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Abstract

A WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS FOR STREPTOCOCCUS SANGUINIS 
MICROARRAY EXPERIMENTS 

By Erik Dvergsten, B.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 
at Virginia Commonwealth University. 

Virginia Commonwealth University, 2016 

Director: Nak-Kyeong Kim, Ph.D., Assistant Professor, Department of Biostatistics 

Streptococcus sanguinis is a gram-positive, non-motile bacterium native to human 

mouths. It is the primary cause of endocarditis and is also responsible for tooth decay. Two-

component systems (TCSs) are commonly found in bacteria. In response to environmental 

signals, TCSs may regulate the expression of virulence factor genes. 

Gene co-expression networks are exploratory tools used to analyze system-level gene 

functionality. A gene co-expression network consists of gene expression profiles represented as 

nodes and gene connections, which occur if two genes are significantly co-expressed. 

An adjacency function transforms the similarity matrix containing co-expression similarities into 

the adjacency matrix containing connection strengths. Gene modules were determined 

from the connection strengths, and various network connectivity measures were calculated. 

S. sanguinis gene expression profile data was loaded for 2272 genes and 14 samples with

3 replicates each. The soft thresholding power 𝛽𝛽 = 6 was chosen to maximize 𝑅𝑅2 while 

maintaining a high mean number of connections. Nine modules were found. Possible meta-

modules were found to be: Module 1: Blue & Green, Module 2: Pink, Module 3: Yellow, Brown & 
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Red, Module 4: Black, Module 5: Magenta & Turquoise. The absolute value of module 

membership was found to be highly positively correlated with intramodular connectivity. Each 

of the nine modules were examined. Two methods (intramodular connectivity and 

TOM-based connectivity followed by network mapping) for identifying candidate hub genes 

were performed. Most modules provided similar results between the two methods. Similar 

rankings between the two methods can be considered equivalent and both can be used to 

detect candidate hub genes. Gene ontology information was unavailable to help select a 

module of interest. This network analysis would help researchers create new research 

hypotheses and design experiments for validation of candidate hub genes in biologically 

important modules. 
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1. Biological Background 

1.1.  Streptococcus sanguinis 

Streptococcus is a genus of spherical bacteria which are known to cause strep throat, 

scarlet fever, meningitis, pneumonia, and other infectious diseases [1]. Streptococcus sanguinis 

is a gram-positive, non-motile bacterium native to human mouths [2]. S. sanguinis can be found 

in the bloodstream leading to inhabitation of the heart valves. This can cause infective 

endocarditis, a potentially fatal heart disease. Entry into the bloodstream can occur during dental 

procedures as well as during routine eating [3]. S. sanguinis is recognized as the primary cause of 

infective endocarditis, and is also responsible for tooth decay via biofilm formation on tooth 

surfaces. S. sanguinis attaches directly to oral surfaces which allows for the subsequent 

attachment of various other microorganisms which contribute to dental plaque formation, tooth 

decay and periodontal disease [2]. The SK36 strain of S. sanguinis has 2270 purported protein 

coding genes, and contains 2.39 million bases [1]. 

1.2.  Two-component systems 

Two-component systems (TCSs) are commonly found in bacteria [4]. Genes involved in 

signal transduction via TCSs have been found to be virulence factors in disease models [4]. TCSs 

are comprised of histidine kinase, a membrane-bound protein, and a cytosolic response regulator 

protein [4]. TCSs are known to modify photosynthesis, pathogenicity, osmoregulation, and other 

responses [4]. In response to environmental signals, TCSs may regulate the expression of 

virulence factor genes [4]. 
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2. Methods

2.1.  Weighted Gene Co-expression Networks 

Gene co-expression networks are exploratory tools used to analyze system-level gene 

functionality. A gene co-expression network consists of gene expression profiles represented as 

nodes and gene connections, which occur if two genes are significantly co-expressed 

(determined by pairwise gene expression correlations) [5]. Modules are clusters of highly 

interconnected genes (i.e. highly correlated genes). A module eigengene is considered 

representative of the gene expression profiles in a given module, and by definition, is the first 

principal component of that module [5]. The first principal component explains the highest 

proportion of the variance among genes. When constructing a network, a hard threshold is 

implemented for defining unweighted network connections, while for weighted networks, a 

soft threshold is applied to assign each pair of genes a connection weight [5]. 

2.2.  Analysis 

Statistical analyses were performed using the R package WGCNA, a weighted correlation 

network analysis tool developed specifically for analyzing large, high-dimensional genetic 

datasets [6]. Network construction, module detection, topological overlap matrix construction, 

and various plots were produced with WGCNA (Figure 1 – Figure 9). VisANT, a biological 

network visualization tool, was used to produce the network visualizations in Figure 10 – Figure 

18 [7]. 
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2.3.  Gene Co-expression Similarity Measures and Adjacency Functions 

Every co-expression network relates to an adjacency matrix. The adjacency matrix is used 

to define node connectivity and houses connection strengths between node pairs [5]. The 𝑛𝑛 × 𝑛𝑛 

adjacency matrix 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖� is constructed from an 𝑛𝑛 × 𝑛𝑛 similarity matrix 𝑆𝑆 = �𝑠𝑠𝑖𝑖𝑖𝑖�, which 

measures the level of similarity between gene expression profiles across experiments [5]. Define 

the similarity matrix S as the absolute value of the Pearson correlation between each pair of 

genes 𝑖𝑖 and 𝑗𝑗 :  𝑠𝑠𝑖𝑖𝑖𝑖 = |𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖, 𝑗𝑗)|,𝑓𝑓𝑐𝑐𝑐𝑐 𝑠𝑠𝑖𝑖𝑖𝑖 ∈ [0,1]. The diagonal elements 𝑎𝑎𝑖𝑖𝑖𝑖 are conventionally 

defined as 0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ [0,1] for weighted networks [5]. Contrastingly, the adjacency matrix of 

unweighted networks is a binary system of a value 1 for being connected, and 0 for being 

unconnected [5].  

An adjacency function transforms the similarity matrix containing co-expression 

similarities into the adjacency matrix containing connection strengths [5]. The choice of 

adjacency function is determined by the weight properties of the network. The term weight 

properties references whether a network is weighted or unweighted. Unweighted networks 

apply hard thresholding using the signum function 

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠�𝑠𝑠𝑖𝑖𝑖𝑖, 𝜏𝜏� = �
1 𝑖𝑖𝑓𝑓 𝑠𝑠𝑖𝑖𝑖𝑖 ≥ 𝜏𝜏
0 𝑖𝑖𝑓𝑓 𝑠𝑠𝑖𝑖𝑖𝑖 < 𝜏𝜏 

which presents intuitive networks (i.e. the number of direct neighbors equals the node 

connectivity) [5]. However, this can present a problem. For example, if the threshold τ is 0.75 and 

the similarity is 0.74, the connection does not occur and consequently information is lost. 
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Additionally, node connectivity using hard thresholding is sensitive to the choice of the threshold 

[8]. 

 Soft thresholding helps avoid these disadvantages by defining a power adjacency 

function: 

𝑎𝑎𝑖𝑖𝑖𝑖 = �𝑠𝑠𝑖𝑖𝑖𝑖�
𝛽𝛽

,𝑓𝑓𝑐𝑐𝑐𝑐 𝛽𝛽 > 1. 

𝛽𝛽 is selected to approximate scale-free topology, which will be introduced in section 2.6 [5].  

2.4.  Selecting Adjacency Function Parameters 

There are a few factors to consider when determining the parameters of the adjacency 

function since the parameters determine the sensitivity and specificity of the pairwise connection 

strengths [5]. Network connectivity 𝑘𝑘𝑖𝑖  of node 𝑖𝑖 is defined as the number of its direct connections 

with other nodes. A similar Topological Overlap Matrix (TOM) based connectivity 𝜔𝜔𝑖𝑖 can also be 

used [5]. Let  

𝜔𝜔𝑖𝑖𝑖𝑖 =
∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖

min�𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑖𝑖� + 1 − 𝑎𝑎𝑖𝑖𝑖𝑖
 

where 𝑘𝑘𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑘𝑘𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 . Then 

𝜔𝜔𝑖𝑖 = �𝜔𝜔𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

It has been shown that a TOM-based measure of connectivity 𝜔𝜔𝑖𝑖 is superior to the 

standard 𝑘𝑘𝑖𝑖  measure [5]. The topological overlap matrix Ω = [𝜔𝜔𝑖𝑖𝑖𝑖] is transformed into a 
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dissimilarity matrix defined by 𝑑𝑑𝑖𝑖𝑖𝑖 = 1 − 𝜔𝜔𝑖𝑖𝑖𝑖, which is subsequently used for clustering gene 

expression profiles [5]. 

2.5.  Gene Module Identification 

 The next step after network construction is module detection. Modules are clusters of 

closely interconnected nodes (i.e. genes with high topological overlap). A weighted topological 

overlap measure has been shown to deliver more interconnected modules than an unweighted 

measure [5]. The WGCNA package uses unsupervised clustering to identify gene modules. Using 

a TOM-based dissimilarity, average linkage hierarchical clustering is performed using the 

standard R function hclust. Modules are depicted as dendrogram branches, and cutting is 

performed using the dynamic hybrid tree cut algorithm [6].  

