drugs undergo tolerance 

throughout the course of drug discrimination training (Solinas et al., 2006).  

The results of the present study suggest that SA-57 serves as a discriminative stimulus at 

doses that produce increased levels of both AEA and 2-AG through a CB1 receptor mechanism 

of action, though elevated levels of 2-AG may be the main driving force for the SA-57 training 

dose. Although the brain regions mediating the discriminative stimulus effects of SA-57 and 

cannabinoid receptor agonists are unknown, it is noteworthy that endogenous cannabinoids, and 

their receptors are located in neural pathways mediating the reinforcing effects of drugs of abuse 

(i.e. mesolimbic dopamine pathway) (Oleson and Cheer, 2012).  

In conclusion, the present study demonstrates that the dual FAAH-MAGL inhibitor SA-

57 serves as a reliable discriminative stimulus. The observations that rimonabant completely 

blocks the SA-57 training dose, and mice trained to discriminate SA-57, CP 55,940, and AEA 

shows symmetrical substitution, strongly implicate the importance of the CB1 receptor in this 

novel interoceptive stimulus. Collectively, these findings raise the provocative possibility that 

FAAH and MAGL serve as dual brakes to prevent the psychoactive consequences of CB1 

receptor over-stimulation caused by elevated levels of AEA and 2-AG.   
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Chapter 3. General Discussion 

 

The first goal of this dissertation was to determine whether SA-57, a dual inhibitor of 

FAAH and MAGL, which regulates levels of the endocannabinoids AEA and 2-AG will serve as 

discriminative stimulus in the drug discrimination paradigm. To accomplish this goal, we 

established SA-57 as a discriminative stimulus, and then evaluated if each enzyme target of SA-

57 (FAAH, MAGL, ABHD6) could substitute for the SA-57 discriminative stimulus. Until now, 

an inhibitor of endocannabinoid degradation has not been established as a discriminative 

stimulus. Then we determined the duration of action of the discriminative stimulus, and 

investigated which receptors were necessary for generating the discriminative stimulus. Next, we 

determined if inhibiting both FAAH and MAGL were required for generating the SA-57 

discriminative stimulus, or if inhibiting either of these enzymes is sufficient. We discovered that 

inhibiting FAAH or ABHD6 alone had no effect, but MAGL inhibition alone substituted for SA-

57 through a CB1 receptor mechanism.  Moreover, FAAH inhibition enhanced the potency of the 

MAGL inhibitor MJN110. In summary, the data from this dissertation indicate that FAAH and 

MAGL serve as endogenous breaks that prevent endocannabinoid overstimulation of CB1 

receptors. Also, the SA-57 discriminative stimulus can be used to examine potential subjective 

effects produced by other inhibitors of endocannabinoid hydrolysis. 
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5.1: Cross-substitution of SA-57 and CP 55,940 
 

To select a training dose, we conducted a dose response study with SA-57 using two 

cannabinoids (AEA and CP 55,940) that are reported to serve discriminative stimuli to determine 

if SA-57 would substitute for either CP 55,940 (0.1 mg/kg) in C57BL/6J mice or AEA (5 mg/kg) 

in FAAH-/- mice. SA-57 (10 mg/kg) fully substituted for both the CP 55,940 and AEA 

discriminative stimulus, therefore, this dose of SA-57 (10 mg/kg) was selected to train a new 

cohort of mice. After mice learned to discriminate SA-57 (10 mg/kg), we observed that JZL195, 

and CP 55,940 fully substituted for SA-57. Because JZL195 is known to produce its behavioral 

effects through the CB1 receptors (Long et al., 2009), the substitution of JZL195 for SA-57, and 

cross-substitution between CP 55,940 and SA-57 provides strong evidence that CB1 receptors are 

important for the SA-57 discriminative stimulus. 

