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Abstract

The Möbius function, µ(x), is defined for all positive integers by µ(x) = (−1)k if x is a

product of k distinct primes and µ(x) = 0 if the prime factorization of x contains a prime

factor to any power greater than 1 (with special case µ(1) = 1). The Mertens function

M(x), defined as the sum of the Möbius function of the first x positive integers, is an

extraordinary function in the theory of numbers that is closely related to the Riemann

Zeta function.

This paper is a study on some upper bounds of the Mertens function, which is often

considered somewhat of a “mysterious” function in mathematics. We discuss some

known bounds of the Mertens function, and also seek new bounds with the help of an

automated conjecture-making program named CONJECTURING, which was created by

C. Larson and N. Van Cleemput, and inspired by Fajtowicz’s Dalmatian Heuristic. By

utilizing this powerful program, we were able to form, validate, and disprove hypotheses

regarding the Mertens function and how it is bounded.



1. Introduction

By the Fundamental Theorem of Arithmetic, any positive integer n > 1 can be written

uniquely in its prime factorization as n = pα1
1 p

α2
2 . . . pαk

k , where p1, p2, . . . , pk are primes

such that p1 < p2 < . . . < pk , and α1, α2, . . . , αk are positive integers. (All terms not

specifically defined here can be found in An Introduction to the Theory of Numbers [1].)

Using this factorization, for all x ∈ N, the Mertens function M(x) counts the number of

square-free positive integers with an even number of prime factors minus the number of

square-free positive integers with an odd number of prime factors, up to x. So,

M(x) =
x∑

n=1

µ(n) (1)

where µ(n) is the Möbius function, again defined over the positive integers,

µ(n) =


0 if n is not square-free

(−1)k if n is square-free

1 if n = 1

(2)

with k being the number of distinct primes in the factorization of n. The following table

shows some small values of the Mertens function:
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x Prime Factorization µ(x) M(x)

1 - 1 1
2 2 -1 0
3 3 -1 -1
4 22 0 -1
5 5 -1 -2
6 2 · 3 1 -1
7 7 -1 -2
8 23 0 -2
9 32 0 -2
10 2 · 5 1 -1
11 11 -1 -2
12 22 · 3 0 -2
13 13 -1 -3
14 2 · 7 1 -2
15 3 · 5 1 -1

x Prime Factorization µ(x) M(x)

16 24 0 -1
17 17 -1 -2
18 2 · 32 0 -2
19 19 -1 -3
20 22 · 5 0 -3
21 3 · 7 1 -2
22 2 · 11 1 -1
23 23 -1 -2
24 23 · 3 0 -2
25 52 0 -2
26 2 · 13 1 -1
27 33 0 -1
28 22 · 7 0 -1
29 29 -1 -2
30 2 · 3 · 5 -1 -3

Table 1: Small values of M(x)

Finding relative bounds for M(x) is a very difficult mathematical problem, but it is

easy to see that the function grows slowly and what appears to be chaotically in both

the positive and negative directions as x increases to infinity. Below, for reference, are

two plots of the first 1,000 and 1,000,000 values of the Mertens function, respectively:
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Plot 1: M(x) , x ∈ [1, 103]

Plot 2: M(x) , x ∈ [1, 106]
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2. Background & Motivations

The Mertens Conjecture (1887), from Franz Mertens, was inspired by an 1885 hypoth-

esis from Thomas Stieltjes that m(x) = M(x) · x− 1
2 is bounded. Mertens strengthened

this claim by conjecturing that m(x) is strictly bounded by ±1. Stieltjes did not prove

his claim, but by calculating values of M(x) up to 10,000, Mertens, supposed that his

conjecture was likely true for all values of x greater than 1 [4]. This claim is in fact

true for all values of M(x) up to 10,000, and in 1912, R.D. von Sterneck extended this

result by calculating M(x) up to 500,000 to show that it is true for this range as well.

As computational power has increased over the last century, various results have shown

that −1 < m(x) < 1 is true for larger ranges of x, up to 1014 by Tadej Kotnik and Jan van

de Lune in 2004 [2].

In 1985, however, Andrew Odlyzko and Herman te Reile showed that

lim supx→∞m(x) > 1.06 and lim infx→∞m(x) < −1.009. Although they did not provide

a specific value for which |m(x)| > 1, their result implies a theoretical value for which

the Mertens Conjecture is false. Even though this result seems to disprove the Mertens

Conjecture, Odlyzko and te Reile did suppose that the claim from Steiltjes and Mertens

is true for all values of M(x) up to 1020 and possibly even 1030 [5]. Since the results of

Odlyzko and te Reile, the collective work of Kotnik, te Reile, and van de Lune has proved

that a counter-example to the Mertens Conjecture can be found between the lower bound

of 1014 and a best known upper bound of e1.59×1040 [2]. A specific counter-example to the

Mertens Conjecture is still unknown, but in 2006, Kotnik and te Reile showed that there
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are infinitely many x for which m(x) > 1.2184, providing another proof that the original

Mertens Conjecture is false. It is now thought that a more likely conjecture regarding

the bounds of M(x) is the following:

M(x) = O(x
1
2
+ε) for all ε > 0 (3)

or, for all x > x0 for sufficiently large x0, and for all ε > 0, there exists some constant c

such that M(x) ≤ c · (x 1
2
+ε). For m(x), this conjecture is equivalent to m(x) = O(xε) for

all ε > 0. It turns out that this conjecture, which is referred to as the discrete equivalent

of the Riemann Hypothesis, is even more interesting than the Mertens Conjecture. In

particular, a proof of (3) is equivalent to showing that the Riemann Hypothesis is true,

which claims that the zeros of the Riemann Zeta Function ζ(s) =
∑∞

i=1
1
is

are exactly the

even negative integers as well as the complex numbers with real part 1
2
. This result is

monumentally important in mathematics because its proof implies results about the dis-

tribution of prime numbers, another largely unsolved and important problem in number

theory. Specifically, it would give the following approximation for π(x), the number of

primes less than or equal to x:

π(x) = Li(x) +O(
√
x · ln(x)) (4)

where Li(x) =
∫ x
0

dt
ln(t)

is the logarithmic integral function, defined over all x ∈ R+ \ {1}.

Thus, a proof of this conjecture, or equivalently a proof of (3), is one of the most famous

open problems in mathematics, and it is included in the Millennium Prize Problem set

from the Clay Mathematics Institute. It is for these reasons that we are most interested

in exploring bounds for the Mertens function.
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3. Automated Conjecturing

3.1 Dalmatian Heuristic

A critical tool in our investigation of the Mertens function is the automated conjecture-

making program CONJECTURING created by Larson and Van Cleemput. A brief ex-

planation of the program is included in this section, but for a detailed description, see

[3].

CONJECTURING is an open-source implementation of Fajtlowicz’s Dalmatian heuris-

tic, which can be used to propose relations between real number invariants of mathe-

matical objects (e.g. matrices, graphs, integers, etc.) using algebraic operators (+/-, ·/÷,

∧). For this project, we use a small, selectively chosen subset of the natural numbers

as our object set and a variety of invariants on N, particularly from number theory. A

few such invariants are the number x ∈ N itself, its value in the Mertens function, M(x),

its number of factors, its number of prime factors, its value for Euler’s Totient function

(counts natural numbers n < x such that gcd(n, x) = 1), φ(x), and its value for the prime

counting function π(x). A full list of invariants used in our experiments is available in

the Glossary.

The Dalmatian heuristic is powerful because it not only guarantees the quality of the

conjectures but also limits the output of conjectures to a reasonable number, effectively

outputting just those that are deemed significant. For the program to output a conjecture,

the conjecture must pass a two-step verification: the Truth Test and the Significance Test.
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The Truth Test checks to see that a proposed conjecture is true for all of the stored values

in the objects list. The Significance Test, which is what makes the conjecturing engine

particularly powerful, guarantees that a proposed conjecture results in a better bound

for at least one stored object than any previous conjecture. These two steps, which

Fajtlowicz refers to as the “Principle of the Strongest Conjecture,” are summarized by

Larson as “output the strongest conjecture for which no counterexample is known.” [3]

Therefore, there are two key ways to increase the quality of the conjectures: increasing

the size of the invariants list, or increasing the size of the objects list. However, both

of these strategies should be chosen selectively, with respect to available computing

power and time; the more objects and invariants that are included in each respective

list, the more time will be required by CONJECTURING to form new conjectures. In

particular, it is most effective to add objects that are counter-examples to previous trials,

rather than choosing arbitrary or random objects for the list, in order to guarantee that

each additional object will be useful in forming new bounds. Including such counter-

examples provides new and significant information to the CONJECTURING since, again,

the conjectures output by the program are only necessarily true for the values in the

objects list, not all general objects (for our case all x ∈ N). To demonstrate this process in

detail, the first few iterations of our conjecture testing for M(x) are shown below.

3.2 Demonstrating CONJECTURING

In searching for upper bounds for M(x), we first must supply the conjecturing program

with some initial objects and some initial invariants. For the initial objects, since we

desire bounds for M(x), objects whose Mertens values are easy to compute are preferred.