 A TOM plot is a color-coded matrix representation of a summary of the co-expression 

network, which depicts the values of the dissimilarity matrix. Rows and columns are sorted by 

the hierarchical clustering dendrogram. Red and yellow indicate low and high dissimilarity 

respectively (see Figure 5). Modules are described as red squares along the diagonal. Note that 

TOM plots are symmetric along the diagonal because they are graphical representations of the 

topological overlap matrix which is also symmetric. 

2.6.  Scale-free Topology 

The evolution of biological systems is thought to be driven by a power-law distribution [9] 

[10]. In a power-law distribution, scale-free topology is directly related to the growth of the 
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network [5].  New nodes prefer to connect with existing nodes. An essential property of a scale-

free network is that the frequency distribution 𝑝𝑝(𝑘𝑘) of the connectivity follows a power law: 

𝑝𝑝(𝑘𝑘) ~ 𝑘𝑘−𝛾𝛾. 

The Pearson correlation measures the strength of the linear relationship between two variables. 

𝑅𝑅2, the square of the Pearson correlation of the aforementioned regression, can be used to show 

the degree to which a network satisfies scale-free topology [5].  An 𝑅𝑅2 approaching 1 will 

approximate a straight line which signifies a good fit for the data, and indicates a scale-free 

topology [5]. A simple linear regression of the log-log relationship yields a straight line and a 

perfect fit of the data when 𝑅𝑅2 is 1. Thus, a straight line on a plot of 𝑙𝑙𝑐𝑐𝑠𝑠10 𝑝𝑝(𝑘𝑘) versus 𝑙𝑙𝑐𝑐𝑠𝑠10 𝑘𝑘 

demonstrates scale-free topology (see Figure 3). This scale-free topology relationship can be 

generalized as 

log10 𝑝𝑝(𝑘𝑘) = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑐𝑐𝑠𝑠10𝑘𝑘. 

Trade-offs exist between maximizing 𝑅𝑅2 and retaining a high mean number of 

connections. Only adjacency function parameter values leading to a scale-free topology fitting 

index of 𝑅𝑅2 > 0.80 should be considered [5]. The mean connectivity should also be high enough 

to contain enough information for module detection [5]. A gene co-expression network that does 

not approximately satisfy scale-free topology is considered biologically suspicious and therefore 

should not be used [5].  

The topology of scale-free networks is largely controlled by highly connected nodes called 

hubs [5]. One of the implications of scale-free topology is that relatively few hubs exist in the 

network. Less-connected nodes are linked to the hub, forming a network. An important 
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characteristic of scale-free networks is that they have a relatively large error tolerance [5]. Simple 

single celled organisms such as S. sanguinis reproduce and thrive despite undergoing severe 

environmental or pharmaceutical interventions, which is thought to be credited to the high error 

tolerance of a metabolic scale-free network [5]. 

2.7.  Intramodular Connectivity and Module Membership 

Network connectivity can also be defined with respect to each individual module. The 

intramodular connectivity 𝑘𝑘. 𝑖𝑖𝑛𝑛 and the TOM-based intramodular connectivity 𝜔𝜔. 𝑖𝑖𝑛𝑛 and can be 

defined similarly to whole-network connectivity [5]. Intramodular connectivity measures have 

been shown to be more biologically significant than whole-network connectivity [5].  

Hierarchical clustering results in a binary module assignment [6]. Each gene is either in a 

particular module, or not in that module. Therefore, it can be beneficial to define a continuous 

measure of uncertainty of module assignment. This is valuable for genes that are near module 

boundaries [6]. The module membership of gene 𝑖𝑖 in module 𝑞𝑞 can be defined as 

𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖
(𝑞𝑞) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖,𝐸𝐸(𝑞𝑞)), 

where 𝑥𝑥𝑖𝑖  is the expression profile of gene 𝑖𝑖 and 𝐸𝐸(𝑞𝑞) is the module eigengene of module 𝑞𝑞 [6]. 

Since module membership is a measure of correlation, 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖
(𝑞𝑞)  is in [-1,1], and as the absolute value 

of 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖
(𝑞𝑞)  increases, the similarity between gene 𝑖𝑖 and the module eigengene of module 𝑞𝑞 

increases [6]. The relationship between module membership and intramodular connectivity can 

be seen in Figure 8 and Figure 9. 
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3. Results

S. sanguinis gene expression profile data was loaded for 2272 genes and 14 samples with

3 replicates each. Data has previously been normalized. Genes and samples were checked for 

excessive missing values. 538 genes with excessive missing values were removed, leaving 1734 

genes. Next, a dendrogram was created via average linkage hierarchical clustering to detect 

sample outliers (see Figure 1). After standardizing the connectivity, one sample was found to be 

an outlier. However, the standardized connectivity of this sample was only borderline outlying, 

so the sample was included in all subsequent analyses. 

Figure 1. Sample Clustering. 
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Using the scale-free topology criteria from Section 2.6, a soft thresholding power 𝛽𝛽 = 6 

was chosen to best approximate scale-free topology. This choice gives 𝑅𝑅2 = 0.966 and the mean 

number of connections 𝑘𝑘 = 18.01 (see Table 1). Figure 2A plots scale-free topology model fit 𝑅𝑅2 

versus the candidate soft threshold powers. Figure 2B plots the mean connectivity versus the 

candidate soft threshold powers. Figure 3 contains a histogram of the frequency of connections 

and a plot assessing scale-free topology. A highly skewed histogram is said to approximate a 

scale-free network [5]. 

The soft thresholding power 𝛽𝛽 = 6 was chosen to maximize 𝑅𝑅2 while maintaining a high 

mean number of connections. As shown in Figure 2A, 𝛽𝛽 = 6 does not maximize 𝑅𝑅2 or maximize 

the mean number of connections. The mean number of connections is a strictly monotonic 

function, but 𝑅𝑅2 is not. However, Figure 2A is monotonically increasing until 𝛽𝛽 = 7. At 

approximately 𝑅𝑅2 = 0.96, Figure 2A levels out. The scale-free topology fit index (𝑅𝑅2 = 0.967 ) at 

𝛽𝛽 = 7 is greater than at 𝛽𝛽 = 6 (𝑅𝑅2 = 0.966), but this small increase in 𝑅𝑅2 results a comparatively 

large drop in the mean number of connections (𝑘𝑘 = 18.01 for 𝛽𝛽 = 6, 𝑘𝑘 = 12.87 for 𝛽𝛽 = 7). 

Similarly, a slightly larger increase in scale-free topology fit index (𝑅𝑅2 = 0.976 for 𝛽𝛽 = 9), 

reduces the mean number of connections too much (𝑘𝑘 = 7.60). For these reasons, 𝛽𝛽 = 6 was 

chosen. The table of soft threshold fit indices can be found in Table 1.  
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Figure 2. A. Scale independence. B. Mean connectivity. 

Figure 3. A. Histogram of connection frequency. B. Log-log plot of whole-network connectivity 
distribution. 
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Figure 4 displays the dendrogram created from gene clustering and the corresponding 

color module memberships. Modules were identified using a minimum module size of 30, and 

similar modules were merged if the cut height was less than 0.25. The cut height is determined 

using the dynamic hybrid tree cut algorithm [11]. Table 2 reports nine modules such as the 

turquoise module with 519 genes and the magenta module with 46 genes. 140 genes were 

outside of those nine modules and are labeled as the grey module. 

Table 1. Soft Threshold Fit Indices. 

Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
1 0.06 -0.87 0.97 440.20 432.62 736.13
2 0.41 -1.56 0.98 168.43 156.61 424.07
3 0.73 -1.78 0.99 79.96 67.91 287.36
4 0.88 -1.87 0.98 43.95 32.86 215.63
5 0.95 -1.80 0.98 26.96 17.56 172.98
6 0.97 -1.71 0.98 18.01 9.96 145.08
7 0.97 -1.61 0.96 12.87 6.05 125.41
8 0.96 -1.55 0.95 9.68 3.78 110.73
9 0.98 -1.45 0.97 7.60 2.48 99.25
10 0.97 -1.39 0.97 6.16 1.66 89.96
11 0.97 -1.36 0.96 5.12 1.13 82.89
12 0.97 -1.31 0.96 4.34 0.79 76.93
13 0.97 -1.28 0.97 3.74 0.56 71.75
14 0.96 -1.26 0.96 3.27 0.41 67.22
15 0.98 -1.24 0.97 2.89 0.30 63.19
16 0.97 -1.23 0.97 2.58 0.22 59.59
17 0.97 -1.21 0.97 2.32 0.17 56.35
18 0.96 -1.20 0.96 2.10 0.13 53.41
19 0.98 -1.19 0.97 1.92 0.10 50.74
20 0.98 -1.18 0.97 1.75 0.08 48.29
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Figure 4. Gene Dendrogram. Colors along the bottom indicate module assignment. Grey bars signify 
genes that were not assigned to any module. 

Table 2. Summary of Module Assignments. Grey 
signifies genes that were not assigned to any module. 

Module Color Total Genes Assigned
Turquoise 517

Blue 243
Brown 242
Yellow 183
Green 138
Red 80
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A network topological overlap heatmap was produced from TOM-based dissimilarity 

measures. The resulting TOM plot with dendrogram and module membership colors is found in 

Figure 5. It is apparent that the lower the genes merge in the clustering, the darker the color on 

the heatmap and consequently the higher the topological overlap. Since modules are defined by 

a branch cut height, a gene that is found towards the tip of a branch is more likely to belong in 

its assigned module compared to a gene that is higher up in the tree. These genes are said to 

have higher module membership.   

