
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2016 

A Study of the Effect of Harvesting on a Discrete System with Two A Study of the Effect of Harvesting on a Discrete System with Two 

Competing Species Competing Species 

Rebecca G. Clark 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Dynamic Systems Commons, Non-linear Dynamics Commons, and the Other Applied 

Mathematics Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/4497 

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. 
For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/117?utm_source=scholarscompass.vcu.edu%2Fetd%2F4497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/118?utm_source=scholarscompass.vcu.edu%2Fetd%2F4497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=scholarscompass.vcu.edu%2Fetd%2F4497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=scholarscompass.vcu.edu%2Fetd%2F4497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/4497?utm_source=scholarscompass.vcu.edu%2Fetd%2F4497&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


Copyright c©2016 by Rebecca Grace Clark
All rights reserved



A Study of the Effect of Harvesting on a Discrete

System with Two Competing Species

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

by

Rebecca Grace Clark
Master of Science

Director: Dr. Norma Ortiz-Robinson, Associate Professor
Department of Mathematics and Applied Mathematics

Virginia Commonwealth University
Richmond, Virginia

May 2016



iii

Acknowledgements

I want to thank my parents, who with so much love and care were the first to interest me

in learning, who taught me to be curious about the world, think analytically, and strive

for excellence. I cannot thank you enough.

I would also like to thank my family, friends, and God, whose love, support, and

encouragement have sustained me. I could not have made it this far without you.



iv

Table of Contents

Acknowledgements iii

List of Figures vi

Abstract vii

1 Introduction 1

2 Definitions and Theorems 6

3 System Analysis 12

3.1 Uniform Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 The Bound for xn+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 The Bound for yn+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Folding the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Equilibrium Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Isoclines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Local Stability Analysis 25

4.1 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Local Stability of the Extinction and Exclusion Equilibrium Points . . . . . 27

4.3 Local Stability of the Coexistence Equilibrium Point . . . . . . . . . . . . . . 32

4.3.1 Real Eigenvalues Case (i) 1− ab > 0 . . . . . . . . . . . . . . . . . . 36



v

4.3.2 Real Eigenvalues Case (ii) 1− ab < 0 . . . . . . . . . . . . . . . . . . 46

4.3.3 Implications of an Unstable Coexistence Equilibrium Point . . . . . 49

5 Bifurcation Analysis 50

6 Biological Interpretation and Summary 55

Bibliography 58

A 61

Vita 72



vi

List of Figures

3.1 Two cases for the exclusion equilibrium points. . . . . . . . . . . . . . . . . 22

3.2 Two cases for the coexistence equilibrium point. . . . . . . . . . . . . . . . . 23

3.3 Two cases for the coexistence equilibrium point when M < 0. . . . . . . . . 24

4.1 An example of the instability of the equilibrium point (0, 0), with param-

eter values a = 0.6,b = 0.5,K = 3,L = 1.9, and u = 0.1 . . . . . . . . . . . . 28

4.2 For a = 0.6,b = 0.5,K = 3,L = 1.9, and u = 0.8 (top) or u = 0.1 (bottom).

We observe that the stability of (0,L) changes with harvesting. . . . . . . . 30

4.3 For a = 0.6,b = 0.5,K = 3,L = 0.5, and u = 0.8 (top) or u = 0.2 (bottom).

We observe that the stability of (M, 0) changes with harvesting. . . . . . . . 32

4.4 The regions for M where ψ(M) is negative. . . . . . . . . . . . . . . . . . . . 36

4.5 The regions where γ is negative for M and τ is positive for L . . . . . . . . 39

4.6 Cases for γ(M) > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 An example of bifurcation of harvesting with species x and y when ab < 1 53

5.2 For a = 0.6,b = 0.5,K = 3,L = 1.9 and u = 0.9 (top left), u = 0.8 (top

right), u = 0.6 (middle left), u = 0.3 (middle right), or u = 0.15 (bottom). . 54

A.1 The regions where γ is negative for M and τ is positive for L . . . . . . . . 65

A.2 Cases for γ(M) > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Abstract

This is a study of the effect of harvesting on a system with two competing species. The

system is a Ricker-type model that extends the work done by Luis, Elaydi, and Oliveira

to include the effect of harvesting on the system. We look at the uniform bound of the

system as well as the isoclines and perform a stability analysis of the equilibrium points.

We also look at the effects of harvesting on the stability of the system by looking at the

bifurcation of the system with respect to harvesting.



Chapter 1

Introduction

Difference equations are used to describe and predict discrete events. They have widespread

applications that span many fields such as economics, quantum mechanics, ecology, and

meteorology [2]. Many biological situations are modeled through the use of difference

equations and can be used in place of experiments that are expensive or unethical. These

models have been used to predict outbreaks [18], forecast population growth [20], and

propose strategies to obtain a desired state [6].

Discrete modeling was introduced and made popular more than 50 years ago through

two significant papers, one authored by Ricker [15] and the other by Beverton and Holt

[3]. In single species dynamics, the two models from these papers describe different

forms of instraspecific competition among a single species. The Ricker model displays

scramble competition, describing a situation in which fierce fighting for resources within

the species decreases the size of a large population [13]. The Beverton-Holt model dis-

plays contest competition, a situation in which the species makes increasingly better use

of resources [4].

One of the most popular models for describing competition between two species

is the differential equation model introduced in the 1920s by Lotka and Volterra [12,

19]. The Leslie-Gower model is considered by some to be the discrete counterpart to
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the Lotka-Volterra model [13]. Continuous models can be more difficult to derive but

less burdensome to use [11], and thus discrete models have not been studied to the

same extent as their continuous counterparts [13], although recently Hone described and

studied a predator-prey system with a Ricker-type model [7]. The type of population

being modeled can affect whether a discrete model is used:

Although most models are described with differential equations, the discrete-

time models governed by difference equations are more appropriate than the

continuous ones when the size of the population is rarely small, or the pop-

ulation has non-overlapping generations. It is also known that the discrete

models can provide more efficient computational methods for numerical sim-

ulations. [22]

In addition to various forms of competition, the population of a species may change

in size due to harvesting, which is when some of a population is removed by an external

force. For instance, fisheries use harvesting to sell a portion of the raised and extracted

fish [8]. In addition to modeling how a population naturally changes in size, we can

incorporate harvesting in a population model by adding a term to decrease the size of a

population. Understanding the effects of harvesting in a multi-species environment may

facilitate the prediction and control of populations; thus, bio-economic modeling with

harvesting has become increasingly important in the field of population dynamics [17].

Several different forms of harvesting that are employed in real-life situations have

been studied to explore how they affect population dynamics. Wentworth et al. studied

the effect of constant harvesting as well as non-autonomous harvesting on a continuous,

single species model pertaining to various fishery population models [20]. They found

the harvest rate leading to the maximum yield using numerical techniques and optimiza-

tion. Idels and Wang also studied a single species, continuous model and the effect that

a harvesting control parameter has on the equilibrium and the rate to reach equilibrium

[8]. They used numerical simulations to study different harvesting strategies for fish.

2



Getz created a general discrete stage structured model for a single species that in-

cludes nonlinearity [6]. The model was used to study harvesting during nonequilibrium

conditions as well as the role of Maximum Sustainable Yield. Yao used a single species

difference equation with linear harvesting to study a variation of Nicholson’s blowflies

model [22]. He updated this known continuous model to take a discrete approach.

Abu-Saris et al. used constant-yield harvesting in a single species discrete model to

study stability and boundedness and other dynamic properties [1]. Martin and Ruan

also used constant-yield harvesting in a continuous, two species, predator-prey model

[14]. They showed that in predator-prey models a higher harvesting rate can cause un-

stable equilibrium to become stable so long as the rate stays below a critical harvesting

level. Another continuous, two species model by Sharma and Samanta used combined

harvesting with imprecise parameters to study a system in which the parameter values

cannot be exactly known [17]. Wu analyzed stability in a discrete, two species competi-

tive system with harvesting [21]. Wu’s system had a nonlinear, polynomial structure.

The discrete dynamical system we will be studying is an autonomous Ricker-type

competition model that describes the population dynamics between two species, species

x and species y, with the addition of harvesting of species x. It is similar to a system

studied by Luis, Elaydi, and Oliveira [13] with the important distinction that our sys-

tem includes a harvesting parameter that allows the carrying capacity of the harvested

species to be controlled.

The system is as follows:

xn+1 = uxne
K−xn−ayn (1.1)

yn+1 = yne
L−yn−bxn (1.2)

a,b,K,L > 0, and 0 < u 6 1.

Two main paths exist for the construction and creation of discrete mathematical mod-
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els. Some discrete models are discretized versions of continuous differential equations.

Other discrete models are created from the properties of the situation it is modeling [13].

This model, as well as the system this model is based off of, is of the latter type. It is

created utilizing biological properties of the species interaction dynamics.

This brings us to the biological interpretation of our model. In the context of popu-

lation dynamics, K and L are the carrying capacities of species x and y, respectively, if

each were in isolation. Carrying capacity indicates the maximum population size that

the environment can naturally sustain due to resources and other ecological constraints,

and is the size toward which the population will naturally tend absent other forces. At

times in the analysis of this system it will be simpler to consider the modified carrying

capacity, M, of species x, where M = K + ln(u). The parameters a and b describe the

effect of competition that one species has on the other. That is, the larger the value of

competition parameter a, the more that the population of species x is affected by the

population of species y. Likewise, a similar relationship holds for the effect of the value

of competition parameter b.

The harvesting term, u, describes the proportion of the population of species x that

is not harvested but instead remains in the ecosystem. We can alternatively think of

harvesting some proportion, v, of the population of species x, in which case u = 1 − v.

For example, if we harvest 20% of the population, then v = 0.2 and u = 0.8 indicating

that 80% of the population is being kept. Since total harvesting of species x, i.e. u = 0,

would lead to immediate extinction of the species, we discard this situation in the study

of this system. For clarity and ease of analysis, we will use u throughout this thesis.