Initially, we arbitrarily choose 5 and 20, for which we can easily compute M(5) = −2

and M(20) = −3. For the initial invariants, we choose to make conjectures about the

main invariant M(x) in terms of 3 other invariants on natural numbers. We call two
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of these number_of_prime_factors and number_of_distinct_prime_factors where the

former counts the total number of prime factors of x (given by the sum of the exponents

in the prime factorization, α1 + α2 + . . . + αk), and the latter counts only those prime

factors of x which are distinct (given by k in the prime factorization). The third invariant

mentioned is simply x itself. Since we seek upper bounds for the Mertens function, we

designate M(x) as our invariant of interest, and we are able to conjecture upper bounds

for M(x). We note here that the number of output conjectures is limited to the number

of objects due to the Significance Test in the Dalmatian Heuristic. With the initial objects

5 and 20, the input and output in Sage using the CONJECTURING program appear as

the following:

Input:

load(‘~/conjecturing.py’)

load(‘~/mertens2.py’)

invariants = [number, mertens_function, number_of_distinct_prime_factors,

number_of_prime_factors]

objects = [5, 20]

main_invariant = invariants.index(mertens_function)

conjecture(objects, invariants, main_invariant)

Output:

[mertens_function(x) <= -number_of_prime_factors(x),

mertens_function(x) <= -number_of_distinct_prime_factors(x) - 1]

The first two lines load the conjecturing.py program file from Larson and van Cleem-

put, as well as the mertens2.py file which contains the definition of the Mertens function

as well as definition functions for the other invariants. The following three lines contain

the invariants list, the objects list, and the designation of mertens_function as the main
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invariant for which we would like to make conjectures. The final line of input con-

tains the function call to the conjecturing.py file using the lists described above as its

arguments.

We interpret these output conjectures, and all future conjectures, as being supposed

bounds for all x ∈ N. Of course, both of these output conjectures hold true for our initial

objects list, which verifies the Truth Test.

For mertens_function(x)<= -number_of_prime_factors(x), which we call Conj. 1 in

the table below, the bound is sharp for the object 20, but exact equality does not hold

for the object 5, since M(5) = −2 and the value of the bound at 5 is -1. However, for

mertens_function(x)<= -number_of_distinct_prime_factors(x)-1 , or Conj. 2 in the

table, exact equality holds for both objects; therefore the bound for the object 5 has been

tightened, satisfying the Significance Test. Since equality holds for Conj. 2 for both 5

and 20, neither bound can be further improved, and conjecturing.py quits searching

for new conjectures. This table shows the conjectures evaluated for each of the two initial

objects, along with at 2:

x Prime Factorization Conj. 1 Conj. 2

5 5 −2 ≤ −1 −2 ≤ −2

20 22 · 5 −3 ≤ −3 −3 ≤ −3

2 2 0 � −1 0 � −2

Table 2: First Round Conjectures

Now, it is obvious that these conjectures are not true for all x ∈ N. In particular,

M(2) = 0, so 2 is a counter-example to both of these initial conjectures. By now adding

2 to the list of stored objects, we will get new conjectures that are not only guaranteed

true for the values of 5 and 20, but 2 as well. As Sage input and output, this appears as

the following:
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Input:

# 2 is a counter-example to both conjectures

invariants = [number, mertens_function,

number_of_distinct_prime_factors, number_of_prime_factors]

objects = [5, 20, 2]

Conjectures:

[mertens_function(x) <= number_of_distinct_prime_factors(x) - 1,

mertens_function(x) <= (-number_of_distinct_prime_factors(x))^number(x)

- 1,

mertens_function(x) <= -number_of_distinct_prime_factors(x)^2 + 1]

We note that each of the previous conjectures for which we provided a counter-example

is no longer included in the output list, and again, it is easy to see that each of these new

conjectures is true for our input objects. Once more, these conjectures are not necessarily

true for all values of x. To illustrate the Significance Test for these conjectures, we have

the following table, again numbering the conjectures in the order of the list output:

x Prime Factorization Conj. 1 Conj. 2 Conj. 3

5 5 −2 ≤ 0 −2 ≤ −2 −2 ≤ 0

20 22 · 5 −3 ≤ 1 −3 ≤ 1048575 −3 ≤ −3

2 2 0 ≤ 0 0 ≤ 0 0 ≤ 0

Table 3: Second Round Conjectures

As we can see, Conj. 1 gives a sharp bound for only the object 2; however, this is enough

to deem this conjecture significant per the Significance Test. For Conj. 2, again we get a

sharp bound for 2, but for this conjecture there is exact equality for the object 5 as well.
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Even though the bound for the object 20 is much weaker and less useful for Conj. 2 than

Conj. 1, the improvement of the bound on 5 is enough to deem Conj. 2 significant as

well. Finally, for Conj. 3, the bound on 20 is improved to exact equality, and therefore

it is significant with respect to 20. Now, we have at least 1 sharp bound for each of the

objects, and CONJECTURING halts and outputs these 3 conjectures.

We proceed in this manner, disproving at least one conjecture from each output con-

jecture list, and adding the appropriate counter-example to the objects list. These trials

are documented from section 1.1 to 1.10 in the Index.
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4. Methods

4.1 theory Bounds

Another powerful component of CONJECTURING is the theory argument. By including

a bound in the theory list, we require that CONJECTURING only checks for upper

bounds that are better than the theory bound, so in our case, bounds which are strictly

less than the theory bound(s) for at least one object in the objects list. This allows

us to improve the quality of conjectures not only by disproving output conjectures and

adding the counter-examples to the objects list, but also by proving output conjectures

and adding these bounds to the theory list. We note here that it also may be useful to

include published bounds which are known to be true in this theory list. This would

guarantee that all conjectures from the program that can be proved are improvements

over existing publications.

For conjecturing rounds 1.6 through 1.10, the following conjecture is among the out-

put list:

mertens_function(x) <= number(x)

It is obvious that this conjecture is true for all values of x, so we formally prove this

conjecture and introduce our first theory bound, number(x) (the identity function), in

round 1.11 of our CONJECTURING trials.

Theorem 1. For all x ∈ N, mertens_function(x) <= number(x).

12



Proof. By definition, µ(n) ∈ {1,−1, 0} ∀n ∈ N, so µ(n) ≤ 1. Then, M(x) =
∑x

n=1 µ(n) =

µ(1) + µ(2) + . . .+ µ(x) ≤ x · 1 = x.

Now that this conjecture is validated, we change our input for trial 1.11 to the following:

Input:

invariants = [number, mertens_function, number_of_distinct_prime_factors,

number_of_prime_factors, euler_phi_function]

theory = [number]

objects = [5, 20, 19, 2, 97, 999983, 1, 12, 6, 1000000]

conjecture(objects, invariants, main_invariant, theory=theory)

Here, we let the list theory contain just the number invariant and also include this infor-

mation in the function call of conjecturing.py by setting the theory argument to be the

list which we called theory. Although it may not be immediately obvious, we can check

that the output conjectures are all bounds that are strictly sharper than number for some

value in the objects list. The chart on the following page demonstrates this requirement

for each of the conjectures in our trial round 1.11:
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Conjectured Bound Example Object, Conj. Bound at x
x vs. number(x)

1. euler_phi_function(x) 20 8 < 20

2. 4*(log(2*number(x) - 2)/log(10) + 1)^2 97 ∼ 43 < 97

3. euler_phi_function(x) 2 0 < 2
- number_of_distinct_prime_factors(x)

4. maximum( 5 1 < 5
number_of_distinct_prime_factors(x),

(log(number(x))/log(10) - 1)^4)

5. (-sqrt(euler_phi_function(x))) 5 3 < 5
^number_of_prime_factors(x)

+ number(x)

6. 2*sqrt(number(x)) 5 ∼ −1 < 5
- 2*log(euler_phi_function(x)^2)

7. euler_phi_function(x) 97 95 < 97
/number_of_distinct_prime_factors(x)

- number_of_prime_factors(x)

8. -4*sqrt(euler_phi_function(x) - 1) 5 ∼ −2 < 5
+ number(x)

9. (sqrt(euler_phi_function(x)) + 1) 5 2.5 < 5
/(number_of_distinct_prime_factors(x)

+ 1) + 1

10. -number_of_prime_factors(x)^2 1000000 499857 < 1000000
+ 1/2*number(x)+ 1

Table 4: Demonstrating theory Bound number(x)

We continue to use this theory bound for each of the remaining CONJECTURING trials

in Section 1 of the Index, until a better bound is realized.

For all other CONJECTURING trials (Sections 2 through 4), we replace number with

divisor_mean as the theory bound, since this new bound is tighter for all natural num-

bers (note: we also could simply add to the theory list so that it contains multiple

bounds). Below is a plot that compares divisor_mean(x) with
√
x and M(x): As we
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Plot 3: divisor mean(x) [green],
√
x [red], M(x) [blue], for x ∈ [1, 106]. Note: divisor mean(x) exceeds 35,000 for many values of

x, but the maximum value of the vertical axis is set to 35,000 to provide a more illuminating picture of the relationship between this
function and M(x).

can see, divisor_mean(x) (green) grows much more quickly than M(x) (blue) and also
√
x (red). Although we were unable to prove that divisor_mean(x) bounds M(x) for all

x, this bound is thought to be true, and it can be included in the theory list regardless in

an attempt obtain even better bounds. Using the Arithmetic Mean-Geometric Mean the-

orem, however, it can be shown that divisor_mean(x) bounds
√
x, the supposed bound

from Merten’s Conjecture:

Lemma 1. For any x1, x2 ∈ N, x1+x2
2
≥ √x1x2 .

Proof. Let x1, x2 ∈ N. Then,

15



(x1 − x2)2 ≥ 0 ⇔ x1
2 − 2x1x2 + x2

2 ≥ 0

⇔ x1
2 + x2

2 ≥ 2x1x2

⇔ x1
2 + 2x1x2 + x2

2 ≥ 4x1x2

⇔ x12+2x1x2+x22

4
≥ x1x2

⇔ (x1+x2
2

)2 ≥ x1x2

⇔ x1+x2
2
≥ √x1x2

Theorem 2. For all x ∈ N, divisor_mean(x) ≥
√
x.