Figure 5. Network Heatmap Plot of All Genes. Each row and column corresponds to 
a gene. Light colors signify low topological overlap, while dark red represents high 
topological overlap. Dark squares along the diagonal represent modules. The gene 
dendrogram with module assignment are included along the axes. 

Network Heatmap Plot, All Genes
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The eigengene dendrogram (Figure 6) and the eigengene adjacency heatmap (Figure 7) 

depict tight clusters of correlated eigengenes called “meta-modules” [6]. The brown, red, and 

yellow modules are highly positively related. The blue and green modules are moderately to 

highly positively related. The magenta and turquoise modules are clustered together, but only 

moderately related. Meta-modules can also be seen as groups of reddish squares along the 

diagonal (Figure 7). The meta-modules (Module 1: Blue & Green, Module 2: Pink, Module 3: 

Yellow, Brown & Red, Module 4: Black, Module 5: Magenta & Turquoise) can clearly be seen in 

Figure 6 and Figure 7. 

Figure 6. Eigengene Dendrogram. The brown, red, and yellow modules are highly related. The blue and 
green modules are also related. The magenta and turquoise modules are also related. 
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Figure 7. Eigengene Adjacency Heatmap. Each row and column correspond to one module eigengene 
labeled with its corresponding color. Red represents positive correlation and high adjacency, and blue 
represents negative correlation and low adjacency. White represents zero correlation and an adjacency 
of 0.5. 
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The absolute value of module membership is highly positively correlated with 

intramodular connectivity (see Figure 8). When the absolute value of module membership is 

transformed by a power of 5, there is a high positive linear correlation between intramodular 

connectivity and the module membership in all nine modules (see Figure 9). In general, a high 

module membership corresponds to a high intramodular connectivity. Genes with both of these 

properties may be important candidate hub genes. Since the absolute value of modular 

membership and intramodular connectivity are highly correlated, either measure may be useful 

in selecting candidate hub genes. 

Figure 8. Absolute value of module membership vs. intramodular connectivity, separated by module. 
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Important modules may want to be examined in a web chart to visually see the most 

highly connected genes and their corresponding connections. Therefore, network information 

can be exported from R and visualized in VisANT, a biological network visualization tool [7]. The 

30 most highly connected genes based on intramodular connectivity are presented for each of 

the nine modules (see Table 3 – Table 11). Additionally, a network of the 30 most highly 

connected genes are displayed for each of the nine modules. Only the connections between 

genes with the highest topological overlap are displayed (see Figure 10 – Figure 18). This ad hoc 

threshold was determined visually to increase readability as well as present a similar number of 

top hub genes per module (ranges from 4 to 6) and a similar number of minimum connections to 

Figure 9. Absolute value of module membership raised to a power of 5 vs. intramodular connectivity, 
separated by module. 
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be considered a top hub. The candidate hub genes (Figure 10 – Figure 18) are not always the 

most highly connected genes based on TOM-based intramodular connectivity (Table 3 – Table 

11), but some overlap exists. For simplicity in the following analyses, hub genes refer to the most 

highly connected genes from Figure 10 – Figure 18. 

The turquoise module has 517 total genes. The top 30 genes are listed in Table 3 and the 

network is displayed in Figure 10. The intramodular connectivity ranges from 99.19 to 135.36 in 

the top 30 genes. After filtering the number of connections with a topological overlap threshold 

of 0.56, the five genes with at least 12 connections each were defined as hub genes. Interestingly, 

these five hub genes are not the exact same top five hub genes calculated from TOM-based 

intramodular connectivity. For example, the gene with the highest intramodular connectivity 

(SSA_1599) was not defined as a hub gene under these conditions. However, SSA_2295 was 

defined as a hub gene, but is only the 28th most interconnected. Nineteen of the top 30 genes in 

the turquoise module are hypothetical proteins. The hub gene with the highest intramodular 

connectivity is SSA_1336, an Ankyrin repeat-containing protein gene. 

The blue module has 243 total genes. The top 30 genes are listed in Table 4 and the 

network is displayed in Figure 11. The intramodular connectivity ranges from 10.52 to 21.93 in 

the top 30 genes. After filtering the number of connections with a topological overlap threshold 

of 0.18, the four genes with at least 11 connections each were defined as hub genes. As in the 

turquoise module, these four hub genes are not the exact same top four hub genes calculated 

from TOM-based intramodular connectivity. The only difference between these sets is the hub 

gene SSA_1662. This is the 24th highest interconnected gene. SSA_0424, a putative 

exopolysaccharide biosynthesis protein, is the 3rd most interconnected gene, but is not defined 
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as a hub gene under these conditions. The hub gene with the highest intramodular connectivity 

is SSA_0425, a glycosyltransferase gene. 

The brown module contains 242 genes. The top 30 genes are listed in Table 5 and the 

network is presented in Figure 12. The intramodular connectivity ranges from 18.84 to 34.22 in 

the top 30 genes. After filtering the number of connections with a topological overlap threshold 

of 0.21, the five genes with at least 14 connections each were defined as hub genes. As with the 

previous modules, the five hub genes are not the exact same top five hub genes calculated from 

TOM-based intramodular connectivity. Interestingly, the two genes (SSA_1260 and SSA_1261) 

with the highest intramodular connectivity are sequential. These two genes are also hub genes. 

There are two other sequential hub genes, SSA_0524 and SSA_0525; both are putative 

microcompartment protein genes. They are 6 and 8 respectively in Table 5.  

The yellow module contains 183 total genes. The top 30 genes are listed in Table 6 and 

the network is displayed in Figure 13. The intramodular connectivity ranges from 15.15 to 37.06 

in the top 30 genes. After filtering the number of connections with a topological overlap 

threshold of 0.30, the five genes with at least 10 connections each were defined as hub genes. 

Three sequential hub genes (SSA_0737, SSA_0738, and SSA_0739) exist in the yellow module and 

are 24, 14, and 3 respectively in Table 6. The two genes with the highest intramodular 

connectivity are also hub genes (SSA_1591, a putative dipeptidase, and SSA_1695, a BgIG family 

transcriptional antiterminator). 

The green module has 138 genes. The top 30 genes are listed in Table 7 and the network 

is displayed in Figure 14. The intramodular connectivity ranges from 7.10 to 13.43 in the top 30 

genes. After filtering the number of connections with a topological overlap threshold of 0.11, the 
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five genes with at least 14 connections each were defined as hub genes. 12 of the top 30 genes 

are ribosomal subunit protein genes (eight 50S large subunits, four 30S small subunits). Three 

hub genes are 50S ribosomal protein genes (SSA_0108, SSA_0110, and SSA_0112), and are all in 

the top 10 interconnected genes in the green module. SSA_0116, a 30S ribosomal protein gene 

is also a hub gene. The gene with the highest intramodular connectivity (SSA_1508, putative ABC-

type lipopolysaccharide transport system, and permease component) is also a hub gene. 

The red module has 80 genes. The top 30 genes are listed in Table 8 and the network is 

displayed in Figure 15. The intramodular connectivity ranges from 2.71 to 9.34 in the top 30 

genes. After filtering the number of connections with a topological overlap threshold of 0.11, the 

four genes with at least 10 connections each were defined as hub genes. Three hub genes 

(SSA_0473, SSA_0488, and SSA_0491) are three of the top four most highly interconnected 

genes. The 4th hub gene (SSA_0483, a putative siroheme synthase gene) is the 6th most highly 

interconnected gene in the red module. 

The black module has 74 genes. The top 30 genes are listed in Table 9 and the network is 

displayed in Figure 16. The intramodular connectivity ranges from 3.05 to 7.74 in the top 30 

genes. After filtering the number of connections with a topological overlap threshold of 0.11, the 

five genes with at least 12 connections each were defined as hub genes. Two sequentially named 

genes are hub genes (SSA_1631 and SSA_1632). These hubs are also in the top 5 interconnected 

genes in the black module. All five hubs are in the top 7 interconnected genes. 13 of the top 30 

genes are hypothetical protein genes. 

The pink module has 71 genes. The top 30 genes are listed in Table 10 and the network is 

displayed in Figure 17. The intramodular connectivity ranges from 3.20 to 15.02 in the top 30 
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genes. After filtering the number of connections with a topological overlap threshold of 0.30, the 

six genes with at least 12 connections each were defined as hub genes. The top 6 genes with the 

highest intramodular connectivity are also the 6 hub genes. The pink module is the only module 

where this is the case. Four hub genes are sequentially named (SSA_0675, SSA_0676, SSA_0677, 

and SSA_0678).  

The magenta module has 46 genes. The top 30 genes are listed in Table 11 and the 

network is displayed in Figure 18. The intramodular connectivity ranges from 1.55 to 12.17 in the 

top 30 genes. After filtering the number of connections with a topological overlap threshold of 

0.19, the five genes with at least 12 connections each were defined as hub genes. Five of the top 

six most highly interconnected genes are hub genes. Ten hypothetical protein genes are 

scattered throughout the top 30 interconnected genes. 
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Table 3. Top 30 most highly connected genes in the turquoise module. IMConnectivity is the TOM-based 
intramodular connectivity. 

