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Abstract 

 

DEVELOPMENT AND CHARACTERIZATION OF LUNG DERIVED EXTRACELLULAR 

MATRIX HYDROGELS  

By Robert A. Pouliot B.S. 

 

A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy in Biomedical Engineering at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2016 

 

Director: Rebecca L. Heise, Ph.D. 

Assistant Professor, Department of Biomedical Engineering 

 

Chronic obstructive pulmonary disease (COPD) including emphysema is a devastating 

condition that is one of the only major diseases increasing in prevalence in the US and 

worldwide. Unfortunately, there remains no cure for COPD, rather only symptomatic treatment 

approaches. Lung architecture is highly complex and the tissue has several rapid clearance 

mechanisms that can quickly remove administered cell or drug therapies. For this reason, it has 

been difficult to translate therapies effective for acute lung damage to target chronic lung 

diseases like COPD. To address this, we have been investigating lung derived extracellular 

matrix (ECM) hydrogels as a novel approach for delivery of cellular therapies to the pulmonary 

system.  

During this research we have validated out decellularization approach, confirming the 

removal of the immunogenic alpha-gal antigen as well as a ~95% reduction in dsDNA. We have 
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also characterized the disruption in ECM fiber organization and depletion of major ECM 

components between the native and decellularized tissues due to the harsh detergents. Further, 

we have processed these whole decellularized lung scaffolds into a dry ECM powder and 

solubilized the proteins to form a pregel solution using a pepsin digestion. The solubilized lung 

ECM pregel solution we have developed and characterized exhibits “injectability,” a unique 

property where the pregel solution is liquid at room temperature, but undergoes rapid self-

assembly as the temperature approaches the physiologically relevant 37°C. This property can be 

used to deliver a payload into the tissue, where it is encapsulated by self-assembly once it 

reaches body temperature. Physical properties of the hydrogel system were evaluated including: 

the average fiber size, gelation kinetics and mechanical properties of the formed gel, passive 

protein release, and ability to bind loaded growth factors. 

To determine if this hydrogel is a feasible platform for cell delivery we have determined 

that the gel has the capacity to support 3D hMSC culture, encapsulated hMSC viability, and 

limited gene expression changes in hMSCs encapsulated over 7 days. The effect of encapsulation 

did not greatly reduce the capacity for hMSCs to respond to activating factors in the media. This 

was investigated by looking at inflammatory cytokine and growth factor gene expression 

resulting from exposure to LPS and TNF-alpha. We have characterized the response of naive 

(Mo) macrophages to culture on ECM hydrogels by looking at gene expression, finding that, 

while they do not express markers for classic M1 or M2 activation, they do have an upregulation 

of expression for secreted inflammatory mediators including IL-6, TNF-alpha, and IL-10. 

Finally, in an in vivo pilot study, we found that delivery of rMSCs in pregel increased cell 

retention over delivery in solution, 2 hours post-delivery, in a rat model of elastase induced 

emphysema. 
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As an extension of the previous work, we have started to investigate the effect of protein 

solubilization on the properties of the hydrogel. By varying pepsin digestion duration, we have 

been able to characterize significantly different, and controllable, properties of the hydrogel. 

These include: the branching and density of the hydrogel, the distribution of protein size, the 

gelation and mechanical properties, and the effect on cells cultured on or in the hydrogel. By 

lowering digestion times, the hydrogel architecture becomes denser and has significantly more 

interconnections. The resulting gel also has increased stiffness, and is better able to support 

epithelial cell growth. There are still some questions to investigate regarding this new approach, 

including the effect of digestion time on growth factor loading and release, the ability to 

encapsulate hMSCs, and the immunogenic response of macrophages to the materials. 

The completed research has effectively demonstrated that the approaches taken to 

decellularize and produce an ECM hydrogel from porcine lung have resulted in a material that is 

feasible for cell and drug delivery. We have also demonstrated the ability to encapsulate and 

support hMSCs so that they are able to fill the proposed role for immunomodulation of an 

inflammatory environment. Continued research and development of this material and methods to 

expand its tailorability are novel to the field and can allow us to control material properties to 

address a wider range of applications. The work to develop and characterize the decellularization 

process is also the basis for two additional materials that include electrospun ECM polymer 

scaffolds and ECM nanoparticles.   
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Chapter 1: Introduction 

 

* Sections taken from, Pouliot et. al., Development and Characterization of a Naturally Derived 

Lung Extracellular Matrix Hydrogel, JBMR, 2016 will be marked with [Pouliot et. al. 2016] * 

 

 

Diseases categorized as chronic lower respiratory disease are the third leading cause of 

death in the US, resulting in almost 140,000 deaths in 2010.  Included in this category are: 

asthma, chronic bronchitis, emphysema, and Chronic Obstructive Pulmonary Disease (COPD), 

which is solely responsible for killing over 120,000 Americans each year 1. Unique challenges 

are encountered in developing treatment approaches for lung pathologies, including: (1) the 

complex architecture of interweaving airways, vasculature, and functional alveolar structures, (2) 

a volatile mechanical environment (respiration), and (3) multiple inherent mechanisms for 

removing administered agents from the lung tissue.  The first and second challenges can be 

addressed using aerosol delivery for therapeutic drugs or molecular factors2,3. The shear forces 

generated in aerosolization limit cell delivery application, as a result, cell administration is done 

using an intra-tracheal injection of a cell suspension 4–6. Current strategies do little to address the 

third challenge,  there are several major mechanisms responsible for rapid removal of 

administered cells or drugs, including the physical action of the mucociliary escalator, coughing, 

uptake by alveolar macrophages, and absorption by the vasculature 7.  We have designed a lung 

derived extracellular matrix hydrogel approach, with the goal of address all three challenges. 
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1.1 Chronic Inflammatory Lung Disease and unmet Clinical Needs 

COPD in large part is the result of an abnormal tissue response to inhaled toxic particles 

or gases. Most cases of COPD are directly related to long term cigarette/tobacco smoking; 

however, the rapid industrialization and increased pollution levels in developing countries is 

likely to be an increasing source of cases in the next decades. The majority of smokers without 

clinical symptoms of COPD are afflicted with low level infiltration of inflammatory cells into the 

large airways and peripheral lung parenchyma and have what is increasingly recognized as early 

disease.  Further, in a significant proportion of smokers, the inflammatory process is amplified 

through as yet incompletely understood mechanisms and has long lasting effects. This amplified 

and prolonged inflammatory response is responsible for the tissue-remodeling events associated 

with chronic bronchitis and emphysema; hallmarks of COPD8. Figure 1.1 is a visual overview of 

the healthy vs COPD lungs, showing how chronic bronchitis and emphysema present in the 

tissue. 

 

There is a clear association between atmospheric air pollution and the appearance of 

cytokines in the blood as well as an increase in the number of inflammatory cells, such as 

polymorphonuclear neutrophils (segmented and band) and monocytes.  Increased levels of 

leukocytes in the blood is a predictor of decline in lung function, increased mortality, and 

potentially increases the likelihood of a smoker developing COPD. In COPD, the major source 

of increased ventilation resistance takes place in the peripheral airways.  The increase in 

resistance is due to airway narrowing as the tissue thickens during inflammation, fibrosis, and 

mucous plugging, as well as increased airway closure resulting from reduced tissue elastic recoil 

8.  



   3 
 

  

 

 

Figure 1.1 COPD Pathology This review figure shows all of the symptoms or damage that are 

commonly associated with the development of COPD. This includes chronic bronchitis with 

excess mucus production and inflamed airways, as well as damage to ECM damage and alveolar 

collapse9. 

 

In COPD, the recognition that cigarette smoke causes both alveolar emphysema and a 

fibrotic effect in small airways could be contradictive; however, this can be explained by a 

hypothesized imbalance between matrix component synthesis and degradation during the repair 

process 8. The proteins most responsible for imparting healthy lung ECM mechanics are 

collagen, elastin, and glycosaminoglycans/proteoglycans. During the development of 

emphysema there is a loss of elastin and a weakening of ECM in the alveolar walls. This matrix 

weakening can result in a rupturing of the alveolar tissue leading to a large reduction in gas 
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exchange surface area. Chronic inflammation can further interfere with regular collagen cross 

linking, which further increases damage to both alveoli and to large and small airways10. The 

loss of functional tissue can dramatically change the distribution of mechanical forces on the 

remaining ECM during ventilation. As a result, the supportive collagen network, which is the 

underlying mechanical backbone for other matrix proteins (like fibronectin and laminin), is made 

to abnormally stretch and condense. 

 

This disease is usually associated with long term smokers, and bronchodilator therapy 

only partially resolves lung hyperinflation in emphysema 11. Corticosteroids are sometimes used 

to treat acute respiratory problems stemming from COPD, but long term treatments have shown 

little if any benefit.  Corticosteroids work to reduce inflammation by suppressing several genes 

that are activated in chronic inflammatory diseases.  They do this by reversing histone 

acetylation of inflammatory genes through a mechanism in which liganded glucocorticoid 

receptors are bound to coactivators, recruiting histone deacetylase-2 (HDAC2) to the 

transcription process 12. However, in patients with COPD, oxidative /nitrative stress from 

smoking reduces expression of HDAC2 and become resistant to the anti-inflammatory action of 

corticosteroids 12.   

 

Unfortunately, there remains no cure for COPD, rather only symptomatic treatment 

approaches.  Lung volume reduction surgery decreases hyperinflation, but is associated with high 

morbidity and operative mortality13. For a relatively few patients, lung transplantation is utilized 

for end stage disease.  However, the supply of donor lungs is limited and immune rejection13 

complicates transplantation such that 5 year survival of transplant recipients remains only 
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approximately 50%, making transplant an undesirable option. 14.  New approaches are 

desperately needed.  

 

1.2 Natural Barrier and Immune Systems in the lung 

 

Treatment of lung diseases is majorly complicated by several factors including the 

complexity of lung structures and architecture, the mucociliary escalator, and the cellular 

immune systems that protect the lung from inhaled vectors. The airway structure in the lung is a 

major limiting factor which controls the infiltration of any inhaled particulates depending on 

size, density, and shape15. Impaction of particles due to these lungs makes it much easier and 

speedier to remove these particulates with physical mechanisms including the action of the 

mucociliary escalator and coughing. The innate and adaptive immune systems control how the 

lung responds to foreign particulates, bacterial invasion, and inflammatory signaling. The 

component immune cells also play a major role in tissue hemostasis and controlling routine 

maintenance and remodeling.  

 

The surface area of the endothelium of the lung is the largest in the human body and is 

constantly challenged with a large number of various microbes and particulate (toxic or not)16. 

Of the two, the innate immune system is much older in evolutionary timeline and is made up of 

soluble proteins and phagocytic migratory leukocytes traveling through the bloodstream or 

residing in the tissue16. The innate immune system is ready to quickly respond to stimuli, while 

the adaptive immune system is much slower and acts over a longer time scale. The cells on the 

front lines of the innate immune system include macrophages, neutrophils which respond to a 
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variety of inflammatory and stimulatory factors. They can be quickly and specifically activated 

through toll-like receptor (TRL) signaling which have evolved to bind antigens from an array of 

bacterial, fungal, and viral products without any help from the adaptive system16. 

 

The adaptive immune system is more advanced and has evolved to complement the 

innate system by responding to signals from the innate immune system. It does this by producing 

antibodies that are highly specific for antigens on invading viruses or bacterial membranes, 

making them much more susceptible to phagocytosis. One unique cell type, dendritic cells 

(DCs), are on the front line of innate immune response, however their complexity allows them to 

capture novel antigens from phagocytosed material, then migrate to and present the antigens on 

their surface for presentation to T and B cells17,18. This means that dendritic cells are the main 

points of interaction between he innate and adaptive immune systems that allow them to act 

together. The adaptive immune system also has a long term memory component, storing novel 

antigens in specialized T-cells for long term storage, this is the system that supports immunity to 

diseases due to past exposure, or vaccination. 

 

Dendritic cells (DCs) and macrophages have a major role in response to inhaled virus or 

bacteria as part of the innate immune system. Normally there is a precarious balance in these 

situations between removing/dealing with the threat and limiting inflammatory responses that 

can cause acute lung failure19  During the pathogenesis of COPD the ability of macrophages to 

clear pathogens and apoptotic cells is compromised, there is an increasing number of dendritic 

cells and the adaptive immune system is induced22. Neutrophils, a usually short lived cell type, 

are stimulated in increasing numbers to infiltrate the tissue, and they live for much longer22. 
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Without targets to phagocytose, they mostly sit around and secrete an excess of matrix 

remodeling enzymes22. As the inflammatory chronic state continues, more and more specialized 

T-cells are called in which secrete a large amount of cytotoxic factors including perforins which 

add to the native cell death and apoptosis22. 

 

In smoking induced emphysema, chronically activated macrophages have actually been 

found to express upregulated levels of several proteinases and matrix metalloproteinases in both 

human smokers and some have been confirmed in mouse models21. Macrophages also play a 

crucial role in triggering the initial immune response in responding to smoking induced 

inflammation. Alveolar macrophages are usually kept in a quiescent state and actually work to 

suppress the adaptive immune system in the healthy lung, however in chronic inflammatory 

situation alveolar macrophages are the main source of pro-inflammatory amplification and play a 

significant role in causing an influx of other immune cells20. Macrophages contribute heavily to 

the pathogenesis and they play a key role in the inflammatory cascade that leads to pathogenic 

behavior of other immune cells; because of this, macrophage modulation is a compelling target 

for treating chronic inflammatory diseases like COPD. 

 

1.3 Mesenchymal Stem Cell Therapies for Chronic Inflammation 

 

 Mesenchymal stem cells have been shown to be effective at sensing and responding to 

inflammatory environments through several pathways, making them a promising candidate for 

regenerative therapies. Mesenchymal stem cells are adult stem cells, and have been isolated from 

a growing number of sources including umbilical cord, endometrial polyps, blood from 

menstruation, bone marrow, and adipose tissues23. Mesenchymal stem cells have the ability to 
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differentiate into a several lineages of the mesoderm, ectoderm, and endoderm23 into progenitor 

cell types for tissues including:: insulin-producing cells of the pancreas, neuron, muscle, 

chondrocytes, osteocytes, and adipocytes 24. The ability to differentiate towards these targets 

may be limited by their isolation source, for example bone marrow derived mesenchymal stem 

cells may be limited to bone, cartilage, and adipose lineages. The differentiation of these cells 

has been shown to be controllable and directed by growth factors, substrate stiffness25, and even 

geometric cues26,27.  The question of whether stem or progenitor cells can engraft and acquire 

phenotype of structural lung cells following instillation remains controversial 28. One recent 

study found that human bone marrow derived mesenchymal stem cells can be differentiated 

down a lung epithelial lineage when cultured on decellularized lung slices in small airway 

growth media 29. However, MSCs infused into the lung directly to facilitate regeneration have 

not been found to engraft and participate in direct regeneration in significant number, instead 

they have been found to evert positive effects through anti-inflammatory activity4. 

 

Mesenchymal stem cells have demonstrated the ability to sense and respond to 

inflammatory factors in the environment.  MSCs can target resident macrophages which are 

responsible for producing many of the pro-inflammatory factors and act on them in two ways.  In 

one pathway, MSCs first sense tissue necrosis factor alpha (TNF-α) secreted by the 

macrophages, and respond by releasing tissue necrosis factor stimulated gene/protein 6.  This 

released factor reduces nuclear factor-κB signaling in the macrophages and decreases pro-

inflammatory cytokine release from the effected cells 30. Another mechanism for MSC 

modulation begins when MSCs are activated to secrete prostaglandin E2 by an extremely pro-
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inflammatory environment. PGE2 acts directly to convert macrophages from a pro-inflammatory 

phenotype, to a phenotype that produces pro-regenerative cytokine IL-10 30. 