We note that the carrying capacity of species x is dampened by harvesting, i.e. since

ln(u) 6 0 for the potential values of u, thenM 6 K. Since the modified carrying capacity

will feature prominently in the analysis of the dynamics of the system, we will see that

the behavior of the system can be greatly affected by different choices of the harvesting

parameter u. It is also important to note that as u increases to 1, ln(u) goes to 0, so

4



M approaches K. This means that as we decrease the proportion of the population that

is harvested, i.e., we keep a larger proportion of the population, our modified carrying

capacity for species x approaches K, the original carrying capacity without harvesting.

This is the result we would expect.

As we harvest more of species x, i.e. as u decreases towards 0, then ln(u) quickly

approaches negative infinity. We will see later that if we assume that K is relatively small,

then M = K+ ln(u) also quickly approaches negative infinity when we ignore biological

constraints. In a biological context, M, the modified carrying capacity of species x, is

limited to positive values. Together this implies that with enough harvesting of species

x, i.e. u sufficiently small, the ecosystem quickly is unable to sustain species x.

In this thesis we study the system given in equations (1.1) and (1.2) and examine some

mathematical properties and dynamics of the system, keeping in mind the biological

application. In particular we consider how different levels of harvesting can affect system

dynamics.
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Chapter 2

Definitions and Theorems

In this chapter we will discuss the mathematical vocabulary and background that is

needed to study a Ricker-type system such as in the one described by Equations (1.1)

and (1.2). Throughout these definitions and theorems, we keep in mind the biological

context in which we are doing our analysis. All of the following definitions are for a

2-dimensional system.

Definition 1 A discrete dynamical system is a sequence of real numbers obtained from a

function that is applied repeatedly.

A discrete dynamical system describes how non-overlapping events change with time.

It is frequently expressed as a difference (otherwise known as recurrence) equation with

an initial condition, i.e.

xn+1 = f(xn) given x0. (2.1)

Here the subscript describes the index of the element of the sequence. For example, x4

refers to the 4th element of the sequence after the initial condition.

Each term in the sequence is generated by applying the relation to the previous term.

Thus, given x0, we can find x1 by applying the function to the initial condition, i.e.,

x1 = f(x0). We then obtain x2 from x1 by applying the function again: x2 = f(x1) , then

x3 = f(x2), and so on.
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Definition 2 The solution to Equation (2.1) is the sequence

{xn}
∞
n=0 = {x0, x1, x2, x3, x4, . . . }. (2.2)

generated by the recurrence relation.

It is interesting to note that with discrete dynamical systems, even simple equations

can have interesting dynamics. For clarity, we will show this with a one dimensional

example. The system f(x) = x2, given x0, will generate very different types of solutions

depending on the sign and value of the initial condition. In this situation xn+1 = x
2
n.

If x0 = −1, we get the solution {xn}
∞
n=0 = {−1, 1, 1, 1, 1, . . . }.

If 0 < x0 < 1, each term in the solution is the square of the previous term, which

for positive numbers less than 1 means that the values get increas-

ingly smaller and the solution approaches 0. If x0 = 0.8 we get the

solution {xn}
∞
n=0 = {0.8, 0.64, 0.4096, 0.16777216, 0.0281474977, . . . }

which approaches 0.

If x0 = 1, we get the solution {xn}
∞
n=0 = {1, 1, 1, 1, 1, . . . }.

If x0 > 1, each term in the solution is the square of the previous term, which

for positive numbers greater than 1 means that the values get in-

creasingly bigger and the solution approaches positive infinity. If

x0 = 2 we get the solution {xn}
∞
n=0 = {2, 4, 16, 256, 65536, . . . } which

approaches infinity.
It is clear from this example that we may get very different dynamics in a discrete

dynamical system from even minor changes in the initial condition.

Definition 3 The nth iterate, xn, of the solution is the nth element of the sequence after the

initial condition. We say n is the index of the iterate.

Definition 4 A system of difference equations is linear if all iterate terms are linear for the

iterate. Otherwise the system is considered nonlinear.
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Our previous example, xn+1 = x2n, is not linear since the nth iterate is not linear. A

system described by the difference equation xn+2 = xn ∗ xn+1 is also nonlinear since it

contains a product of iterates. However, the system xn+1 = sin(n)xn is linear since all

terms involving the iterate are linear iterate terms. The sin(n) is only nonlinear for n

and does not affect the designation of the system as linear.

Definition 5 A system is homogeneous if every term involves the iterate. Otherwise it is said

to be non-homogeneous.

The example xn+1 = x2n is homogeneous, as are the examples xn+2 = xn ∗ xn+1 and

xn+1 = sin(n)xn. However, xn+1 = 3xn+ 2 is non-homogeneous since the last term does

not involve an iterate.

Definition 6 The order of the system is determined by the difference between the highest index

of the system and the lowest index of the system.

The example xn+2 = xn ∗ xn+1 is second order, while our system described by Equa-

tions (1.1) and (1.2) is a first order system.

Definition 7 A system is autonomous if it does not depend explicitly on the independent vari-

able n. Otherwise, the system is non-autonomous.

The examples xn+1 = x2n, xn+2 = xn ∗ xn+1, and xn+1 = 3xn + 2 are all autonomous

systems. However, xn+1 = sin(n)xn is non-autonomous since the term sin(n)xn explic-

itly depends on n.

We are now able to classify our autonomous system in Equations (1.1) and (1.2) as a

set of first order, nonlinear, homogeneous difference equations.

A few final, very important definitions introduce a topic we will spend a great

amount of time studying.

8



Definition 8 A point (x∗,y∗) of the system given by the vector difference equation (xn+1,yn+1) =

f(n, xn,yn) with initial condition (xn0
,yn0

) = (x0,y0) is an equilibrium point if f(n, x∗,y∗) =

(x∗,y∗) ∀n > n0.

To better understand the dynamics of the system, we will need to know the local

stability of each equilibrium point, i.e. the behavior of the solution near the equilibrium

point.

Suppose f : R2 → R,g : R2 → R have continuous first partial derivatives.

Definition 9 The Jacobian of a function F : R2 → R2 where F(x,y) = (f(x,y),g(x,y)), is

given by

JF(x,y) =

 df
dx

df
dy

dg
dx

dg
dy

 =

fx fy

gx gy

.

Definition 10 The equilibrium point (x∗,y∗) is locally asymptotically stable (LAS) if, given

λ1 and λ2 are the eigenvalues for (x∗,y∗),

max{|λ1|, |λ2|} < 1.

Otherwise, the equilibrium point is unstable.

Looking back at our one dimensional example, the value x = 1 is an unstable equi-

librium point since an initial condition with a small perturbation away from the value

results in a solution that diverges from the equilibrium point. Identifying the equilib-

rium points of a system and finding local stability of each equilibrium point are crucial in

understanding the behavior of the system. We will discuss these ideas more thoroughly

later.

Here we state a theorem by Li and Yorke [10] from 1975 along with some prerequisite

definitions:

9



Let F : J → J. For x ∈ J, F0(x) denotes x and Fn+1(x) denotes F(Fn(x)) for

n = 0, 1, · · · . We will say p is a periodic point with period n if p ∈ J and

p = Fn(p) and p 6= Fk(p) for 1 5 k < n. We say p is periodic or is a periodic

point if p is periodic for some n = 1....

10



Theorem 1 Let J be an interval and let F : J → J be continuous. Assume there is a

point a ∈ J for which the points b = F(a), c = F2(a) and d = F3(a), satisfy

d 5 a < b < c (or d = a > b > c).

Then for every k = 1, 2, · · · there is a periodic point in J having period k.

[10]

Then under the assumptions of the theorem, we would say that the given map F

displays a characteristic known as chaos. This leads us to our final definition.

Definition 11 Chaos, in the sense of Li and Yorke, appears in the dynamics of a map F any time

the map has a periodic point of minimal period 3.

11



Chapter 3

System Analysis

Nonlinear difference equations can be difficult to study since it can be impossible to

discover a closed form solution to the system. However, we can employ certain mathe-

matical tools to help us determine how the system behaves. In this chapter we will show

much of the analysis of the system given by Equations (1.1) and (1.2), which will include

finding boundedness and folding the system. We will determine the equilibrium points

of our system and then identify and discuss the isoclines. We will proceed to find the

stability of the equilibrium points in the following chapter.

3.1 Uniform Boundedness

A uniform bound of a function is a constant that exceeds the absolute value of any value

of the function [5]. In essence, if a function has a uniform bound, it cannot outgrow this

constant. The uniform bound of a system, if it exists, can tell us that the system can be

contained by some value instead of growing uncontrollably. To find a uniform bound,

which does not depend on xn or yn, we take the absolute value of the functions describ-

ing the system and find bounds for those functions. In this section we will establish the

uniform bounds of our system given by Equations (1.1) and (1.2).

12



For reference, recall that our system is given by Equations (1.1) and (1.2):

xn+1 = uxne
K−xn−ayn

yn+1 = yne
L−yn−bxn

a,b,K,L > 0, and 0 < u 6 1.

Before finding the uniform bound, we must first make the important note that due

to the biological interpretation of the system, we will limit xn > 0 and yn > 0.

3.1.1 The Bound for xn+1

Proposition 1 Let x0 > 0 and yn > 0 for the system given in Equations (1.1) and (1.2). Then

0 6 xn+1 6 eK−1 for all n > 0.

Proof: To find the bound for xn+1, we consider Equation (1.1). Since 0 < u 6 1 and

eK−xn−ayn > 0 for all values of a,K, xn,yn, then if xn > 0 we have

0 6
∣∣uxneK−xn−ayn

∣∣ 6 ∣∣xneK−xn−ayn
∣∣ = ∣∣xne−xn · eK−ayn

∣∣ . (3.1)

We first consider h(x) = xe−x. Using Calculus, we can find the critical values of h:

h ′(x) = x(−1)e−x + e−x = e−x(1− x) = 0.

Thus x = 1 is the only critical point. We know a maximum occurs at this value since by

the First Derivative Test, since h ′(0) = e−0(1−0) = 1 > 0 and h ′(2) = e−2(1−2) = −e−2 <

0, then x = 1 is where a maximum occurs for h. Thus the maximum h(1) = 1e−1 = e−1,

13



so we know xe−x 6 e−1 for all values of x. Now from Equation (3.1) we glean

0 6
∣∣uxneK−xn−ayn

∣∣ 6 ∣∣xne−xneK−ayn
∣∣ 6 ∣∣e−1eK−ayn

∣∣ = e−1eK−ayn = e−ayneK−1.