IMConnectivity Genes
1 135.36 SSA 1599->hypothetical protein
2 132.24 SSA 1336->ankyrin repeat-containing protein
3 131.34 SSA 1473->hypothetical protein
4 128.19 SSA 0557->hypothetical protein
5 126.91 SSA 0949->hypothetical protein
6 126.33 SSA 1627->hypothetical protein
7 125.04 SSA 0561->RNA:NAD 2’-phosphotransferase, putative
8 120.63 SSA 2389->arsenical resistance operon transcription repressor, putative
9 119.89 SSA 1332->hypothetical protein
10 117.89 SSA 1331->hypothetical protein
11 114.64 SSA 2067->hypothetical protein
12 112.73 SSA 0560->hypothetical protein
13 111.38 SSA 2388->hypothetical protein
14 110.61 SSA 1474->putative lipoprotein
15 109.02 SSA 0296->XRE family transcriptional regulator
16 108.87 SSA 1489->hypothetical protein
17 107.39 SSA 0559->hypothetical protein
18 105.16 SSA 1284->hypothetical protein
19 104.97 SSA 2384->acetyltransferase
20 104.22 SSA 2251->hypothetical protein
21 104.15 SSA 0750->hypothetical protein
22 103.52 SSA 2383->prophage maintenance system killer protein (DOC: death-on-curing), putative
23 103.48 SSA 0880->hypothetical protein
24 103.34 SSA 1337->hypothetical protein
25 102.48 SSA 0699->methyltransferase, putative
26 102.45 SSA 1334->hypothetical protein
27 101.21 SSA 1315->hypothetical protein
28 99.97 SSA 2295->phage integrase family integrase/recombinase
29 99.45 SSA 2187->membrane associated protein
30 99.19 SSA 0558->cytosolic protein, putative

Figure 10. Network of the 30 most highly connected genes in the turquoise module. Connections 
displayed correspond to a topological overlap greater than 0.56. The top 5 most connected genes (after 
topological overlap filtering) have been enlarged. Hub genes have at least 12 connections in this subset. 
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Table 4. Top 30 most highly connected genes in the blue module. IMConnectivity is the TOM-based 
intramodular connectivity. 

Figure 11. Network of the 30 most highly connected genes in the blue module. Connections displayed 
correspond to a topological overlap greater than 0.18. The top 4 most connected genes (after 
topological overlap filtering) have been enlarged. Hub genes have at least 11 connections in this subset. 

IMConnectivity Genes
1 21.93 SSA 0425->glycosyltransferase
2 19.05 SSA 0728->protease, putative
3 16.56 SSA 0424->exopolysaccharide biosynthesis protein, putative
4 16.14 SSA 0958->hypothetical protein
5 16.04 SSA 2006->4-methyl-5(B-hydroxyethyl)-thiazole monophosphate biosynthesis enzyme, putative
6 15.80 SSA 1982->LytR/AlgR family transcriptional regulator putative
7 15.62 SSA 2130->hypothetical protein
8 15.50 SSA 1981->hypothetical protein
9 15.06 SSA 0704->isocitrate dehydrogenase [NADP], putative
10 14.97 SSA 0178->UDP-N-acetylglucosamine 2-epimerase, putative
11 14.83 SSA 0702->aconitate hydratase
12 14.36 SSA 0703->citrate synthase
13 14.26 SSA 1481->FmtA-like protein, putative
14 14.14 SSA 1201->phosphopantothenate–cysteine ligase
15 13.71 SSA 1480->hypothetical protein
16 12.94 SSA 2131->DNA-binding protein, putative
17 12.87 SSA 0181->glycosyl transferase family protein
18 12.86 SSA 0729->hypothetical protein
19 12.47 SSA 0180->hypothetical protein
20 12.42 SSA 0183->hypothetical protein
21 12.31 SSA 0182->endoglucanase, putative
22 12.24 SSA 2009->heat-inducible transcription repressor
23 12.23 SSA 2349->dTDP-4-dehydrorhamnose 3,5-epimerase, putative
24 12.18 SSA 1662->NADH-dependent oxidoreductase, putative
25 12.09 SSA 0460->multiple antibiotic resistance operon transcription repressor (MarR), putative
26 12.08 SSA 0959->two-component response transcriptional regulator
27 11.53 SSA 1015->prenyltransferase
28 11.44 SSA 1202->phosphopantothenoylcysteine decarboxylase
29 10.53 SSA 2342->SPX domain-containing protein
30 10.52 SSA 1773->hypothetical protein
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Table 5. Top 30 most highly connected genes in the brown module. IMConnectivity is the TOM-based 
intramodular connectivity. 

Figure 12. Network of the 30 most highly connected genes in the brown module. Connections displayed 
correspond to a topological overlap greater than 0.21. The top 5 most connected genes (after 
topological overlap filtering) have been enlarged. Hub genes have at least 14 connections in this subset. 

IMConnectivity Genes
1 34.22 SSA 1261->ribose-5-phosphate isomerase A
2 30.60 SSA 1260->phosphopentomutase
3 28.04 SSA 1256->NAD-dependent deacetylase
4 25.86 SSA 1037->cytidine deaminase
5 25.63 SSA 1038->putative lipoprotein
6 25.51 SSA 0524->microcompartment protein, putative
7 24.99 SSA 1919->phosphotransferase system, mannose-specific EIIC, putative
8 24.37 SSA 0525->microcompartment protein, putative
9 24.14 SSA 1258->purine nucleoside phosphorylase

10 23.96 SSA 1040->sugar ABC transporter, permease protein, putative
11 22.82 SSA 0121->hypothetical protein
12 22.62 SSA 1920->phosphotransferase system, mannose-specific EIID, putative
13 22.61 SSA 1259->purine nucleoside phosphorylase
14 22.44 SSA 2121->cell wall surface anchor family protein, putative
15 22.38 SSA 2111->30S ribosomal protein S12
16 21.33 SSA 2109->elongation factor G
17 21.28 SSA 0523->aldehyde dehydrogenase
18 21.15 SSA 0529->ethanolamine utilization protein, putative
19 21.03 SSA 2262->arginyl-tRNA synthetase
20 20.81 SSA 0522->ethanolamine utilization protein, putative
21 20.80 SSA 0528->hypothetical protein
22 20.70 SSA 1234->5’-nucleotidase, putative
23 20.37 SSA 1946->oligopeptide transport system permease protein, putative
24 19.91 SSA 0684->fibril-like structure subunit FibA, putative
25 19.53 SSA 2047->hypothetical protein
26 19.17 SSA 1104->50S ribosomal protein L10
27 19.06 SSA 0526->hypothetical protein
28 19.04 SSA 0755->hypothetical protein
29 18.92 SSA 1041->sugar ABC transporter, permease protein, putative
30 18.84 SSA 1961->amino acid ABC transporter permease/amino acid-binding protein
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Table 6. Top 30 most highly connected genes in the yellow module. IMConnectivity is the TOM-based 
intramodular connectivity.

Figure 13. Network of the 30 most highly connected genes in the yellow module. Connections 
displayed correspond to a topological overlap greater than 0.30. The top 5 most connected genes (after 
topological overlap filtering) have been enlarged. Hub genes have at least 10 connections in this subset. 

IMConnectivity Genes
1 37.06 SSA 1591->dipeptidase, putative
2 30.93 SSA 1695->BglG family transcriptional antiterminator
3 29.88 SSA 0739->carbamate kinase
4 26.16 SSA 0518->reactivating factor for ethanolamine ammonia lyase
5 24.58 SSA 1008->galactokinase
6 21.53 SSA 1009->galactose-1-phosphate uridylyltransferase
7 21.30 SSA 0342->pyruvate formate-lyase, putative
8 21.23 SSA 0740->C4-dicarboxylate anaerobic carrier, arginine transporter, putative
9 20.90 SSA 1300->maltose ABC transporter, permease protein, putative

10 20.85 SSA 0068->bifunctional acetaldehyde-CoA/alcohol dehydrogenase
11 20.19 SSA 1949->AliA protein, putative
12 20.02 SSA 0260->manganese/Zinc ABC transporter substrate-binding protein
13 19.46 SSA 0520->ethanolamine ammonia-lyase small subunit
14 19.08 SSA 0738->ornithine carbamoyltransferase
15 18.78 SSA 0777->glycogen biosynthesis protein GlgD, putative
16 18.47 SSA 0775->glycogen branching enzyme
17 18.36 SSA 1299->maltose/maltodextrin ABC transport system, putative
18 18.11 SSA 1010->UDP-glucose 4-epimerase, putative
19 17.93 SSA 0262->ABC-type Mn/Zn transporter, ATP-ase component, putative
20 17.82 SSA 1693->phosphotransferase system lactose-specific component IIBC, putative
21 17.73 SSA 0519->ethanolamine ammonia-lyase large subunit, putative
22 17.50 SSA 0834->accessory secretory protein Asp2, putative
23 17.26 SSA 1125->NADPH-dependent FMN reductase, putative
24 17.05 SSA 0737->arginine deiminase
25 16.52 SSA 1251->HD superfamily hydrolase
26 16.05 SSA 1217->hypothetical protein
27 15.87 SSA 1615->alanine dehydrogenase, putative
28 15.39 SSA 0071->N-acetylmannosamine-6-phosphate 2-epimerase
29 15.18 SSA 0356->dipeptidase, putative
30 15.15 SSA 0778->glycogen synthase
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Table 7. Top 30 most highly connected genes in the green module. IMConnectivity is the TOM-based 
intramodular connectivity. 