 

TSG-6 modulation of inflammatory conditions has been described in several animal 

models including: rat cornea’s (through both chemical and mechanical damage)31, a mouse 

model for myocardial infarct 30,and  a mouse model for peritonitis32. While there are several 

potential explanations for how TSG-6 could be operating in these systems, much of the data 

points toward a macrophage modulation mechanism.  TSG-6 is a 35 kDa glycoprotein which can 

almost never be detected in tissue unless they are undergoing some form of inflammatory 

response such as ovulation, rheumatoid arthritis, or other general tissue inflammatory 

pathologies 33,34.  The TSG-6 protein specifically binds hyaluronic acid (HA) and increases or 

induces the binding of HA to CD44 (HA receptor).  The underlying mechanism is thought to be 

caused by TSG-6 crosslinking of HA chains into an extended fiber. These cross –linked HA 

complexes have a greater affinity for the CD44 receptor causing increased substrate binding and 

CD44 receptor clustering on the cell surface 35. This increase in CD44 activity is responsible for 

the inhibition of toll-like receptor signaling cascade and results in a down-regulation of NF-κB 

release and translocation to the nucleus. Endogenous macrophages release of TNF-α induces 

mesothelial cells to increase their production and release of additional inflammatory cytokines.  

This mechanism is exciting as modulation of the NF-κB signaling pathway can result in the 

down-regulation of the inflammatory cascade at the source of amplification 30. Figure 1.2 depicts 

the pathway as described. 
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Figure 1.2 TSG-6 Mechanism This figure depicts the proposed method of action for TSG-6, 

which has been shown to play a major role in modulating inflammation32. 

 

Mesenchymal stem cells (MSCs) are currently being used therapeutically to promote 

regeneration of damaged lung epithelial tissue through immune-modulation of the pulmonary 

microenvironment 4,5.  MSC therapies are thought to act through their influence over pro-

inflammatory resident macrophages30–32.  MSCs have been successfully delivered in solution as a 

therapy for  acute lung injury in several models6,36–39.  Despite their success these therapies have 

failed to produce significant improvement when addressing chronic lung pathologies due to the 

low retention in the tissue over time 5,40.  Cell delivery strategies for encapsulating and 

maintaining the therapeutic efficacy of the dosed cells have been developed from both natural 

and synthetic materials41–43.  Inclusion of extracellular matrix components in the cell delivery 

mechanism has been shown to help keep delivered cells in the tissue without negatively 

influencing the tissue environment.  [Pouliot et. al. 2016] 

 

Recently a synthetic poly-L-lysine/ECM (fibrin) hydrogel was used to deliver lung 

derived MSCs in a sheep emphysema model.  These hydrogels increased cell retention and 
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resulted in better outcomes for the animals subjects.44 In a similar strategy we have developed a 

tissue specific extracellular matrix (ECM) hydrogel derived from porcine lung tissue which 

could be used to deliver and shield inoculated cells from the clearance mechanisms of the lung.  

[Pouliot et. al. 2016] 

1.4 Naturally Derived Extracellular Matrix Biomaterials 

 Tissue derived ECM is the next logical source to produce materials for organ transplant, 

tissue replacement, and novel tissue engineering approaches to cell and drug delivery 45–51.   

Decellularized scaffolds are easily subjected to degradation and remodeling, and encourage 

macrophages to adopt the anti-inflammatory M2-like macrophage phenotype 52–54.  The 

organization, architecture, and composition of ECM components are tissue specific 55.  Lung 

derived ECM hydrogels retain native lung proteins, glycosaminoglycans, and glycoproteins that 

pulmonary cells can recognize and remodel.  These material components can also sequester and 

present bioactive molecules and tissue specific growth factors important in guiding cell behavior 

including: migration, proliferation, differentiation, attachment, and signaling 56. [Pouliot et. al. 

2016] 

 

Companies have been producing and selling decellularized ECM based products for at 

least 10 years now.  Newer products are non-crosslinked to remove the potential for increased 

immune response. These products include a range of surgical and implantation materials 

including surgical meshes, wound dressing (Acell, Inc), vasculature replacement (Humacyte, 

Inc). Some companies have specialized in developing products from fetal tissues including 

wound healing matrix sheets derived from placenta tissue (MiMedx). Products derived from 

decellularized xenogenic sources have been developed and approved for human use as well. A 
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company called Miromatrix Medical Inc. just started selling a product called MIROMESH, a 

decellularized tissue mesh made from slices of highly vascular, decellularized porcine liver 

tissue. An ECM hydrogel product derived from decellularized human heart tissue called 

VentriGel (Ventrix, Inc) has been shown to successfully mitigate damage from a myocardial 

infarction and improve cardiac function in a porcine model57, the treatment was approved for 

human clinical trials which started in 2015. As the science behind tissue decellularization and 

ECM processing progresses and acceptance of using these products in patients increases the 

demand and development of these products will scale up dramatically. 

 

Scaffold behavior and cell interaction are paramount factors in determining their value.  

Decellularized scaffolds that are easily subjected to degradation and remodeling are more likely 

to influence macrophages into the anti-inflammatory M2 macrophage phenotype; likewise, 

scaffolds not easily modified or broken down prompt and M1 phenotypes 5. Growth factors that 

might be sequestered in the matrix including vascular endothelial growth factor (VEGF), basic 

fibroblast growth factor (bFGF), and transforming growth factor beta (TGF-β) can be unleashed 

during degradation and remodeling. Scaffold degradation could also be used as a controlled 

release process for ECM subunits into the milieu, whose presence appears to mediate remodeling 

events through release of bioactive cryptic peptides 56,58. Composition and structure of the ECM 

effect cellular activities and are subject to several factors.  These include: current metabolic 

activity of resident cells, trends/changes in mechanical demands on the matrix, and age or 

disease states (such as fibrosis) 58.  

 

Whole Organ Scaffolds 
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In the lung, a decellularized scaffold may provide a unique environment for the study of 

cell-ECM interactions in normal and diseased lung states and are increasingly used and as a 

scaffold for whole organ recellularization46,55,59–61. Whole organ extracellular matrix scaffolds 

retain tissue specific proteins, glycosaminoglycans, glycoproteins, bioactive molecules, and 

growth factors that are essential for cell-matrix recognition. The amino acid sequence and 

quaternary structure of matrix proteins in mammals are comparable across species; it is thought 

that ECM protein alone does not contribute much to scaffold immunogenicity in vivo 62.  They 

also maintain much of the organization, architecture, and mechanical composition of the native 

tissue 55,62. For example, scaffolds derived from heart and lung tissue have higher levels of 

elastin because the source tissue needed facilitate dynamic mechanical systems while minimizing 

energy loss (and damage). ECM components are important in cell matrix interactions through 

membrane bound integrin proteins which function in attachment and pass information about 

another cell or the composition of the matrix.  

 

Direct organ transplantation and development of biomaterials from xenogenic sources is 

complicated by the presence of the alpha gal epitope, especially in cases in which intact or fixed 

tissue is used without prior depletion of the antigen63,64. In humans a significant 1% of all 

circulating immunoglobulins are specific for the alpha-gal epitope which is responsible for the 

catastrophic failure of such implants 65. The immune response to alpha-gal recognition should be 

limited following effective removal of cellular material through decellularization. However, 

incomplete decellularization or re-sequestration of cellular factors, including alpha-gal, in the 

extracellular matrix could activate both innate and acquired immune response. The quantification 
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of the alpha –gal epitope in decellularized tissues or scaffolds should be an effective indicator of 

the removal of cellular debris because it is present on all porcine cell membranes.  

 

Fundamental differences in normal vs diseased scaffolds have been discovered.  For 

examples, scaffolds produced from lungs of patients with idiopathic pulmonary fibrosis induce 

pathogenic myofibroblast differentiation of fibroblasts 66. Notably, emphysematous scaffolds are 

structurally different from normal scaffolds and importantly don’t support growth of normal lung 

epithelial, vascular endothelial, or stromal cells nearly as well as scaffold derived from healthy 

lungs67.  Decellularized lung tissue is already being explored as a scaffold for whole organ 

recellularization46,55,59–61 as well as a platform for investigation of cell differentiation, and the 

effects of age, injury, and disease states on the matrix29,66–68.  Recellularization of acellular lung 

scaffolds has been successful and co-cultures of alveolar epithelial cells and vascular endothelial 

cells have displayed migration and hierarchical organization in the scaffold 53,60.Recellularization 

approaches are also progressing significantly and co-cultures of alveolar epithelial cells, vascular 

endothelial cells, and lung stromal cells such as fibroblasts or mesenchymal stromal cells 

(MSCs) have displayed hierarchical organization on acellular scaffolds 53,60. 

 

Decellularized Matrix based Biomaterials 

 ECM hydrogels have been developed from an increasing number of tissues, including: 

cardiac, epidermal, bladder, articular cartilage, nerve, and adipose sources 69–74.  These materials 

exhibit “injectability”, a unique property based on their gelation behavior.  The ECM pre-gel 

solution is liquid at room temperature, but undergoes rapid self-assembly as the temperature 

approaches 37°C.  This property allows the material to fill an area or settle into a defect just prior 
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to gelation, encapsulating any cells or drugs delivered in the solution. Like other biomaterials, 

ECM hydrogels benefit from a high surface area to volume ratio which provides ample area for 

integrin binding 56.  In vitro studies have determined that several cell types exhibit a positive 

response to hydrogels derived from tissue specific sources including CNS 74 derived ECM and 

cardiac ventricular 47 derived ECM hydrogels.  Recently, cardiac tissue derived ECM hydrogels 

have been shown to increase migration of endogenous cells into the damaged tissue when 

delivered in an infarct model69. Naturally derived gels, which retain a significant portion of 

sulfated glycosaminoglycans, can effectively bind and deliver heparin binding growth factors in 

vivo 75.  A lung derived ECM hydrogel could be an effective material for delivery and 

encapsulation of cells, drugs, or molecular factors at difficult to reach sites in lung disease 

models where epithelial cell and ECM defects at injury sites are observed. [Pouliot et. al. 2016] 

 

Tissue specific differentiation has also been shown in hydrogels derived from native 

tissue using progenitor cells. Cardiac progenitors grown in cECM were shown to increase 

expression of early cardiac markers while a culture of these cells on adipose derived ECM gels 

did not produce the same differentiation towards a mature cardiomyoctye cell type, suggesting 

that the ECM hydrogels maintain important tissue specific biochemical cues 47. In another 

example, a hydrogel derived from brain ECM promoted increased neuron length in 3D culture 

over non-tissue specific derived materials such as spinal cord and urinary bladder derived 

hydrogels74. The ability ECM hydrogels to influence progenitor differentiation as well as 

promote specific cell morphology without the same guiding tissue matching mechanical 

properties or structures of whole tissue scaffolds suggests that biochemical cues are intact and 

active in these derivative materials.  



   16 
 

  

 

Chapter 2: Research Design 

 

2.1 Rationale and Major Hypotheses 

 This research was initiated with the goal to design and develop an ECM hydrogel from 

decellularized lung tissue in order to increase MSC engraftment into the lung tissue for direct 

regeneration. Over the past four years the goal has shifted towards developing an ECM hydrogel 

for the purpose of cell or drug delivery, to encapsulate and maintain delivered factors in the 

tissue for an extended period of time. This shift in direction was directed by findings and 

opinions in the field that MSCs delivered into the lung fail to engraft4 and are unlikely to 

differentiate. The purpose of using hydrogels to deliver hMSCs into the diseased lung evolved 

with the field to embrace MSCs for their immunomodulatory functions. The main hypothesis 

for this research is that a lung derived ECM hydrogel can be developed and validated as a 

feasible platform for delivering and maintaining therapeutic cells or drugs in the tissue. As an 

extension of this work we have also hypothesized that novel changes in the ECM solubilization 

protocol can be used to produce hydrogels with controlled properties. In order to test these 

hypotheses, we developed four specific aims. 
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2.2 Specific Aims 

Aim 1 Evaluate the proposed lung decellularization approach with regards to removal of 

immunogenic material, disruption of the extracellular matrix organization, and depletion of key 

ECM components including elastin, collagen, and glycosaminoglycans. 

 

Aim 2 Characterize the resulting hydrogel biomaterial including fiber size, gelation kinetics, 

mechanical properties, and passive protein release. Determine the capacity of the hydrogel to 

bind and sequester growth factors as an additional functionality, using KGF as a representative 

group. 

 

Aim 3 Investigate the ECM hydrogel as a feasible platform for cell and drug delivery by 

investigating the viability of encapsulated cells and if they maintain their mesenchymal 

phenotype. Confirm that encapsulated cells maintain their ability to secrete immunomodulatory 

factors and respond to strong activating factors in the environment, while encapsulated. 

Determine if naïve macrophages are significantly polarized by growth on ECM hydrogels. 

 

Aim 4 Determine if ECM hydrogel physical and mechanical properties can be significantly 

changed and controlled using modifications to the ECM solubilization protocol. Conduct some 

pilot studies using several cell lines to determine how changes in digestion time can effect cell 

growth, signaling, and behavior. 
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2.3 Overview  

 

Figure 2.1 Overview Figure showing the major steps in creating porcine derived ECM 

hydrogels with some of the characterization techniques used including gel rheometry and SEM. 
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Chapter 3: Decellularization of Porcine Lung Tissue 

 

3.1 Introduction 

 Decllularization of  porcine lung tissue was adapted from a protocol for C57BL/6 mice 60. 

Over the course of this research we have scaled up from mice, to rats, to pigs in order to greatly 

increase the amount of material we have for characterization and feasibility experiments (Figure 

3.1).  Processed lungs provide about 5 mg, 40 mg, and 10 g of ECM powder respectively 

(estimated). This chapter describes the methods for decellularization of porcine lung tissue and 

the evaluation of the extent of decellularization including the removal of double stranded DNA 

(dsDNA), and the immunogenic antigen alpha-gal. We also investigated the disruption of major 

elastic components and the physical morphometry of essential lung structures including: alveoli, 

airways, and vasculature, using SEM imaging and histological staining. 

 

Figure 3.1 Decellularization Scale-up Images of lung tissue for decellularization, isolated from 

(A) C57BL/6 mice, (B) Sprague-Dawley Rats, and (C) Slaughterhouse Pigs. 
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3.2 Materials and Methods 

Porcine Lung Tissue   

Lung tissue was donated from slaughterhouse animals by Smithfield-Farmland Inc.  The 

lungs, heart and trachea were isolated en bloc from a 6 month old pig at the facility, packed in 

ice, and delivered overnight in a sealed insulated container. Upon arrival, the heart was carefully 

removed to preserve the pulmonary artery for cannulation.  Connective tissues surrounding the 

trachea, bronchi, and pulmonary artery were carefully excised to expose the vascular and airway 

structures necessary for perfusion.  The right lung was removed at the main bronchus and the 

vasculature was dissected.  The vasculature and airways previously connected to the right lung 

were then clamped or sutured shut to create a closed system for perfusion decellularization of the 

left lung.  Both the trachea and pulmonary artery were sutured with tubing to streamline tissue 

perfusion. [Pouliot et. al. 2016] 

 

Decellularization 

Tissue decellularization was adapted from a protocol for C57BL/6 mice 60 and scaled to 

fit to work for porcine lung tissue. Briefly, the lung was perfused three times with sterile filtered 

water with 1X penicillin/streptomycin (Life Technologies) though the trachea and vasculature.  

Between every rinse the solution was removed passively, driven by the elasticity of the tissue.  

After rinsing the tissue, 1L 0.1% Triton X-100 (Fisher Sci) was injected through the pulmonary 

vasculature and 1.5L was injected into the airways through the trachea.  Treated tissue was 

submerged in the same solution and incubated for 24 hours at 4°C.  Following incubation, the 

tissue was again rinsed three times with sterile filtered water to remove the chemical solution and 

all cellular debris.  Tissue was then perfused again using a 2% sodium deoxycholate (Sigma) and 
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incubated for an additional 24 hours. On day three, tissue was rinsed and a DNase solution was 

pumped into the tissue, incubated for 60 minutes and rinsed. A sodium chloride (Fisher Sci) 

solution was administered for an additional 60 minutes.  Following the decellularization the 

tissue was rinsed with water three more times before being rinsed with sterile 1X PBS five times 

to remove as much decellularization agents and loose debris as possible.  Decellularized tissue 

was sectioned and all discernable cartilaginous airways were removed before storage at -80°C. 