When y > 0, the function e−ay is uniformly decreasing with its maximum occurring at

y = 0. Then its maximum is e−a(0) = e0 = 1.

Since yn > 0, this gives us 0 6 e−ayneK−1 6 eK−1 which is a constant. Since xn > 0 as

well, we can drop the absolute values, giving 0 6 uxneK−xn−ayn 6 eK−1 <∞. Therefore,

0 6 xn+1 6 eK−1 <∞ for each fixed K.

3.1.2 The Bound for yn+1

Proposition 2 Let x0 > 0 and yn > 0 for the system given in Equations (1.1) and (1.2). Then

0 6 yn+1 6 eL−1 for all n > 0.

Proof: To find the bound for yn+1, we consider Equation (1.2). We have

0 6
∣∣yneL−yn−bxn

∣∣ = ∣∣yne−yneL−bxn
∣∣ . (3.2)

As we did in the case for xn+1, let h2(y) = ye−y and from the previous work we know

that h2 has a maximum value of e−1. Since we assume that xn > 0, the following holds:

∣∣yneL−yn−bxn
∣∣ = ∣∣yne−yneL−bxn

∣∣ 6 ∣∣e−1eL−bxn
∣∣ = ∣∣e−bxneL−1

∣∣ = e−bxneL−1 6 eL−1 <∞.

Therefore, 0 6 yn+1 6 eL−1 <∞ for each fixed value of L.

So both xn+1 and yn+1 are uniformly bounded when xn and yn are nonnegative.

From a biological perspective, this means that neither population will grow without

bound, as we would expect to be true due to ecological constraints.
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3.2 Folding the System

In this section we will apply a method known as folding wherein we write our system

of two, first order difference equations as a single equation of higher order. Folding

a system may allow a new type of analysis which may sometimes permit the reader

to glean additional information [16], so folding our system in Equations (1.1) and (1.2)

may allow us to discover dynamics of our system that are not otherwise apparent. For

example, in some planar systems the method of folding allows one to discover cycles or

chaos within the system that are not able to be found through more traditional methods

[16]. However, sometimes the resulting second order equation is too complex for this to

be true.

In order to fold the system we first solve for xn in Equation (1.2) :

yn+1 = yne
L−yn−bxn =⇒ yn+1

yn
= eL−yn−bxn =⇒

ln

(
yn+1

yn

)
= L− yn − bxn =⇒ bxn = L− yn − ln

(
yn+1

yn

)
=⇒

xn =
1

b

[
L− yn − ln

(
yn+1

yn

)]
. (3.3)

Now shifting the index of Equation (1.2) gives

yn+2 = yn+1e
L−yn+1−bxn+1 .

Replacing xn+1 with Equation (1.1) we obtain

yn+2 = yn+1e
L−yn+1−b(uxne

K−xn−ayn).
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Replacing xn in the above equation with the right-hand side of Equation (3.3) yields

yn+2 = yn+1e
L−yn+1−bu( 1

b [L−yn−ln(yn+1
yn )])e

K−( 1
b [L−yn−ln(yn+1

yn )])−ayn

.

To simplify the right-hand side of this new equation, we use algebra to simplify the

coefficients so that exponential and logarithmic expressions can be condensed as such:

yn+2 = yn+1 exp

{
L− yn+1 − u

[
L− yn − ln

(
yn+1

yn

)]
e
K− 1

b [L−yn]+ln

(
(yn+1

yn )
1
b

)
−ayn

}
.

This implies

yn+2 = yn+1 exp

{
L− yn+1 − u

[
L− yn − ln

(
yn+1

yn

)](
yn+1

yn

) 1
b

eK− 1
b [L−yn]−ayn

}
.

We then distribute the harvesting term, u, as such:

yn+2 = yn+1 exp

{
L− yn+1 + u [yn − L]

(
yn+1

yn

) 1
b

eK− 1
b [L−yn]−ayn

+u ln
(

yn+1

yn

)(
yn+1

yn

) 1
b

eK− 1
b [L−yn]−ayn

}
which allows us to combine and simplify the right-hand side further into:

yn+1 exp

{
L− yn+1 + u [yn − L]

(
yn+1

yn

) 1
b

eK− 1
b [L−yn]−ayn

}
·
{
eln(

yn+1
yn )
}u(yn+1

yn )
1
b eK− 1

b
[L−yn]−ayn

.

Then we find that our system in Equations (1.1) and (1.2) has been folded to become the

following single equation:

yn+2 = yn+1e

{
L−yn+1+u[yn−L](yn+1

yn )
1
b eK+ 1

b
[yn−L]−ayn

}(
yn+1

yn

){u(yn+1
yn )

1
b eK+ 1

b
[yn−L]−ayn

}
.

As is sometimes the case, the folding has resulted in a very complicated second order

difference equation. Because of the complexity of the folded system, we are unable to

determine any additional characteristics of our system. No obvious simplifying assump-
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tions, such as letting either a = 0 or b = 0, help us gain insight into the extinction or

proliferation of either species, but further research may yield additional insights.

3.3 Equilibrium Points

An important part of the analysis of a system requires knowledge about the equilibrium

points of that system. In this section we will obtain the equilibrium points (x∗,y∗) of our

system. In general, the equilibrium points describe a steady state. For our system that

means the points where the application of the recursive relation produces no change

in either species x or in species y. Once a solution reaches an equilibrium point, it

will continue to stay on the equilibrium point. In other words, once both populations

simultaneously reach the equilibrium value, neither population grows or declines over

time.

To find the equilibrium points, we replace all x iterates with the constant x∗, and all

y iterates with the constant y∗, and then solve for x∗ and y∗ by solving the system of

equations through elimination or substitution. This allows us to find the points where

neither x nor y varies. Then Equation (1.1) becomes

x∗(1− ueK−x∗−ay∗) = 0.

Then

x∗ = 0 or eK−x∗−ay∗ =
1

u
=⇒ x∗ = K+ ln(u) − ay∗. (3.4)

Equation (1.2) becomes

y∗(1− eL−y∗−bx∗) = 0.

Then

y∗ = 0 or eL−y∗−bx∗ = 1 =⇒ y∗ = L− bx∗.
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We know if x∗ = 0, then either y∗ = 0, giving the first equilibrium point (x∗,y∗) =

(0, 0), or else y∗ = L − b(0) = L, giving the second equilibrium point (x∗,y∗) = (0,L).

Alternately, if x∗ = K + ln(u) − ay∗, then y∗ = 0 implies that x∗ = K + ln(u) − a(0) =

K + ln(u), giving the third equilibrium point (x∗,y∗) = (K + ln(u), 0). Recall that M =

K+ ln(u). Then the third equilibrium points can be rewritten as (x∗,y∗) = (M, 0).

Finally, using the substitution method the fourth scenario gives

y∗ = L− bx∗ = L− b(K+ ln(u) − ay∗) = L− bK− b ln(u) + aby∗.

This then tells us that

y∗(1− ab) = L− bK− b ln(u) =⇒ y∗ =
L− b(K+ ln(u))

1− ab
.

Plugging this in to Equation (3.4) we obtain

x∗ =
K+ ln(u) − aL

1− ab
,

and so the fourth equilibrium point is (x∗,y∗) =

(
K+ ln(u) − aL

1− ab
,
L− b(K+ ln(u))

1− ab

)
, or

alternately (x∗,y∗) =

(
M− aL

1− ab
,
L− bM

1− ab

)
.

This can be summarized as follows:

1. EP1 = (0, 0). This is the extinction equilibrium point.

2. EP2 = (0,L). This is an exclusion equilibrium point (y survives and x is extinct).

3. EP3 = (M, 0). This is an exclusion equilibrium point (x survives and y is extinct).

4. EP4 =
(
M− aL

1− ab
,
L− bM

1− ab

)
. This is the coexistence equilibrium point.

We can also use the isoclines of the system, which we will discuss in the next section,

to help us find the equilibrium points.
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3.4 Isoclines

Isoclines can be useful tools in aiding our understanding of system dynamics, as well

as considering equilibrium points. Isoclines are curves along which one of the variables,

either x or y, does not change. In this section, we will determine the isoclines with the

goal of better understanding the dynamics of the system. This includes identifying nec-

essary properties to consider only a biologically relevant coexistence equilibrium point

(EP4).

Recall again that our system is:

xn+1 = uxne
K−xn−ayn

yn+1 = yne
L−yn−bxn

a,b,K,L > 0, and 0 < u 6 1.

We let

F(x,y) = (uxeK−x−ay,yeL−y−bx), (3.5)

which we can rewrite as

F(x,y) = (f(x,y),g(x,y)) (3.6)

where

f(x,y) = uxeK−x−ay (3.7)

and

g(x,y) = yeL−y−bx. (3.8)

To find the isoclines of the system, we consider Equations (3.7) and (3.8). We set

f(x,y) = x and g(x,y) = y. Looking at each equation separately, we hold one variable

constant, and solve for that variable. For example, with Equation (3.7), the equation
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describing the change in population for species x, we set x equal to the constant x while

still allowing y to vary, and then we solve the equation for x. We repeat the process with

y and y for Equation (3.8), the equation describing species y.

To find the x isoclines where the value of x does not change, we do

x = uxeK−x−ay then

x
[
ueK−x−ay − 1

]
= 0.

Then either x = 0 or ueK−x−ay = 1

=⇒ x = K+ ln(u) − ay. (3.9)

The previous equation can be rearranged as y = 1
a
[K+ ln(u) − x].

So the isoclines in x are x = 0 and y = 1
a
[K+ ln(u) − x].

Note: if we let M = K+ ln(u) then the second x isocline becomes y = 1
a
[M− x].

Similarly, to find the y isoclines where the value of y does not change, we do

y = y ∗ eL−y−bx then

y
[
eL−y−bx − 1

]
= 0.

This gives us that either y = 0 or eL−y−bx = 1

=⇒ y = L− bx. (3.10)

So the isoclines in y are y = 0 and y = L− bx.