 

5.2: Investigating the receptors mediating the SA-57 discriminative stimulus 
 

We evaluated whether the discriminative stimulus effects produce by SA-57 were 

mediated by CB1, CB2, PPARα or TRPV1 receptors. The CB1 antagonist rimonabant (0.1 – 3 

mg/kg) attenuated the SA-57 discriminative stimulus, but the lowest dose tested (0.03 mg/kg) 

was without consequence. The lowest dose of rimonabant (0.03 mg/kg) resulted in 70% of 

responses in the aperture paired with SA-57 indicating that as the dose of rimonabant decreased, 

more AEA or 2-AG was available to stimulate CB1 receptors. It is interesting that lower doses of 

rimonbant (0.1 - 1 mg/kg) completely blocked the discriminative stimulus, because these doses 

have limited effects in other models of cannabinoid discrimination. For example, rimonabant (1 
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mg/kg) partially, but not fully attenuated the discriminative stimulus effects of rats trained to 

discrimination JWH-018 (0.3 mg/kg) (Wiley et al., 2014). In rats trained to discriminate WIN 

55,212-2, rimonabant (1 mg/kg) shifts the dose effect curve without attenuating the WIN 55,212-

2 discriminative stimulus (Järbe et al., 2011). Given the diversity of effects among studies 

investing the discriminative stimulus effects of cannabinoids, it is important to highlight one 

major experimental condition in the present dissertation. The sample size of mice in the 

rimonabant / SA-57 experiment (3-6 mice) was very small. This very small sample size may 

have contributed to the all-or-none effects observed by the different doses of rimonabant.  

The CB2 antagonists SR144528 had no effects on drug-like responding suggesting CB2 

receptors are not involved in this novel discriminative stimulus.  Because SA-57 inhibits FAAH, 

and AEA binds PPARα and TRPV1 receptors in addition to degrading other N-

acylethanolamines including N-palmitoylethanolamine (PEA), and N-oleoylethanolamine 

(OEA), we administered selective antagonist of PPARα and TRPV1 receptors to determine if 

either receptor contributed to the SA-57 discriminative stimulus. We selected antagonists of 

PPARα and TRPV1 receptors that were found to be effective at attenuating the effects of OEA 

and PEA in other behavioral assays (Lo Verme et al., 2005; Kinsey et al., 2009). We observed 

no change in the substitution pattern of SA-57 in the presence of either antagonist, suggesting 

PPARα and TRPV1 are not involved in the SA-57 discriminative stimulus. These findings along 

with the CB1 antagonists study provide very strong evidence CB1 receptors are the sole driver in 

the SA-57 discriminative stimulus. Also, CP 55,940 and MJN110 do not produce 

pharmacological effects through PPARα or TRPV1, and each drug fully substitutes for SA-57, 



 96 

providing further evidence of the role of CB1 receptors. 

 

5.3: Investigating the eCB degradative enzymes mediating SA-57’s effects  
 

In the first part of this dissertation we established that mice could reliably learn to 

discriminate SA-57 from vehicle. Our next goal was to determine if inhibiting FAAH, MAGL or 

ABHD6 alone could substitute for SA-57, to determine the contribution of each enzyme in the 

discriminative stimulus effects of SA-57.  

JZL195 is another potent inhibitor of both FAAH and MAGL. Because the high dose of 

JZL195 (20 mg/kg) fully blocks FAAH and MAGL activity, elevates AEA and 2-AG (Long et 

al., 2009), and fully substituted for SA-57 (see figure 6) this supported the hypothesis that 

inhibiting both FAAH and MAGL were required to produce the SA-57 discriminative stimulus. 