Proof.

Case 1. Assume x is not a perfect square, so x has 2n divisors d1, d2, . . . , d2n, with 1 = d1 <

d2 < . . . < d2n = x such that d1d2n = d2d2n−1 = . . . = dndn+1 = x. By Lemma 1, for any pair

di, d2n+1−i, with 1 ≤ i ≤ n, we know di+d2n+1−i

2
≥

√
did2n+1−i =

√
x. So, d1+d2n

2
+ d2+d2n−1

2
+

. . .+ dn+dn+1

2
≥ n
√
x⇔ d1+d2n

2n
+ d2+d2n−1

2n
+ . . .+ dn+dn+1

2n
≥
√
x⇔ d1+d2+...+d2n

2n
≥
√
x.

Case 2. Now, assume x is a perfect square, so x has 2n + 1 divisors d1, d2, . . . , d2n+1, with

1 = d1 < d2 < . . . < d2n+1 = x such that d1d2n+1 = d2d2n = . . . = dndn+2 = dn+1
2 = x.

By Lemma 1, for any pair di, d2n+2−i, with 1 ≤ i ≤ n, we know di+d2n+2−i

2
≥

√
did2n+2−i =

√
x = dn+1. So, d1+d2n+1

2
+ d2+d2n

2
+ . . . + dn+dn+2

2
≥ n
√
x = n · dn+1 ⇔ d1 + d2 + . . . + dn +

dn+2 + . . . + d2n+1 ≥ 2n · dn+1 ⇔ d1+d2+...+dn+dn+2+...+d2n+1

2n+1
≥ 2n·dn+1

2n+1
= (2n+1)dn+1

2n+1
− dn+1

2n+1
⇔

d1+d2+...+dn+dn+2+...+d2n+1

2n+1
+ dn+1

2n+1
≥ dn+1 =

√
x⇔ d1+d2+...+dn+dn+1+dn+2+...+d2n+1

2n+1
≥
√
x.

Therefore, divisor_mean(x) ≥
√
x.

We note here that even though it was never included as a theory bound in our trials, we

also proved the following conjecture:

Theorem 3. For all x ∈ N, mertens_function(x)<= (number(x)-3)^2-1.

Proof. By Table 1 and brute force, we can see that for x ≤ 5, this conjecture is true. Then,

for x ≥ 6, this conjecture is simply a consequence of Theorem 1.
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4.2 special Functions

As previously mentioned, computing time is a significant concern when using CON-

JECTURING and working with the Mertens Function. For most of our CONJECTURING

trials (1.1-4.1), we were only able to test the truth of output conjectures for values of x up

to 10,000 due to the excessive time required to calculate M(x) (mertens_function(x)), as

well as other functions such as π(x) (pi_function(x)). In order to increase our testable

range, we introduce what we call special functions in trial round 4.2. For each of these

functions, we store a list of the computed values, rather than recomputing all values of

x each time the function is called. The definition of mertens_special(x), the special

equivalent of mertens_function(x), is:

def mertens_special(n):

current = len(mertens_data)

if n <= current:

return mertens_data[n]

for i in range(current,n+1):

mertens_data.append(mertens_data[i-1]+moebius(i))

save(mertens_data,’mertens_data.sobj’)

return mertens_data[n]

The mertens_data file is a list, saved as a Sage Object, which holds all previously com-

puted values of mertens_special(x). If a value which is already in the mertens_data list

is required, the mertens_special function simply pulls from the list at the appropriate x.

If a value which is not in the mertens_data list is required, mertens_special computes

all unknown values up to the desired x and adds these to the mertens_data list so they

also can be pulled from the list the next time the mertens_special function is called.

All other special functions follow this form, and are substituted in CONJECTURING

trial 4.2 for their appropriate counterparts. The table below contains a list of the special
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functions we used to facilitate larger computations of x, up to 1,000,000:

Invariant special Equivalent data List
1. mertens_function mertens_special mertens_data

2. divisor_mean divisor_mean_special divisor_mean_data

3. count_divisors count_divisors_special count_divisors_data

4. sum_divisors sum_divisors_special sum_divisors_data

5. euler_phi_function euler_phi_special euler_phi_data

6. pi_function pi_function_special pi_function_data

7. upper_prime upper_prime upper_prime

_remainder _remainder_special _remainder_data

8. upper_prime upper_prime_special upper_prime_data

9. upper_prime upper_prime upper_prime

_adjusted _adjusted_special _adjusted_data

10. sum_nontrivial sum_nontrivial sum_nontrivial

_divisors _divisors_special _divisors_data

Table 5: List of special Functions
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5. Notable Conjectures

Throughout our research of the Mertens function, we have discovered quite a few inter-

esting conjectures. Although the randomness of the prime factorization of the elements

of N - and in particular the randomness of π(x) - makes these conjectures very difficult to

prove, the conjectures themselves are quite important. As previously mentioned, adding

to the known theory of the Mertens function could lead to a proof (or disproof) of the

Riemann Hypothesis. In this section, we list some of these conjectures which remain un-

proved yet are believed to likely be true and/or particularly significant. All conjectures

in this section have been tested by brute force to bound M(x) for at least all values of

x ≤ 1000000.

Upper Bound
1. divisor_mean(x)

2. euler_phi_function(x)

3. pi_function(x)

4. euler_phi_function(x)-pi_function(x)

5. divisor_mean(x)/digits2(x) - number_squarefull_pf(x)

6. (pi_function(x) + 1)/number_of_distinct_prime_factors(x)^2

Table 6: Significant & Interesting Conjectures

Below are a number of plots of the Significant & Interesting Conjectures. All con-

jectured bounds are shown in green, and are plotted along with M(x) in blue and
√
x

in red. Plots marked with ** in the caption have truncated vertical axes to better show

detail of the relationship between the conjecture and M(x).

19



Plot 4: divisor mean(x) [green],
√
x [red], M(x) [blue], for x ∈ [1, 106].

Plot 5**: divisor mean(x) [green],
√
x [red], M(x) [blue], for x ∈ [1, 106]. Note: divisor mean(x) exceeds 35,000 for many values

of x, but the maximum value of the vertical axis is set to 35,000 to better show the relationship between this function and M(x).
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Plot 6: euler phi function(x) [green],
√
x [red], M(x) [blue], for x ∈ [1, 106].

Plot 7**: euler phi function(x) [green],
√
x [red], M(x) [blue], for x ∈ [1, 106]. Note: euler phi function(x) exceeds 200,000 for

many values of x, but the maximum value of the vertical axis is set to 200,000 to better show the relationship between this function
and M(x).
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Plot 8: prime pi function(x) [green],
√
x [red], M(x) [blue], for x ∈ [1, 106].
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Plot 9: euler phi function(x)− prime pi function(x) [green],
√
x [red], M(x) [blue], for x ∈ [1, 106].

Plot 10**: euler phi function(x)− prime pi function(x) [green],
√
x [red], M(x) [blue], for x ∈ [1, 106]. Note:

euler phi function(x)− prime pi function(x) exceeds 150,000 for many values of x, but the maximum value of the vertical
axis is set to 150,000 to better show the relationship between this function and M(x).
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Plot 11: divisor mean(x)/digits2(x)−number squarefull pf(x) [green],
√
x [red], M(x) [blue], for x ∈ [1, 106].

Plot 12**: divisor mean(x)/digits2(x)− number squarefull pf(x) [green],
√
x [red], M(x) [blue], for x ∈ [1, 106]. Note:

divisor mean(x)/digits2(x)−number squarefull pf(x) exceeds 2,000 for many values of x, but the maximum value of the vertical
axis is set to 2,000 to better show the relationship between this function and M(x).
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Plot 13: (pi function(x) + 1)/number of distinct prime factors(x)^2 [green],
√
x [red], M(x) [blue], for x ∈ [1, 106].

Plot 14**: (pi function(x) + 1)/number of distinct prime factors(x)^2 [green],
√
x [red], M(x) [blue], for x ∈ [1, 106]. Note:

(pi function(x)+1)/number of distinct prime factors(x)^2 exceeds 2,500 for many values of x, but the maximum value of the
vertical axis is set to 2,500 to better show the relationship between this function and M(x).
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Glossary of Invariants

The following is a list of all invariants used in our CONJECTURING trials, along with

their definitions. For each definition, we include evaluations for 30 = 2 · 3 · 5 and

60 = 22 · 3 · 5 to provide an example:

Definition 1. For all x ∈ N, number(x) is the identity function, returns x

(e.g. number(30) = 30, number(60) = 60)

Definition 2. For all x ∈ N, mertens_function(x) is the Mertens function of x,

M(x) =
x∑

n=1

µ(n)

where µ(n) is the Möbius function,

µ(n) =


0 if n is not square-free

(−1)k if n is square-free

1 if n = 1

and k is the number of distinct primes in the factorization of x by the Fundamental Theorem of

Arithmetic (e.g. mertens_function(30) = −3, mertens_function(60) = −1)
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Definition 3. For all x ∈ N, euler_phi_function(x) is Euler’s totient function, which is the

number of elements in the set {n ≤ x : n ∈ N, gcd(n, x) = 1}

(e.g euler_phi_function(30) = 8, euler_phi_function(60) = 16)

Definition 4. For all x ∈ N, given x = pα1
1 p

α2
2 . . . pαk

k ,

number_of_distinct_prime_factors(x) is k, the number of distinct primes, and

number_of_prime_factors(x) is α1+α2+. . .+αk, the total number of (not necessarily distinct)

primes, in the unique prime factorization of x

(e.g. number_of_distinct_prime_factors(30) = 3, number_of_prime_factors(30) = 3,

number_of_distinct_prime_factors(60) = 3, number_of_prime_factors(60) = 4)

Definition 5. For all x ∈ N, given x = pα1
1 p

α2
2 . . . pαk

k , number_squarefull_pf(x) counts the

number of primes pi (1 ≤ i ≤ k) for which αi > 1, and number_squarefree_pf(x) counts the

number of primes pi for which αi = 1, in the unique prime factorization of x

(e.g. number_squarefull_pf(30) = 0, number_squarefree_pf(30) = 3,

number_squarefull_pf(60) = 1, number_squarefree_pf(60) = 2)

Definition 6. For all x ∈ N, pi_function(x) is the prime-counting function, which for given x,

is the number of primes p such that p ≤ x (e.g. pi_function(30) = 10, pi_function(60) = 17)

Definition 7. For all x ∈ N, count_divisors(x) counts the divisors of x, or d ∈ N such that d

divides x. sum_divisors(x) is the sum of these divisors, and sum_nontrivial_divisors(x) is

the sum of all divisors except 1 and x. divisor_mean(x) is the arithmetic mean of all divisors.