To find where the isoclines have intercepts in Quadrant 1, which is the only biologi-

cally relevant quadrant, note that

s1 : y = 1
a
[M− x] has intercepts (M, 0) and (0, M

a
) and

s2 : y = L− bx has intercepts (L
b
, 0) and (0,L).

These isoclines can be seen in Figure 3.1. On isocline s1 the population of species x

remains constant and on isocline s2 the population of species y remains constant.
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We then have two cases. Either ab < 1 or ab > 1. We do not allow ab = 1 since

we see from Equations (3.9) and (3.10) that the isoclines would be parallel and thus EP4

cannot occur, a situation we do not consider.

First we will look at the x-axis. Then since y = 0, Equation (1.1) becomes

xn+1 = uxne
K−xn .

We can write this in terms of M by rewriting the above equation as

xn+1 = e
ln(u)xne

K−xn =⇒ xn+1 = xne
M−xn .

If xn < M, then eM−xn > 1, so population x increases to M. Alternately, if xn > M, then

eM−xn < 1, so population x decreases to M. This is an expected result. In the absence

of species y, species x will tend towards its modified carrying capacity M. Since on the

isocline s2 species x can change value, if s2 intersects the x-axis while x is increasing

(alternately decreasing), then x will continue to increase (alternately decrease) all along

s2.

Now we will look at the y-axis. Since x = 0, Equation (1.2) becomes

yn+1 = yne
L−yn .

If yn < L, then eL−yn > 1, so population y increases to L. Alternately, if yn > L, then

eL−yn < 1, so population y decreases to L. This is also an expected result. In the absence

of species x, species y will tend towards its carrying capacity L. Since on the isocline s1

species y can change value, if s1 intersects the y-axis while y is increasing (alternately

decreasing), then y will continue to increase (alternately decrease) all along s1.

We will describe two scenarios for the exclusion equilibrium points, as seen in Figure

3.1. Recall that x tends towards M on the x-axis and y tends towards L on the y-axis.
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Then equilibrium point (0, 0) is clearly unstable in both cases.

In Case 1, s2 intersects the x-axis while x is increasing; thus x is increasing on s2.

Meanwhile s1 intersects the y-axis when y is decreasing; thus y is decreasing on s1.

From this we conclude that if M is bounded so that chaos cannot occur, and if L < bM,

then the exclusion equilibrium point (M, 0) is locally asymptotically stable and species

y goes extinct.

In Case 2, s2 intersects the x-axis while x is decreasing; thus x is decreasing on s2.

Meanwhile s1 intersects the y-axis when y is increasing; thus y is increasing on s1. From

this we conclude that if L is bounded so that chaos cannot occur, and if L > M
a

, then

the exclusion equilibrium point (0,L) is locally asymptotically stable and species x goes

extinct.

y

x

L

M
a

L
b

M

s2

s1

Case 1

y

x

M
a

L

M L
b

s1

s2

Case 2

Figure 3.1: Two cases for the exclusion equilibrium points.

It is interesting to note that as the term ab grows from a value less than 1 to a value

greater than 1, s1 and s2 briefly intersect to yield EP4 (see Figure 3.2) and then the lines

along with their intercepts switch places.

When s1 and s2 intersect in Quadrant 1, then we obtain the fourth equilibrium point

EP4. This coexistence equilibrium point occurs in two cases.

22



The coexistence equilibrium point exists if bM < L < M
a

and ab < 1. In this case, s1

intersects s2 at EP4 because when M < L
b

it implies bM < L. Also, in this case L < M
a

implies aL < M. Multiplying by b on both sides implies abL < bM. Together we get

that abL < bM < L which by the Transitive Property means that abL < L. The only way

for this to be true is for ab < 1.

The coexistence equilibrium point also exists if M
a
< L < bM and ab > 1. In this case,

s1 intersects s2 at EP4 because when L
b
< M it implies L < bM. Multiplying by a on both

sides yields aL < abM. In addition, M
a
< L which implies that M < aL. Together we get

that M < aL < abM which by the Transitive Property means that M < abM. The only

way for this to be true is for ab > 1.

These two cases can be seen in Figure 3.2.

y

x

L

M
a

M L
b

EP4

s2

s1

ab < 1

y

x

M
a

L

L
b

M

EP4

s1

s2

ab > 1

Figure 3.2: Two cases for the coexistence equilibrium point.

In cases 1 and 2, no coexistence equilibrium point exists and thus no possibility

exists for the population of species x to change between increasing and decreasing along

s1. Similarly, no possibility exists for the population of species y to change between

increasing and decreasing along s2. However, the cases illustrated by Figure 3.2 do

allow a change to happen, and thus we will perform further analysis to determine the
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stability of EP4.

It is also important to note that when looking at the biologically relevant Quadrant

1, M > 0 which implies that u > e−K . The previous four cases assume that M > 0.

This is especially obvious when ab < 1, since in those cases 0 < L
b
< M =⇒ 0 < M.

In the previous scenarios when ab > 1, note that either L < bM (as with the exclusion

scenario) or L < M
a

(as with the coexistence scenario). Since a,b,L > 0, in the former

case 0 < L < bM =⇒ 0 < bM =⇒ M > 0 and in the latter case 0 < L < M
a

=⇒ 0 <

M
a

=⇒ M > 0.

When looking at scenarios in which M < 0, we see that EP4 can only occur in either

Quadrant 2 or Quadrant 4, neither of which are biologically relevant. This can be seen

in Figure 3.3. For the rest of this thesis, we will only consider M > 0.

y

x

L

M
a

L
b

M

s2s1

ab < 1

y

x

M
a

L

M L
b

s1

s2

ab > 1

Figure 3.3: Two cases for the coexistence equilibrium point when M < 0.
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Chapter 4

Local Stability Analysis

In this chapter, we analyze the local stability of the equilibrium points of our system. In

order to analyze the local stability of an equilibrium point, we find the eigenvalues of the

Jacobian evaluated at the equilibrium point and look at the modulus of each eigenvalue.

If the modulus for both eigenvalues is less than one, the equilibrium point is stable. If the

modulus of either eigenvalue is greater than one, the equilibrium point is unstable. For

many systems, since the eigenvalues may depend on parameters, this involves looking

at multiple cases of the parameters involved in the system.

4.1 Eigenvalues

To find the eigenvalues λ1 and λ2 of equilibrium point (x∗,y∗), we first evaluate the

Jacobian of a map F = (f,g) at (x∗,y∗). Next, we find the matrix formed by taking the

difference of the Jacobian evaluated at the equilibrium point and the matrix λI, where I

is the identity matrix. We then take the determinant of this newly found matrix and set

it equal to zero as seen here:
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det (JF(x∗,y∗) − λI) =

fx(x∗,y∗) − λ fy(x
∗,y∗)

gx(x
∗,y∗) gy(x

∗,y∗) − λ

 set
= 0. (4.1)

The characteristic equation then becomes:

λ2 − (fx + gy)λ+ fxgy − gxfy = 0 (4.2)

which is a quadratic in λ. The eigenvalues λ1, λ2 of equalibrium point (x∗,y∗) are the

roots of the characteristic equation.

Once we know the local stability of every equilibrium point in a system, we have a

better understanding of how the system behaves and what the solution of the system

will look like. Although not in general true, the terms stable and locally asymptotically

stable are used here interchangeably. Every reference in this thesis to asymptotic stability

indicates local asymptotic stability as the stability analysis of this paper has been limited

to local analysis. Finding the global stability of a system is outside the scope of this

thesis.

To find the eigenvalues for our system, we again consider the function F(x,y) =

(uxeK−x−ay,yeL−y−bx), where f and g represent Equations (1.1) and (1.2), respectively.

The Jacobian of F is then

JF(x,y) =

ueK−x−ay(1− x) −auxeK−x−ay

−byeL−y−bx eL−y−bx(1− y)


which yields the characteristic equation

λ2−
[
eL−y−bx(1− y) + ueK−x−ay(1− x)

]
λ+eK−x−ayeL−y−bx(u(1−x)(1−y)−abuxy) = 0.

In what follows, we determine the eigenvalues λ in this equation by substituting the

values of each equilibrium point.
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4.2 Local Stability of the Extinction and Exclusion

Equilibrium Points

We will now find the Jacobian evaluated at each point and obtain its eigenvalues. We

then determine where the equilibrium point is asymptotically stable, which as previ-

ously stated holds where max{|λ1|, |λ2|} < 1.

1. For the extinction equilibrium point (0, 0), the Jacobian is

JF(0, 0) =

ueK 0

0 eL

 .

The eigenvalues of the extinction equilibrium point are found through the char-

acteristic equation: (ueK − λ)(eL − λ) − 02 = 0. Alternatively, note that this is a

diagonal matrix. This implies (0, 0) has eigenvalues λ1 = ueK, λ2 = eL.

Then (0, 0) is locally asymptotically stable if |λ1| < 1 and |λ2| < 1. That is, if |ueK| < 1

and |eL| < 1. Since we have limited L > 0, then eL > 1, so (0, 0) is unstable. This

generalizes the result we found using isoclines.

An example of the instability of (0, 0) can be seen in Figure 4.1. Here even a

small perturbation from (0, 0) results in the system being drawn to (0,L). We

see that while we began with small population values for both species, as time

progresses species x goes extinct but species y increases and eventually remains at

the population value given by its carrying capacity.

2. The exclusion equilibrium point (0,L) has the Jacobian

JF(0,L) =

ueK−aL 0

−bL 1− L

 .

27



Figure 4.1: An example of the instability of the equilibrium point (0, 0), with parameter
values a = 0.6,b = 0.5,K = 3,L = 1.9, and u = 0.1

The characteristic equation (ueK−aL−λ)(1−L−λ) = 0 yields λ1 = ueK−aL, λ2 = 1−L.

Then (0,L) is locally asymptotically stable if

(a) |ueK−aL| < 1 and

(b) |1− L| < 1.

From (a), and noting that u > 0, we obtain 0 < ueK−aL < 1. Thus 0 < u <

e−(K−aL) is required for stability. However, while it can be informative to discuss

stability in terms of the harvesting parameter u, at this equilibrium point species

x is nonexistent. Thus we will look at the stability of this equilibrium point with

respect to the parameter L.