[Pouliot et. al. 2016] A more thorough decellularization protocol has been added in Appendix A. 

 

Tissue Histology 

A minimum of 3 representative samples were taken from distal areas of both intact and 

decellularized lung, paraffin embedded, sectioned, and mounted.  The slides were subsequently 

deparaffinized in xylenes and hydrated from 100% ethanol using stepwise rinses with increasing 

water to ethanol ratio.  One set of lung sections were stained with hematoxylin and eosin (H&E) 

to confirm decellularization and additional slides were stained using the ACCUSTAIN elastic 

stain kit (Sigma) to compare elastin and collagen organization before and after decellularization.  

A final set of slides was exposed overnight to 1 to 5 dilution of mouse α-Galactosidase primary 

antibody (Enzo), then washed and incubated with mouse SignalStain Boost Detection Reagent 

and stained with DAB chromogen solution (Cell Signaling) for 5 minutes.  Stained slides were 

rinsed, dehydrated with xylenes, and mounted using Permount mounting medium (Fisher) prior 

to imaging using an Olympus IX71 Microscope (Olympus). [Pouliot et. al. 2016] 
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Picogreen Double Stranded DNA Quantification 

The DNA content of native and decellularized tissues was completed using the Quant-iT 

PicoGreen dsDNA assay kit.  Briefly, intact and decellularized porcine lung tissues were 

sectioned into 100 mg samples and then diced using a razor blade.  Each sample (n=3 per tissue) 

was digested in 1mL of papain digestion solution at 60 °C overnight.  The next day the samples 

were lightly centrifuged and diluted in 1X TE buffer for the following dilutions: 1:1, 1:4, 1:9, 

1:19, 1:29, 1:49, 1:79, 1:99 and added to a solid black 96 well plate in 100ul volumes in 

triplicate.  A dsDNA standard was also prepared in the following [ug/mL] concentrations: 2, 1, 

0.5, 0.25, 0.125, 0.0625, 0.03125, and 0.  Picogreen reagent was then added to samples and 

standards and incubated in the dark at room temperature for 3 minutes. The samples were 

quantified in using a fluorescent plate reader with an excitation wavelength of 480 nm and 

emission wavelength of 520 nm. [Pouliot et. al. 2016] 

 

Quantification of Matrix Components 

 

Elastin/ Collagen Quantification 

Both elastin and collagen quantification were completed using a protocol from Tranquillo et al76.  

Collagen quantification was performed using a hydroxyproline assay.  Elastin quantification was 

performed using the ninhydrin assay.  Briefly, 50 mg samples were taken from both intact and 

decellularized porcine lung tissue and solubilized in 0.1M NaOH at 98 °C for 45 minutes.  

Samples were then centrifuged (3000g, 10 minutes), and the soluble proteins in the supernatant 

were removed, frozen, and lyophilized.  Both the remaining insoluble elastin pellet and the 

lyophilized soluble proteins from the supernatant were hydrolyzed for 24 hours in 6M HCl at 
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110°C.  These hydrolyzed solutions were lyophilized and then diluted in 2mL of DI water.  The 

insoluble elastin samples were quantified using a ninhydrin assay and the collagen from the 

soluble protein samples was quantified using a hydroxyproline assay (Sigma). [Pouliot et. al. 

2016] 

 

Glycaosamnioglycan (GAG) Quantification  

Sulfated GAGs were quantified using an Alcian Blue colorimetric assay described in Frazier et 

al77.  Initially 100 mg sections of both intact and decellularized tissue was diced and incubated at 

4°C in a 4M guanidine HCL solubilization buffer (with 0.05M NA-Acetate and 2% w/v Triton x-

100) for 12 hours.  An initial dilution of dye test reagent was made with 100mg of 8Gs Alcian 

blue powder (Sigma) in 10mL of 0.018 M H2SO4.  This initial solution was diluted to a working 

solution 1/100 in 0.018 M H2SO4 and Triton X-100 was added so that the final solution had 

0.25%. The final solution was centrifuged at 10,000g to remove any insoluble dye particles.  200 

uL of the solubilized tissue samples was added to 300 uL of the final dye solution and rigorously 

vortexed.  These tubes were centrifuged (16,000g, 10 mins) at 4°C and then the resulting stained 

GAG pellet was isolated and dissolved in 500uL of 8M guanidine HCL solution.  300uL of each 

sample was transferred to a 96 well plate and absorbance was measured at 600 nm using a Biotek 

plate reader.  [Pouliot et. al. 2016] 

 

3.3 Results  

Intact vs. Decellularized Lung Tissue 

An investigation of the porcine lung tissue before and after decellularization was 

completed using histology, immunohistochemistry, scanning electron microscopy, dsDNA 
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quantification, and evaluation of key matrix components to determine the extent of 

decellularization and to describe the disruptive effects of detergents on the organization of matrix 

proteins.  Slides from intact and decellularized tissue were stained using hemotoxylin and eosin 

to illustrate the removal of nuclei and most nuclear remnants from the remaining matrix (Fig. 

3.2, A).  Staining showed a depletion of the immunogenic membrane epitope, α-galactosidase, 

and is an indicator for the removal of cellular remnants from the matrix (Fig. 3.2, B).  Picogreen 

quantification shows that dsDNA was reduced from 1,239.4 (+/- 62.7) [ng dsDNA/mg Tissue] to 

57.4 (+/- 3.52) [ng dsDNA/mg Tissue] as a result of decellularization (Fig. 3.2, C).  

 

 

 

Figure 3.2 Porcine Lung Tissue Decellularization. (A) H&E staining of porcine lung tissue 

fixed before and after decellularization indicating the removal of most nuclei, (B) α-

galactosidase staining shows a reduction of the immunogenic alpha-gal membrane epitope, (C) 

dsDNA picogreen assay confirmed a 95.3% reduction in double stranded DNA. Data are mean 

+/- st.dev. n=3 per group. *** p<0.001 compared to the intact. Scale bars are 100μm. 
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A qualitative study comparing intact porcine lung tissue slices to decellularized lung 

tissue slices shows that the decellularization process preserves many of the structures of the lung.  

Conserved feature structures include airways, alveolar spaces, and vasculature (Fig. 3.3). 

Histologic sections stained with Accustain Elastic stain show that elastic fibers are present in the 

tissue following decellularization but are depleted and much less organized (Fig 3.3 A-C, J-L). 

[Pouliot et. al. 2016] 
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Figure 3.3.  Intact vs. Decellularized Lung Tissue Comparison. SEM & Histology images 

from both intact (A-F) and a decellularized (G-L)  lung slices comparing similar structures: first 

column (A,D,G,J) Alveolar Tissue; second column (B,E,H,K) airway structures; third Column 

(C,F,I,L) vasculature Structures.  Histology samples stained using Accustain Elastic Stain: 

Black/Dark Purple: Elastic Fibers; Red/Pink: Collagen. Scale bars are 100μm for SEM and 

200μm for light images. 
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Quantification of Matrix Components 

Decellularization using detergents is known to reduce the amounts of matrix proteins in 

the remaining scaffold. We quantified the changes in elastin, collagen, and sulfated 

glycosaminoglycans (GAGs) and found that there was a significant decrease in all three.  

Absorbance data was collected for each colorimetric assay and normalized by the intact sample 

values to show the relative amount that each component is depleted during the decellularization 

process (Fig. 3.4). [Pouliot et. al. 2016] 
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Figure 3.4. Intact vs. Decellularized Matrix Composition. Quantification of major ECM 

components: elastin, collagen, and GAGs, showing the relative reduction caused by the 

decellularization process. Data are presented as mean +/- st.dev, n=3-4 per group *p<0.05 as 

measured by t-test.  
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3.4 Discussion 

 The sodium deoxycholate/triton approach effectively decellularized porcine lung tissue 

and conserved many of the important structural components from the native ECM. Staining with 

hematoxylin and eosin confirmed that a large majority of the nuclear structures were removed 

and further quantification of total double stranded DNA indicates a 95.7% reduction after 

decellularization (Fig. 3.2 A, C). Evaluation of remnant nuclear structures or DNA in the 

scaffold is often used as a primary method for gauging effectiveness of the decellularization 

regimen used. Development of biomaterials from xenogenic sources is complicated by the 

presence of immunogenic antigens.  One major consideration is the alpha gal epitope, which can 

result in an acute rejection response without prior depletion of the antigen63,64. The alpha gal 

antibody specifically recognizes the alpha-gal epitope found on the cell surface in the majority of 

mammals with the exception of Old World monkeys, apes, and humans. In humans a significant 

1% of all circulating immunoglobulins are specific for the alpha-gal epitope which can lead to 

catastrophic failure of xenogenic materials without depletion of the antigen65.  Comparative 

DAB staining using a primary antibody for alpha galactosidase before and after decellularization 

suggests that cell remnants including matrix bound membrane sections, debris, and intracellular 

proteins were mostly removed and prevented from sequestration in the matrix (Fig. 3.2, B). 

[Pouliot et. al. 2016] 

 

 Every approach for tissue decellularization influences the quantity and quality of 

extracellular matrix components retained in the acellular framework48,50,78.  The resulting profile 

of depleted or damaged matrix proteins plays a major role in determining the ultimate physical 

properties of the hydrogel and its capacity for supporting cell-matrix interactions 78–80. 
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Comparison of the elastin and collagen organization in major lung structures pre and post 

decellularization (Fig. 3.3) hints at the disruptive nature of the deoxycholate/triton approach 

used. Colorimetric assays confirmed a reduction of key matrix components during the 

decellularization process including elastin, collagen, and sulfated GAGs (Fig. 3.4 A). The assay 

also indicates that there are still robust amounts of these matrix components present in the 

decellularized matrix prior to pepsin digestion.  [Pouliot et. al. 2016] 

 

3.5 Conclusions 

 During this investigation we have validated our decellularization approach in its ability to 

remove potentially immunogenic components from the matrix including a 95% reduction double 

stranded dsDNA and as well as removal of the alpha gal epitope from the matrix. We have also 

characterized the disruption to essential lung structures including their elastic fiber organization 

and reduction of essential matrix components including elastin, collagen, and 

glycosaminoglycans. This work represents a firm foundation for further investigations using 

decellularized porcine lung tissue. 

 

 

 

 

 

 



   30 
 

  

Chapter 4: Production and Characterization of Porcine Lung Derived 

Extracellular Matrix Hydrogels  

 

4.1 Introduction 

 The approach used to prepare and solubilize ECM powder derived from decellularized 

porcine lung matrix was adapted from Freytes et. al. In fact, the overwhelming majority of the 

ECM hydrogels prepared from decellularized tissue have been prepared using this approach, 

with only a few investigating changes to the overall protocol. This chapter describes our 

investigation to thoroughly characterize the resulting pregel solution, including SDS-PAGE 

analysis of the solubilized protein profile, rheometrical measurements to describe the gelation 

mechanics and mechanical properties. This also includes SEM image analysis of fiber sizes 

present in the native and decellularized tissue, compared to the fiber sizes found in the hydrogel. 

Fiber size and mechanical properties of the gel are important factors which will influence how 

cells will respond to the hydrogel. Finally, we investigated the ability of the platform to sequester 

growth factors and other charged therapeutics, using human KGF as a representative target. 

KGF, also known as FGF-7, is a critical regulator of epithelial cell proliferation in the lung and 

plays an important role in repair following acute injury81 which makes it a prime candidate for 

delivery studies. 

 

4.2 Materials and Methods 

Preparation of Porcine Lung Derived ECM Hydrogels 

Processing and digestion of the decellularized scaffold into a pre-gel solution were 

adapted from a protocol for urinary bladder matrix73.  Frozen tissue sections were lyophilized 
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using a Flexi-Dry Lyophilizer (FTS Systems) and then milled using a SPEX model 6700 freezer 

mill.  ECM powder was digested in a 0.01M HCl solution with pepsin from porcine gastric 

mucosa (Sigma-Aldrich) in order to solubilize the ECM components.  ECM digestions were run 

for 48 hours under constant agitation and ended using a 0.1M NaOH and a 10X PBS solutions 

bringing the pre-gel solution pH to 7.4 (+/- 0.2) and PBS concentration to 1X.  The pre-gel 

solution will self-assemble into a hydrogel at these conditions when incubated at 37 °C. [Pouliot 

et. al. 2016] 

 

SDS-PAGE Protein Size 

Protein lysates were prepared for SDS page from intact porcine lung tissue, 

decellularized ECM powder, and ECM pre-gel solution (pepsin digested powder) using a 

25mM/1%SDS/4.5M Urea solubilization buffer and heating at 60 ° for 1 hour.  Lysates were 

centrifuged (12,000g, 10 minutes) at 4°C and supernatants were sampled for soluble protein 

levels using a Bicinchoninic Acid (BCA) protein assay (Pierce).  BCA values were used to 

balance protein levels by dilution. 25 uL of each balanced sample was added to 2x Laemmli 

buffer (Biorad) with 5% 2-mercaptoethanol (Fisher) and heated to 100°C for 5 minutes.  Samples 

were cooled on an ice block before being loaded into an Any-kd Mini-Protean TGX Stain-Free 

Gel (Biorad) and run.  Stain free gels were activated for 45s and imaged using a ChemiDoc 

Touch imaging system (Biorad). [Pouliot et. al. 2016] 

 Additional analysis of the protein profile found in the decellularized ECM powder was 

completed using Image Lab Software (BIORAD, Inc). The standard used for SDS-PAGE, the 

BIORAD Precision Plus Stain Free STD, was identified by the software in 2 separate lanes. This 

calibration allows us to identify the molecular weights of the unidentified bands. By isolating the 
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individual bands in the software we were also able to quantify the relative volume of the protein 

in each band. This Data will be used to compare identified bands to the predicted molecular 

weights of major lung matrix components to determine potential proteins that each band might 

represent. It also allows us to quantify a percentage of the total protein that each band represents. 

 

Scanning Electron Microcopy (SEM) Imaging and Histology 

ECM hydrogels were formed from pre-gel solution incubated for 30 minutes before being 

fixed in glutaraldehyde. After fixation the gels were sectioned and removed from the well using a 

biopsy punch.  Lung tissue slices for imaging were isolated from both intact and decellularized 

porcine lung tissue and fixed in 4% paraformaldehyde for 48 hours.  Samples fixed for SEM 

imaging were rinsed in PBS and then incubated in 4% osmium tetroxide for an additional hour. 

After several washes tissue and gel samples were transferred from PBS to an ethanol solution 

using serial dilutions of ethanol from 25% to 100% incubating for up to 10 minutes between 

steps.  Samples were then critical point dried using an autosamdri-814 critical point dryer 

(Tousimis) and mounted using conductive adhesive tabs (TED PELLA, inc) for imaging.  