Figure 14. Network of the 30 most highly connected genes in the green module. Connections displayed 
correspond to a topological overlap greater than 0.11. The top 5 most connected genes (after 
topological overlap filtering) have been enlarged. Hub genes have at least 14 connections in this subset. 

IMConnectivity Genes
1 13.43 SSA 1508->ABC-type lipopolysaccharide transport system, permease component, putative
2 12.34 SSA 0112->50S ribosomal protein L22
3 11.15 SSA 1945->oligopeptide transport ATP-binding protein, putative
4 10.86 SSA 0110->50S ribosomal protein L2
5 10.80 SSA 0176->DNA-directed RNA polymerase subunit beta
6 10.72 SSA 0658->hypothetical protein
7 10.32 SSA 0109->50S ribosomal protein L23
8 9.65 SSA 0115->50S ribosomal protein L29
9 9.52 SSA 0107->50S ribosomal protein L3
10 9.35 SSA 0108->50S ribosomal protein L4
11 9.31 SSA 0111->30S ribosomal protein S19
12 9.29 SSA 2191->hypothetical protein
13 9.21 SSA 0116->30S ribosomal protein S17
14 9.06 SSA 0113->30S ribosomal protein S3
15 8.85 SSA 1953->NifU family protein, putative
16 8.72 SSA 0106->30S ribosomal protein S10
17 8.69 SSA 0655->cell division protein FtsA, putative
18 8.66 SSA 0118->50S ribosomal protein L24
19 8.55 SSA 2049->polynucleotide phosphorylase/polyadenylase
20 8.55 SSA 0352->ribonuclease HIII
21 8.52 SSA 1507->ABC-type lipopolysaccharide transport system, ATPase component, putative
22 8.25 SSA 0232->hypothetical protein
23 7.74 SSA 0657->pyridoxal 5’-phosphate dependent enzymes class III, putative
24 7.73 SSA 1897->hypothetical protein
25 7.71 SSA 1048->ABC transporter ATP-binding protein-spermidine/putrescine transport, putative
26 7.59 SSA 0117->50S ribosomal protein L14
27 7.50 SSA 1782->hypothetical protein
28 7.37 SSA 0869->peptide chain release factor 2
29 7.30 SSA 1779->segregation and condensation protein A
30 7.10 SSA 0870->cell division protein FtsE, putative
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Table 8. Top 30 most highly connected genes in the red module. IMConnectivity is the TOM-based 
intramodular connectivity. 

Figure 15. Network of the 30 most highly connected genes in the red module. Connections displayed 
correspond to a topological overlap greater than 0.11. The top 4 most connected genes (after 
topological overlap filtering) have been enlarged. Hub genes have at least 10 connections in this subset. 

IMConnectivity Genes
1 9.34 SSA 0473->precorrin-6x reductase, putative
2 8.92 SSA 0485->porphobilinogen deaminase, putative
3 8.58 SSA 0488->glutamate-1-semialdehyde 2,1-aminotransferase, putative
4 7.66 SSA 0491->Alpha-ribazole-5’-phosphate phosphatase, putative
5 7.48 SSA 0484->glutamyl-tRNA reductase, putative
6 6.93 SSA 0475->CbiK protein, putative
7 6.78 SSA 0483->siroheme synthase, putative
8 6.01 SSA 0477->cobalt ABC transporter ATP-binding protein
9 5.97 SSA 0496->succinylglutamate desuccinylase/aspartoacylase family protein

10 5.78 SSA 0489->adenosylcobinamide kinase
11 5.75 SSA 0478->cobalt transport protein cbiN, putative
12 5.56 SSA 0470->precorrin-4 methylase, putative
13 5.55 SSA 0468->cobalt-precorrin-6Y C(5)-methyltransferase
14 5.50 SSA 0472->precorrin-3B C17-methyltransferase, putative
15 5.49 SSA 0499->ABC-type dipeptide transport system, periplasmic component, putative
16 5.34 SSA 0471->cobalamin biosynthesis protein CbiG
17 5.06 SSA 0486->uroporphyrinogen-III synthase
18 5.03 SSA 0490->cobalamin 5’-phosphate synthase, putative
19 4.78 SSA 0476->cobalt-precorrin-2 C(20)-methyltransferase
20 4.60 SSA 0492->NADH-dependent flavin oxidoreductase, putative
21 4.30 SSA 0487->delta-aminolevulinic acid dehydratase
22 4.26 SSA 0220->PTS system, mannose-specific IIB component, putative
23 4.16 SSA 0221->PTS system, mannose-specific IIC component, putative
24 3.96 SSA 0089->V-type ATP synthase subunit F
25 3.91 SSA 0495->ABC-type oligopeptide/nickel transport system, ATPase component, putative
26 3.71 SSA 0222->PTS system, mannose-specific IID component, putative
27 3.61 SSA 0467->cobalt-precorrin-6A synthase
28 2.86 SSA 0497->nickel ABC transporter, putative
29 2.81 SSA 0224->hypothetical protein
30 2.71 SSA 0088->V-type sodium ATPase, subunit C, putative
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Table 9. Top 30 most highly connected genes in the black module. IMConnectivity is the TOM-based 
intramodular connectivity. 

Figure 16. Network of the 30 most highly connected genes in the black module. Connections displayed 
correspond to a topological overlap greater than 0.11. The top 5 most connected genes (after 
topological overlap filtering) have been enlarged. Hub genes have at least 12 connections in this subset. 

IMConnectivity Genes
1 7.74 SSA 2314->hypothetical protein
2 6.59 SSA 1101->multidrug resistance efflux pump/hemolysin secretion transmembrane protein, putative
3 6.25 SSA 1631->sortase-like protein, putative
4 6.22 SSA 2318->PilB-like pili biogenesis ATPase, putative
5 6.20 SSA 1632->surface protein, putative
6 6.08 SSA 2313->hypothetical protein
7 5.86 SSA 2301->S-layer protein/ peptidoglycan endo-beta-N-acetylglucosaminidase, putative
8 5.79 SSA 0565->hypothetical protein
9 5.14 SSA 2307->hypothetical protein

10 4.92 SSA 2320->hypothetical protein
11 4.64 SSA 1447->ATP phosphoribosyltransferase catalytic subunit
12 4.60 SSA 2315->hypothetical protein
13 4.51 SSA 1444->imidazole glycerol phosphate synthase subunit HisH
14 4.12 SSA 1100->hemolysin exporter, ATPase component, putative
15 4.04 SSA 1446->histidinol dehydrogenase
16 3.95 SSA 1099->calcium binding hemolysin-like protein, putative
17 3.82 SSA 2303->hypothetical protein
18 3.82 SSA 1633->FimA fimbrial subunit-like protein, putative
19 3.81 SSA 1443->1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase
20 3.74 SSA 1306->Trk transporter NAD+ binding protein-K+ transport, putative
21 3.73 SSA 2305->hypothetical protein
22 3.62 SSA 1448->ATP phosphoribosyltransferase regulatory subunit, putative
23 3.60 SSA 1307->Trk transporter membrane-spanning protein-K+ transport, putative
24 3.59 SSA 2302->Type IV fimbrial biogenesis protein, prepilin cysteine protease (C20) PilD, putative
25 3.53 SSA 1308->hypothetical protein
26 3.37 SSA 2304->hypothetical protein
27 3.33 SSA 2299->hypothetical protein
28 3.28 SSA 1439->hypothetical protein
29 3.22 SSA 2300->hypothetical protein
30 3.05 SSA 1634->Heme utilization/adhesion exoprotein, putative
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Table 10. Top 30 most highly connected genes in the pink module. IMConnectivity is the TOM-based 
intramodular connectivity.

Figure 17. Network of the 30 most highly connected genes in the pink module. Connections displayed 
correspond to a topological overlap greater than 0.30. The top 6 most connected genes (after 
topological overlap filtering) have been enlarged. Hub genes have at least 12 connections in this subset. 

IMConnectivity Genes
1 15.02 SSA 0676->farnesyl diphosphate synthase, putative
2 14.05 SSA 0675->exodeoxyribonuclease VII small subunit
3 12.22 SSA 2159->hypothetical protein
4 12.20 SSA 2245->recombinase A
5 11.73 SSA 0677->rRNA methylase, putative
6 10.80 SSA 0678->ArgR family transcriptional regulator
7 10.50 SSA 0679->DNA repair and genetic recombination, putative
8 9.78 SSA 2158->methyltransferase, putative
9 9.31 SSA 2157->DNA repair protein RadA

10 8.83 SSA 0192->acetate kinase
11 8.23 SSA 1055->hypothetical protein
12 8.08 SSA 1717->modification methylase DpnIIB, putative
13 7.16 SSA 2160->deoxyuridine 5’-triphosphate nucleotidohydrolase
14 6.75 SSA 2370->zinc-dependent peptidase
15 6.40 SSA 1184->DNA topoisomerase I
16 6.34 SSA 1183->hypothetical protein
17 5.55 SSA 1182->tRNA (uracil-5-)-methyltransferase Gid
18 5.10 SSA 1716->restriction endonuclease SsuRB, putative
19 5.10 SSA 0215->periplasmic sugar-binding protein (ribose porter), putative
20 4.84 SSA 2117->DNA recombination protein RmuC, putative
21 4.47 SSA 0680->Serine/threonine protein phosphatase, putative
22 4.29 SSA 2369->hypothetical protein
23 4.25 SSA 2367->cobalt transporter ATP-binding subunit
24 3.86 SSA 1210->GTP pyrophosphokinase, putative
25 3.83 SSA 0715->DNA uptake protein, putative
26 3.69 SSA 2116->CMP-binding-factor 1, putative
27 3.61 SSA 0718->hypothetical protein
28 3.60 SSA 1494->UDP-N-acetylglucosamine 1-carboxyvinyltransferase
29 3.49 SSA 1747->hypothetical protein
30 3.20 SSA 0355->DNA mismatch repair protein, putative
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Table 11. Top 30 most highly connected genes in the magenta module. IMConnectivity is the TOM-
based intramodular connectivity. 