0 < ueK−aL < 1 ⇐⇒ 0 < e−aL <
e−K

u

⇐⇒ −aL < ln

(
e−K

u

)
⇐⇒ −aL < −K− ln(u)
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⇐⇒ L >
K+ ln(u)

a

⇐⇒ L >
M

a
.

Condition (b) implies

−1 < 1− L < 1 =⇒ −2 < −L < 0

=⇒ 0 < L < 2.

From (a) and (b) we conclude that (0,L) is locally asymptotically stable if L >
M

a

and 0 < L < 2. Since we only consider M > 0, then together these become
M

a
<

L < 2. When this condition is met, species y remains but species x becomes extinct.

This matches the result we found in Case 2 when studying the isoclines of the

system. This analysis then provides the upper bound needed for L.

As harvesting is increased (u decreases to zero), M also decreases to zero; that is,

the modified carrying capacity for species x decreases to 0 and the system will not

as easily sustain species x. Thus the lower bound decreases such that for any given

L, the condition L > M
a

will be more easily met and (0,L) will more easily be LAS.

That is, with sufficient harvesting, species x will become extinct and species y will

persist at population value L.

This can be seen in Figure 4.2. For these parameter values in this example, species

x does not become extinct nor does the population value of species y tend towards

its carrying capacity, L, when harvesting is at 20% of the species x population.

However, when harvesting is increased to 90%, species x goes extinct while species

y persists at population value L.

3. The exclusion equilibrium point (K+ ln(u), 0) = (M, 0) has the Jacobian
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Figure 4.2: For a = 0.6,b = 0.5,K = 3,L = 1.9, and u = 0.8 (top) or u = 0.1 (bottom). We
observe that the stability of (0,L) changes with harvesting.

JF(K+ ln(u), 0) =

1− (K+ ln(u)) −a(K+ ln(u))

0 eL−b(K+ln(u))

 =

1−M −aM

0 eL−bM

 .

The characteristic equation (1− (K+ ln(u)) − λ)(eL−b(K+ln(u)) − λ) − 0 = 0

yields the eigenvalues λ1 = 1− (K+ ln(u)), λ2 = e
L−b(K+ln(u)).

(K+ ln(u), 0) is locally asymptotically stable if

(a) |1− (K+ ln(u))| < 1 and

(b) |eL−b(K+ln(u))| < 1.
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From (a), we obtain

−1 < 1− (K+ ln(u)) < 1

=⇒ 0 < K+ ln(u) < 2 or 0 < M < 2.

For K < 2 this implies that

e−K < u < e2−K.

From condition (b) we note that the exponential allows us to drop the absolute

value and obtain

eL−b(K+ln(u)) < 1 =⇒ L− b(K+ ln(u)) < 0.

From this we obtain

K+ ln(u) >
L

b
or M >

L

b
.

This can also be written as u > e
L
b−K.

Making the substitution for M, from (a) and (b) we conclude that (M, 0) is locally

asymptotically stable if 0 < M < 2 and M >
L

b
. That is, if

L

b
< M < 2, then

species x persists at its modified carrying capacity, while species y goes extinct.

This matches the result we found in Case 1 when studying the isoclines of the

system. This analysis then provides the upper bound needed for M.

As harvesting is increased, i.e., asM decreases, the condition L < bM for any given

L is more difficult to satisfy while the condition M < 2 is easier to satisfy. That is,

harvesting can move (M, 0) into or out of a region of stability.

In Figure 4.3 we show that a change in harvesting affects the stability of (M, 0).
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Figure 4.3: For a = 0.6,b = 0.5,K = 3,L = 0.5, and u = 0.8 (top) or u = 0.2 (bottom). We
observe that the stability of (M, 0) changes with harvesting.

4.3 Local Stability of the Coexistence Equilibrium Point

The rest of our analysis will focus on the stability of the coexistence equilibrium point(
K+ ln(u) − aL

1− ab
,
L− b(K+ ln(u))

1− ab

)
. For the purpose of clarity, throughout the analysis

of EP4 we will use the notation λ+ and λ− in place of λ1 and λ2.

The Jacobian of the coexistence equilibrium point is

JF

(
K+ ln(u) − aL

1− ab
,
L− b(K+ ln(u))

1− ab

)

=
1

1− ab

1+ aL− ab− (K+ ln(u)) a2L− a(K+ ln(u))

b2(K+ ln(u)) − bL b(K+ ln(u)) − ab− L+ 1

.
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Making the substitution M = K + ln(u) allows us to simplify our calculations but

hides the system’s reliance on the harvesting factor u, and for this reason we will switch

between the two notational styles to emphasize different qualities. Recall from our dis-

cussion on isoclines that we only consider positive values for M to ensure a biologically

relevant coexistence equilibrium point. Hence, the above Jacobian can also be written as

the following:

JF

(
M− aL

1− ab
,
L− bM

1− ab

)

=
1

1− ab

1+ aL− ab−M a2L− aM

b2M− bL bM− ab− L+ 1

 .

Using the before-mentioned process of finding the eigenvalues, we find that the

eigenvalues of EP4 are:

λ± =
1

2

1

(1− ab)
[2+ aL− 2ab− L+ b (K+ ln(u)) − (K+ ln(u))

±(K2 + 2K ln(u) + (ln(u))2 + b2
(
K2 + 2K ln(u) + (ln(u))2

)
− 4ab2

(
K2 + 2K ln(u) + (ln(u))2

)
+2b

(
K2 + 2K ln(u) + (ln(u))2

)
+ 2abL (K+ ln(u)) − 2bL (K+ ln(u))

−2aL (K+ ln(u)) + 4a2b2L (K+ ln(u)) − 2L (K+ ln(u)) + a2L2 − 4a2bL2 + 2aL2 + L2)
1
2

]
.

Again using the substitution M = K+ ln(u) our eigenvalues become:

λ± =
1

2

1

(1− ab)
[2+ aL− 2ab− L+ bM−M (4.3)

±{M2 + b2M2 − 4ab2M2 + 2bM2 + 2abLM− 2bLM

−2aLM+ 4a2b2LM− 2LM+ L2(a2 − 4a2b+ 2a+ 1)}
1
2 ].

We simplify Equation (4.3) to obtain:

λ± = 1+ 1
2

1
(1−ab)

[L(a− 1) +M(b− 1)

±
√
M2(b2 − 4ab2 + 2b+ 1) + 2LM(2a2b2 + ab− a− b− 1) + L2(a2 − 4a2b+ 2a+ 1].
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To determine the stability of EP4, we must consider multiple cases. For simplicity, we

allow D =M2(b2− 4ab2+ 2b+ 1)+ 2LM(2a2b2+ab−a−b− 1)+L2(a2− 4a2b+ 2a+ 1,

so our eigenvalues become

λ± = 1+
1

2

1

(1− ab)

[
L(a− 1) +M(b− 1)±

√
D
]
.

Case I: Complex Eigenvalues (D < 0)

First we will assume that D < 0. In this case, λ± are complex.

Letting A = 1 + 1
2

1
(1−ab)

[L(a− 1) +M(b− 1)] and B = 1
2

1
(1−ab)

√
−1(D), we rewrite

λ± as

λ± = A+ Bi.

Then |λ±| < 1 if
√
A2 + B2 < 1:

√(
1+

1

2

1

(1− ab)
[L(a− 1) +M(b− 1)]

)2

+

(
1

2

1

(1− ab)

√
−1(D)

)2

< 1

=⇒

√(
1+

1

2

1

(1− ab)
[L(a− 1) +M(b− 1)]

)2

−
1

4

1

(1− ab)2
D < 1

This implies:(
1+

1

(1− ab)
[L(a− 1) +M(b− 1)]

+
1

4

1

(1− ab)2
[L2(a− 1)2 + 2LM(a− 1)(b− 1) +M2(b− 1)2] −

1

4

1

(1− ab)2
D

) 1
2

< 1,

which simplifies to:(
1+

1

(1− ab)
[L(a− 1) +M(b− 1)]

+
1

4

1

(1− ab)2
[L2(a− 1)2 + 2LM(a− 1)(b− 1) +M2(b− 1)2 −D]

) 1
2

< 1.

Substituting in for D and simplifying we obtain(
1+

1

(1− ab)
[L(a− 1) +M(b− 1)]

−
1

(1− ab)2
[aL2(1+ ab) − LM(1− a2b2) + bM2(1+ ab)]

) 1
2

< 1
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and squaring both sides and subtracting 1, we observe:

1
(1−ab)

[L(a− 1) +M(b− 1)] − 1
(1−ab)2

[aL2(1+ ab) − LM(1− a2b2) + bM2(1+ ab)] < 0.

Multiplying by (1− ab)2 we obtain:

(1− ab) [L(a− 1) +M(b− 1)] − aL2(1+ ab) + LM(1− a2b2) − bM2(1+ ab) < 0,

which rearranges to

M2 (−b(1+ ab))+M [L(1− ab)(1+ ab) + (b− 1)(1− ab)]+(1−ab)(a−1)L−a(1+ab)L2 < 0.

(4.4)

Let

ψ(M) =M2 (−b(1+ ab))+M [L(1− ab)(1+ ab) + (b− 1)(1− ab)]+(1−ab)(a−1)L−a(1+ab)L2.

We note ψ(M) is a downward-facing parabola since the coefficient of M2 is clearly neg-

ative. Consider the following cases:

1. If a > 1 and b > 1, then 1− ab < 0 and clearly (4.4) is satisfied.

2. If the conditions of Case 1 are not met, consider the roots of ψ(M):

M± =
1

2b(1+ ab)

[
L(1− a2b2) + (b− 1)(1− ab)

±
√

(L(1− a2b2) + (b− 1)(1− ab))2 + 4b(1+ ab) [(1− ab)(a− 1)L− a(1+ ab)L2]
]
.

Clearly M+ > M−. Recall for biological relevance we only consider M > 0. If

M− < 0, then we discard this root as well as the values to the left of it and (4.4)

holds true if M > M+. If both roots are greater than zero, then (4.4) holds true if

either M <M− or M >M+. We illustrate this in Figure 4.4.
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M
M− M+

ψ

Figure 4.4: The regions for M where ψ(M) is negative.