(e.g. count_divisors(30) = 8, sum_divisors(30) = 72, sum_nontrivial_divisors(30) =

41, divisor_mean(30) = 9, count_divisors(60) = 12, sum_divisors(60) = 168,

sum_nontrivial_divisors(60) = 107, divisor_mean(60) = 14)
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Definition 8. For all x ∈ N, number_factorizations(x) is the number of pairs of distinct

n1, n2 ∈ N such that n1n2 = x, plus 1 if x is a perfect square

(e.g. number_factorizations(30) = 4, number_factorizations(60) = 6)

Definition 9. For all x ∈ N, digits10(x) is the number of digits of x when represented in base

10 (e.g. digits10(30) = 2, digits10(60) = 2)

Definition 10. For all x ∈ N, digits2(x) is the number of digits of x when represented in base

2 (e.g. digits2(30) = 5, digits2(60) = 6)

Definition 11. For all x ∈ N, lower_prime(x) is the largest prime p such that p < x

(e.g. lower_prime(30) = 29, lower_prime(60) = 59)

Definition 12. For all x ∈ N, upper_prime(x) is the smallest prime p such that p > x

(e.g. upper_prime(30) = 31, upper_prime(60) = 61)

Definition 13. For all x ∈ N, lower_prime_remainder(x) is x − p, where p is largest prime

< x (e.g. lower_prime_remainder(30) = 1, lower_prime_remainder(x)(60) = 1)

Definition 14. For all x ∈ N, upper_prime_remainder(x) is p− x, where p is smallest prime

> x (e.g. upper_prime_remainder(30) = 1, upper_prime_remainder(60) = 1)

Definition 15. For all x ∈ N, lower_prime_adjusted(x) is the largest prime p such that p ≤ x

(e.g. lower_prime_adjusted(30) = 29, lower_prime_adjusted(60) = 59)

Definition 16. For all x ∈ N, upper_prime_adjusted(x) is the smallest prime p such that

p ≥ x (e.g. upper_prime_adjusted(30) = 31, upper_prime_adjusted(60) = 61)
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Definition 17. For all x ∈ N, lower_prime_remainder_adjusted(x) is x − p, where p is

largest prime ≤ x. (e.g. lower_prime_remainder_adjusted(30) = 1,

lower_prime_remainder_adjusted(60) = 1)

Definition 18. For all x ∈ N, upper_prime_remainder_adjusted(x) is p − x, where p is

smallest prime ≥ x. (e.g. upper_prime_remainder_adjusted(30) = 1,

upper_prime_remainder_adjusted(60) = 1)

Definition 19. For all x ∈ N, value_pi(x) returns the irrational number π

(e.g. value_pi(30) = π, value_pi(60) = π)

Definition 20. For all x ∈ N, value_e(x) returns the irrational number e

(e.g. value_e(30) = e, value_e(60) = e)

Definition 21. For all x ∈ N, value_golden_ratio(x) returns the irrational number

Φ = 1+
√
5

2
(e.g. value_golden_ratio(30) = 1+

√
5

2
, value_golden_ratio(60) = 1+

√
5

2
)
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Index of CONJECTURING Trials

Arguments and Results

Again, we interpret all output conjectures in this index as being supposed bounds for all

x ∈ N.

Section 1

In Section 1 of this Index, trials are conducted exactly as described in Chapter 3. At each

trial round, either 1 object is added to the objects list (typically as a result of being as

counter-example to one or more conjectures from the previous round), or an invariant is

added to the invariants list. Section 1 also contains trials which use the theory bound

number(x).

1.1 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors, number_of_prime_factors]

objects=[5, 20]

Conjectures:

[mertens_function(x)<= -number_of_prime_factors(x),

mertens_function(x)<= -number_of_distinct_prime_factors(x) - 1]
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2 is a counter-example to both conjectures in the previous trial

(e.g. mertens_function(2) = 0, -number_of_prime_factors(2) = −1), so we add it

to the objects list and proceed to the next trial. In doing so, we guarantee that the

previous conjectures will not be output by the program again, as they have now

been disproved, and output conjectures must be true for all objects in the list.

1.2 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors, number_of_prime_factors]

objects=[5, 20, 2]

Conjectures:

[mertens_function(x)<= number_of_distinct_prime_factors(x) - 1,

mertens_function(x)<= (-number_of_distinct_prime_factors(x))^number(x)

- 1,

mertens_function(x)<= -number_of_distinct_prime_factors(x)^2 + 1]

Here, we add 19 to the objects list and proceed to the next trial.

1.3 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors, number_of_prime_factors]

objects=[5, 20, 2, 19]

Conjectures:

[mertens_function(x)<= 4*(number_of_distinct_prime_factors(x) + 1)^2

- number(x),
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mertens_function(x)<= number_of_distinct_prime_factors(x) - 1,

mertens_function(x)<= -number_of_distinct_prime_factors(x)^2 + 1,

mertens_function(x)<= (-number_of_distinct_prime_factors(x))^number(x)

- 1]

97 is a counter-example to all conjectures in the previous trial,

(e.g. mertens_function(97) = 1, number_of_distinct_prime_factors(97)− 1 = 0)

so we add it to the objects list and proceed to the next trial. In doing so, we

guarantee that the previous conjectures will not be output by the program again,

as they have now been disproved, and output conjectures must be true for all

objects in the list.

1.4 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors, number_of_prime_factors]

objects=[5, 20, 19, 2, 97]

Conjectures:

[mertens_function(x)<= number_of_distinct_prime_factors(x),

mertens_function(x)<= log(log(log(number(x))^2/log(10)^2)^4),

mertens_function(x)<= (-number_of_prime_factors(x))

^(number_of_distinct_prime_factors(x) - 1),

mertens_function(x)<= number(x) - 2,

mertens_function(x)<= log(log(1/4*number(x))^2) + 1]

999983 is a counter-example to the first conjecture in the previous trial,

(mertens_function(999983) = 213, number_of_distinct_prime_factors(999983) =

1) so we add it to the objects list and proceed to the next trial. In doing so, we
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guarantee that this conjecture will not be output by the program again, as it has

now been disproved, and output conjectures must be true for all objects in the list.

1.5 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors, number_of_prime_factors]

objects=[5, 20, 19, 2, 97, 999983]

Conjectures:

[mertens_function(x)<= number_of_distinct_prime_factors(x),

mertens_function(x)<= log(log(log(number(x))^2/log(10)^2)^4),

mertens_function(x)<= (-number_of_prime_factors(x))^

(number_of_distinct_prime_factors(x) - 1),

mertens_function(x)<= number(x) - 2,

mertens_function(x)<= log(log(1/4*number(x))^2) + 1]

1 is a counter-example to the fourth conjecture in the previous trial,

(mertens_function(1) = 1, number(1)−2 = −1) so we add it to the objects list and

proceed to the next trial. In doing so, we guarantee that this conjecture will not be

output by the program again, as it has now been disproved, and output conjectures

must be true for all objects in the list.

1.6 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors, number_of_prime_factors]

objects=[5, 20, 19, 2, 97, 999983, 1]

Conjectures:
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[mertens_function(x)<= number(x),

mertens_function(x)<= maximum(number_of_distinct_prime_factors(x),

(log(number(x))/log(10) - 1)^4),

mertens_function(x)<= 2/(number_of_distinct_prime_factors(x)

- number_of_prime_factors(x)) - 1,

mertens_function(x)<= number(x)

- 2*number_of_distinct_prime_factors(x),

mertens_function(x)<= 2*(log(1/2*number(x)) - 1)^2 - 2,

mertens_function(x)<= 4*(log(2*number(x) - 2)/log(10) + 1)^2,

mertens_function(x)<= 1/4*(sqrt(number(x)) - 4)^2 - 1]

Here, we add euler_phi_function to the invariants list and proceed to the next

trial.

1.7 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors,

number_of_prime_factors, euler_phi_function]

objects=[5, 20, 19, 2, 97, 999983, 1]

Conjectures:

[mertens_function(x)<= number(x),

mertens_function(x)<= euler_phi_function(x)

- number_of_distinct_prime_factors(x),

mertens_function(x)<= 4*(log(2*euler_phi_function(x))/log(10) + 1)^2,

mertens_function(x)<= 2*euler_phi_function(x) - number(x) + 1,

mertens_function(x)<= 2*sqrt(number(x))

- 2*log(euler_phi_function(x)^2),
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mertens_function(x)<= maximum(number_of_distinct_prime_factors(x),

(log(number(x))/log(10) - 1)^4),

mertens_function(x)<= 2*(log(1/2*number(x)) - 1)^2 - 2]

12 is a counter-example to the fourth conjecture in the previous trial,

(mertens_function(12) = −2, 2*euler_phi_function(12)−number(12) + 1 = −3)

so we add it to the objects list and proceed to the next trial. In doing so, we

guarantee that this conjecture will not be output by the program again, as it has

now been disproved, and output conjectures must be true for all objects in the list.