However, until we examined selective inhibitors of each target of SA-57, it remained to be 

discovered which enzymes were required. Therefore, we employed selective inhibitors of FAAH, 

MAGL and ABHD6. The selective FAAH inhibitors (PF3845 and URB597) and the selective 

ABHD6 inhibitors (KT195 and KT182) did not substitute for SA-57, however the MAGL 

inhibitors (MJN110 and JZL184) fully substituted for SA-57, and was block by rimonabant. PF-

3845 did enhance the potency of MJN110 inhibition, which suggests that FAAH inhibition can 

enhance the potency of MAGL inhibition. The observation that two MAGL inhibitors fully 

substitute for SA-57 provides strong evidence that maximal inhibition of MAGL is sufficient to 

produce subjective effects. Given that FAAH inhibition enhances the potency of MAGL 

inhibition, the subjective effects of SA-57 are probably attributed to inhibiting both enzymes. 
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The FAAH inhibitors PF-3845 and URB597 did not substitute for SA-57, and the mean 

responses for both inhibitors were below 5% for the aperture paired with SA-57. Finally, 

ABHD6 inhibitors did not substitute for SA-57. ABHD6 inhibition accounts for a small 

percentage of 2-AG degradation but is expressed post-synaptically so it regulates 2-AG in closer 

proximity to biosynthesis than MAGL, which is pre-synapatic. 

Although FAAH inhibition does not substitute for SA-57, it produced a leftward shift in 

the MJN110 dose response, which is likely the result of an increase in AEA binding to CB1 

receptors. Because 2-AG levels are much higher than AEA levels in wild type mouse brain (Ahn 

et al., 2009; Long et al., 2009), it is more reasonable to anticipate that a MAGL inhibitor on its 

own would have a more robust effect than a FAAH inhibitor. 

 
 
5.4: Nicotine and diazepam does not substitute for the SA-57 discriminative stimulus 
 

As drug discrimination is considered a highly selective behavioral pharmacological assay 

to investigate the receptor mechanism of action of drugs, we employed agonists that do not 

stimulate CB1 receptors such as nicotine and diazepam. As expected, nicotine and diazepam did 

not substitute for SA-57. However, diazepam did result in mean responses of 40% in the aperture 

paired with SA-57, indicating partial substitution for the SA-57 discriminative stimulus. This is 

similar to an older study observing partial substitution with GABA for THC (Mokler and 

Rosecrans, 1989). This partial effect could be because CB1 receptors are localized on pre-

synaptic GABA receptors. These observations indicate that drug discrimination is a useful 

preclinical model used to assess drug receptor activity in vivo. 
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5.5 Investigating the inhibition of arachidonic acid synthesis  

Because MAGL is responsible for producing arachidonic acid and prostanoids in brain 

(Nomura et al., 2011), we examined whether the COX-2 inhibitor valdecoxib, which reduces 

prostanoid synthesis but does not affect brain endocannabinoid levels, would substitute for SA-

57. Valdecoxib produced minimal responses in the aperture paired with SA-57, suggesting that 

prostaglandins do not play a necessary role in the discriminative effects of SA-57. 

 

5.5 Final Discussion  

Previous studies have examined the ability of FAAH and MAGL inhibitors to substitute 

for the discriminative stimulus generated by direct CB1 agonists (i.e. THC and CP 55,940). The 

purpose of the studies in this dissertation was to elucidate the effects of elevating endogenous 

cannabinoids, via inhibition of the degradative enzymes FAAH and MAGL, to serve as a 

discriminative stimulus. The present results support the hypothesis that elevating AEA and 2-AG 

levels by inhibiting their primary serine hydrolases FAAH and MAGL serves as a discriminative 

stimulus. The results presented here along with previous studies, indicate that endocannabinoid 

catabolic enzymes produce subjective effects that mimic the effects of THC. The discriminative 

stimulus effects of SA-57 were mediated via CB1 receptors with no contribution by CB2, TRPV1 

or PPARα receptors.  

We observed that complete blockade of MAGL substitutes for dual FAAH and MAGL 

inhibition, thus MAGL inhibition may produce subjective effects on its own. In this dissertation, 

the drug discrimination assay has provided valuable insights into the subjective effects produced 
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by inhibiting both FAAH and MAGL independently or in combination. Thus, SA-57 

discrimination in mice is a very useful assay to investigate the subjective effects produced by 

inhibitors of endocannabinoid hydrolysis.  