Case II: Real Eigenvalues (D > 0)

Now we consider the case when D > 0. In this case, λ± are real. The majority of the

analysis for the stability of EP4 will be in this case.

For EP4 to be stable, we must determine when |λ−| < 1 and |λ+| < 1. This is equivalent

to saying −1 < λ± < 1, which results in

−2 <
1

2

1

(1− ab)

[
L(a− 1) +M(b− 1)±

√
D
]
< 0

⇐⇒ −4 <
1

(1− ab)

[
L(a− 1) +M(b− 1)±

√
D
]
< 0. (4.5)

Below we consider some special cases.

4.3.1 Real Eigenvalues Case (i) 1− ab > 0

Throughout this section we assume that 1 − ab > 0, which implies ab < 1. Multiplying

(4.5) by (1− ab) on all sides does not change the direction of the inequality signs. Thus

(4.5) becomes

−4(1− ab) < L(a− 1) +M(b− 1)±
√
D < 0. (4.6)

We will look at λ+ and λ− separately.

Left-hand Side (−1 < λ−)
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In this case we investigate under what conditions the following inequality is true.

−4(1− ab) < L(a− 1) +M(b− 1) −
√
D

=⇒
√
D < L(a− 1) +M(b− 1) + 4(1− ab). (4.7)

If L(a − 1) +M(b − 1) + 4(1 − ab) 6 0, then Equation (4.7) is never satisfied and the

equilibrium point is unstable. If instead L(a− 1) +M(b− 1) + 4(1− ab) > 0, that is if

1. for b > 1, M >
−L(a− 1) − 4(1− ab)

b− 1
, or

2. for b < 1, M <
−L(a− 1) − 4(1− ab)

b− 1

then we can safely square both sides to obtain

D < [L(a− 1) +M(b− 1) + 4(1− ab)]2 . (4.8)

Substituting in the value of D and expanding (4.8) gives

bM2(1−ab)+aL2(1−ab)+LM(a2b2−1)−2L(1−ab)(a−1)−2M(1−ab)(b−1)−4(1−ab)2 < 0.

Since 1− ab > 0, we can divide both sides of the inequality by (1− ab); hence

bM2 + aL2 − LM(ab+ 1) − 2L(a− 1) − 2M(b− 1) − 4(1− ab) < 0 (4.9)

which is a quadratic in M.

Let γ(M) = bM2 + aL2 − LM(ab + 1) − 2L(a − 1) − 2M(b − 1) − 4(1 − ab). Then

−1 < λ− when γ(M) < 0. We know that γ is an upward-facing parabola since b, which

is the coefficient of M2, is positive. The roots of γ are as follows:
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M1 =
1

2b
[2(b− 1) + (1+ ab)L

−
√

(1− 2ab+ a2b2)L2 + (4ab2 + 4ab− 4b− 4)L+ (4b2 + 8b− 16ab2 + 4)
]

M2 =
1

2b
[2(b− 1) + (1+ ab)L

+
√

(1− 2ab+ a2b2)L2 + (4ab2 + 4ab− 4b− 4)L+ (4b2 + 8b− 16ab2 + 4)
]
.

As long as the discriminant of M1 and M2 is nonnegative (and thus M1 and M2 are

real), it is possible for γ(M) < 0 for some M between M1 and M2. Since the quadratic

is upward-facing, the critical point must be a minimum. If the minimum value of γ is

negative, we are guaranteed that γ is negative between M1 and M2.

To find the minimum value of γ, we first take the derivative of γ and set it equal to

zero in order to find the critical point, M, as follows:

dγ

dM
= 2bM− (1+ ab)L− 2(b− 1)

set
= 0

⇐⇒ M =
1

2b
[(1+ ab)L+ 2(b− 1)] .

Finally, to find the minimum of γ we evaluate γ at M:

γ(M) =
−1

4b

[
(1− ab)2L2 + 4(b+ 1)(ab− 1)L+ 4

(
b2(1− 4a) + 2b+ 1

)]
.

Letting

τ(L) = (1− ab)2L2 + 4(b+ 1)(ab− 1)L+ 4
(
b2(1− 4a) + 2b+ 1

)
we see that the above equation becomes γ(M) =

−1

4b
τ(L). Note that τ is a quadratic in L.

Recall that within this case if γ(M) is negative, which occurs when τ(L) is positive,

there will be a region of M for which γ is negative. If γ(M) is negative, −1 < λ−, and

there is a possibility for the stability of EP4, as seen in Figure 4.5.

In order to show where γ(M) is negative, we first notice that since b > 0, the first

factor of γ(M) is negative. It is then sufficient to show that where τ is positive, γ(M) is
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M1 M2

γ

L

L
L2L1

τ

Figure 4.5: The regions where γ is negative for M and τ is positive for L

negative so that stability is possible.

The function τ is an upward-facing parabola since (1 − ab)2, the coefficient of L2,

is clearly positive. This is illustrated in Figure A.1. Since τ is upward-facing, we are

guaranteed that τ > 0 for some region or regions of L.

In order to find where these regions of L may occur, we use the quadratic formula

and get that the roots of L are as follows:

L1 =
1

(1− ab)

[
2(b− 1) − 4b

√
a
]
, L2 =

1

(1− ab)

[
2(b− 1) + 4b

√
a
]
.

Clearly L1 is less than L2. We make a note about the behavior of τ by determining

where its minimum occurs. In order to find the critical point, L, we take the derivative

and set it equal to zero:

dτ

dL
= 2(1− ab)2L+ 4(b+ 1)(ab− 1)

set
= 0

=⇒ L =
2(b+ 1)

1− ab
.

Since we have 1− ab > 0 (Case i), then L > 0 always, so τ(L) is positive for all values

of L, and thus γ(M) < 0. This guarantees there will be a region for which stability is

possible.

In summary of −1 < λ−:

1. if b > 1 and M >
−L(a− 1) − 4(1− ab)

b− 1
and M1 < M <M2, or
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2. if b < 1 and M <
−L(a− 1) − 4(1− ab)

b− 1
and M1 < M <M2,

then the conditions for −1 < λ− are met.

Right-hand Side (λ− < 1)

In this case we investigate the following inequality.

L(a− 1) +M(b− 1) −
√
D < 0

=⇒ L(a− 1) +M(b− 1) <
√
D. (4.10)

It is not guaranteed that both sides of inequality (4.10) are nonnegative, so we must

consider two cases.

1. If L(a− 1) +M(b− 1) < 0, then (4.10) is clearly true. That is,

(a) if b > 1, then M <
−L(a− 1)

b− 1
; otherwise

(b) if b < 1, then M >
−L(a− 1)

b− 1
.

2. If instead L(a− 1) +M(b− 1) > 0, we note the following conditions must hold

(a) if b > 1, then M >
−L(a− 1)

b− 1
, or

(b) if b < 1, then M 6
−L(a− 1)

b− 1
.

Now we can safely square both sides of (4.10) and substitute in the value for D.

bM2(ab− 1) + LM(1− ab)(1+ ab) + aL2(ab− 1) < 0.

Dividing both sides of this inequality by (ab − 1) will change the sign of the in-

equality since 1− ab > 0.

bM2 − (1+ ab)LM+ aL2 > 0,
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which implies

(bM− L)(M− aL) > 0. (4.11)

Note that since 1 − ab > 0 (Case i), then a <
1

b
, and hence aL <

L

b
. Using this, we

can see that (4.11) is true in two cases: either both factors are greater than 0 or both

factors are less than 0. That is

(a) M > L
b

and M > aL, which implies that M > L
b

, or

(b) M < L
b

and M < aL, which implies that M < aL.

In summary of λ− < 1:

1. if b > 1 and if M <
−L(a− 1)

b− 1
, or

2. if b < 1 and if M >
−L(a− 1)

b− 1
, or

3. if b > 1, M >
−L(a− 1)

b− 1
, and either M < aL or M > L

b
, or

4. if b < 1, M 6
−L(a− 1)

b− 1
, and either M < aL or M > L

b
,

then the conditions for λ− < 1 are met.

Left-hand Side (−1 < λ+)

In this case we investigate the following inequality.

−4(1− ab) < L(a− 1) +M(b− 1) +
√
D

=⇒ −4(1− ab) − L(a− 1) −M(b− 1) <
√
D. (4.12)

It is not guaranteed that both sides of inequality (4.12) are nonnegative, so we must

consider two cases.

1. If −4(1− ab) − L(a− 1) −M(b− 1) < 0, then (4.12) is clearly true. That is,

(a) if b > 1, then M >
−L(a− 1) − 4(1− ab)

b− 1
; otherwise
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(b) if b < 1, then M <
−L(a− 1) − 4(1− ab)

b− 1
.

2. If instead −4(1 − ab) − L(a − 1) −M(b − 1) > 0, we note the following conditions

must hold

(a) b > 1, then M 6
−L(a− 1) − 4(1− ab)

b− 1
, or

(b) b < 1, then M >
−L(a− 1) − 4(1− ab)

b− 1
.

Now we can safely square both sides of (4.12) and substitute in the value for D.

bM2(ab− 1) + aL2(ab− 1) + (1− ab)(1+ ab)LM

+ 2L(a− 1)(1− ab) + 2M(b− 1)(1− ab) + 4(1− ab)2 < 0.

Dividing both sides of this inequality by (ab − 1) will change the sign of the in-

equality since 1− ab > 0.

bM2 + aL2 − (1+ ab)LM− 2(a− 1)L− 2(b− 1)M− 4(1− ab) > 0. (4.13)

Using our previous definition of γ(M), we see that (4.13) is equivalent to the con-

dition that γ(M) > 0. Recall that γ defines an upward-facing parabola, so we are

guaranteed that γ(M) > 0 for some values of M. Let M denote the point at which

γ takes a minimum as seen before. Then we know the following is true regarding

γ.

(a) if γ(M) > 0, then γ(M) > 0 for all M.

(b) If γ(M) = 0, then γ(M) > 0 for all M 6=M.

(c) If γ(M) < 0, then γ has roots M1 and M2, where M1 < M2. In this case,

γ(M) > 0 for values of M satisfying M < M1 or M > M2, where the first of

these conditions can be discarded if M1 < 0.
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This is illustrated in Figure 4.6.