Figure 18. Network of the 30 most highly connected genes in the magenta module. Connections 
displayed correspond to a topological overlap greater than 0.19. The top 5 most connected genes (after 
topological overlap filtering) have been enlarged. Hub genes have at least 12 connections in this subset. 

IMConnectivity Genes
1 12.17 SSA 1649->hypothetical protein
2 10.60 SSA 0415->permease, putative
3 9.20 SSA 0644->DNA protection system, DNA-binding ferritin-like protein (oxidative damage protectant), putative
4 7.54 SSA 1422->hypothetical protein
5 7.32 SSA 2253->3-methyladenine DNA glycosylase I, constitutive, putative
6 7.13 SSA 0896->two-component response transcriptional regulator
7 7.10 SSA 0846->DNA polymerase III DnaE
8 6.71 SSA 0610->LemA-like protein, putative
9 6.38 SSA 2101->amino acid ABC transporter periplasmic amino acid-binding protein

10 6.04 SSA 0459->hypothetical protein
11 5.46 SSA 1829->RNA methyltransferase, putative
12 5.35 SSA 0143->hypothetical protein
13 4.63 SSA 0212->phenylalanyl-tRNA synthetase, beta subunit, putative
14 3.83 SSA 1964->hypothetical protein
15 3.75 SSA 2277->DNA segregation ATPase FtsK/SpoIIIE family protein, putative
16 3.47 SSA 1689->hypothetical protein
17 3.02 SSA 2241->hypothetical protein
18 2.83 SSA 1076->hypothetical protein
19 2.76 SSA 0686->Fe2+/Zn2+ uptake regulation protein, putative
20 2.55 SSA 1959->undecaprenyl pyrophosphate phosphatase
21 2.50 SSA 2051->oligoendopeptidase, putative
22 2.39 SSA 1939->acyl carrier protein
23 2.34 SSA 1531->peptide ABC transporter ATPase
24 2.27 SSA 2186->bifunctional glutamate–cysteine ligase/glutathione synthetase
25 1.97 SSA 2240->Holliday junction resolvase-like protein
26 1.95 SSA 0440->30S ribosomal protein S18
27 1.77 SSA 1305->hypothetical protein
28 1.57 SSA 1854->hypothetical protein
29 1.56 SSA 0910->ABC-type multidrug transporter, ATPase component, putative
30 1.55 SSA 1979->alkaline-shock protein, putative
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4. Discussion

A co-expression module may reveal a true biological pathway, or it may reflect noise (e.g. 

experimental errors, technical artifacts, or false positives) [6]. Module eigengene detection is 

highly robust even though noise genes (i.e. genes that truly do not belong to a given module) 

may be included in modules. Peripheral genes hardly affect module delineation. This is true 

because eigengenes are principally defined by the most highly connected intramodular hub 

genes [12].  

Hierarchical clustering is a useful method in exploratory data analysis because it does not 

need a priori information such as specifying the number of clusters. However, cluster analysis 

always creates a set of clusters regardless if biologically relevant groups of genes or eigengenes 

actually exist. The cornerstone of gene co-expression networks is the module eigengene. Since 

an eigengene is defined as the first principal component, if a module eigengene is found to 

execute a biologically important action, then most genes in that module probably perform 

similarly.  

Weighted gene co-expression network analysis (WGCNA) is a biologically driven data 

reduction technique. Similar to principal component analysis (PCA), it reduces high-dimensional 

data into a few meaningful groups. However, unlike PCA which requires component 

orthogonality between components, WGCNA allows for component interdependency. Modules 

may characterize biological pathways, so independence between modules cannot be assumed.  

Creating an eigengene correlation network with nodes represented as eigengenes, 

enables the analysis of intermodule relationships. Figure 6 illustrates an eigengene network 
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through average linkage hierarchical clustering. The eigengene dendrogram (Figure 6) and 

eigengene adjacency heatmap (Figure 7) both give evidence that the some modules can be 

grouped into meta-modules (Module 1: Blue & Green, Module 2: Pink, Module 3: Yellow, Brown 

& Red, Module 4: Black, Module 5: Magenta & Turquoise). The brown and red eigengenes are 

highly related which is demonstrated by their low merging height in Figure 6, and also evidenced 

by reddish squares in Figure 7. The yellow eigengene also joins that group for similar reasons. 

 When constructing a network via VisANT, a TOM-based threshold for displaying 

connections between genes can be chosen. Depending on the degree of topological overlap, 

increasing the threshold can decrease the number of connections as well as the number of genes 

that have connections. Small threshold increases may vastly decrease the number of 

connections. It is important to note that the threshold can be different for every module 

depending on the topological overlap matrix, and the number of displayed connections needed. 

The initial thresholds for each module were chosen arbitrarily, and then adjusted to increase 

readability as well as present a similar number of top hub genes per module and a similar number 

of minimum connections to be considered a top hub. 

Two methods (intramodular connectivity and TOM-based connectivity followed by 

network mapping) for identifying candidate hub genes were performed. Most modules provided 

similar results between the two methods (e.g. the black, pink and magenta modules). In some 

modules there were discrepancies between the two methods (e.g. the turquoise, and blue 

modules). The larger modules seemed to have the largest discrepancy between the methods, 

and the smaller modules had the smallest discrepancy. For these reasons, similar rankings 
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between the two methods can be considered equivalent and both can be used to detect 

candidate hub genes.  

There are limitations in the analysis of this dataset. External trait information for S. 

sanguinis is not available to perform additional analyses (e.g. calculating the gene significance 

based on the correlation of the eigengene with an important sample trait). The resulting modules 

can be investigated with gene ontology information to evaluate biological significance. It is 

challenging to determine if modules should be individual modules or should be combined into a 

single meta-module. For example, the brown and the red modules are highly correlated, but it 

may make more sense to merge them into one module. Gene ontology information may unveil 

evidence that modules should be merged. The analysis of hub genes or module eigengenes may 

result in biologically significant pathways. Intramodular hub genes are highly correlated, 

therefore multiple statistically equivalent potential biomarkers are produced. These candidate 

biomarkers can be preferentially selected using gene ontology information. Module significance 

can be compared with gene significance information to determine a module of interest. Once an 

important module is chosen, the most highly connected genes (genes found at the tip of 

dendrogram branches) can be visualized (e.g. Figure 10 – Figure 18) and selected for a future 

study. This network analysis would help researchers create new research hypotheses and design 

experiments for validation of candidate hub genes in biologically significant modules. 
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Appendix: R Code 
 
library(xtable) 
options(xtable.floating = FALSE) 
options(xtable.timestamp = "") 
setwd("C:/Users/edver/Desktop/Microarray Analysis") 
 
#==================================================================================== 
 
# Display the current working directory 
getwd(); 
# If necessary, change the path below to the directory where the data files are stored.  
# "." means current directory. On Windows use a forward slash / instead of the usual \. 
workingDir = "."; 
setwd(workingDir);  
# Load the WGCNA package 
library(WGCNA); 
# The following setting is important, do not omit. 
options(stringsAsFactors = FALSE); 
#Read in the microarray data set 
LeiData0 = read.csv("Lei_Micarray_Summary.csv"); 
# Take a quick look at what is in the data set: 
dim(LeiData0); 
names(LeiData0); 
 
LeiData = LeiData0[-125,] #Remove duplicate gene, row 125 
 
# Concatinating gene ID and gene names 
LeiData$Locus <- paste(LeiData$Locus, LeiData$GeneN, sep='->') 
LeiData$Locus <- gsub(" ", "_",LeiData$Locus, fixed = TRUE)  
 
#==================================================================================== 
 
datExpr0 = as.data.frame(t(LeiData[, -c(1:3)])) 
names(datExpr0) = LeiData$Locus; 
rownames(datExpr0) = names(LeiData)[-c(1:3)]; 
dim(datExpr0) 
 
#==================================================================================== 
 
# Check samples and genes for excess missing values 
gsg = goodSamplesGenes(datExpr0, verbose = 3); 
gsg$allOK 
#Excluding 538 genes from the calculation due to too many missing samples or zero variance. 
 