Samples were plasma sputter coated before imaging with a scanning electron microscope (JEOL 

6330F). [Pouliot et. al. 2016] 

SEM images of decellularized tissue and ECM hydrogels were captured to characterize 

average fiber diameter and organizational patterns.  The average diameter was determined by 

measuring the width of the fiber in three locations with approximately equal distribution along 

the fiber or fiber bundle using Matlab.  For the tissue samples, a threshold of 300nm was used to 

separate fibrils from more organized fiber bundles. [Pouliot et. al. 2016] 
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Rheometry 

Rheometery was used to assess the mechanical properties of the hydrogels.  Gel 

rheometry was completed using an ARG2 rheometer (TA Instruments) with a 20mm parallel 

plate geometry.  ECM digests were completed less than 1 day prior to mechanical testing.  An 

amplitude sweep was conducted for both 8 and 4 [mg/mL] ECM hydrogels to find an acceptable 

strain range for the experiment.  To test the hydrogels 100 [ul] of the pre-gel solution was loaded 

onto the Peltier plate set at 4°C.  The gap distance was then truncated to 300 to enclose the 

solution between the plate and the geometry.  The temperature of the plate was increased from 4 

to 37 C° at 5 [°C/min] and then held constant for 15 minutes.  The oscillatory modulus of the 

sample was monitored continuously at a constant 0.1Hz with a strain of 0.5% during the 

experiment.  Samples were subjected to an oscillatory strain, developing a sinusoidal stress, G*, 

which represents the frequency dependent complex modulus.  From G*, G’ and G” were 

determined; where G’ is the real part of the complex modulus, the storage modulus, and G” is the 

imaginary portion of the complex modulus, the loss modulus. [Pouliot et. al. 2016] 

 

Passive Protein Release  

An in vitro assay was performed to determine the amount of protein that is passively 

released from the gel following complete gelation.  In a 96-well TC plate 100µL of ECM pre-gel 

solution was incubated at 37ºC for one hour then gently washed with 200µl 1X PBS which was 

collected and replaced.  PBS was collected from replicate wells at predetermined time points and 

stored for a Bicinchoninic Acid (BCA) protein assay (Pierce) to determine the amount of protein 

released from the gel over time.  Absorbance values were measured at 562 nm and converted to 
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protein concentration [μg/mL] using values from the protein standard.  Data is presented as total 

protein [μg] in each sample volume. [Pouliot et. al. 2016] 

 

Loading of Growth Factors – KGF 

KGF was loaded into 300 uL ECM pregel samples and incubated to form hydrogels. 200 

uL of 1X PBS was added to the formed hydrogels as a simulated environment to facilitate KGF 

release. The KGF concentrations loaded were 312.5, 625, 1250, 2500, 5000, 10,000, and 20,000 

[ng/mL]. The PBS was collected for analysis and replaced at 5 minutes (initial release), and 1, 2, 

and 5 Days and the samples were analyzed using a KGF DuoSet ELISA kit (RnD Systems, Inc.), 

the ELISA had 3 plate replicates for each sample. The mass of KGF released from each gel was 

calculated by multiplying the concentration released by the PBS collected, 200 uL, and summed 

to get total KGF release over time. 

 

4.3 Results  

SDS-PAGE 

Protein lysates from intact tissue, decellularized tissue powder, and pepsin digested ECM 

pre-gel solution were run on a wide band SDS-PAGE gel to separate proteins by size (Fig. 4.1).  

Intact tissue has the most bands as it includes both extracellular and intracellular matrix proteins.  

Decellularized matrix powder also has a significant number of distinct bands representing the 

spectrum of remaining extracellular matrix proteins following decellularization and processing.  

Pepsin is a fairly non-specific protein enzyme and will act between any two unshielded amino 

acids responsible for the SDS-PAGE size distribution.  Most of the largest proteins have been 

segmented and represented in the smaller bands. The non-specific nature of pepsin also leads to a 

“smear” of protein sizes outside of the clear banding. [Pouliot et. al. 2016] 
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 A table describing the predicted bands for several essential proteins that should be 

present in the lung matrix has been added to Figure 4.1. Additionally, the BIORAD, image lab 

software has allowed for the determination of relative molecular weight and volume of each of 

the bands. With this information we were able to identify some of the potential proteins present 

in the bands as well as their quantity relative to the other measured bands. This information has 

been tabulated in table 4.1. 

 

 

Figure 4.1. Intact Vs. Decell vs. Pregel SDS-PAGE. This gel shows how protein size and 

distribution change as tissue is processed to a powder and further digested into a pre-gel solution. 

The table attached lists the predicted size of some of the essential matrix components found in 

Lung Tissue. 
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Table 4.1 Major Bands from Lung Derived ECM Powder. This table lists the major bands 

identified from the solubilized lung derived ECM powder. The molecular weight and intensity 

volume of each band have been calculated using the BIORAD Image Lab software. Potential 

proteins present in each band have been identified using the table in Figure 4.1 

Fiber Size and Organization 

While the ECM hydrogel lacks the highly organized matrix formations of collagen 

bundles seen in the decellularized tissue, it does have comparable fiber size to those found in the 

tissue.  SEM imaging was used to evaluate ECM fibrils and fiber bundles in the hydrogel and in 

the tissue (Fig. 4.2, A-C).  Measurement of fibrils found in the decellularized tissue and in the 

fixed hydrogels (<300 nm) found no significant difference between the groups, 138.03 ± 25.96 

nm (tissue) and 87.104 ± 13.77 nm (hydrogels).  The more organized fiber bundles (>300 nm), 

found only in the decellularized tissue sections, were determined to have an average thickness of 

974.97 ± 81.33 nm, and were significantly different from both of the fibril groups. [Pouliot et. al. 

2016] 

Band Description
Mol. Wt. 

(KDa)
Volume (Int)

Percent of 

Measured
Potential Proteins

1 Several Bands 250.0 1.27E+07
5.9

Collagen 1, Fibronectin, 

Tanscin-C

2 Several Bands 192.1 3.04E+07 14.1

3 137.5 1.70E+07 7.9 Collagen 3

4 Think Band 118.8 7.87E+07 36.6 Collagen 1

5 101.8 1.99E+07 9.3 Fibronectin

6 83.9 8.55E+06 4.0 Vitronectin, Versican

7 faint 61.0 7.32E+05 0.3 Collagen 4, Decorin

8 faint 46.7 1.97E+06 0.9

9 faint 40.6 2.33E+06 1.1

10 32.7 1.11E+07 5.2 laminin

11 18.4 7.04E+06 3.3

12 13.9 2.46E+07 11.5
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Figure 4.2 Fiber Size Comparison: Decellularized Lung Tissue vs. Lung ECM Hydrogel. 

SEM of (A) pig lung tissue after decellularization and (B) a pig lung derived ECM hydrogel.  (C) 

Quantification of average fiber size found in each set of samples, measured using Matlab image 

processing. While fiber bundles in the tissue samples are much larger, the small fibers (<300 nm) 

are more similar to those found in the hydrogel. *** P<0.0001 for comparison to both the 

hydrogel and tissue small fiber size groups. n = 3-5 for all groups. SEM scale bars are 5μm. 



   38 
 

  

Rheometry 

A preliminary amplitude sweep was conducted to determine the acceptable strain range to 

test our material within the linear viscoelastic region (Fig. 4.3, A).  This range was found to be 

between 0.1 and 1% strain for our samples; 0.5% was used for the experiments.  The rheological 

properties of pig lung ECM hydrogels at 8 & 4 [mg/ml] were examined during a temperature 

ramp and both the storage modulus (G’) and loss modulus (G”) were found to increase as the 

pre-gel liquid solution self-assembled into a gel (Fig. 4.3, B, C).  Results were compared to ECM 

hydrogels derived from other tissues (Table 4.2).  The measurements taken during a temperature 

ramp 4°C to 37°C at 3°C increments show that the self-assembly mechanism of the pre-gel 

solution start around 35°C and that the majority of the mechanical change related to the gelation 

occur shortly after the gel reaches physiologic body temperature of 37°C.  The strain used to test 

the hydrogels was found to have a significant impact on the results.   
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Figure 4.3 Gelation Kinetics and Material Mechanics of ECM Hydrogels. (A) 

Representative amplitude sweep for an 8 [mg/mL] ECM hydrogel from 0.01% to 20% strain (B) 

Storage modulus and (C) Loss modulus at the temperature is ramped from 4 to 37°C and then 

held constant. Rapid self-assembly takes place as the material approaches 37°C with the majority 

of gelation occurring within 3 minutes. Data are mean +/- st.dev. n=3 per group.  

 

Rheometry experiments conducted using 5% strain resulted in irreversible deformation of 

the ECM hydrogels at 8 and 4 [mg/mL] and significantly lower modulus values as the 

temperature was ramped to induce gelation (Fig. 4.4 A, B). Testing on similar materials derived 

from other sources used a range of testing conditions, including different strains, which could be 

partially responsible for the large spectrum of mechanical properties amongst published results 

(Table 4.2). [Pouliot et. al. 2016] 

 

 

 

Figure 4.4. Gelation Kinetics and Mechanics under 5% strain  (A) Storage modulus and (B) 

Loss modulus at the temperature is ramped from 4 to 37°C and then held constant using a strain 

of 5%.  Samples at this strain are irreversibly damaged, they still exhibit self-assembly behavior, 
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but measurements are not representative of the hydrogels mechanical properties. Data are mean 

+/- st.dev. n=3 per group. 

 

Table 4.2 Rheometrical Properties for Tissue Derived ECM Hydrogels in the Literature 

Passive Protein Release 

Proteins passively released from the material could have a significant effect in addition to 

the actual degradation products of the hydrogel in vivo. During our investigation we found that 

there is a significant amount of non-soluble or non-assembled protein that is initially trapped 

during gelation but quickly released into the milieu. Using 1X PBS to collect these proteins over 

time we determined that measurable passive protein loss occurs over 14 days, with the maximum 

protein release occurring within the first 48 hours after gelation (Fig. 4.5, A).  Comparison of 

hydrogels directly following gelation and after 14 days of protein release using SEM yields an 

observable difference in the quantity and organization of proteins in the hydrogel network (Fig. 

4.5, B) There was also a visual difference in the density of non-integrated proteins from day 1 to 

day 14 which suggests that much of the measured protein release could have been diffusion from 

the hydrogel. [Pouliot et. al. 2016] 

Material Concentration Storage Modulus [Pa] SD Reference

Lung 8 [mg/ml] 59.02 ± 13.53

6 [mg/ml] 32.02 ± 1.87

4 [mg/ml] 15.27 ± 2.87

Adipose 4 to 12 [mg/ml] 10 to 15 Young et al. Acta Biomat. 2011

Cardiac 8 [mg/ml] 9.52 ± 3.77 Johnson et al. Nanotech. 2011

6 [mg/ml] 5.28 ± 0.41

Dermis 8 [mg/ml] 466.5 ± 64.3

UBM 8 [mg/ml] 143.8, 182.2 ± 84.1, ± 36.5

Medberry et al. Biomat. 2013/ 

Wolf et al. Biomat. 2012

4 [mg/ml] 11.43 ± 4.9

Brain 8 [mg/ml] 61.8 ± 11 Medberry et al. Biomat. 2013

4 [mg/ml] 20.3 ± 16.0

SC-ECM 8 [mg/ml] 757 ± 74.9 Medberry et al. Biomat. 2013

4 [mg/ml] 138.5 ± 33.8
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Figure 4.5. Passive Release of protein from Hydrogels. (A) Protein release from hydrogels 

based on BCA Analysis of PBS supernatant, most protein loss occurs before day 8, data are 

mean +/- st.dev. n=3 per group; (B) SEM comparison images from hydrogels fixed at Day 1 

compared to those fixed at day 14. Scale bars are 10 μm. 

Loading of Growth Factors – KGF 

 The ability to sequester growth factors could become an impactful functionality of the 

ECM hydrogel platform. During our investigation we loaded ECM pregel samples with several 
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concentrations of KGF before incubation.  PBS was used as a medium to simulate the 

environment and a KGF ELISA kit was used to measure KGF release form each of the samples, 

which was converted to grams and presented as total release over time as shown in figure 4.6, A. 

The data shows that there is a similar proportionality in the higher loaded concentrations (5k +) 

that is not seen as much in the lower samples. The percentage of protein that was released from 

each gel is available in table 4.3. The trend is that more KGF can be released, as a percentage of 

the loaded amount, at those higher concentrations.  

 

Table 4.3. KGF Loading. This table tabulates the starting concentration, total KGF loaded per 

gel, the total amount [ug] of protein released over 5 days, and the percentage of the total protein 

released. At higher concentrations the percentage of KGF released from each gel is relatively 

consistent, which is not the case for the lower values released from the bottom 4 samples. 

 

 KGF Conc. [ng/mL]

Total KGF 

Loaded [ng] in 

each 300 uL gel

Summed Protein 

Release [ng] 

Percent KGF 

Released

20000 6000 332.2 5.54

10000 3000 185.2 6.17

5000 1500 77.7 5.18

2500 750 17.0 2.27

1250 375 5.9 1.58

625 187.5 4.9 2.61

312.5 93.75 0.7 0.73
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Figure 4.6 Release of Loaded KGF from ECM Hydrogels. KGF released from loaded 

hydrogels was quantified using ELISA, (A) shows the release from 7 individual gels loaded with 

concentrations of KGF from 312.5 to 20,000 ng/mL. Concentration measured in the release 

samples was converted to mass release and presented as total release over time (n=3, plate 

replicates). 

4.4 Discussion 

The changes in the profile and size distribution of proteins resulting from 

decellularization, processing, and digestion are evident in the SDS-PAGE data presented in 

Figure 4.1. There are distinct matrix components input into the pepsin digestion. However, due 

to the unspecific cleavage it is difficult to determine the state of each of these components 

following digestion in the pre-gel. This unspecific cleavage of the pepsin digestion makes it 

difficult to apply traditional matrix quantification and mass spec approaches to the pre-gel 

solution. The lyophilization, milling, and digestion to transform the acellular matrix into a 

hydrogel results in the reduction of highly organized extracellular matrix structures, bundles, and 



   44 
 

  

fibers into a less dense and more randomly organized material (Fig. 4.2). A quantification of 

fiber sizes revealed that the organized fiber bundles were much more prevalent in the 

decellularized tissue. The fibers measured in the hydrogel sample were much thinner with less 

variance suggesting that proteins from the tissue had been reduced to subunits during the 

digestion and then reassembled during gelation. [Pouliot et. al. 2016] 

 

Solid tissue engineering scaffolds are appropriate for addressing tissue engineering needs 

in tissues with a static mechanical environment. They are, however, much less applicable in 

tissues that undergo complex deformation such as the heart or lungs. The deformability of 

hydrogels can prevent damage to the native tissue under strain while protecting encapsulated 

cells or drugs. The novel lung ECM hydrogels we have developed have mechanical properties 

comparable to similar scaffolds (Table 4.2). In general the  shear modulus of soft tissues are 

significantly higher than what we have determined for lung derived hydrogels 82.  However, for a 

therapeutic delivery vehicle, the ability to maintain cells or drugs at target locations in the tissue 

is more important than a perfect match with native the tissue mechanics. [Pouliot et. al. 2016] 

 

The gelation behavior of the hydrogel contributes to the practicality of the hydrogel 

system, especially for use in injectable delivery.  We determined that our lung derived hydrogel 

shows little to no gelation activity until the temperature of the material exceeds 32 °C, the pre-

gel solution then completely self assembles in 3 minutes once the material reaches 37 °C (Fig. 

4.3). This can potentially allow drugs or cells to be delivered in an injectable liquid solution, 

encapsulating the payload once the solution reaches the target tissue. For an intratracheal 

delivery, the goal would be to deliver the pre-gel solution to the alveolar spaces before gelation 
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to reduce the chances that airways are obstructed.  Studies using ECM gels derived from other 

tissues suggest that the mechanical properties and gelation time can be directed by modifying the 

starting temperature, protein concentration, pH, or ion concentration56,83 which could be tailored 

using our model to ensure that the majority of the solution reaches the alveolar spaces before 

gelation. [Pouliot et. al. 2016] 

 

A comparison of the published rheometry data for other tissue derived ECM hydrogels 

revealed a large variation in the experimental methods and conditions used. We have 

demonstrated that there is a significant difference in the modulus found using strains of 0.5 and 

5%. We attribute this difference to the larger strain being outside of the linear viscoelastic (LVE) 

region as determined by an amplitude sweep. While 5% strain could be in the LVE region for 

some of the more robust materials derived from highly collagenous tissues such as bladder, 

dermis, and spinal cord, it is possible that such a large strain irreversibly damages hydrogel 

samples during the first rheometric measurements. [Pouliot et. al. 2016] 

 

Degradation products of previously described ECM biomaterials have been found to have 

additional beneficial functions including antibacterial properties 84 and chemo attractant 

promoting cell taxis 85.  In this study, our analysis of the passive release profile of the hydrogel 

revealed that a large amount of protein can be collected in the wash immediately after complete 

gelation, and that the majority of protein release happens within the first 48 hours (Fig. 4.5, A). 