In summary, anandamide and 2-AG interact in a manner that is not fully understood to 

produce a CB1 receptor mediated discriminative stimulus. Anandamide is reported to substitute 

for THC, but only when exogenous administration of AEA is combined in the presence of a 

FAAH inhibitor. Neither FAAH nor MAGL inhibitors produce THC-like subjective effects when 

administered on their own. However, increasing levels of endogenous anandamide and 2-AG 

mimics the effects of THC. 

 
5.6: Future Studies 
  

Given that MAGL inhibitors substitute for SA-57, it would be interesting to determine if 

MAGL inhibition alone can serve as a discriminative stimulus. This would provide an 

opportunity to directly investigate the subjective effects of MAGL inhibition as an alternative to 

administering MAGL inhibitors in mice trained to discriminate SA-57 or THC. To fully 

characterize the discriminative stimulus effects produced by the major endocannabinoid 

regulating enzymes, we would also need to determine if mice could discriminate a FAAH 

inhibitor. If a FAAH inhibitor serves as a discriminative stimulus, it would provide “direct 

evidence” that FAAH inhibition produces subjective effects. Given that FAAH inhibitors do not 

substitute for the discriminative stimulus effects of THC or SA-57 and do not produce the full 

subset of tetrad effects, we predict that a FAAH inhibitor would not serve as a discriminative 



 100 

stimulus. Because MAGL inhibitors fully substitute for SA-57, it is likely that a MAGL inhibitor 

would serve as a discriminative stimulus. If complete blockade of MAGL serves as a 

discriminative stimulus, it would indicate MAGL inhibition produces subjective properties on its 

own, but these effects may not completely overlap with THC. Importantly, FAAH does not 

produce down regulation of CB1 receptors. The lack of subjective properties without functional 

changes to the CB1 receptor could indicate potential therapeutic benefits of FAAH inhibition 

without producing abuse-related subjective effects.  

2-AG is reported to induce rapid increases in intracellular free Ca2+ concentrations in 

NG108-15 cells by stimulating CB1 receptors (Sugiura et al., 1999). Therefore, we know that 2-

AG binds CB1 receptors, however, we cannot measure changes in the binding of endogenous 

cannabinoids to CB1 receptors after inhibiting endocannabinoid hydrolysis. In contrast, we can 

measure changes in the binding of CP 55,940 by determining the amount of ligand that displaces 

[3H] CP 55,940, but we can’t measure how much AEA or 2-AG displaces [3H] CP 55,940 after 

administering SA-57. This capability would allow us to determine the amount of AEA and 2-AG 

that binds to CB1 receptors after inhibiting endocannabinoid hydrolysis. For example, we would 

be able to determine the specific levels of AEA and 2-AG that is needed to bind CB1 receptors to 

generate a discriminative stimulus, or substitute for a separate discriminative stimulus. 

Also, it is yet to be determined which neural substrates are important for producing drug 

discriminative stimuli. Although, previous studies that conducted direct infusions of drug into 

specific brain regions have provided some insight into the brain regions that may be necessary 

for generating a discriminative stimulus. For example, nicotine infused directly into the medial 
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pre-frontal cortex (mPFC) fully substitutes for systemic injections of nicotine in the rat (Miyata 

et al., 1999). In a different study, two of six rats trained to discriminate i.p. injections of THC 

from vehicle selected the drug appropriate lever when THC was infused into the PFC or dorsal 

hippocampus (Mokler and Rosecrans, 1989). Also, infusions of vehicle into the reticular 

formation resulted in responses for THC indicating non-specific stimulation of this brain region 

can produce a THC-like discriminative stimulus. It is important to note that cannulae placements 

were not reported in this study. A similar approach could be taken in the future with mice trained 

to discriminate SA-57 using surgically implanted cannula aimed at the mPFC. Then we could 

infuse SA-57 into the mPFC to determine if the mPFC is necessary to generate discriminative 

stimulus produced by cannabinoids. 
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