M

M

M1 M2

γ

Case 1

M
M

γ

Case 2

M
M

γ

Case 3

Figure 4.6: Cases for γ(M) > 0

In summary of −1 < λ+ :

1. if b > 1 and if M >
−L(a− 1) − 4(1− ab)

b− 1
, or

2. if b < 1 and if M <
−L(a− 1) − 4(1− ab)

b− 1
, or

3. if one of conditions (a) or (b) hold, and if one of conditions (i), (ii), or (iii) hold

(a) b > 1 and if M 6
−L(a− 1) − 4(1− ab)

b− 1

(b) b < 1 and if M >
−L(a− 1) − 4(1− ab)

b− 1

(i) if γ(M) > 0, then γ(M) > 0 for all M

(ii) if γ(M) = 0, then γ(M) > 0 for all M 6=M

(iii) if γ(M) < 0, then M <M1 or M >M2, where the first of these conditions can

be discarded if M1 < 0.

then the conditions for −1 < λ+ are met.

Right-hand Side (λ+ < 1)

In this case we investigate the following inequality.

L(a− 1) +M(b− 1) +
√
D < 0
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=⇒
√
D < −L(a− 1) −M(b− 1).

If −L(a − 1) −M(b − 1) 6 0, then the above inequality is never satisfied. If instead

−L(a− 1) −M(b− 1) > 0, that is, when

1. if b > 1 and M <
−L(a− 1)

b− 1
, or

2. if b < 1 and M >
−L(a− 1)

b− 1

then both sides are nonnegative and we can safely square both sides to obtain

D < (−1)2[L(a− 1) −M(b− 1)]2. (4.14)

Substituting in the value of D and expanding (4.14) we obtain

0 < bM2(ab− 1) + LM(1− a2b2) + aL2(ab− 1).

Dividing both sides of this inequality by ab − 1 will change the sign of the inequality

since 1− ab > 0.

bM2 + aL2 − (1+ ab)LM < 0

=⇒ (bM− L)(M− aL) < 0. (4.15)

Note that since 1 − ab > 0 (Case i), then a <
1

b
, and hence aL <

L

b
. We have two cases

to consider for when (4.15) is true.

1. M <
L

b
and M > aL, which implies that aL < M <

L

b
.

2. M >
L

b
and M < aL. However, this can never occur since aL <

L

b
, so we discard

this case.

In summary, we conclude that λ+ < 1 if aL < M <
L

b
.

Summary of Conditions for Stability when 1− ab > 0 (Case i
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A condition from each of the following four cases must be true for the stability of EP4

to occur.

1. −1 < λ− if:

(a) b > 1 and M >
−L(a− 1) − 4(1− ab)

b− 1
and M1 < M <M2, or

(b) b < 1 and M <
−L(a− 1) − 4(1− ab)

b− 1
and M1 < M <M2.

2. λ− < 1 if:

(a) b > 1 and if M <
−L(a− 1)

b− 1
, or

(b) b < 1 and if M >
−L(a− 1)

b− 1
, or

(c) b > 1, M >
−L(a− 1)

b− 1
, and either M < aL or M > L

b
, or

(d) b < 1, M 6
−L(a− 1)

b− 1
, and either M < aL or M > L

b
.

3. −1 < λ+ if:

(a) b > 1 and if M >
−L(a− 1) − 4(1− ab)

b− 1
, or

(b) b < 1 and if M <
−L(a− 1) − 4(1− ab)

b− 1
, or

(c) one of conditions (a) or (b) hold, and if one of conditions (i), (ii), or (iii) hold

(a) b > 1 and if M 6
−L(a− 1) − 4(1− ab)

b− 1

(b) b < 1 and if M >
−L(a− 1) − 4(1− ab)

b− 1

(i) if γ(M) > 0, then γ(M) > 0 for all M

(ii) if γ(M) = 0, then γ(M) > 0 for all M 6=M

(iii) if γ(M) < 0, then M <M1 or M >M2, where the first of these conditions

can be discarded if M1 < 0.

4. λ+ < 1 if:
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(a) b > 1 and M <
−L(a− 1)

b− 1
and aL < M <

L

b
, or

(b) b < 1 and M >
−L(a− 1)

b− 1
and aL < M <

L

b
.

Stability Interpretation when 1− ab > 0 (Case i)

For the coexistence equilibrium point,
(
M− aL

1− ab
,
L− bM

1− ab

)
, to have biological rele-

vance and be distinct from the other three equilibrium points, then x > 0 and y > 0 must

be true. Since 1 − ab > 0 (Case i), then to ensure that this condition is met, it must be

that

1.
M− aL

1− ab
> 0 =⇒ M− aL > 0 =⇒ M > aL, and

2.
L− bM

1− ab
> 0 =⇒ L− bM > 0 =⇒ M <

L

b
.

The previous conditions together require that aL < M < L
b

since 1 − ab > 0, which

implies that aL < L
b

.

This condition for biological relevance indicates that condition 2 parts (c) and (d) can

be discarded. The remaining conditions indicate that stability for EP4 is possible. We

will discuss the effect harvesting has on the stability of EP4 in the next chapter.

4.3.2 Real Eigenvalues Case (ii) 1− ab < 0

Throughout this section, we assume 1− ab < 0, which implies ab > 1. Multiplying (4.5)

by (1−ab) on all sides changes the direction of the inequality signs. Thus (4.5) becomes

0 < L(a− 1) +M(b− 1)±
√
D < −4(1− ab). (4.16)

Again, for the coexistence equilibrium point,
(
M− aL

1− ab
,
L− bM

1− ab

)
, to have biological

relevance and be distinct from the other three equilibrium points, then x > 0 and y > 0.

Since 1− ab < 0 (Case ii), then to ensure that this condition is met, it must be that
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1.
M− aL

1− ab
> 0 =⇒ M− aL < 0 =⇒ M < aL, and

2.
L− bM

1− ab
> 0 =⇒ L− bM < 0 =⇒ M >

L

b
.

Since 1−ab < 0, then L
b
< aL, and conditions 1 and 2 together require that L

b
< M < aL.

We keep this in mind as we look at λ+ and λ− separately.

Stability Conditions from λ−

For the stability of EP4 in this case, recall the necessary (but not sufficient) condition

|λ−| < 1, which implies

0 < L(a− 1) +M(b− 1) −
√
D < −4(1− ab). (4.17)

To find the stability conditions given by λ−, we will separately look at the left-hand side

of (A.2) which corresponds to λ− < 1, and the right-hand side of (A.2) which corresponds

to −1 < λ−.

Left-hand Side (λ− < 1):

Consider the left-hand side of (A.2). Because multiplying by (1 − ab) changes the

direction of the inequality,

λ− < 1 =⇒ 0 < L(a− 1) +M(b− 1) −
√
D

√
D < L(a− 1) +M(b− 1). (4.18)

Note that since D > 0 (Case II), then
√
D > 0. Thus we are guaranteed that the right-

hand side of the inequality is also nonnegative.

We can then square both sides of (A.3) to get:

(√
D
)2
< (L(a− 1) +M(b− 1))2
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=⇒ D < M2(b− 1)2 + 2LM(a− 1)(b− 1) + L2(a− 1)2. (4.19)

Plugging in the value of D gives

M2(b2 − 4ab2 + 2b+ 1) + 2LM(2a2b2 + ab− a− b− 1) + L2(a2 − 4a2b+ 2a+ 1)

< M2(b2 − 2b+ 1) + 2LM(ab− a− b+ 1) + L2(a2 − 2a+ 1).

Upon simplification and collecting like terms, we obtain

0 < bM2(ab− 1) + LM(1− a2b2) + aL2(ab− 1) (4.20)

and since 1− ab < 0, then ab− 1 > 0. Dividing (A.5) by (ab− 1) we get

0 < bM2 − (1+ ab)LM+ aL2 (4.21)

which is a quadratic in M.

Let φ = bM2 − (1 + ab)LM + aL2. We set φ = 0 and use the quadratic formula to

find the factored form of the equation (bM− L)(M− aL) = 0.

Then (A.6) becomes (bM − L)(M − aL) > 0. Thus (A.6) is true in two cases: either

both factors are greater than 0 or both factors are less than 0. That is

1. M > L
b

and M > aL, or

2. M < L
b

and M < aL.

Since ab > 1, we know a > 1
b

. Then multiplying by L on both sides gives us aL > L
b

.

Then case 1 implies that M > aL, and case 2 implies M < L
b

.

In summary, λ− < 1 if M < L
b

or if M > aL. However, this violates the condition

for the biological relevance of the coexistence equilibrium point. To see additional work,

consult Appendix A.
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Thus the condition for biological relevance can never be simultaneously true with the

conditions for stability when 1−ab < 0. We conclude that in Case (ii), regardless of how

much species x is being harvested, EP4 must be unstable.

4.3.3 Implications of an Unstable Coexistence Equilibrium Point

To conclude this chapter, we will briefly consider what can happen to the stability of

the exclusion equilibrium points in the case that the coexistence equilibrium point is

unstable. Conducting a full analysis of this question is beyond the scope of this thesis,

but by examining some examples we can gain some insight about possible outcomes.

When the coexistence equilibrium point, EP4, is unstable, we observe multiple pos-

sible behaviors of the system. Without harvesting, it is possible to have no stable equi-

librium points. For example, taking our system with parameter values a = 2,b = 2,L =

1.4,K = 3, and u = 1, then 1− ab < 0, so we know EP4 is unstable. Using the conditions

for stability for the exclusion equilibrium points, we observe that neither M
a
< L < 2 nor

L
b
< M < 2 is satisfied. Then neither of these equilibrium points is stable, and in every

case the extinction equilibrium point is unstable.

If we add harvesting in this example, it is possible for both exclusion equilibrium

points to be stable. Taking the parameter values from above while changing the value of

the harvesting parameter, u, to be 0.333, we observe that the conditions for stability for

both EP2 and EP3 are satisfied. The long-term population values for species x and y will

depend on the initial population values, i.e. the initial conditions of the system.