1.8 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors,

number_of_prime_factors, euler_phi_function]

objects=[5, 20, 19, 2, 97, 999983, 1, 12]

Conjectures:

[mertens_function(x)<= number(x),

mertens_function(x)<= euler_phi_function(x)

- number_of_distinct_prime_factors(x),

mertens_function(x)<= 4*(log(2*euler_phi_function(x))/log(10) + 1)^2,

mertens_function(x)<= -number_of_distinct_prime_factors(x)

*number_of_prime_factors(x)

+ euler_phi_function(x),

mertens_function(x)<= -euler_phi_function(x)

/(number_of_prime_factors(x) - 1) + 1,

mertens_function(x)<= 2*sqrt(number(x))

- 2*log(euler_phi_function(x)^2),
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mertens_function(x)<= maximum(number_of_distinct_prime_factors(x),

(log(number(x))/log(10) - 1)^4),

mertens_function(x)<= -4*sqrt(euler_phi_function(x) - 1) + number(x)]

6 is a counter-example to the fourth conjecture in the previous trial,

(mertens_function(6) = −1, -number_of_distinct_prime_factors(6)

∗number_of_prime_factors(6)+euler_phi_function(6) = −2) so we add it to the

objects list and proceed to the next trial. In doing so, we guarantee that this

conjecture will not be output by the program again, as it has now been disproved,

and output conjectures must be true for all objects in the list.

1.9 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors,

number_of_prime_factors, euler_phi_function]

objects=[5, 20, 19, 2, 97, 999983, 1, 12, 6]

Conjectures:

[mertens_function(x)<= number(x),

mertens_function(x)<= euler_phi_function(x)

- number_of_distinct_prime_factors(x),

mertens_function(x)<= 4*(log(2*euler_phi_function(x))/log(10) + 1)^2,

mertens_function(x)<= 2*euler_phi_function(x) - number(x) + 2,

mertens_function(x)<= -4*sqrt(euler_phi_function(x) - 1) + number(x),

mertens_function(x)<= 2*sqrt(number(x))

- 2*log(euler_phi_function(x)^2),

mertens_function(x)<= maximum(number_of_distinct_prime_factors(x),

(log(number(x))/log(10) - 1)^4),
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mertens_function(x)<= -1/(number_of_distinct_prime_factors(x) - 1),

mertens_function(x)<= -euler_phi_function(x)

/(number_of_prime_factors(x) - 1) + 1]

1000000 is a counter-example to the eighth conjecture in the previous trial,

(mertens_function(1000000) = 212,

-1/(number_of_distinct_prime_factors(1000000) − 1) = −1) so we add it to the

objects list and proceed to the next trial. In doing so, we guarantee that this

conjecture will not be output by the program again, as it has now been disproved,

and output conjectures must be true for all objects in the list.

1.10 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors,

number_of_prime_factors, euler_phi_function]

objects=[5, 20, 19, 2, 97, 999983, 1, 12, 6, 1000000]

Conjectures:

[mertens_function(x)<= number(x),

mertens_function(x)<= euler_phi_function(x)

- number_of_distinct_prime_factors(x),

mertens_function(x)<= 4*(log(2*number(x))/log(10) + 1)^2,

mertens_function(x)<= maximum(number_of_distinct_prime_factors(x),

(log(number(x))/log(10) - 1)^4),

mertens_function(x)<= (-sqrt(euler_phi_function(x)))

^number_of_prime_factors(x) + number(x),

mertens_function(x)<= 2*sqrt(number(x))

- 2*log(euler_phi_function(x)^2),
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mertens_function(x)<= euler_phi_function(x)

/number_of_distinct_prime_factors(x)

- number_of_prime_factors(x),

mertens_function(x)<= -4*sqrt(euler_phi_function(x) - 1) + number(x),

mertens_function(x)<= (sqrt(euler_phi_function(x)) + 1)

/(number_of_distinct_prime_factors(x) + 1) + 1,

mertens_function(x)<= -number_of_prime_factors(x)^2 + 1/2*number(x)

+ 1]

Here, we prove the first conjecture from the previous trial, and add this bound,

number, to the theory list and proceed to the next trial.

1.11 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors,

number_of_prime_factors, euler_phi_function]

theory=[number]

objects=[5, 20, 19, 2, 97, 999983, 1, 12, 6, 1000000]

Conjectures:

[mertens_function(x)<= euler_phi_function(x),

mertens_function(x)<= 4*(log(2*number(x) - 2)/log(10) + 1)^2,

mertens_function(x)<= euler_phi_function(x)

- number_of_distinct_prime_factors(x),

mertens_function(x)<= maximum(number_of_distinct_prime_factors(x),

(log(number(x))/log(10) - 1)^4),

mertens_function(x)<= (-sqrt(euler_phi_function(x)))

^number_of_prime_factors(x) + number(x),
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mertens_function(x)<= 2*sqrt(number(x))

- 2*log(euler_phi_function(x)^2),

mertens_function(x)<= euler_phi_function(x)

/number_of_distinct_prime_factors(x)

- number_of_prime_factors(x),

mertens_function(x)<= -4*sqrt(euler_phi_function(x) - 1) + number(x),

mertens_function(x)<= (sqrt(euler_phi_function(x)) + 1)

/(number_of_distinct_prime_factors(x) + 1) + 1,

mertens_function(x)<= -number_of_prime_factors(x)^2 + 1/2*number(x)

+ 1]

Here, we add pi_function to the invariants list and proceed to the next trial.

1.12 Input:

invariants=[number, mertens_function,

number_of_distinct_prime_factors,

number_of_prime_factors, euler_phi_function, pi_function]

theory=[number]

objects=[5, 20, 19, 2, 97, 999983, 1, 12, 6, 1000000]

Conjectures:

[mertens_function(x)<= euler_phi_function(x),

mertens_function(x)<= 4*(log(2*number(x))/log(10) + 1)^2,

mertens_function(x)<= euler_phi_function(x)

- number_of_distinct_prime_factors(x),

mertens_function(x)<= euler_phi_function(x) - pi_function(x),

mertens_function(x)<= 2*number(x) - 4*pi_function(x),

mertens_function(x)<= 1/2*euler_phi_function(x)
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- pi_function(x) + 1,

mertens_function(x)<= pi_function(x)^(log(number(x))/log(10))

- euler_phi_function(x) + 1,

mertens_function(x)<= maximum(number_of_distinct_prime_factors(x),

(-number(x))^pi_function(x)),

mertens_function(x)<= (log(2*euler_phi_function(x) - 2) + 1)^2]

Section 2

Section 2 includes trials with our full list of invariants (all those listed in the glossary).

Also, all trials in Section 2 include the theory bound divisor_mean(x).

2.1 Input:

invariants=[number, mertens_function, number_of_distinct_prime_factors,

number_of_prime_factors, number_squarefull_pf,

number_squarefree_pf, count_divisors, sum_divisors,

sum_nontrivial_divisors, number_factorizations,

divisor_mean, digits10, digits2, lower_prime,

lower_prime_remainder, upper_prime, upper_prime_remainder,

lower_prime_adjusted, upper_prime_adjusted,

lower_prime_remainder_adjusted,

upper_prime_remainder_adjusted, pi_function, value_pi,

value_e, value_golden_ratio, euler_phi_function]

objects=[1, 2, 3, 4, 5, 19, 20, 30, 31, 40, 60, 95, 96, 97, 100, 218,

999983, 1000000]

theory=[divisor_mean]

Conjectures:
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mertens_function(x)<= euler_phi_function(x)

mertens_function(x)<= (number_of_prime_factors(x)^2

- euler_phi_function(x))^2

mertens_function(x)<= (digits2(x) + value_golden_ratio(x))

*value_pi(x)^2

mertens_function(x)<= euler_phi_function(x) - pi_function(x)

mertens_function(x)<= -count_divisors(x) + upper_prime_adjusted(x)

mertens_function(x)<= -upper_prime_remainder(x)^2 + number(x) + 1

mertens_function(x)<= sum_nontrivial_divisors(x)^(count_divisors(x)

- digits10(x))

mertens_function(x)<= number(x)/number_of_prime_factors(x)

- count_divisors(x)

mertens_function(x)<= upper_prime_remainder(x)^4

*value_golden_ratio(x)^2

mertens_function(x)<= digits10(x)^upper_prime_remainder(x)

mertens_function(x)<= number(x) - 2*pi_function(x)

mertens_function(x)<= sqrt((euler_phi_function(x)

- sum_nontrivial_divisors(x))^2)

mertens_function(x)<= digits10(x)^number(x) - pi_function(x)

mertens_function(x)<= -number_factorizations(x)*number_squarefree_pf(x)

+ divisor_mean(x)

mertens_function(x)<= number_factorizations(x)^upper_prime_remainder(x)

/upper_prime_remainder_adjusted(x)

mertens_function(x)<= divisor_mean(x)/upper_prime_remainder(x)

- count_divisors(x) + 1

mertens_function(x)<= upper_prime_remainder(x)^number(x)

+ number_squarefree_pf(x)
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mertens_function(x)<= -digits2(x)^2 + count_divisors(x)

+ sum_divisors(x)

6, 7, 8, 9, 17, 23, 24, 48, 54, 84, 90, 113, 114, 115, 221, 222, 226, 228, 346, 553, 554, 556,

562, 566, 568, 570, 576, 586, 926, 961, 1007, and 1263 are various counter-examples to

the conjectures in the previous trial, so we add them to the objects list and proceed

to the next trial. In doing so, we guarantee that many of the above conjectures will

not be output by the program again, as they have now been disproved, and output

conjectures must be true for all objects in the list.