This suggests that not all constituents of the pre-gel solution are involved in self-assembly of the 

hydrogel and that possibly not all of the isolated protein been solubilized with our current 

digestion protocol. While it is not clear that proteins passively released from a lung derived 
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hydrogel are beneficial they have not been found to be cytotoxic in preliminary in vitro 

experiments or in the acute in vivo model. [Pouliot et. al. 2016] 

 

The functionality of being able to sequester and delivery growth factors as a therapeutic 

or as a guide for progenitor differentiation is a major augmentation to the hydrogel platform we 

have developed. The KGF loading results shows that lung derived ECM hydrogels sequester 

KGF in a concentration dependent manner as shown in Figure 4.6, A. The higher concentrations 

(5k, 10k, 20k [ng/mL]) release a similar percentage, between 25 and 30% of the KGF that was 

loaded, while the lower concentrations release less overall as shown in table 4.3. The difference 

between the highest three concentrations and the lower four are either because the loaded KGF in 

these samples has a higher affinity to the matrix, which would make sense if there were more 

binding sites available in these gels, the other explanation is that the ELISA could not accurately 

measure KGF at these levels. I suggest that both of these could play a role in the results.  It is 

likely that remodeling and degradation of the ECM hydrogel by immune cells would lead to an 

increase in the KGF released in vivo. KGF has previously been sequestered in fibrin gels by 

attaching a matrix binding peptide to the growth factor86. This augmentation was able to increase 

KGF loading in the gel to control release of the growth factor from 90% in 24 hours, to 15%. 

Controlled release is beneficial for KGF because it has a short unbound half-life86. 

 

4.5 Conclusions 

We have successfully demonstrated that decellularized lung tissue can be processed and 

digested to create a smart material which is liquid at room temperature, but undergoes self-

assembly into a hydrogel as the environment approaches 37 °C.  During this study we have 
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thoroughly characterized the composition, structure, gelation kinetics, mechanical properties, and 

protein release behavior of the material. Additionally, we have confirmed an additional 

functionality of the hydrogel platform, finding that growth factors can be sequestered in the 

pregel solution. We have characterized the concentration dependent release of KGF from the 

hydrogel and found that the protein can retain at least 70% of the loaded KGF over 5 days. These 

findings support the use of this material for a feasibility investigation for cell and drug delivery. 
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Chapter 5: Encapsulation of hMSCs and demonstration of ECM hydrogel 

feasibility for Cell and Drug Delivery 

 

 

5.1 Introduction 

  

One of the major goals of this research has been to demonstrate that ECM hydrogels are a 

feasible platform as a delivery vehicle for cell and drug delivery. This chapter describes our 

investigation into this subject. The essential starting point was determining if hMSCs can be 

successfully encapsulated inside of ECM hydrogel, and remain viable; while maintaining their 

phenotype. This is important because we want encapsulated hMSCs to continue to be able to 

sense and respond to the inflammatory environment when delivered in the hydrogels. From there 

we investigated both sides of the activation/secretion question, looking into if cells can be 

activated by factors outside of the hydrogel, and also if secreted factors could escape from the 

hydrogel. This capability is essential in order for delivered cells to be able to respond to and 

modulate a chronic inflammatory environment. Specifically, we wanted to see how these 

encapsulated cells would respond to a simulated environment in which TNF-alpha is abundant, 

like in COPD (REF). Another feasibility question that we addressed is whether or not injected 

hydrogels would cause significant immune response and polarization of immune cells. Finally, 

an in vivo dosing trial was completed to see if ECM hydrogels did in fact increase retention of 

delivered cells in the tissue. 

 



   49 
 

  

5.2 Materials and Methods 

 

In vitro Cell Culture 

All in vitro cell studies were completed using human bone marrow derived mesenchymal 

stem cells (hMSCs) obtained from Rooster Bio, Inc.  Cells were defrosted and expanded in 

culture in enriched basal medium (RoosterBio) which was changed every 2-3 days.  When cells 

were 80 – 90% confluent they were trypsinized, counted, and plated for attachment and 

encapsulation experiments.  Cells used for these experiments were from the first three passages 

and quantification experiments were performed using a Quant-iT™ PicoGreen® dsDNA Assay 

Kit (Life Technologies).  Background levels of dsDNA sequestered in the ECM material were 

normalized for using non-cell controls for protein coatings and gel encapsulation.  These 

background values were subtracted so that only dsDNA from cultured cells is represented in the 

data. [Pouliot et. al. 2016] 

 

Encapsulated Cell Viability 

Viability of hMSCs encapsulated in formed ECM hydrogels was evaluated over 48 hours.  

hMSCs were suspended at 3*104 [cells/gel] at four concentrations: 2, 4, 6, and 8 [mg/mL].  The 

solutions were plated into 96 well plates in triplicate and incubated for 30 minutes to form 500 

[µm] thick hydrogels. Following gelation, 100µL of media was carefully added to each well.  

After 2 days the media was aspirated and samples were digested in papain digestion solution 

overnight at 65 °C.  Double stranded DNA was quantified using a picogreen assay as previously 

described. [Pouliot et. al. 2016] 
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Encapsulated hMSC Live/Dead Staining 

A Live/Dead viability kit (Invitrogen) was used to visualize the performance of 

encapsulated hMSCs over time.  In a 96 well clear TC plate hMSCs were encapsulated in pre-gel 

solution at a density of 10,000 cells/well.  The plate was incubated for 30 minutes to form 

500µm thick hydrogels and 100µL of hMSC media was added to each well.  The Live/Dead 

staining components were defrosted and added to 1X PBS to make a solution with 2µM calcien 

AM (green, Live) and 4µM EthD-1 (red, Dead).  The media was first aspirated and 100µL of 

Live/Dead staining solution was added to each well and incubated at room temperature for 30 

minutes.  The plate was then imaged using an Olympus IX71 Microscope using fluorescent light 

source and FITC (~490 nm, Live) and TRITC (~530 nm, Dead) filters.  Images taken using each 

filter were colored and merged using FIJI to create Live/Dead composite images.  Image 

quantification and cell counting was performed with NIH Image J on a minimum of 3 fields per 

sample. [Pouliot et. al. 2016] 

 

QPCR Gene expression Analysis 

 The gene expression values obtained from all of the QPCR experiments performed was 

determined using the delta delta Cq (sometimes called Ct) approach commonly used in the 

literature. Briefly, the average of the Cq values was taken for the housekeeping gene and the 

gene of interest, for both the control group (plate control, or non-activated control depending on 

experiment) and the experimental group(s). The housekeeping gene average Cq value is 

subtracted from the experimental gene Cq for the control and each experimental group. The 

purpose of this first calculation, ∆Cq, is as another control for the amount of cDNA loaded. The 

housekeeping gene is supposed to be a gene that has little change in expression no matter what, 
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the outcome of this operation is an additional control for loading errors, normalizing Cq values 

so that they represent the same relative number of cells. The second operation, ∆∆Cq, is to take 

the ∆Cg for the control group, and subtract it from the ∆Cq from the experimental groups. The 

fold change can be calculated from these ∆∆Cq values for each group using 2^-∆∆Ct. Using the 

experimental replicates, you can determine average fold change for determining statistically 

significant differences between the control group and the experimental groups. There is some 

controversy over the presentation of standard deviation with this data due to manipulation of the 

data leading to these values, it has been argued that these calculations are not representative of 

the source signals due to the data manipulation. We have presented the standard deviation here 

because it still depicts useful information on the variance of fold change within each group. 

 

Gene Expression of Encapsulated hMSCs 

Gene Expression was performed using a CFX Connect real-time PCR machine (Biorad) 

to determine gene expression changes in MSCs when encapsulated in ECM hydrogels.  hMSCs 

(~100k cells/well) were either encapsulated in 300uL ECM hydrogels or seeded onto TC plastic 

in 6 well plates.  At 3 and 7-day time points RNA was collected and purified using a Qiagen 

RNeasy kit.  RNA concentrations were balanced using nuclease free water and converted to 

cDNA using a high capacity cDNA reverse transcription kit (Applied Biosystems).  Following 

conversion, the cDNA was probed using primers for Thy1, Sox2, and Oct4, with 18s as a 

housekeeping gene using SybrGreen (Applied Biosystems).  Fold change for each experimental 

group is reported in reference to the 3-day plate control. [Pouliot et. al. 2016] 
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Scratch Assay 

 A scratch assay was performed to investigate the ability of hMSCs to modulate a 

simulated wound environment while encapsulated inside ECM hydrogels. For this experiment 

we used BEAS-2B cells for our confluent epithelial layer. BEAS-2B cells are a commercially 

available cell line (Lonza) that was derived from normal human bronchial epithelium. BEAS-2B 

cells were plated in 200 uL of BEGM (Lonza) media, at 50,000 cell/well, in a 48 well TC plate. 

Plates at this density these cells take 2 days to reach confluency appropriate for a scratch assay, 

media was changed 1 day after initial plating to remove unattached cells. At the same time the 

experimental and control conditioning wells were plated, these groups included an unconditioned 

media control, hMSCs plated at 50,000 cells/well in 48 well plates, and hMSCs encapsulated in 

50 uL of pregel solution at 50,000 cells/well.  After 24 hours the hMSC media plated on the 

experimental hMSC groups was replaced with conditioning media which includes both BEBM 

and BEGM conditioning groups (n=3 for each conditioning group). This media was conditioned 

by the plate control and encapsulated hMSCs for 24 additional hours.  

At 2 days the media has been conditioned and the epithelial BEAS-2B cell layer should 

be confluent.  A black permanent lab marker is used to draw a reference line horizontally across 

the middle of each row in the scratch plate. Each well of the BEAS-2B plate was scratched using 

a sterile 200 uL pipette tip, lining the plate cover up down the middle of each lane to use as a 

physical guide to keep the tip straight. The goal of the scratch procedure is to maintain a steady 

pressure along the whole length, without pushing into the well, just enough to remove the cell 

layer. After all of the wells have been scratched the existing BEGM media is used to rinse the 

plates to remove unattached cells and then aspirated. The conditioning media groups are then 

added to the scratch wells to start the scratch assay; this is time 0. The assay is imaged using a 
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black and white camera attached to an Olympus IX71 Microscope, at 4x magnification, each 

well is imaged at each time point. For continuity, the frame is oriented so that the black reference 

line is at the very bottom, and so the scratch in the well is in the middle of the image. The assay 

was imaged at 0, 12, 24, 36, 48, and 60 hr time points.  

Images from this assay were stacked using image J, creating one image file for each well 

encompassing all six of the time points. The scale was set in the software using the scale bars 

that were burned into each image (200 um = 124 pixels). Each image stack was analyzed using 

the MRI wound healing tool plugin. This tool uses variance in image pixels to find the edges of 

the scratch and draw a mostly accurate border on each image, this border can be measured for all 

of the time points on each well to get a scratch area for each time point. Occasionally the MRI 

tool was not able to accurately draw parts of the scratch due to shadows or other obscuring 

irregularities on the raw images. These borders were manually corrected using the selection tool 

in Image J. Data from each well was averaged for each group and presented as percentage of 

scratch closed, using: 

𝐶𝑙𝑜𝑠𝑢𝑟𝑒 = (𝑆𝑐𝑟𝑎𝑡𝑐ℎ𝑖 − 𝑆𝑐𝑟𝑎𝑡𝑐ℎ𝑥)/𝑆𝑐𝑟𝑎𝑡𝑐ℎ𝑖 

Where “i” is the initial area, and “x” is the time point of interest 

A more thorough description of how to manipulate and analyze scratch assay images using 

Image J and additional plugins has been added in Appendix B. 

 

Activation of Encapsulated hMSCs with LPS and TNF-alpha 

 In order to investigate whether hMSCs encapsulated within ECM hydrogels can sense 

and respond to stimulating factors in the milieu an activation experiment was conducted. Cells 

were activated by incubation with normal hMSC growth media (Rooster Bio) that included either 
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200 ng/mL Lipopolysaccharide (LPS) or 50 ng/mL TNF-alpha. hMSCs were plated at 100,000 

cells/well in 6 well TC plates, in four groups: (1) plate control, (2) plate activation, (3) gel 

control, and (4) gel activation. The gel groups used previously described methods to suspend the 

cell pellets in 300 uL of pregel/well; which were allowed to incubate for 30 minutes before 

growth media was added. After 24 hours of incubation the normal growth media was aspirated 

and replaced with serum free hMSC media which included the activating LPS or TNF-alpha. 

After 24 hours of activation the media was aspirated and RNA was collected as previously 

described. RNA form the samples was balanced to ~21.6 ng RNA/uL and converted to cDNA as 

previously described. The LPS and TNF-alpha cDNA were run in separate QPCR plates. The 

primers used for the LPS assay included the primers for inflammatory mediators IL-6 and IL-8 

as well as primers for growth factors including keratinocyte growth factor KGF (FGF-7), 

hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF). The same 

primers were used for the TNF-alpha activation, with the addition of tissue necrosis factor 

stimulated gene 6 (TSG-6) to the inflammatory mediator group. Plates were run using a CFX-

Connect RT-QPCR (BIORAD) as previously described and gene expression data was processed 

using the non-activated gel control as the reference. 

 

Comparing M0 macrophage activation on ECM hydrogels to M0, M1 and M2 Macrophages 

 Gene expression was also used for the approach to determining naïve macrophage 

activation on ECM hydrogels. Naïve bone marrow macrophages were isolated from C57BL/6 

mice. The cell suspension isolated from the bone marrow was plated and macrophage colony 

stimulating factor (MSCF) was used to isolate naïve macrophages. This method was previously 

validated using flow cytometry in our laboratory. Established methods were used to get control 
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data for phenotypic gene expression, using LPS doped media for M1 macrophages and TNF-

alpha for M2 macrophages. For the experimental group, 300 uL/well ECM hydrogels were 

plated in a 6 well plate and allowed to gel as previously described. Following gelation naïve 

macrophages were plated onto the gels at a concentration of 1 x 106 cells/well. After 24 hours 

incubation the RNA was collected, balanced to the M0, M1, and M2 RNA at 30 ng/uL and 

converted to cDNA. Gene expression was determined using QPCR as previously described with 

primers for both phenotypic markers: NOS2 (M1), Fizz1 (M2), Manose Receptor (M2), and 

YM1 (M2); and inflammatory mediators: IL-6, TNF-alpha, and IL-10. Fold change was 

calculated using naïve macrophage (M0) gene expression as the reference. 

 

 In vivo studies 

To examine whether the lung ECM hydrogels enable initial lung delivery and retention of 

MSCs following administration intracheally, a feasibility study was performed in a rat model of 

emphysema. Emphysema was induced in male Sprague-Dawley rats weighing 250-300g with an 

orotracheal solution spray instillation (0.2 ml) of porcine pancreatic elastase (PPE, Elastin 

Products) at 240U/kg. On day 21, an impaired cardiopulmonary functionality was confirmed 

with a reduced exercise endurance on the treadmill according to the training and testing protocol 

established previously in-house 87.  Like our previous study46, emphysematous rats ran for only 

9.85 ± 5.04 min in average, compared to 47.6 ± 3.8 min in healthy animals. On day 22, rats 

received an orotracheal solution instillation (0.1 ml) of 1 x 106 rat GFP-labeled bone-marrow 

derived MSCs (passage 3-5; Cyagen) with or without 4 mg/mL pre-gel porcine lung ECM 

hydrogel solution.  At 24h, rats were euthanized by exsanguination under sodium pentobarbital 

(i.p.;. 50 mg/kg), and lungs were inflated with 4 % low-melting point agarose solution introduced 
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at 20 cmH2O hydrostatic pressure.  After placing in ice for 5 min, the lungs were fixed with 10% 

formalin, paraffin embedded, sectioned to 5 micron thick slices, and mounted on slides.  For 

visualization of the rat GFP positive MSCs, rat lung sections were deparaffinized in xylenes and 

rehydrated in a series of graded ethanol.   Following blocking with 5% goat serum (Cell 

signaling), the slides were incubated for overnight at 4°C with a rabbit antibody to GFP (1:100; 

SC-8334 Santa Cruz;), followed by another 1h incubation with Alexa Fluor 594-conjugated anti-

rabbit antibody (1:1000; FisherSci) at room temperature.  The slides were mounted in a Prolong 

Gold Antifade reagent with DAPI (ThemoFisher) and imaged on Olympus fluorescent 

microscope.  Counts of GFP positive cells were performed using NIH Image J.  Ten field images 

were taken per rat and three rats were used per treatment group.  [Pouliot et. al. 2016] 

The elastase treatment was an effective approach for modeling the matrix depletion and 

inflammatory environment of clinical emphysema. Using this approach allowed us to avoid the 

much more time consuming and expensive methods used to induce emphysema through cigarette 

smoke inhalation. Cell retention was compared at 24 hours post inoculation to allow us to 

determine the significant difference in cell retention related to our approach. 