#==================================================================================== 
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if (!gsg$allOK) 
{ 
  # Optionally, print the gene and sample names that were removed: 
  if (sum(!gsg$goodGenes)>0)  
    printFlush(paste("Removing genes:", paste(names(datExpr0)[!gsg$goodGenes], collapse = ", "))); 
  if (sum(!gsg$goodSamples)>0)  
    printFlush(paste("Removing samples:", paste(rownames(datExpr0)[!gsg$goodSamples], collapse = ", 
"))); 
  # Remove the offending genes and samples from the data: 
  datExpr0 = datExpr0[gsg$goodSamples, gsg$goodGenes] 
} 
 
dim(datExpr0) 
# 42 x 1734 
 
#==================================================================================== 
 
sampleTree = hclust(dist(datExpr0), method = "average"); 
# Sample outlier detection 
# sample network based on squared Euclidean distance. note that we transpose the data  
A = adjacency(t(datExpr0), type = "distance")  
# this calculates the whole network connectivity 
k = as.numeric(apply(A, 2, sum)) - 1  
# standardized connectivity 
Z.k = scale(k) 
# Designate samples as outlying if their Z.k value is below the threshold  
thresholdZ.k = -5   
outlierColor = ifelse(Z.k < thresholdZ.k, "red", "black")  
 
datColors = data.frame(outlierC = outlierColor) 
plotDendroAndColors(sampleTree, groupLabels = names(datColors), colors = datColors,main = "Sample 
Dendrogram and Outlier Detection") 
 
#==================================================================================== 
 
# Choose a set of soft-thresholding powers 
powers = c(1:20) 
# Call the network topology analysis function 
sft = pickSoftThreshold(datExpr0, powerVector = powers, verbose = 5, RsquaredCut=0.96) 
 
# Plot the results: 
sizeGrWindow(9, 5) 
par(mfrow = c(1,2)); 
cex1 = 0.9; 
# Scale-free topology fit index as a function of the soft-thresholding power 
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2], 
     xlab="Soft Threshold (power)",ylab="Scale-Free Topology Model Fit,signed R^2",type="n", 
     main = paste("Scale Independence")); 
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text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2], 
     labels=powers,cex=cex1,col="red"); 
# this line corresponds to using an R^2 cut-off of h 
abline(h=0.96,col="red") 
# Mean connectivity as a function of the soft-thresholding power 
plot(sft$fitIndices[,1], sft$fitIndices[,5], 
     xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n", 
     main = paste("Mean Connectivity")) 
text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red") 
 
#create Rsq table 
xtable(sft$fitIndices) 
 
sft$powerEstimate 
 
##################  Check Scale-free topology 
 
# here we define the adjacency matrix using soft thresholding with beta=6 
ADJ1=abs(cor(datExpr0,use="p"))^6 
k=softConnectivity(datE=datExpr0,power=6) 
 
# Plot a histogram of k and a scale free topology plot 
sizeGrWindow(5,5) 
par(mfrow=c(1,2)) 
hist(k) 
scaleFreePlot(k, main="Check Scale-free Topology\n") 
 
#==================================================================================== 
#                One-step network construction and module detection 
#==================================================================================== 
 
# power = 6, based on soft threshold calculation above 
 
net = blockwiseModules(datExpr0, power = 6, 
                       #checkMissingData = FALSE, 
                       TOMType = "unsigned", minModuleSize = 30, 
                       reassignThreshold = 0, mergeCutHeight = 0.25, 
                       numericLabels = TRUE, pamRespectsDendro = FALSE, 
                       saveTOMs = TRUE, 
                       saveTOMFileBase = "Lei_TOM",  
                       verbose = 3) 
 
table(net$colors)    # 9 Modules detected 
 
#==================================================================================== 
 
# open a graphics window 
sizeGrWindow(12, 9) 
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# Convert labels to colors for plotting 
mergedColors = labels2colors(net$colors) 
# Plot the dendrogram and the module colors underneath 
plotDendroAndColors(net$dendrograms[[1]], mergedColors[net$blockGenes[[1]]], 
                    "Module Colors", 
                    dendroLabels = FALSE, hang = 0.03, 
                    addGuide = TRUE, guideHang = 0.05) 
 
moduleAssignments<- data.frame(sort(table(mergedColors), decreasing = TRUE)) 
 
# Module Assignments Table 
xtable(moduleAssignments) 
 
#==================================================================================== 
 
moduleLabels = net$colors 
moduleColors = labels2colors(net$colors) 
# Module Eigengenes 
MEs = net$MEs; 
geneTree = net$dendrograms[[1]]; 
save(MEs, moduleLabels, moduleColors, geneTree,  
     file = "Lei-networkConstruction-auto.RData") 
 
#==================================================================================== 
 
# Calculate topological overlap 
dissTOM = 1-TOMsimilarityFromExpr(datExpr0, power = 6) 
# Transform dissTOM with a power to make moderately strong connections more visible in the heatmap 
plotTOM = dissTOM^6 
# Set diagonal to NA for a nicer plot 
diag(plotTOM) = NA 
 
# TOM plot 
TOMplot(plotTOM, geneTree, moduleColors, main = "Network Heatmap Plot, All Genes") 
 
dim(dissTOM) 
length(moduleColors) 
 
#==================================================================================== 
 
# Recalculate module eigengenes 
MEs = moduleEigengenes(datExpr0, moduleColors)$eigengenes 
 
MEs=orderMEs(MEs, greyLast = TRUE, 
             greyName = paste(moduleColor.getMEprefix(), "grey", sep=""), 
             orderBy = 1, order = NULL, 
             useSets = NULL, verbose = 0, indent = 0) 
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# Plot the relationships among the eigengenes 
sizeGrWindow(5,7.5); 
par(cex = 0.9) 
plotEigengeneNetworks(MEs, "", marDendro = c(0,4,1,2), marHeatmap = c(3,4,1,2), cex.lab = 0.8, 
xLabelsAngle 
                      = 90) 
 
#==================================================================================== 
 
# Plot the dendrogram 
sizeGrWindow(6,6); 
par(mfrow=c(1, 2)) 
plotEigengeneNetworks(MEs, "Eigengene Dendrogram", marDendro = c(0,4,2,0), 
                      plotHeatmaps = FALSE) 
 
# Plot the heatmap matrix (note: this plot will overwrite the dendrogram plot) 
plotEigengeneNetworks(MEs, "Eigengene Adjacency Heatmap", marHeatmap = c(3,4,2,2), 
                      plotDendrograms = FALSE, xLabelsAngle = 90) 
 
#==================================================================================== 
 
# Truncate gene names to  fit on  VisANT plots 
colnames(datExpr0)<-substring(colnames(datExpr0),1,25); 
 
# Recalculate topological overlap 
TOM = TOMsimilarityFromExpr(datExpr0, power = 6); 
 
#==================================================================================== 
#                                  Export data to VisANT 
#==================================================================================== 
 
# Select module 
module = "turquoise"; 
# Select module probes 
probes = names(datExpr0) 
inModule = (moduleColors==module); 
modProbes = probes[inModule]; 
modProbes = substring(modProbes,1,25); 
# Select the corresponding Topological Overlap 
modTOM = TOM[inModule, inModule]; 
dimnames(modTOM) = list(modProbes, modProbes) 
# Export the network into an edge list file VisANT can read 
nTop = 30; 
IMConn = softConnectivity(datExpr0[, modProbes]); 
top = (rank(-IMConn) <= nTop) 
vis = exportNetworkToVisANT(modTOM[top, top], 
                            file = paste("VisANTInput-", module, "-top30.txt", sep=""), 
                            weighted = TRUE, 
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                            threshold = 0 
                            #probeToGene = data.frame(annot$substanceBXH, annot$gene_symbol) 
) 
 
# Select top 30 interconnected genes 
topGenesTurquoise<-data.frame(IMConn,modProbes)[order(-IMConn),] 
topGenesTurquoise<-topGenesTurquoise[1:30,] 
names(topGenesTurquoise)<-c("IMConnectivity","Genes") 
 
# Select module 
module = "blue"; 
# Select module probes 
probes = names(datExpr0) 
inModule = (moduleColors==module); 
modProbes = probes[inModule]; 
# Select the corresponding Topological Overlap 
modTOM = TOM[inModule, inModule]; 
dimnames(modTOM) = list(modProbes, modProbes) 
# Export the network into an edge list file VisANT can read 
nTop = 30; 
IMConn = softConnectivity(datExpr0[, modProbes]); 
top = (rank(-IMConn) <= nTop) 
vis = exportNetworkToVisANT(modTOM[top, top], 
                            file = paste("VisANTInput-", module, "-top30.txt", sep=""), 
                            weighted = TRUE, 
                            threshold = 0 
                            #probeToGene = data.frame(annot$substanceBXH, annot$gene_symbol) 
) 
 
# Select top 30 interconnected genes 
topGenesBlue<-data.frame(IMConn,modProbes)[order(-IMConn),] 
topGenesBlue<-topGenesBlue[1:30,] 
names(topGenesBlue)<-c("IMConnectivity","Genes") 
 
# Select module 
module = "green"; 
# Select module probes 
probes = names(datExpr0) 
inModule = (moduleColors==module); 
modProbes = probes[inModule]; 
# Select the corresponding Topological Overlap 
modTOM = TOM[inModule, inModule]; 
dimnames(modTOM) = list(modProbes, modProbes) 
# Export the network into an edge list file VisANT can read 
nTop = 30; 
IMConn = softConnectivity(datExpr0[, modProbes]); 
top = (rank(-IMConn) <= nTop) 
vis = exportNetworkToVisANT(modTOM[top, top], 



41 
 

                            file = paste("VisANTInput-", module, "-top30.txt", sep=""), 
                            weighted = TRUE, 
                            threshold = 0 
                            #probeToGene = data.frame(annot$substanceBXH, annot$gene_symbol) 
) 
 
# Select top 30 interconnected genes 
topGenesGreen<-data.frame(IMConn,modProbes)[order(-IMConn),] 
topGenesGreen<-topGenesGreen[1:30,] 
names(topGenesGreen)<-c("IMConnectivity","Genes") 
 