2.2 Input:

invariants=[number, mertens_function, number_of_distinct_prime_factors,

number_of_prime_factors, number_squarefull_pf,

number_squarefree_pf, count_divisors, sum_divisors,

sum_nontrivial_divisors, number_factorizations,

divisor_mean, digits10, digits2, lower_prime,

lower_prime_remainder, upper_prime, upper_prime_remainder,

lower_prime_adjusted, upper_prime_adjusted,

lower_prime_remainder_adjusted,

upper_prime_remainder_adjusted, pi_function, value_pi,

value_e, value_golden_ratio, euler_phi_function]

objects=[1, 2, 3, 4, 5, 19, 20, 30, 31, 40, 60, 95, 96, 97, 100,

218, 999983, 1000000, 6, 7, 8, 9, 17, 23, 24, 48, 54, 84, 90,

113, 114, 115, 221, 222, 226, 228, 346, 553, 554, 556, 562,

566, 568, 570, 576, 586, 926, 961, 1007, 1263]

theory=[divisor_mean]

Conjectures:
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mertens_function(x)<= euler_phi_function(x)

mertens_function(x)<= (log(2*euler_phi_function(x)) + 1)^2

mertens_function(x)<= digits10(x)^value_pi(x)*log(10)/log(digits2(x))

mertens_function(x)<= number(x)/value_pi(x) - pi_function(x) + 1

mertens_function(x)<= euler_phi_function(x) - pi_function(x)

mertens_function(x)<= sqrt(euler_phi_function(x)) - digits2(x)

+ number_factorizations(x)

mertens_function(x)<= (divisor_mean(x)/upper_prime_remainder(x))

^(log(digits10(x))/log(10))

mertens_function(x)<= count_divisors(x)^digits2(x)

/sum_nontrivial_divisors(x)^2

mertens_function(x)<= number(x)/number_of_prime_factors(x)

- count_divisors(x)

mertens_function(x)<= 2*digits10(x)/(number_squarefree_pf(x)

*number_squarefull_pf(x))

mertens_function(x)<= number(x) - 2*pi_function(x)

mertens_function(x)<= -count_divisors(x) + upper_prime_adjusted(x)

mertens_function(x)<= number(x)/count_divisors(x)

- number_of_prime_factors(x)

mertens_function(x)<= (digits2(x)/number_squarefull_pf(x))

^upper_prime_remainder(x)

mertens_function(x)<= sqrt(-divisor_mean(x) + euler_phi_function(x)

+ 1)

mertens_function(x)<= divisor_mean(x)/upper_prime_remainder(x)

- log(number(x))

mertens_function(x)<= number_factorizations(x)^2

/number_squarefull_pf(x)
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mertens_function(x)<= 2*digits10(x)^lower_prime_remainder(x)

mertens_function(x)<= divisor_mean(x)/digits2(x)

- number_squarefull_pf(x)

mertens_function(x)<= upper_prime_adjusted(x)/digits2(x)

- upper_prime_remainder(x)

mertens_function(x)<= digits10(x)^number(x)

- number_of_prime_factors(x)

mertens_function(x)<= count_divisors(x)/(number_squarefree_pf(x)

*number_squarefull_pf(x))

mertens_function(x)<= count_divisors(x)^upper_prime_remainder(x)

+ digits10(x)

mertens_function(x)<= maximum(lower_prime_remainder(x),

count_divisors(x)^upper_prime_remainder(x))

mertens_function(x)<= sqrt(euler_phi_function(x))

- upper_prime_remainder(x) + 1

mertens_function(x)<= number_of_prime_factors(x)^value_e(x)

+ 1/upper_prime_remainder_adjusted(x)

mertens_function(x)<= number(x)/count_divisors(x) - digits2(x) + 1

mertens_function(x)<= digits10(x)^lower_prime_remainder(x)

/number_squarefull_pf(x)

mertens_function(x)<= (number_of_prime_factors(x)^2

- euler_phi_function(x))^2

mertens_function(x)<= (count_divisors(x)^upper_prime(x))

^(1/euler_phi_function(x))

mertens_function(x)<= -number_factorizations(x)*number_squarefree_pf(x)

+ divisor_mean(x)

mertens_function(x)<= upper_prime(x)/(sqrt(number(x))
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*upper_prime_remainder_adjusted(x))

mertens_function(x)<= 1/2*(divisor_mean(x)

- sum_nontrivial_divisors(x))^2

mertens_function(x)<= -upper_prime_remainder(x)^2 + 2*number(x)

mertens_function(x)<= (digits10(x) - 1)^number(x) + 1

mertens_function(x)<= divisor_mean(x)/upper_prime_remainder(x)

- number_of_prime_factors(x) + 1

mertens_function(x)<= sqrt(divisor_mean(x)) + count_divisors(x)

- upper_prime_remainder(x)

mertens_function(x)<= (divisor_mean(x) - 2*pi_function(x))^2

mertens_function(x)<= sqrt(divisor_mean(x)) + number_factorizations(x)

- upper_prime_remainder_adjusted(x)

mertens_function(x)<= count_divisors(x)*number_factorizations(x)

- log(upper_prime_remainder_adjusted(x))

mertens_function(x)<= digits10(x)^number(x) - digits2(x) + 1

Section 3

For the trial in Section 3, rather than disproving a single conjecture and adding the

counter-example to the objects list, we find all counter-examples within a testable range

(x ≤ 10000), and add the most commonly occurring counter-examples to the list. This

allows us to add counter-examples that are more significant than simply the smallest

available counter-example, or worse, a randomly chosen counter-example. Also, all tri-

als in Section 3 include the theory bound divisor_mean(x).

216, 219, 220, 223, 551, 552, 557, 558, 560, 569, 572, 573, 578, 579, 580, 588, 589, 594,

595, 600, 934, 1327, 1328, 1329, 1330, 1351, 1366, 1372, 1383, 1386, 1410, 1412, 1413, 1422,

1426, 1427, 1994, 3251, 3270, 3276, 3280, 3282, 3299, 8518, 8598 are the most commonly-
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occurring counter-examples to the conjectures in the previous trial, so we add them to

the objects list and proceed to the next trial. In doing so, we guarantee that many of the

conjectures from the previous round will not be output by the program again, as they

have now been disproved, and output conjectures must be true for all objects in the list.

3.1 Input:

invariants=[number, mertens_function, number_of_distinct_prime_factors,

number_of_prime_factors, number_squarefull_pf,

number_squarefree_pf, count_divisors, sum_divisors,

sum_nontrivial_divisors, number_factorizations,

divisor_mean, digits10, digits2, lower_prime,

lower_prime_remainder, upper_prime, upper_prime_remainder,

lower_prime_adjusted, upper_prime_adjusted,

lower_prime_remainder_adjusted,

upper_prime_remainder_adjusted, pi_function, value_pi,

value_e, value_golden_ratio, euler_phi_function]

objects=[1, 2, 3, 4, 5, 19, 20, 30, 31, 40, 60, 95, 96, 97, 100, 218,

999983, 1000000, 6, 7, 8, 9, 17, 23, 24, 48, 54, 84, 90, 113,

114, 115, 221, 222, 226, 228, 346, 553, 554, 556, 562, 566,

568, 570, 576, 586, 926, 961, 1007, 1263, 216, 219, 220, 223,

551, 552, 557, 558, 560, 569, 572, 573, 578, 579, 580, 588,

589, 594, 595, 600, 934, 1327, 1328, 1329, 1330, 1351, 1366,

1372, 1383, 1386, 1410, 1412, 1413, 1422, 1426, 1427, 1994,

3251, 3270, 3276, 3280, 3282, 3299, 8518, 8598]

theory=[divisor_mean]

Conjectures:

mertens_function(x)<= euler_phi_function(x)
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mertens_function(x)<= sqrt(2*digits2(x) + pi_function(x))

mertens_function(x)<= number(x)/number_of_prime_factors(x)

- count_divisors(x)

mertens_function(x)<= euler_phi_function(x) - pi_function(x)

mertens_function(x)<= divisor_mean(x)/digits2(x)

- number_squarefull_pf(x)

mertens_function(x)<= divisor_mean(x)

^number_of_distinct_prime_factors(x)

/upper_prime_remainder(x)^2

mertens_function(x)<= number(x)/count_divisors(x)

- number_of_prime_factors(x)

mertens_function(x)<= (sum_divisors(x)/digits2(x))

^(log(digits10(x))/log(10))

mertens_function(x)<= number(x)^(log(log(euler_phi_function(x))

/log(10))/log(10))

mertens_function(x)<= (log(number(x))/log(10))^log(digits2(x))

mertens_function(x)<= -count_divisors(x) + upper_prime_adjusted(x)

mertens_function(x)<= 1/2*sqrt(1/2)*sqrt(upper_prime(x)) + 1/2

mertens_function(x)<= divisor_mean(x)^(digits10(x)

/number_of_prime_factors(x))

mertens_function(x)<= divisor_mean(x)

/number_of_distinct_prime_factors(x)

- upper_prime_remainder(x)

mertens_function(x)<= sqrt(sum_divisors(x)/(upper_prime_remainder(x)

- 1))

mertens_function(x)<= (count_divisors(x)^divisor_mean(x))