The green fluorescent protein has an excitation range between 350 – 450 nm and has a 

fluorescent emission between 500 – 550 nm. Lung tissue autoflourescence occurs in this same 

excitation and emission range so it obscures the signal from the protein. To get around this, the 

GFP positive cells had to be visualized using a GFP-primary antibody and a secondary antibody, 

Alexaflour 594. This allowed us to visualize the protein in the cells without the interference from 

the tissue autoflourescence, which was very important in identifying positively stained cells. This 

works because the secondary antibody is excited at ~590 nm so it can be visualized with the 

TRITC channel, which has an excitation range between ~500 - 600 nm.  
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Myloperoxidase Assay 

Myeloperoxidase (MPO) activity in each group of animals was quantified as a measure of 

lung tissue neutrophil accumulation using an approach developed by Goldblum et al.88 and 

modified by Sakagami et al87. The groups included healthy animals, positive elastase control, 

elastase treated animals dosed with rMSCs only, and elastase animals dosed with rMSCs in ECM 

pre-gel solution.  Briefly, 100mg of rat lung tissue was homogenized in 0.5mL 0.02M EDTA 

(pH4.7) and brought to 0.75mL with additional EDTA.  After centrifugation (12,000g, 15 min) at 

4°C the supernatant was discarded and the tissue was re-homogenized in 0.5mL in 0.5% 

hexadecyltrimethyl ammonium bromide (HTAB). After another centrifugation (12,000g, 15 min) 

at 4°C, the supernatant was collected and saved. 10uL of each supernatant was added to a 96 

well plate in triplicate and 190uL of test solution (0.17mg/mL O-dianisidine dihydrochloride and 

0.0005% H2O2) was added to the wells.  Immediately after adding the test buffer the plate was 

read using a Biotek Synergy 2 plate reader at an absorbance of 405 nm every minute for 5 

minutes.  The change in absorbance was normalized with the BCA protein levels found in each 

supernatant, data is reported as ∆ABS5 min / μg protein. [Pouliot et. al. 2016] 

 

Statistical Analysis 

All quantitative hydrogel characterization and in vitro experimental studies were 

performed with a minimum of n=3 in triplicate. In vivo treatment studies were performed with 

n=3 rats per treatment group.  Statistics were performed on each experimental measure with 

multiple groups with one-way ANOVA with Tukey tests for pair wise comparisons.  When only 

comparing 2 groups, 2-tailed student’s t-tests were performed.  P values of <0.05 were 
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considered significant, *p<0.05, **p<0.01, ***p<0.001 as indicated in the figure legends.  We 

used GraphPad Prism 5 statistical analysis software. [Pouliot et. al. 2016] 

 

5.3 Results 

Encapsulation of hMSCs 

hMSCs encapsulated in lung derived ECM hydrogels were found to maintain viability at 

higher levels than encapsulation in a commercially available collagen hydrogel (Fig. 5.1, A). In 

addition to hMSC experiments using dsDNA quantification, cell viability was confirmed by 

staining encapsulated hMSCs grown in hydrogels using a Live/Dead staining kit. Quantification 

of these images showed that there are a significantly greater number of cells alive at the 5 days 

indicating active proliferation in the gel (Fig 5.1, B). This is clearly demonstrated visually in 

representative images taken from day 2 and day 5 (Fig. 5.1 C, D), minimal dead cells were 

observed at either time point. In addition, cell attachment to and contraction of the hydrogels 

demonstrates their ability to recognize and use binding sites inherent in the matrix derived 

material. [Pouliot et. al. 2016] 
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Figure 5.1 Cell Viability Within Hydrogels. (A) 2 day encapsulated hMSC viability assay 

shows that cells remain viable following encapsulation. Data are mean +/- st.dev. n=3 per group 

* p < 0.05, ** p < 0.01 compared to the seeding control; (B) Image analysis quantification of 

live/dead assay. Live cells are reported as dead cells were negligible. Data are presented as mean 

+/- st.dev. n=3 per group. *p<0.05 comparing 2 and 5 days, indicating cell proliferation (C, D) 

Representative images from hMSCs encapsulated in lung ECM hydrogels and stained using a 

Live/Dead kit at 2 and 5 days of culture.  

Encapsulated MSC Gene Expression 
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In vitro gene expression analysis of MSCs grown within lung ECM hydrogels indicates 

that several markers maintain their expression during encapsulation (Fig. 5.2). Thy1 showed no 

significant change compared with cells grown on a tissue culture plate control. Sox2 and Oct4 

expression were significantly increased compared to plate control on Day 3, and the expression 

returned to plate control levels at Day 7. [Pouliot et. al. 2016] 
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Figure 5.2 Encapsulated hMSC Gene Expression. QPCR data from cells encapsulated in ECM 

hydrogels for 3 and 7 days and compared to a 3 day plate control. Gene expression indicates that 

both Sox2 and Oct4 are upregulated at 3 days of encapsulation but all three genes return close to 

their control levels by 7 days of encapsulation. Data are presented as mean +/- std. dev. n=3 per 

group. *p<0.05 compared with plate control. 
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Scratch Assay 

 The results of the scratch assay suggest that hMSCs encapsulated inside of ECM 

hydrogels maintain their ability to positively influence simulated wound closure in vitro, results 

shown in figure 5.3. Groups exposed to both basal and growth media conditioned by hMSCs 

encapsulated in ECM hydrogels significantly increased wound closure compared to the non-

conditioned basal and growth media controls. MSC controls were found to significantly increase 

wound closure in the conditioned growth media group over the non-conditioned control. No 

significance was found between the hMSC control and the encapsulated hMSC controls in either 

basal or growth conditioning groups; however, there is a visual trend of higher wound closure in 

the encapsulated hMSCs in both conditioning groups. 
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Figure 5.3. Scratch Assay using encapsulated hMSC conditioned media. A scratch assay 

performed using conditioned media from both plated and encapsulated hMSCs demonstrates that 

conditioned media from encapsulated hMSCs can significantly increase the closure of an 

epithelial scratch in vitro. n=3 at each time point. *p<0.05 **p<0.01  *** p<0.001. 
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Activation of Encapsulated hMSCs with LPS and TNF-alpha 

 LPS activation had a significant impact on the gene expression of several groups, as 

shown in figure 5.4. Relationships between the inflammatory mediators IL-6 and IL-8 showed 

similar trends when comparing the control to their activated counterpart (gel control compared to 

gel activation and plate control compared to plate activation). IL-6 is significantly lower in the 

plated groups than in the gel groups, IL-8 is significantly higher in both the activated gel and 

plate groups. For growth factor expression, the same trends within each group (gel/gel, 

plate/plate) are also present. The plate control for KGF is significantly higher than all of the 

other groups, HGF is downregulated in both of the plate groups, and VEGF is significantly lower 

in the LPS activated plate groups. 

 TNF-alpha activation also had some very significant effects on gene expression in all of 

the groups as seen in figure 5.5. Activation significantly increased the expression of 

inflammatory mediators IL-6, IL-8, and TSG-6 and both the gel and plate activated groups. 

Growth factor expression for these groups were different, with the TNF-alpha activation 

increasing KGF expression in gel group, but decreasing it in the plate activation group. HGF was 

significantly decreased for both of the plate groups. VEGF returned to the trends seen for other 

genes with the gel and plate activated groups being significantly lower than the gel control. 
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Figure 5.4 LPS Activation of Encapsulated hMSCs. Gene expression for plated and 

encapsulated hMSCs activated with 200 [ng/mL] LPS, the gene expression data is organized into 

(A) inflammatory mediators, and (B) growth factors, all gene expression data is referential to the 

gel control group (n=3). The results indicate that encapsulated hMSCs are similarly activated to 

the plate activated cells, especially with respect to the inflammatory mediator IL-8. There are 

some differences in the expression of IL-6, KGF and HGF; although the trends within groups 

remain very similar. *p<0.05 **p<0.01  *** p<0.001 (n=3, each gene analyzed separately with 1 

way anova, and combined on the graph). 
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Figure 5.5 TNF-alpha Activation of Encapsulated hMSCs Gene expression for plated and 

encapsulated hMSCs activated with 50 [ng/mL] hrTNF-alpha, the gene expression data is organized into 

(A) inflammatory mediators, and (B) growth factors, all gene expression data is referential to the gel 

control group. The results indicate that encapsulated hMSCs are similarly activated to the plate activated 

cells, especially with respect to the inflammatory mediators IL-6, IL-8, and TSG-6. There are some 

differences in the expression of KGF and HGF. *p<0.05 **p<0.01  *** p<0.001 (n=3, each gene 

analyzed separately with 1 way anova) 
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Comparing M0 macrophage activation on ECM hydrogels to M0, M1 and M2 Macrophages 

 Gene expression for M1 and M2 phenotypic markers and several inflammatory mediators 

resulted in several significant findings, shown in figure 5.6. The M2 activated naive 

macrophages expressed high levels of Fizz1, Manose Receptor, and YM1; all M2 phenotypic 

markers. They also had a significant downregulation of IL-6. The M1 activated naive 

macrophages had an upregulation of the M1 phenotypic marker NOS2, as well as IL-10. The 

experimental group of naïve macrophages grown on ECM hydrogels dig not have any significant 

expression of and of the M1 or M2 phenotypic markers. They did have significant upregulation 

of all of the inflammatory mediators including IL-6, TNF-alpha, and IL-10. 
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Figure 5.6 Macrophage Activation on ECM Hydrogels. Gene expression from Naïve, M1, and M2 

C57BL/6 bone marrow isolated primary macrophages grown on ECM hydrogels for 24 hours showing the 

expression of (A) phenotypic markers indicative of M1 and M2 macrophages, and (B) the expression of 

some common macrophage secreted cytokines. Naïve macs on the gels are clearly not activated to 

become M1 (NOS2) or M2 (Fizz1, MR, YM1), they do however have a dynamic cytokine response to 

being grown on gels which includes increase in expression for both pro and anti-inflammatory mediators. 

*p<0.05 **p<0.01  *** p<0.001 (n=3, each gene analyzed separately with 1 way ANOVA, and then 

added to the graph together) 
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In Vivo Delivery and Inflammatory Indicator 

Delivery of rat MSCs intratracheally using the lung ECM hydrogel was determined to 

significantly increase the number of GFP positive cells in the tissue by nearly 2.5 times the 

amount after 24 hours when compared to rat MSCs delivered in saline (5.7, A). Representative 

images from each group are shown in Figure 5.7A and 5.7B showing GFP tagged MSCs in the 

alveolar regions in the elastase treated rat lungs. MPO is a granular enzyme expressed by 

polymorphonuclear neutrophils and alveolar macrophages, catalyzing the synthesis of 

hypoclorous acid, a by-product of hydrogen peroxide and is indicative of inflammatory 

response.  PPE induced emphysema is not expected to cause large amounts of MPO. Treatments 

of MSC and MSC+ ECM in the PPE treated rats did not significantly increase MPO activity 

compared with Saline in the PPE rats, indicating that the treatment at did not cause increased 

inflammation (Fig 5.7D). [Pouliot et. al. 2016] 
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Figure 5.7 Cell Deposition in Elastase Treated Rat Lungs. Cell deposition in elastase treated 

rat lungs. (A) Representative image from MSCs delivered in saline stained with anti-GFP to 

track the MSCs. (B) Representative image from MSCs delivered in ECM pre-gel solution stained 

with anti-GFP to track the MSCs. Arrows point to GFP+ cells. Scale bars are 100 μm. (B) 

Quantification of GFP positive rat MSCs per field in elastase treated rat lungs. Significantly 

greater numbers of GFP positive rat MSCs were present in the damaged lungs in the MSCs 

delivered in the ECM pre-gel solution compared with MSCs delivered in saline. Data are 

presented as mean +/- St. dev. n=3 rats per group. Counts were from 10 fields/rat. *p<0.05.  (D) 

MPO assay of treated rat lungs. All elastase treated animals had significantly greater MPO 

activity compared with healthy animals. No statistical differences were observed between treated 
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groups, indicating that MSC and MSC+ECM do not cause any additional inflammatory response 

at 24 hours. Data are presented as mean +/- St. dev. *p<0.05. Scale bars are 100 μm.  

 

5.4 Discussion 

The behavior of cell types grown on tissue specific ECM is a driving force behind 

proponents of tissue specific ECM for tissue engineering scaffold materials. Many whole organ 

decellularization studies have investigated the differentiation and organization of tissue 

progenitor cells in culture on whole organ scaffolds46,61,78,89. Decellularized whole organ 

materials have the advantage of mechanical properties closer to those of the native tissue, 

physical cues from intact tissue structures, as well as the biochemical cues of the ECM. All of 

these help guide seeded cells find their functional identity. [Pouliot et. al. 2016] 

 

In vitro investigations with ECM derived materials have found that the materials are non-

cytotoxic 71,74, promote migration of relevant cell types 90, and are equal or better at maintaining 

cell viability when compared to control collagen hydrogels 47,72. During our investigation we 

found that hMSCs encapsulated in lung ECM hydrogels remain viable at higher or comparable 

levels to those encapsulated in a commercially available collagen type I hydrogel. We also 

observed that cells proliferate more in lower concentration ECM hydrogels, we believe that this 

difference is due to there being less support and encapsulation in the 4 [mg/mL] and 2 [mg/mL], 

and which may allow the cells to sink to the bottom of the gels to sense the stiffness of the tissue 

culture plastic. [Pouliot et. al. 2016] 

 



   71 
 

  

In addition to the activity and viability of cells encapsulated in ECM hydrogels we were 

interested in determining the effect of encapsulation on the genetic expression of hMSCs. We 

looked at Thy1 (CD90) which is a common MSC marker, and Sox2 and Oct4 which are 

prominent actors in the signaling pathways responsible for mesenchymal stem cells retaining 

their pluripotency. Many of the therapeutic functions of MSCs come from their 

immunomodulatory functions which would be minimized if encapsulation caused differentiation. 

Significant increases in Sox2 and Oct4 suggest that the cells are responding as they attach and 

migrate through the hydrogel, but their return to plate control levels by day seven suggests that 

encapsulated MSCs maintain their original phenotype. [Pouliot et. al. 2016] 

 

 One of our major goals was to determine if encapsulated hMSCs maintained their ability 

to secrete factors that could positively modulate an inflammatory environment. One of the 

concerns that we have had is that the ability of the hydrogel to sequester proteins could inhibit 

either the influx of pro-inflammatory cytokines for the hMSCs to respond to, or the efflux of 

secreted factors from the encapsulated hMSCs, or both. The scratch assay was completed using 

non-activated cells so the results are only based on the baseline secretion from encapsulated 

hMSCs which only addresses the second part of our concerns. The results of the scratch assay, 

shown in figure 5.3 suggest that they do in fact maintain this ability. It is possible that the large 

number of cytokines was able to overwhelm the protein sequestering reservoir allowing the 

majority of secreted factors to reach the conditioning media.  