# Select module 
module = "red"; 
# Select module probes 
probes = names(datExpr0) 
inModule = (moduleColors==module); 
modProbes = probes[inModule]; 
# Select the corresponding Topological Overlap 
modTOM = TOM[inModule, inModule]; 
dimnames(modTOM) = list(modProbes, modProbes) 
# Export the network into an edge list file VisANT can read 
nTop = 30; 
IMConn = softConnectivity(datExpr0[, modProbes]); 
top = (rank(-IMConn) <= nTop) 
vis = exportNetworkToVisANT(modTOM[top, top], 
                            file = paste("VisANTInput-", module, "-top30.txt", sep=""), 
                            weighted = TRUE, 
                            threshold = 0 
                            #probeToGene = data.frame(annot$substanceBXH, annot$gene_symbol) 
) 
 
# Select top 30 interconnected genes 
topGenesRed<-data.frame(IMConn,modProbes)[order(-IMConn),] 
topGenesRed<-topGenesRed[1:30,] 
names(topGenesRed)<-c("IMConnectivity","Genes") 
 
# Select module 
module = "black"; 
# Select module probes 
probes = names(datExpr0) 
inModule = (moduleColors==module); 
modProbes = probes[inModule]; 
# Select the corresponding Topological Overlap 
modTOM = TOM[inModule, inModule]; 
dimnames(modTOM) = list(modProbes, modProbes) 
# Export the network into an edge list file VisANT can read 
nTop = 30; 
IMConn = softConnectivity(datExpr0[, modProbes]); 
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top = (rank(-IMConn) <= nTop) 
vis = exportNetworkToVisANT(modTOM[top, top], 
                            file = paste("VisANTInput-", module, "-top30.txt", sep=""), 
                            weighted = TRUE, 
                            threshold = 0 
                            #probeToGene = data.frame(annot$substanceBXH, annot$gene_symbol) 
) 
 
# Select top 30 interconnected genes 
topGenesBlack<-data.frame(IMConn,modProbes)[order(-IMConn),] 
topGenesBlack<-topGenesBlack[1:30,] 
names(topGenesBlack)<-c("IMConnectivity","Genes") 
 
# Select module 
module = "pink"; 
# Select module probes 
probes = names(datExpr0) 
inModule = (moduleColors==module); 
modProbes = probes[inModule]; 
# Select the corresponding Topological Overlap 
modTOM = TOM[inModule, inModule]; 
dimnames(modTOM) = list(modProbes, modProbes) 
# Export the network into an edge list file VisANT can read 
nTop = 30; 
IMConn = softConnectivity(datExpr0[, modProbes]); 
top = (rank(-IMConn) <= nTop) 
vis = exportNetworkToVisANT(modTOM[top, top], 
                            file = paste("VisANTInput-", module, "-top30.txt", sep=""), 
                            weighted = TRUE, 
                            threshold = 0 
                            #probeToGene = data.frame(annot$substanceBXH, annot$gene_symbol) 
) 
 
# Select top 30 interconnected genes 
topGenesPink<-data.frame(IMConn,modProbes)[order(-IMConn),] 
topGenesPink<-topGenesPink[1:30,] 
names(topGenesPink)<-c("IMConnectivity","Genes") 
 
# Select module 
module = "magenta"; 
# Select module probes 
probes = names(datExpr0) 
inModule = (moduleColors==module); 
modProbes = probes[inModule]; 
# Select the corresponding Topological Overlap 
modTOM = TOM[inModule, inModule]; 
dimnames(modTOM) = list(modProbes, modProbes) 
# Export the network into an edge list file VisANT can read 
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nTop = 30; 
IMConn = softConnectivity(datExpr0[, modProbes]); 
top = (rank(-IMConn) <= nTop) 
vis = exportNetworkToVisANT(modTOM[top, top], 
                            file = paste("VisANTInput-", module, "-top30.txt", sep=""), 
                            weighted = TRUE, 
                            threshold = 0 
                            #probeToGene = data.frame(annot$substanceBXH, annot$gene_symbol) 
) 
 
# Select top 30 interconnected genes 
topGenesMagenta<-data.frame(IMConn,modProbes)[order(-IMConn),] 
topGenesMagenta<-topGenesMagenta[1:30,] 
names(topGenesMagenta)<-c("IMConnectivity","Genes") 
 
# Select module 
module = "brown"; 
# Select module probes 
probes = names(datExpr0) 
inModule = (moduleColors==module); 
modProbes = probes[inModule]; 
# Select the corresponding Topological Overlap 
modTOM = TOM[inModule, inModule]; 
dimnames(modTOM) = list(modProbes, modProbes) 
# Export the network into an edge list file VisANT can read 
nTop = 30; 
IMConn = softConnectivity(datExpr0[, modProbes]); 
top = (rank(-IMConn) <= nTop) 
vis = exportNetworkToVisANT(modTOM[top, top], 
                            file = paste("VisANTInput-", module, "-top30.txt", sep=""), 
                            weighted = TRUE, 
                            threshold = 0 
                            #probeToGene = data.frame(annot$substanceBXH, annot$gene_symbol) 
) 
 
# Select top 30 interconnected genes 
topGenesBrown<-data.frame(IMConn,modProbes)[order(-IMConn),] 
topGenesBrown<-topGenesBrown[1:30,] 
names(topGenesMagenta)<-c("IMConnectivity","Genes") 
 
 
# Select module 
module = "yellow"; 
# Select module probes 
probes = names(datExpr0) 
inModule = (moduleColors==module); 
modProbes = probes[inModule]; 
# Select the corresponding Topological Overlap 
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modTOM = TOM[inModule, inModule]; 
dimnames(modTOM) = list(modProbes, modProbes) 
# Export the network into an edge list file VisANT can read 
nTop = 30; 
IMConn = softConnectivity(datExpr0[, modProbes]); 
top = (rank(-IMConn) <= nTop) 
vis = exportNetworkToVisANT(modTOM[top, top], 
                            file = paste("VisANTInput-", module, "-top30.txt", sep=""), 
                            weighted = TRUE, 
                            threshold = 0 
                            #probeToGene = data.frame(annot$substanceBXH, annot$gene_symbol) 
                            ) 
 
# Select top 30 interconnected genes 
topGenesYellow<-data.frame(IMConn,modProbes)[order(-IMConn),] 
topGenesYellow<-topGenesYellow[1:30,] 
names(topGenesYellow)<-c("IMConnectivity","Genes") 
 
rownames(topGenesRed)<-NULL 
rownames(topGenesYellow)<-NULL 
rownames(topGenesBrown)<-NULL 
rownames(topGenesMagenta)<-NULL 
rownames(topGenesPink)<-NULL 
rownames(topGenesGreen)<-NULL 
rownames(topGenesBlue)<-NULL 
rownames(topGenesBlack)<-NULL 
rownames(topGenesTurquoise)<-NULL 
 
# Latex tables for top 30 genes 
xtable(topGenesTurquoise) 
xtable(topGenesBlue) 
xtable(topGenesBrown) 
xtable(topGenesYellow) 
xtable(topGenesGreen) 
xtable(topGenesRed) 
xtable(topGenesBlack) 
xtable(topGenesPink) 
xtable(topGenesMagenta) 
 
#==================================================================================== 
#                               Intramodular Connectivity 
#==================================================================================== 
 
colorh1=moduleColors 
ADJ1=abs(cor(datExpr0,use="p"))^6 
Alldegrees1=intramodularConnectivity(ADJ1, colorh1) 
head(Alldegrees1) 
datME=moduleEigengenes(datExpr0,colorh1)$eigengenes 
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signif(cor(datME, use="p"), 2) 
signif(datME,2) 
 
# Calculate Module membership 
datKME=signedKME(datExpr0, datME, outputColumnName="MM.") 
# Display the first few rows of the data frame 
head(datKME) 
 
#==================================================================================== 
# Relationship between the module membership measures (e.g. MM.turquoise) 
# and intramodular connectivity 
#==================================================================================== 
 
# Plot module membership vs. intramodular connectivity by module 
 
sizeGrWindow(8,6) 
par(mfrow=c(3,3)) 
 
# For simplicity, the code is written explicitly for each module. 
which.color="turquoise"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^5, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)^5") 
which.color="blue"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^5, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)^5") 
which.color="brown"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^5, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)^5") 
which.color="yellow"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^5, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)^5") 
which.color="green"; 
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restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^5, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)^5") 
which.color="red"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^5, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)^5") 
which.color="black"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^5, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)^5") 
which.color="pink"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^5, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)^5") 
which.color="magenta"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^5, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)^5") 
 
 
sizeGrWindow(8,6) 
par(mfrow=c(3,3)) 
 
# For simplicity, the code is written explicitly for each module. 
which.color="turquoise"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^1, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)") 
which.color="blue"; 
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restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^1, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)") 
which.color="brown"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^1, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)") 
which.color="yellow"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^1, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)") 
which.color="green"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^1, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)") 
which.color="red"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^1, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)") 
which.color="black"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^1, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)") 
which.color="pink"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^1, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)") 
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which.color="magenta"; 
restrictGenes=colorh1==which.color 
verboseScatterplot(Alldegrees1$kWithin[ restrictGenes], 
                   abs(datKME[restrictGenes, paste("MM.", which.color, sep="")])^1, 
                   col=which.color, 
                   xlab="Intramodular Connectivity", 
                   ylab="abs(Module Membership)") 
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