^(1/pi_function(x))
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mertens_function(x)<= maximum(count_divisors(x), sqrt(divisor_mean(x)))

mertens_function(x)<= maximum(number_factorizations(x),

sqrt(divisor_mean(x))) + 1

mertens_function(x)<= number(x)/value_pi(x) - pi_function(x) + 1

mertens_function(x)<= number(x) - 2*pi_function(x)

mertens_function(x)<= (log(sum_nontrivial_divisors(x))/log(10))

^(value_pi(x) + 1)

mertens_function(x)<= digits10(x)^number(x)

- number_of_prime_factors(x)

mertens_function(x)<= (1/2*divisor_mean(x))^(log(digits10(x))/log(10))

mertens_function(x)<= number(x)/(digits2(x)*log(upper_prime(x)))

mertens_function(x)<= (digits10(x)^number_of_distinct_prime_factors(x))

^lower_prime_remainder(x)

mertens_function(x)<= (log(2*euler_phi_function(x)) + 1)^2

mertens_function(x)<= (number(x)/upper_prime_remainder(x))

^(log(digits10(x))/log(10))

mertens_function(x)<= number_factorizations(x)^lower_prime_remainder(x)

+ 1/number_squarefull_pf(x)

mertens_function(x)<= sum_divisors(x)/(digits10(x)^2

*upper_prime_remainder(x))

mertens_function(x)<= number(x)^2/upper_prime_remainder(x)^4

mertens_function(x)<= number_factorizations(x)

^number_of_prime_factors(x)

/number_squarefull_pf(x)

mertens_function(x)<= (2*digits2(x) + 2)^upper_prime_remainder(x)

mertens_function(x)<= 1/2*euler_phi_function(x)/sqrt(pi_function(x))

mertens_function(x)<= digits2(x)^digits10(x)/pi_function(x)
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mertens_function(x)<= 2*digits2(x)^2/number_squarefree_pf(x)^2

mertens_function(x)<= upper_prime_adjusted(x)/digits2(x)

- upper_prime_remainder(x)

mertens_function(x)<= upper_prime(x)/upper_prime_remainder(x)

- upper_prime_remainder_adjusted(x)

mertens_function(x)<= upper_prime_remainder(x)^2 + count_divisors(x)

^digits10(x)

mertens_function(x)<= (number(x)^euler_phi_function(x))

^(1/sum_nontrivial_divisors(x))

mertens_function(x)<= number(x)^number_of_distinct_prime_factors(x)

/digits2(x)^2

mertens_function(x)<= value_golden_ratio(x)^(divisor_mean(x)

/count_divisors(x))

mertens_function(x)<= count_divisors(x)^upper_prime_remainder(x)

/sqrt(number_squarefull_pf(x))

mertens_function(x)<= (2*count_divisors(x) - euler_phi_function(x))^2

mertens_function(x)<= number(x)^(count_divisors(x)

/upper_prime_remainder_adjusted(x))

mertens_function(x)<= minimum(number(x),

sqrt(sum_nontrivial_divisors(x) - 1))

mertens_function(x)<= -number_factorizations(x)*number_squarefree_pf(x)

+ divisor_mean(x)

mertens_function(x)<= (log(1/2*pi_function(x))/log(10))

^upper_prime_adjusted(x)

mertens_function(x)<= -upper_prime_remainder(x)^2 + 2*number(x)

mertens_function(x)<= number(x)/count_divisors(x) - digits2(x) + 1

mertens_function(x)<= sqrt(number(x)) - upper_prime_remainder(x) + 1
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mertens_function(x)<= maximum(1/number_squarefull_pf(x),

count_divisors(x)^upper_prime_remainder(x))

mertens_function(x)<= (pi_function(x) - 1)^2/sum_divisors(x)

mertens_function(x)<= 4*euler_phi_function(x) - number(x)

mertens_function(x)<= digits10(x)^(log(1/2*divisor_mean(x))/log(10))

mertens_function(x)<= (number(x)^divisor_mean(x))

^(1/euler_phi_function(x))

mertens_function(x)<= sum_divisors(x)/digits2(x) - 1/2*pi_function(x)

mertens_function(x)<= (number_of_prime_factors(x)^2

- divisor_mean(x))^2

mertens_function(x)<= (number_of_prime_factors(x)^2

- euler_phi_function(x))^2

mertens_function(x)<= (digits10(x) - 1)^number(x) + 1

mertens_function(x)<= (divisor_mean(x) - 2*pi_function(x))^2

mertens_function(x)<= sqrt(euler_phi_function(x)) - digits2(x)

+ number_factorizations(x)

mertens_function(x)<= (-euler_phi_function(x)

+ sum_nontrivial_divisors(x))

^(2*upper_prime_remainder(x))

Section 4

For trials in Section 4, like Section 3, we find all counter-examples within a testable range

and add the most commonly occurring counter-examples to the list. However, for Sec-

tion 4, this testable range was raised to x ≤ 1000000 due to the substitution of the special

functions. Also, again all trials in Section 4 include the theory bound divisor_mean(x).
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592, 593, 594, 1011, 1369, 1408, 1409, 3166, 3274, 3293, 3294, 3295, 3296, 3300, 3360,

4904, 7522, 8389, 8394, 8510, 8512, 8514, 8520, 8526, 8542, 8554, 8580, 8627 are the most

commonly-occurring counter-examples to the conjectures in the previous trial, so we

add them to the objects list and proceed to the next trial. In doing so, we guarantee

that many of the conjectures from the previous round will not be output by the program

again, as they have now been disproved, and output conjectures must be true for all

objects in the input list.

4.1 Input:

invariants=[number, mertens_function, number_of_distinct_prime_factors,

number_of_prime_factors, number_squarefull_pf,

number_squarefree_pf, count_divisors, sum_divisors,

sum_nontrivial_divisors, number_factorizations,

divisor_mean, digits10, digits2, lower_prime,

lower_prime_remainder, upper_prime, upper_prime_remainder,

lower_prime_adjusted, upper_prime_adjusted,

lower_prime_remainder_adjusted,

upper_prime_remainder_adjusted, pi_function, value_pi,

value_e, value_golden_ratio, euler_phi_function]

objects=[1, 2, 3, 4, 5, 19, 20, 30, 31, 40, 60, 95, 96, 97, 100, 218,

999983, 1000000, 6, 7, 8, 9, 17, 23, 24, 48, 54, 84, 90, 113,

114, 115, 221, 222, 226, 228, 346, 553, 554, 556, 562, 566,

568, 570, 576, 586, 926, 961, 1007, 1263, 592, 593, 594, 1011,

1369, 1408, 1409, 3166, 3274, 3293, 3294, 3295, 3296, 3300,

3360, 4904, 7522, 8389, 8394, 8510, 8512, 8514, 8520, 8526,

8542, 8554, 8580, 8627]

theory=[divisor_mean]
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Conjectures:

mertens_function(x)<= euler_phi_function(x)

mertens_function(x)<= (sum_divisors(x)/digits2(x))

^(log(digits10(x))/log(10))

mertens_function(x)<= (digits2(x) - number_squarefull_pf(x))

^log(digits10(x))

mertens_function(x)<= euler_phi_function(x) - pi_function(x)

mertens_function(x)<= digits2(x)^maximum(number_squarefree_pf(x)

, upper_prime_remainder(x))

mertens_function(x)<= divisor_mean(x)/(sqrt(number_factorizations(x))

*upper_prime_remainder(x))

mertens_function(x)<= sqrt(pi_function(x)) + value_golden_ratio(x) + 1

mertens_function(x)<= (pi_function(x) + 1)/digits10(x)^2

mertens_function(x)<= number(x)/count_divisors(x)

- number_of_prime_factors(x)

mertens_function(x)<= digits10(x)^value_pi(x)*log(10)/log(digits2(x))

mertens_function(x)<= -count_divisors(x) + upper_prime_adjusted(x)

mertens_function(x)<= sqrt(pi_function(x)) + number_factorizations(x)

mertens_function(x)<= number(x)/number_of_prime_factors(x)

- count_divisors(x)

mertens_function(x)<= euler_phi_function(x)/count_divisors(x)

mertens_function(x)<= (digits2(x)/number_of_prime_factors(x))

^log(sum_divisors(x))

mertens_function(x)<= count_divisors(x)*number_of_prime_factors(x)

+ 1/number_squarefull_pf(x)

mertens_function(x)<= (log(2*euler_phi_function(x)) + 1)^2

mertens_function(x)<= -sqrt(sum_nontrivial_divisors(x))
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+ divisor_mean(x)/number_squarefull_pf(x)

mertens_function(x)<= number(x)/value_pi(x) - pi_function(x) + 1

mertens_function(x)<= (pi_function(x) + 1)

/(upper_prime_remainder(x) - 1)

mertens_function(x)<= number(x) - 2*pi_function(x)

mertens_function(x)<= sqrt(-divisor_mean(x) + euler_phi_function(x)

+ 1)

mertens_function(x)<= (number(x)^euler_phi_function(x))

^(1/sum_nontrivial_divisors(x))

mertens_function(x)<= value_golden_ratio(x)^(1/2*digits10(x)^2)

mertens_function(x)<= divisor_mean(x)/digits2(x)

- number_of_distinct_prime_factors(x) + 1

mertens_function(x)<= sqrt((divisor_mean(x)

- sum_nontrivial_divisors(x))^2)

mertens_function(x)<= digits10(x)^number(x)

- number_of_prime_factors(x)

mertens_function(x)<= sqrt(euler_phi_function(x)

/number_squarefull_pf(x))

mertens_function(x)<= divisor_mean(x)/upper_prime_remainder(x)

- log(number(x))

mertens_function(x)<= 2*count_divisors(x)^value_e(x)