  

In order to address the first concern, that the encapsulation would inhibit inflammatory 

factors from the milieu from reaching the hMSCs we investigated gene expression of 
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encapsulated hMSCs activated with either LPS or TNF-alpha. LPS, which is present on the 

membrane of infiltrating bacteria, was used to simulate an immune response to bacterial 

infection, by activating the TLR 4 receptor91,92. TNF-alpha is a pro-inflammatory mediator that is 

present in many chronic inflammatory pathologies and is known to be a strong activator of 

MSCs93 and has been shown to promote secretion of angiogenic factors94. The results from both 

of these assays, shown in figures 5.4 and 5.5 thoroughly demonstrate that encapsulated hMSCs 

can be activated through these mechanisms. Another finding from these assays is that 

encapsulated hMSCs have a higher baseline expression of all of the genes analyzed except for 

KGF. It is possible that encapsulation of the hMSCs has some inherent activation on its own. The 

activation of hMSCs with TNF-alpha lead to much more dramatic change in gene expression. 

Fold change values for all of the inflammatory mediators were significantly increased from 

baseline. KGF was upregulated in activated encapsulated hMSCs, but downregulated in the plate 

activated groups, while HGF expression was not effected by activation, but baseline levels in gel 

groups were higher than plate groups. This suggests that the gene expression for these growth 

factors may in some part be subject to the mechanical stiffness of the gel, or the due to the 3D 

culture conditions. 

  

An additional feasibility topic we were interested in looking at in vitro is the potential 

immunogenic response to the ECM hydrogel. To look at this we took naïve macrophages plated 

them on ECM hydrogels, then compared their gene expression of M1 and M2 markers and 

additional inflammatory mediators to classically activated M1 and M2 expression. From the 

results presented in figure 5.6 it is clear that the 24-hour exposure to ECM hydrogels 

significantly change the expression of the phenotypic markers towards M1 or M2, in fact the 
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expression did not change much from baseline M0 expression. However, the significant increase 

in expression of all three of the inflammatory mediators we tested indicated that the macrophages 

are responding to the hydrogel different than they do to tissue culture plastic.  

The expression of genes for pro-inflammatory mediators IL-6 and TNF-alpha is not 

significantly increased from naive macrophage expression levels, while the macrophages grown 

on ECM hydrogels have upregulation of these and the anti-inflammatory cytokine IL-10. 

Normally there would be an upregulation of TNF-alpha and IL-6 in M1 cells compared to naïve 

cell expression95, the lack of this paradigm may suggest that the primers used for these genes are 

not suitable for PCR at the temperature we used or have products with other sequences that we 

did not account for. It is also possible that our control M1 group was not adequately polarized by 

our experimental setup. To address this, we can add some more M1 markers to analyze, and also 

try some other primer pairs for these genes.  

We were not able isolate macrophages grown on these same conditions for flow 

cytometry because they had remodeled and infiltrated the hydrogel so much that we could not 

separate them. I would suggest that paired with the gene expression data, these macrophages are 

infiltrating and working to break down the hydrogel, in this scenario the increase in 

inflammatory mediator would be to direct other cells to secrete MMPs and other enzymes. This 

is a research question that could be investigated much more thoroughly in the future. 

 

Finally, the in vivo feasibility study for intratracheal cell delivery in Figure 5.7 confirmed 

that the ECM hydrogel vehicle increased cell retention when compared to a non-vehicle control. 

In both groups there are examples of the GFP antibody localizing to immune cells suggesting 

that some cells are phagocytosed regardless of delivery method.  However, it is clear that there 
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are more intact GFP-tagged cells when delivered in a pre-gel solution when compared to the 

non-vehicle control. Additionally, the absence of apoptotic cells as indicated by an apoptotic 

staining assay on serial sections used for quantification of dosed cells in the tissue suggests that 

the GFP tagged cells found in the tissue remain viable. Further investigation of the treated animal 

groups revealed that additional inflammation was not caused in the short term as evidenced by 

the MPO data; however, longer term studies will need to be perform to more extensively assess 

the pro- or anti-inflammatory effects of the hydrogel as a treatment. The successful encapsulation 

and maintenance of viable MSCs in a lung derived ECM hydrogel both in vitro and in vivo 

supports further investigation of this material for cell delivery purposes. [Pouliot et. al. 2016] 

 

5.5 Conclusions 

We have conducted initial in vitro experiments which suggest mesenchymal stem cells 

remain viable and maintain their expression of genes associated with pluripotency during 

encapsulation in hydrogels for up to a week. We have also determined that encapsulated hMSCs 

maintain their ability to secrete factors into the environment as well as their ability to be 

activated by several mechanisms. Macrophage experiments with ECM hydrogels determined that 

while macrophages are not activated to an M1 or M2 phenotype they do respond to the gel 

differently than TC plastic, a topic which should be investigated further. Delivery of MSCs 

intratracheally in a rat model demonstrated that encapsulation of the cells in the hydrogel 

resulted in increased retention of the cells after 24 hours. The results of this study support 

continued investigation of lung derived ECM hydrogels as a cell or drug delivery vehicle. 
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Chapter 6: Tailoring ECM Hydrogels for Specific Applications 

 

6.1 Introduction 

Tissue derived extracellular matrix based materials are increasingly being investigated for 

applications including: cell and drug delivery, in vitro modelling, and biomaterial coatings. The 

effect of matrix preparation variables could play a large role in determining the final material 

properties and, as previously mentioned in chapter 4, have yet to be investigated. We looked at 

varying digestion times in the ECM powder digestion protocol and the resulting changes in the 

size of the solubilized proteins and gelation behavior. These investigations include SEM 

characterization, a quantitative method for determining network density, and additional SDS-

PAGE analysis on both pre and post gelled samples, and rheometric characterization of the 

gelation properties for each digestion time variant. Additionally, we started to investigate an area 

that we haven’t looked at before, using the KGF ELISA to characterize KGF release from 

encapsulated hMSCs in normal conditions, and when activated with LPS. Finally, we looked at 

the attachment and proliferation of SAECs to coated plates and on ECM hydrogels respectively. 

This research represents a first step towards a novel area that has not been investigated by 

previous groups working with ECM hydrogels. 

 

6.2 Materials and Methods 

 

Hydrogel Preparation 

ECM hydrogels were prepared as previously described in chapter 4, briefly, 100 mg of 

ECM powder and 10 mg of pepsin was weighed and added to 10 mL of 0.01 M HCl. The 
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digestion solution was agitated in a 50 mL conical tube using a stir bar which was rotated at 

speeds fast enough to mix all levels of the digestion. 2.5 mL of the digestion solution was taken 

out of the reaction tube and chilled on ice for 2 minutes at time points of 4 hr, 16 hr, 36 hr, and 

72 hours (4, 12, 24, and 48 for some experiments). The extracted digests were neutralized with 

250 uL of 0.1 M NaOH and with 278 uL of 10X PBS.  The digests were stored at 4 degrees 

Celsius and used within 7 days.  

 

SEM Imaging 

Pregel from 4, 16, 36, and 64 hour digests was plated in a 48 well plate and allowed to 

gel for 30 minutes before being fixed in 5% glutaraldehyde. These 200 uL gels were then 

transferred to a 24 well plate for further fixation in a 4% osmium tetroxide solution. In 

preparation for SEM imaging the samples were dehydrated to 100% ethanol, critical point dried, 

and plasma sputter coating in preparation for imaging as previously described. Qualitative 

images for visual comparison were taken at 2000x magnification using the Jeol SEM at the NCC, 

and images for further quantitative processing were taken at 5,000x magnification. 

 

Hydrogel Interconnectivity 

The 5000x magnification images taken previously were used in an image processing 

protocol to determine the physical interconnectivity of the resulting gels at the different digestion 

time points. Three representative images were taken for this analysis. The images were uploaded 

into Image J and overlaid with a 12 section grid, the number of branches in each section of the 

grid were counted and recorded. The total number of interconnections for each image were 
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averaged and divided by the total image area to present the data as network density using 

interconnections per um2.  

 

SDS-Page on Pre and Post gelled ECM Hydrogels 

Samples were prepared for SDS-PAGE as previously described except they were run on a 

15 lane gel. Each sample was prepared as both a pregel and post-gel to determine if the self-

assembly leads isolated proteins with a different molecular weight profile. The experiment 

included the intact native tissue and ECM powder groups for comparison.  Gels were imaged and 

processed using the BIORAD software to sync with the standards on the gels and determine the 

approximate molecular weight and density of the bands in the samples. The protein measured for 

each the bands of each sample was summed in order to visualize the difference in identifiable 

protein as a function of digestion time. 

 

Rheometry 

Pregel solutions from the timed digests were also characterized using rheometry as 

previously described. Each sample was run at least three times at 0.5% strain using a temperature 

ramp from 4 degrees C to 37 C and the results were averaged. Data was averaged to quantify the 

relative gelation behavior of the hydrogels at each digestion time point. 

 

KGF Release from LPS activated hMSCs in Gels 

  hMSCs were encapsulated in 4, 12, and 48 hour timed digest pregel solutions and plated 

in a 48 well plate. 50,000 cells were plated in each well in 50 uL of pregel solution, along with a 

non-gel TC plate control. The solutions were incubated to induce gelation and then normal 
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hMSC media was added. After 24 hours the media was aspirated and replaces with basal hMSC 

media loaded with LPS at 200 ng/mL to activate the hMSCs. 24 hours later the media was 

aspirated and collected for a KGF release ELISA. The wells were refilled with basal media and 

20 uL of MTT labeling reagent (Roche) was added to each well; four hour later the MTT 

solubilization buffer was added to the wells and incubated overnight. The KGF ELISA was 

completed and read using a Biotek plate reader. The MTT data was used to normalize the KGF 

release data to the relative number of cells that were in each group. 

 

Small Airway Epithelial Cells on ECM Coated Plates and ECM Hydrogels 

 SAEC attachment to ECM coated plates was determined for 30 and 60 minute time 

points. ECM pregel solution from timed digests neutralized at 4, 12, 24, 48, and 72 hours were 

used to coat TC plates for an attachment assay. 50 uL of each pregel solution was added to each 

well in a 96 well plate and then incubated at 4 degrees Celcius for 4 hours, before being aspirated 

and rinsed with 1X PBS. SAECs were plated at 10,000 cells/well in SAGM media (Lonza). 

Media was aspirated and wells rinsed at 30 and 60 minutes respectively, following removal of 

non-adherent cells basal SABM was added to each well and cell number was determined using 

MTT as previously described. 

 SAEC proliferation when plated on formed ECM hydrogels was determined over a two-

day period. 50 uL of each ECM pregel solution from timed digests neutralized at 4, 12, 24, 48, 

and 72 hours were added to wells and allow to gel in the incubator. Following this SAECs were 

plated at 10,000 cells/well in growth media and cultured for 2 days. Following this the relative 

number of cells in each well was determined using MTT as previously described. 

 



   79 
 

  

6.3 Results  

SEM Imaging 

The hydrogel structure resulting from each digest were investigated using SEM imaging. 

Images taken from 2, 4, 20, 36, and 64 hour digests show a clear progression of protein 

organization, as shown in figure 6.1. Shorter digests have much more highly branched and 

networked appearance, where longer digests have a much more porous and less diverse fiber 

organization. 

 

Figure 6.1 SEM Comparison of Hydrogel Structure from timed digests. Hydrogels prepared from 

pregel solutions neutralized at 4, 16, 36, and 64 hour into the digest were SEM imaged to investigate 

changes resulting from the digest time. Visual observation shows that the proteins in shorter digests have 

a much higher degree of branching and there is a progression to less branched and less dense over time. 
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Hydrogel Interconnectivity 

 Using the SEM images taken for each of the timed digest samples we were able to use 

Image J to determine the network density as defined by protein [interconnections/area]. The 

results of this approach are shown in figure 6.2. From this analysis we were able to determine 

that the quantitative data matches the qualitative observations made from the corresponding 

images. That is, that the density of the hydrogel architecture decreases as digestion time 

increases. 

 

Figure 6.2 Hydrogel Interconnectivity. SEM images were analyzed using Image J to determine the 

change in interconnectivity of the protein structures each digestion time. There is a clear trend, as 

digestion time increases the hydrogel network has a lower density of interconnected proteins. The 36 and 

64 hour samples are significantly different from both the 4 and 16 hour samples. *p<0.05 in comparison 

to 4 hour group, #p<0.05 in comparison to 16 hour group (n=3 images per gel, only one gel was 

imaged for each time point). 
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SDS-Page on Pre and Post gelled ECM Hydrogels 

SDS-PAGE results in 6.3 show how bands for larger proteins lose volume as digestion 

time is increased and become even fainter as digestion time increases. The quantitative 

confirmation of this observation is available in figure 6.4, which includes measurements of band 

volume by intensity as well as total relative protein in all the bands measured for each sample. 

Additionally, this SDS-PAGE experiment allowed us to investigate the difference in protein 

molecular weight profile between pre and post gelled samples for each digestion time point. 

 

Figure 6.3. SDS- Page for Timed Digest Gels (Pre & Post Gelation). This SDS-PAGE gel shows the 

progression and change in protein profile, for both pre and post gelled samples, as digestion time 

increases. The first two lanes after the standard are intact and decellularized lung tissue for reference. 
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Figure 6.4. SDS-Page Band Analysis for Pre & Post Gel Samples. SDS-PAGE quantification of 

identified bands using the BIORAD Image Lab software. (A, C) show the relative protein volume 

determined for each molecular weight band, across the timed digest samples; (B, D) are a summation of 

the total protein volume(intensity) measured from bands in each timed digestion sample. There is only 

n=1 per group. 

Rheometry 

Rheometrical characterization of the gelation behavior and mechanical propertied of the 

timed digest samples was determined for samples from 4, 12, 24, 48, and 96 hour digests, as 

shown in figure 6.5. The results indicate that all digests start to self-assemble into a hydrogel as 

the plate approaches 37°C. There is a clear difference in gel stiffness as the lower time digests (4 

and 12 hour) have a higher storage modulus, and the other digestion times all have similar, 

lower, properties. 

 

Figure 6.5. Rheometry for Timed Digest hydrogels. Rheometry data for ECM pregel solutions 

neutralized at 4, 12, 24, 48, and 96 hours. 
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KGF Release from LPS Activated hMSCs encapsulated in Timed Digest Gels 

 A conditioning media experiment was plated to determine if hMSCs could be activated to 

produce different amounts of KGF when encapsulated by several timed digest groups. The MTT data 

revealed that there were more cells in the plate control than in any of the encapsulated wells, so the KGF 

release data was normalized to the MTT.  Based on this combined data it seems the only conclusion that 

can be drawn is that longer digestion time results in more KGF released per cell under both control and 

activated conditions. 

 

 

Figure 6.6 KGF Release from Encapsulated hMSCs (A) KGF ELISA results from media 

samples collected from encapsulated hMSCs activated with LPS or controls, (B) MTT data for 

the encapsulated hMSCs, (C) ELISA data normalized to the MTT data. *p<0.05 for the indicated 

groups  (n=3 per group, data was analyzed using 2 way ANOVA) 
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Small Airway Epithelial Cells on ECM Coated Plates and ECM Hydrogels 

 SAECs attachment, shown in figure 6.7 A and B, was significantly increased on plates 

coated with 4 and 12 hour digest samples at 30 minutes, and to 12 hour alone by 1 hour of 

attachment. Significance is relative to the 48 hour digest group, which is the main digest time 

used for the majority of the research completed. SAEC proliferation on timed digest samples, 

shown in figure 6.7 C, was significantly increased for the 2 and 4 hour groups, and significantly 

decreased in the 72 hour group. There also seems to be a consistent trend were increasing 

digestion time corresponds to decreased SAEC proliferation over 2 days. 
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Figure 6.7 SAEC Attachment and Proliferation SAEC attachment to cold coated plates that were 

rinsed to dislodge unattached cells at (A) 30 minutes and (B) 1 hour; (C) Proliferation data for SAECs 

plated onto formed ECM hydrogels and cultured for 2 days in growth medium. *p<0.05, **p<0.01,  

*** p<0.001 for comparison to the 48 hour group. 

6.4 Discussion  

By varying digestion time, we have been able to control several key properties of ECM 

hydrogels including: protein architecture, network branching/density, relative protein size, and 

hydrogel mechanics and gelation behavior. Based on this data it is clear that lower digestion 

times result in higher branching, with more large protein retained. Increase hydrogel branching 

and density is likely responsible for the increase in mechanical properties at shorter digestion 

times. By modifying the solubilization approach we might be able to produce materials suited for 

specific applications. For example, stiffer more branched materials might be better suited for 

supporting in vitro cell culture and are more likely to support cell spreading and migration. It is 

also likely that pregel samples from different digestion times will have varying ability to 

sequester growth factors and drugs. This property could potentially be used to tailor controlled 

release in the future.  