*upper_prime_remainder(x)

mertens_function(x)<= divisor_mean(x)/upper_prime_remainder(x)

- number_of_prime_factors(x) + 1

mertens_function(x)<= sqrt(1/2)*sqrt(sum_divisors(x)

/number_of_prime_factors(x))

mertens_function(x)<= (divisor_mean(x)/value_golden_ratio(x))
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^(log(digits10(x))/log(10))

mertens_function(x)<= digits2(x)^digits10(x)/pi_function(x)

mertens_function(x)<= number(x)/count_divisors(x) - digits2(x) + 1

mertens_function(x)<= (sum_nontrivial_divisors(x)

+ upper_prime_remainder(x))

/upper_prime_remainder_adjusted(x)

mertens_function(x)<= upper_prime_adjusted(x)/digits2(x)

- upper_prime_remainder(x)

mertens_function(x)<= digits2(x)*number_of_prime_factors(x)

+ 1/upper_prime_remainder_adjusted(x)

mertens_function(x)<= (log(sum_nontrivial_divisors(x))/log(10))

^log(divisor_mean(x))

mertens_function(x)<= (count_divisors(x)

+ number_of_distinct_prime_factors(x))

^(log(pi_function(x))/log(10))

mertens_function(x)<= -number_factorizations(x)*number_squarefree_pf(x)

+ divisor_mean(x)

mertens_function(x)<= -upper_prime_remainder(x)^2 + 2*number(x)

mertens_function(x)<= sqrt(number(x)) - upper_prime_remainder(x) + 1

mertens_function(x)<= sqrt(euler_phi_function(x)) - digits2(x)

+ number_factorizations(x)

mertens_function(x)<= number_factorizations(x)^2

+ digits10(x)/number_squarefull_pf(x)

mertens_function(x)<= digits10(x)^number(x) - digits2(x) + 1

mertens_function(x)<= (number_of_prime_factors(x)

/number_squarefull_pf(x))^(digits10(x) - 1)

mertens_function(x)<= digits2(x)^digits10(x) - divisor_mean(x) + 1
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mertens_function(x)<= divisor_mean(x)*log(10)/(log(sum_divisors(x))

*number_squarefree_pf(x))

mertens_function(x)<= divisor_mean(x)/number_squarefree_pf(x)

- upper_prime_remainder_adjusted(x) - 1

mertens_function(x)<= (number_of_prime_factors(x)^2

- euler_phi_function(x))^2

mertens_function(x)<= digits10(x)^lower_prime_remainder(x)

+ 2*count_divisors(x)

mertens_function(x)<= (digits10(x) - 1)^number(x) + 1

216, 220, 600, 3481, 8522, 8568, 11760, 11776, 11777, 11793, 11794, 11881 are the most

commonly-occurring counter-examples to the conjectures in the previous trial, so

we add them to the objects list and proceed to the next trial. In doing so, we

guarantee that many of the conjectures from the previous round will not be output

by the program again, as they have now been disproved, and output conjectures

must be true for all objects in the input list. In this trial, we also added 24185, 48433,

and 300551 to the objects list. Rather than coming from conjecture testing, these

three objects are significant values of M(x) which are discussed in [2]. Additionally,

the special functions were used in trial 4.2, the final round of our investigation.

As this was the last trial we conducted, the conjectures below have not been tested

for counter-examples for any range.

The following trial was our

4.2 Input:

invariants=[number, mertens_function, number_of_distinct_prime_factors,

number_of_prime_factors, number_squarefull_pf,

number_squarefree_pf, count_divisors, sum_divisors,

sum_nontrivial_divisors, number_factorizations,
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divisor_mean, digits10, digits2, lower_prime,

lower_prime_remainder, upper_prime, upper_prime_remainder,

lower_prime_adjusted, upper_prime_adjusted,

lower_prime_remainder_adjusted,

upper_prime_remainder_adjusted, pi_function, value_pi,

value_e, value_golden_ratio, euler_phi_function]

objects=[1, 2, 3, 4, 5, 19, 20, 30, 31, 40, 60, 95, 96, 97, 100, 218,

999983, 1000000, 6, 7, 8, 9, 17, 23, 24, 48, 54, 84, 90, 113,

114, 115, 221, 222, 226, 228, 346, 553, 554, 556, 562, 566,

568, 570, 576, 586, 926, 961, 1007, 1263, 592, 593, 594, 1011,

1369, 1408, 1409, 3166, 3274, 3293, 3294, 3295, 3296, 3300,

3360, 4904, 7522, 8389, 8394, 8510, 8512, 8514, 8520, 8526,

8542, 8554, 8580, 8627, 216, 220, 600, 3481, 8522, 8568,

11760, 11776, 11777, 11793, 11794, 11881, 24185, 48433,

300551]

theory=[divisor_mean]

Conjectures:

mertens_special(x)<= euler_phi_function(x)

mertens_special(x)<= number(x)^(log(log(euler_phi_function(x))

/log(10))/log(10))

mertens_special(x)<= sqrt(divisor_mean(x)) + 2*count_divisors(x)

mertens_special(x)<= euler_phi_function(x) - pi_function(x)

mertens_special(x)<= divisor_mean(x)/digits2(x)

- number_squarefull_pf(x)

mertens_special(x)<= (euler_phi_function(x) - pi_function(x))

/upper_prime_remainder(x)
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mertens_special(x)<= 1/2*(pi_function(x) + 1)

/number_of_prime_factors(x)

mertens_special(x)<= 2*(digits2(x) + 1)*digits10(x)

mertens_special(x)<= divisor_mean(x)

/number_of_distinct_prime_factors(x)

- upper_prime_remainder(x)

mertens_special(x)<= digits10(x)^(count_divisors(x) + 1)

mertens_special(x)<= -count_divisors(x) + upper_prime_adjusted(x)

mertens_special(x)<= log(digits2(x))^(log(number(x))/log(10))

mertens_special(x)<= number(x)/number_of_prime_factors(x)

- count_divisors(x)

mertens_special(x)<= euler_phi_function(x)/count_divisors(x)

mertens_special(x)<= divisor_mean(x)

^number_of_distinct_prime_factors(x)

/sum_nontrivial_divisors(x)

mertens_special(x)<= number(x) - 2*pi_function(x)

mertens_special(x)<= digits10(x)^number(x) - number_of_prime_factors(x)

mertens_special(x)<= upper_prime_adjusted(x)/upper_prime_remainder(x)

- digits2(x)

mertens_special(x)<= (log(sum_divisors(x))/log(10))^(digits10(x) - 1)

mertens_special(x)<= (pi_function(x) + 1)

/(upper_prime_remainder(x) - 1)

mertens_special(x)<= digits2(x)^digits10(x)/pi_function(x)

mertens_special(x)<= (log(pi_function(x))/log(10))^(upper_prime(x)^2)

mertens_special(x)<= sqrt(value_golden_ratio(x))^(digits10(x)^2)

mertens_special(x)<= (pi_function(x) + 1)

/number_of_distinct_prime_factors(x)^2
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mertens_special(x)<= sqrt(1/2)*sqrt(euler_phi_function(x)) + value_e(x)

mertens_special(x)<= (upper_prime_remainder(x) + 1)^(2*value_e(x))

mertens_special(x)<= (2*upper_prime_remainder(x))

^(count_divisors(x) + 1)

mertens_special(x)<= digits2(x)*number_factorizations(x)

/number_squarefull_pf(x)

mertens_special(x)<= upper_prime_adjusted(x)/digits2(x)

- upper_prime_remainder(x)

mertens_special(x)<= number(x)/count_divisors(x)

- number_of_prime_factors(x)

mertens_special(x)<= upper_prime(x)/upper_prime_remainder(x)

- upper_prime_remainder_adjusted(x)

mertens_special(x)<= 2*sqrt(divisor_mean(x)) - upper_prime_remainder(x)

mertens_special(x)<= -(euler_phi_function(x) - upper_prime(x))

*digits2(x)

mertens_special(x)<= (pi_function(x) + 1)/digits10(x)^2

mertens_special(x)<= (count_divisors(x) + 1)^(digits10(x) - 1)

mertens_special(x)<= sqrt(value_golden_ratio(x))^sqrt(pi_function(x))

mertens_special(x)<= (2*sum_nontrivial_divisors(x) + 1)

/upper_prime_remainder_adjusted(x)

mertens_special(x)<= (log(1/2*pi_function(x))/log(10))

^upper_prime_adjusted(x)

mertens_special(x)<= number(x)^(value_e(x)/digits10(x))

mertens_special(x)<= value_pi(x)^digits10(x)/value_e(x)

mertens_special(x)<= value_e(x)^digits10(x) - upper_prime_remainder(x)

mertens_special(x)<= (pi_function(x) - 1)^2/sum_divisors(x)

mertens_special(x)<= -number_factorizations(x)*number_squarefree_pf(x)
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+ divisor_mean(x)

mertens_special(x)<= 1/2*sqrt(euler_phi_function(x))

+ count_divisors(x)

mertens_special(x)<= (log(sum_nontrivial_divisors(x))/log(10))

^log(divisor_mean(x))

mertens_special(x)<= -upper_prime_remainder(x)^2 + 2*number(x)

mertens_special(x)<= sqrt(number(x)) - upper_prime_remainder(x) + 1

mertens_special(x)<= (log(sum_nontrivial_divisors(x))/log(10))

^(2*value_e(x))

mertens_special(x)<= (2*divisor_mean(x))^(1/number_squarefull_pf(x))

mertens_special(x)<= maximum(count_divisors(x)^2,

sqrt(divisor_mean(x)))

mertens_special(x)<= sum_divisors(x)/(digits2(x) - 1)^2
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