 

One major question that was answered by the SDS-PAGE analysis is whether increased 

digestion time was resulting in more protein being broken down into an unidentifiable smear. 

This has been confirmed as shown in figure 6.4, B and D, where the summed total volume of all 

the proteins measure in each lane, decreases as the digestion time increases. Another question 

that is at least addressed by this data is how the protein profiles change between pregel and 
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hydrogel samples. Pregel samples only have 5 identifiable bands while the post gelled samples 

have 7. We expected the self-assembled gel to have higher relative amounts of large ECM 

proteins when compared to the pregel samples; however, they actually have less of the first band. 

The KGF release experiment demonstrated that digestion time may play a role in 

regulating cytokine release from encapsulated cells. This was either because of the mechanical 

properties of the gel effected the MSC signaling pathways responsible for this gene, or because 

the lower digestion time gels have a higher capacity for sequestering released factors. If the 

second one is the case, it would likely be because the larger and more branched protein structures 

in the gels are better at binding cytokines. I also believe that the increased branching and 

mechanical properties were responsible for the increased proliferation values for groups grown 

on shorter timed digests. Taken together these observations suggest that digestion time could be 

a major tool for tailoring ECM hydrogel platforms towards specific applications.  

 

6.5 Conclusions 

We have determined that the solubilization approach used for preparing hydrogels from 

tissue derived matrix has a fundamental effect on the organization of the component proteins in a 

hydrogel. This results in a range of different gelation kinetics and mechanical properties that can 

be achieved by modifying solubilization approach. We also thoroughly characterized the protein 

profile of the samples and how they change with increased digestion time. It is also clear that 

digestion time plays a major role in rheometrical properties. It is likely that this increase in 

stiffness and branching was responsible for increased SAEC proliferation on the shorter timed 

digests. Investigation of this concept can lead to more tailored materials for specific biomaterial 

and modelling applications. 
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Chapter 7: Conclusion and Future Research 

   

 

The decellularization approach we used was validated with respect to gross reduction iwn 

potential immunogenic sources, and characterized the depletion of essential lung ECM proteins. 

In the future we are interested in investigating additional decellularization approaches, or 

swapping out detergents as the field advances and better approaches are found. I also have an 

idea: if we can significantly and consistently reduce the cross-sectional area of the tissue, then 

that would allow us to use a triton-X100 only decellularization. Lung tissue is well suited to a 

perfusion decellularization approach, but because we are only interested in isolating matrix 

proteins and not as interested in preserving the architecture of lung structures (airways, 

vasculature, and alveoli) a suspension technique could be better suited. Cross sectional area 

could be controlled and reduced by sectioning into uniform chunks, freezer milling the intact 

lung and then decellularizing the resulting powder, or using a slicing technique to isolate thin 

slices from the tissue. Ultimately, the approach we used was robust in generating uniformly 

decellularized lung matrix for processing. 

 

 During our investigation we have thoroughly characterized a lung derived ECM hydrogel 

that can be used to suspend cells or drugs in a liquid and then self assembles to encapsulate the 

payload at a target location. The mechanical properties and gelation mechanics of the hydrogel 

were determined to be similar to those derived from heterogeneous soft tissues such as heart, 

brain, and adipose sources. We have also confirmed that the proteins in the hydrogel are able to 
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bind and sequester growth factors like KGF. This added functionality is specifically of interest 

for additional study. For example, instead of using the hydrogels to deliver cells that secrete pro-

regenerative factors, like MSCs, it might be possible to harvest and collect these cytokines in 

vitro and load them into the gel for delivery. Another use could be to load the hydrogels with a 

desired factor and coat the proteins for in vitro assays or onto an implantable device in vivo.  

 

 The feasibility experiments we completed determined that lung ECM hydrogels are able 

to maintain encapsulated viability, and are not likely to cause unintended differentiation of 

encapsulated stem cells. We were also able to relieve a key concern, that the protein binding 

reservoir does not significantly inhibit entry or exit of bioactive factors from encapsulated cells 

or from the environment. We also found that the 3D culture of hMSCs in the hydrogel does not 

inhibit immunomodulation signaling pathways that are essential to their value. Our first attempt 

to investigate the immunogenicity of the material was relatively successful; while ECM 

hydrogels do not immediately indoctrinate naive macrophages into a shocking anti-

inflammatory, pro-regenerative fury, they also do not polarize them toward being pro-

inflammatory. While we already have some significant in vivo findings that show increased 

retention of cells delivered in a gel, I think future studies will have us doing a full scale delivery 

of stem cells into an animal model for lung disease. I think that many of the findings outlined in 

this dissertation will lead to a new dosing protocol that can resolve an induced injury for some 

significant, quantifiable, positive outcomes. 

  

 Our final aim was to start looking into changes in our solubilization protocol and to make 

novel observations regarding new ways to tailor and control ECM hydrogel properties. 
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Specifically, altering the ECM digestion duration has allowed us to characterize controllable 

properties including hydrogel branching/density, gelation kinetics and mechanics, and the profile 

and volume of solubilized proteins in the pre and post gelled samples. We have started to 

investigate the effect of these changes on cell culture and have found that cells respond 

differently depending on the digestion duration used for the gel. This is a huge area for future 

research because tailorable ECM hydrogels could make them more competitive in more 

applications, including cell and drug delivery, biomaterial coating, and as an in vitro platform for 

cell-ECM interaction. In the future these new gels need to be evaluated for differences in 

immunogenic potential, ability to sequester bioactive molecules or charged drugs, and ability to 

support and maintain encapsulated MSCs. 

 

 The process to translate a project from the bench to clinical use is a long and complex 

process that will have increased or relaxed hurdles to address depending on the classification of 

the material or treatment. In 1997 the FDA overhauled the classification system that determines 

if a product derived from human cells, tissue, and cellular and tissue-based products (referred to 

as HCT/Ps). With the new guidelines there was a line drawn between the regulation of newly 

defined 361 HCT/Ps and the more highly regulated 351 HCT/Ps which are regulated like drugs, 

devices, and/or biological products96. The statement that pushes most decellularized products is 

that the tissue has been more than minimally manipulated, and through several examples the 

FDA has determined that decellularization of most tissues is more than minimally manipulative 

and therefore subject to more stringent guidelines97. This classification is subject to interpretation 

and can depend heavily on the claims made by the producer and how it is advertised, for 

example: acellular dermis is a 361 HCT/P if advertised for use as a skin covering; however, if it 
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is advertised for promoting for revascularization or remodeling host tissue it is no longer 

regulated as a 36197.  

 

Our ECM hydrogel will almost definitely fall under the more stringent guidelines and 

with the addition of drugs, biologics, or cells would be subject to the guidelines defined by the 

Center for Biologics Evaluation and Research, which includes combination materials including: 

autologous cells and delivery device to treat diseases97.  Some major requirements that will need 

to be met stem from both the Donor eligibility and the Current Good Tissue Practice guidelines 

(CGTP), which have been initiated to prevent the initiation, transmission, or spread of 

communicable diseases. These include baseline requirements for donor screening, testing, tissue 

storage, labelling, packing, and distribution96. The whole production space will need to be 

controlled to limit sources of contamination and the steps for producing the material will need to 

be thoroughly evaluated for potential breakdowns. Additionally, we will need to investigate a 

means for terminal sterilization of the material which can be at the end of the milling step as long 

as the digestion steps are completed in sterile environments with sterilized digestion components. 

One approach for terminal sterilization would be exposing the decellularized tissue or ECM 

powder to 0.1% periacetic acid and then rinsing with sterilized DI or PBS and lyophilizing under 

sterile conditions. Another approach recently used for a fully formed cartilage derived hydrogel 

is sterilization under ultraviolet light for up to 1.5 hours98.  

No matter what changes and approaches are used for bring the production up to FDA 

standards, the final product will need to be extensively evaluated for changes in baseline 

properties due to method changes, and evaluated for batch to batch variation. The FDA approval 

process for new drug or biologic can be seen in figure 7.1. We are still in the prototype and 
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development phase, however, we can plan and conduct research with an eye towards the 

standards necessary for the FDA approval process, for a smoother translational process.

 

Figure 7.1 Generalized FDA Approval Process for Drugs and Biologics While we are still in 

the prototype design and discovery phase for Lung Derived ECM Hydrogels we can plan for 

future Preclinical development, which includes feasibility, iterative testing, and safety data 

collection; prior to testing in humans99. 

 

The results of our investigation indicate that an ECM hydrogel is a promising platform 

for cell and drug delivery. The isolated porcine extracellular matrix has already seen expanded 

use in several projects as a base material for electrospun scaffolds as well as the production of 

ECM nanoparticles. Additionally, we have identified many new impactful targets for future 

research.  
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Appendices 

 

Appendix A. Detailed Decellularization Protocol 

PROTOCOL: (From Accepted Jove Article) 

1) Decellularization and Hydrogel Preparation Protocol 

1.1) Lung Decellularization (adapted from 100,101): 

1.1.1) Begin with en bloc porcine lung tissue with heart and vasculature intact. 

1.1.2) Remove the heart carefully to keep the pulmonary artery intact for perfusion. 

1.1.3) Carefully remove the connective tissue surrounding the trachea, bronchi, and vasculature. 

1.1.4) Carefully remove one lung. Note: Retain sections for histology if desired. 

1.1.5) Close disconnected bronchi with clamps or suture to prevent excess backflow. 

1.1.6) Prepare the decellularization solutions and refrigerate at 4°C until needed (Table 1). 

1.1.7)  Perfuse the lung tissue 3 times with DI water through both vasculature and trachea. Perfuse 

vasculature first each time. 

1.1.8) Perfuse both vasculature and trachea with Triton solution.  

1.1.9) Submerge in Triton Solution for 24 hours at 4°C. 

1.1.10) Perfuse vasculature and trachea 3 times with DI water to rinse. 

1.1.11) Perfuse both vasculature and trachea with deoxycholate solution. 

1.1.12) Submerge the tissue sections in deoxycholate for 24 hours at 4°C. 

1.1.13) Perfuse vasculature and trachea 3 times with DI water to rinse. 

1.1.14) Perfuse both vasculature and trachea with NaCl solution. 

1.1.15) Submerge tissue in filtered NaCl solution for 1 hour at 4°C. 

1.1.16) Perfuse vasculature and trachea 3 times with DI water to rinse. 

1.1.17) Perfuse both vasculature and trachea with DNase solution. 

1.1.18) Submerge tissue in filtered DNase solution for 1 hour at 4°C.  
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1.1.19) Perfuse both vasculature and trachea 5 times with PBS.  

1.1.20) Dissect away noticeable cartilaginous tissue from conducting airways, leaving only 

respiratory zones.  

1.1.21) Dissect tissue into 1” sections or smaller. 

1.1.22) Remove excess liquid and freeze the tissue at -80°C. Retain sections for histology to ensure 

removal of cells and cellular debris, if desired. 

1.2) Lung Processing 

1.2.1) Lyophilize the tissue until all excess liquid is gone.  

1.2.2) After lyophilization, freezer mill all tissue into fine powder.  Store at -80°C until ready for 

use.  

1.3) Micro-porous gel formation (8 mg/ml) (adapted from 100,102): 

1.3.1) Add 1% (w/v) of the decellularized powder and 0.1% (w/v) of pepsin to 0.01 M HCl, under 

constant agitation (should be able to see flow at the top level of liquid), at room temperature, for 

48 hours.  

Note: The powder is statically charged, so adding the HCl after the powder affords the opportunity 

to wash the excess off the tube walls.  

1.3.2) After digestion for 48 hours, place the solution and reagents on ice for 5 minutes.  

1.3.3) Using refrigerated 10% (v/v) 0.1 M NaOH, and 11.11% 10x PBS, bring the digested 

protein solution to physiologic pH of 7.4.  

Note: The solution will now self-assemble into a micro-porous network at 37°C.  
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Appendix B. Scratch Assay Image Processing Methods 

Scratch Assay Image Processing 

Open Image J > Plugin > MRI Wound Healing 2 for MRI measure wound healing tool & Help 

Tool 

1) If the images all have the same brightness > Take all the images and stack them 

a. Select all the images for a time point and drag into image j > image > stacks > 

images to stack [creates stack to be names] > save as (tiff) 

i. multiple images in one file now, access by scrolling  

b. Set the dimensions > use straight selection tool> draw bar on scale bar (hold shift 

to make horizontal) > analyze > set scale > Distance in pixels (for 4x, is 124 

pixels); known distance (um); pixel aspect ratio (1.0); global (checked); press ok 

c. Adjust the brightness > image > adjust > brightness & contrast > change the 

settings until all of the images in the stack look reasonable> apply to all stacks> 

resave as imagestack_corrected 

i. If you ever close the stack it will ask if you want to disable the global, 

disable global (unchecked), check the second box. This was you don’t 

have to reset the scale again 

d. Using the tool (ignore the help tool): [m] 

i. (right click) opens settings 

ii. (left click) make it run 

iii. 2 methods: variance or find edges (find edges is easier- only 2 parameters) 
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1. Find edges (only adjust min size, less control): parameters: radius 

open (always 1), min size (adjust 100k – 50k), variance & 

threshold don’t effect find edges 

2. Variance: Variance filter radius (); threshold ();  

iv. Run Find Edges 

1. Good for some scratch images but does not work as well as 

variance for most  

v. Run Variance 

1. Use the color picker tool to get an idea for threshold (range 1-155) 

(example, color picker on the middle of scratch, get 121; dark 

images, higher threshold; variance filter radius (1-10) 

vi. Cropping> use the box tool to select an area > image > crop> resave the 

tiff as imagestack_cropped 

e. Using the manual fixing tool 

i. Go to the oval tool > right click> select brush tool>double click brush 

tool> select size (~50) 

1. If from inside selection pushing outside it will increase the size 

2. If you are outside pushing in you decrease the border 

ii. Once you adjust something with the tool you need to click update 

f. Data collection 

i. ROI Manager> measure – will give you all of the individual selections 

regardless of image 
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ii. To merge selections: select the ones to merge> more> OR (Combine)> 

Update> it will update the first selection to include both> delete the 

second > now when you measure it will only have 1 measurement per 

image 

g. Saving the ROI> show all> make sure none of the selections- are highlighted or it 

will only save 1. Save as a zip file 

i. Opening an ROI again> analyze > tools> ROI Manager> more> open > 

zip file 

ii. When you bring the stack back open the selections are already synced to 

the images 

iii. To save an image with the yellow borders still drawn on you would: 

1. In ROI manager > Flatten> for all images (yes)> file> save as> 

imagestack_adjusted_withborders 

2. You can open the stack in image viewer to get the individual image 

from the stack, or unstack in image J> image> stacks> stack to 

images 

3. Another cool thing is you can fill the borders to get a cooler picture 

h. Steps: 

i. Use one of the methods 

ii. Delete and merge selections 

iii. Adjust with tool 

iv. Measure the data 

Notes: 
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1. Consider stacking the wells, not the time points, then when you scroll you should see the  

2. Starting setting for variance: VFR: 5; Threshold: 120; Radius OPEN: 1; Min Size: 50000 
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