It is also possible for one of the exclusion equilibrium points to be stable while the

other is not. Continuing our example, consider when u = 0.08. In this case, we see that

the conditions for stability are satisfied for EP2 but not for EP3. That is, if we harvest

92% of species x, the population values will tend towards the extinction of species x and

the persistence of species y regardless of the initial values of each population.
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Chapter 5

Bifurcation Analysis

Bifurcation diagrams show the relationship between a bifurcation parameter and the

long term behavior of a system. When the dynamics of a system drastically change

based on the value of some parameter, a bifurcation diagram allows us to visualize

where and how this happens. A bifurcation diagram illustrates the asymptotic behavior

of a system by graphing a portion of the iterates of a solution at each value of the

bifurcation parameter. Any vertical slice of a bifurcation diagram indicates the period

number at that bifurcation value, and dense black strips indicate chaos.

To create our bifurcation diagrams, we first specify the parameter values for each di-

agram. We then use the program MATLAB to calculate the first 500 iterates of a solution,

using an initial condition slightly perturbed from EP4, and then plot the last 200 iterates

from these calculations. This gives us the endpoint behavior. Thus, where a single value

appears in a vertical strip of the diagram, the species has the same population value

for 300 iterates, and this indicates an equilibrium point. Where two points appear in

a vertical strip, the species oscillates between two population values. This indicates a

two period solution. We can alter the number of iterates calculated and plotted with no

change in the diagram.

Below we explore a specific case using the bifurcation parameter vwhich is equivalent
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to 1−u. We have already noted that different levels of harvesting can impact the stability

of the other equilibrium points in the system, and a bifurcation diagram can give us

additional insight into this effect on the stability of EP4. We plot v, a term indicating

the proportion of population x that is harvested, instead of u, the proportion of the

population that is retained after harvesting, for ease of interpretation. Note that 0 6 v <

1. The value v = 0 implies u = 1, which indicates no harvesting of species x, while v

close to 1 indicates that almost the entire population of species x has been harvested.

Recall that for biological relevance, M > 0, i.e. u > e−K which implies v 6 1− e−K. Thus

we see the values of v in the diagram do not extend all the way to 1. The values of v > 1

have no biological meaning.

We will look at an example of a bifurcation diagram for species x and y when a < 1

and b < 1. This is an example of when 1 − ab > 0 (Case i) and can be seen in Figure

5.1. It is clear by inspection that chaos, in the sense of Li and Yorke, exists. The non-

pattern, or chaotic, behavior occurs when approximately 0 < v < 0.12. Note that chaos

disappears as v increases towards 1; that is, as harvesting of species x increases, period

halving occurs and the system stabilizes. With the parameter values in this example,

an eight period exists from approximately 0.13 < v < 0.16, a four period exists from

approximately 0.16 < v < 0.27, a two period exists from approximately 0.27 < v < 0.6,

and an equilibrium exists starting at v = 0.6 for both species. Starting at approximately

v = 0.84, species x goes extinct while species y reaches its carrying capacity.

In the example given in Figure 5.1, chaos exists if harvesting is below 12% of species

x, while harvesting 70% of species x results in the persistence of both species. How-

ever, with 85% harvesting, species x goes extinct while species y persists and eventually

reaches and maintains a population size determined by its carrying capacity.

These same system dynamics can be seen in Figure 5.2, which is created using the

same parameter values for a, b, K, and L as is used in the example given in Figure

5.1. Using Matlab we observe the behavior of the first 300 iterations of both species
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populations given a value of u, the proportion of species x that remains after harvesting.

In the top left diagram when u = 0.9, that is, only 10% of the species x population is

harvested, chaos occurs. In the top right diagram when u = 0.8, i.e. 20% harvesting

occurs, both species x and species y display a four period. The middle left diagram

shows that both species display a two period when u = 0.6, that is, 40% of the species x

population is harvested. In the middle right diagram when u = 0.3, i.e. 70% harvesting,

both species persist at steady population values. This indicates that species x and species

y are at an equilibrium and will coexist in the environment. Finally, in the bottom

diagram we observe the effect of heavy harvesting when u = 0.15, that is, 85% harvesting

of the species x population. In this scenario, species x goes extinct, while species y

persists at its carrying capacity.

Clearly, harvesting can change the dynamics of the system. Both species are affected

by changing the proportion of species x harvested, since the population of species y

depends on the population of species x. With small amounts of harvesting, we observe

chaos. As harvesting increases, we observe four periods, two periods, stability, and

extinction.
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Figure 5.1: An example of bifurcation of harvesting with species x and y when ab < 1
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Figure 5.2: For a = 0.6,b = 0.5,K = 3,L = 1.9 and u = 0.9 (top left), u = 0.8 (top right),
u = 0.6 (middle left), u = 0.3 (middle right), or u = 0.15 (bottom).
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Chapter 6

Biological Interpretation and Summary

Our analysis of the system from Equations (1.1) and (1.2) has included multiple tech-

niques. We have found the existence and value of the uniform bound of our system.

The existence of the bound indicates neither species x nor species y can grow without

restraint due to the limitations of resources in the system. We have also derived the

isoclines and the equilibrium points of our system. We then have proceeded to analyze

the stability of the equilibrium points and have performed a bifurcation analysis of the

coexistence equilibrium point in our system in order to glean additional insights into the

effects of harvesting of the population of species x.

It is clear from our work that the extinction equilibrium point (0, 0) is unstable. This

indicates that for even small values of the populations of species x and species y, at least

one of the species will increase in population size instead of becoming extinct.

The exclusion equilibrium point (0,L) is locally asymptotically stable under the con-

dition
K+ ln(u)

a
< L < 2 (i.e.

M

a
< L < 2). This condition is more easily met as

harvesting is increased. That is, species x will become extinct with sufficient harvesting.

Likewise, we have determined that if M is bounded such that
L

b
< M < 2, then

the exclusion equilibrium point (M, 0) is locally asymptotically stable. Recall that as

harvesting is increased the condition L < bM, for any given L, is harder to satisfy, while
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M < 2 is more easy to satisfy. That is, when M < 2, additional harvesting makes it more

difficult for species x to persist and species y to become extinct.

If harvesting increases, i.e. as M decreases, then if the intercepts of the isoclines

switch positions; that is, if M > L
b

becomes M < L
b

and if L < M
a

becomes L < M
a

,

then the isoclines s1 and s2 also switch positions. Then the system can change from a

scenario where (M, 0) is LAS and y goes extinct to a system where (0,L) is LAS and

species x goes extinct. We conclude that with sufficient harvesting, an otherwise stable

x population will go extinct.

When s1 and s2 intersect in Quadrant 1, then we obtain the fourth equilibrium point

EP4. This coexistence equilibrium point occurs in two cases. In the case that 1− ab > 0,

EP4 may be stable if the necessary conditions are met. Then it is possible for species

x and species y to coexist in a stable manner. In the case that 1 − ab < 0, EP4 is

unstable regardless of harvesting. In the event that EP4 is unstable, any, none, or all of

the exclusion equilibrium points may become stable. More analysis of this situation is

discussed in further detail by Luis et al. [13].

When we analyze the bifurcation diagram, we see the asymptotic, or eventual, be-

havior of a solution. We see from the bifurcation diagram example that with sufficient

harvesting, period doubling and chaotic behavior can occur.

We observe changes in stability as we vary the proportion of species x that is har-

vested. We can conclude that the coexistence of species x and species y can occur for

specific harvesting conditions. As harvesting is decreased, we also see that period dou-

bling can replace a single equilibrium point in the system for species x. That is, instead

of the population remaining at a particular size, with sufficient harvesting species x may

oscillate between two population sizes.

Thus, we have found that harvesting has the possibility to significantly alter the dy-

namics of the system. Sufficient harvesting can result in the extinction of the harvested

species. In addition, harvesting has the ability to change stability, eliminate chaos, pro-
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duce period halving, and cause extinction.
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Appendix A

Recall that this work refers to Case (ii) of Case II.

Throughout this section, we assume 1 − ab < 0, which implies ab > 1. Multiplying

(4.5) by (1 − ab) on all sides changes the direction of the inequality signs. Thus (4.5)

becomes

0 < L(a− 1) +M(b− 1)±
√
D < −4(1− ab). (A.1)

We will look at λ+ and λ− separately.

Stability Conditions from λ−

For the stability of EP4 in this case, recall the necessary (but not sufficient) condition

|λ−| < 1, which implies

0 < L(a− 1) +M(b− 1) −
√
D < −4(1− ab). (A.2)

To find the stability conditions given by λ−, we will separately look at the left-hand side

of (A.2) which corresponds to λ− < 1, and the right-hand side of (A.2) which corresponds

to −1 < λ−.

Left-hand Side (λ− < 1):

Consider the left-hand side of (A.2). Because multiplying by (1 − ab) changes the
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direction of the inequality,

λ− < 1 =⇒ 0 < L(a− 1) +M(b− 1) −
√
D

√
D < L(a− 1) +M(b− 1). (A.3)

(A.3) is only true if L(a− 1) +M(b− 1) > 0. We then get two cases.

1. If b > 1, then we obtain the condition M >
−L(a− 1)

b− 1
.

2. If b < 1, then we obtain the condition M <
−L(a− 1)

b− 1
.

Suppose the conditions from one of these cases hold. We can then square both sides of

(A.3) to get: (√
D
)2
< (L(a− 1) +M(b− 1))2

=⇒ D < M2(b− 1)2 + 2LM(a− 1)(b− 1) + L2(a− 1)2. (A.4)

Substituting in the value of D gives

M2(b2 − 4ab2 + 2b+ 1) + 2LM(2a2b2 + ab− a− b− 1) + L2(a2 − 4a2b+ 2a+ 1)

< M2(b2 − 2b+ 1) + 2LM(ab− a− b+ 1) + L2(a2 − 2a+ 1).

Upon simplification and collecting like terms, we obtain

0 < bM2(ab− 1) + LM(1− a2b2) + aL2(ab− 1) (A.5)

and since 1− ab < 0, then ab− 1 > 0. Dividing (A.5) by (ab− 1) we obtain

0 < bM2 − (1+ ab)LM+ aL2 (A.6)

which is a quadratic in M.
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Let φ = bM2 − (1 + ab)LM + aL2. We set φ = 0 and use the quadratic formula to

find the factored form of the equation (bM− L)(M− aL) = 0.

Then (A.6) becomes (bM − L)(M − aL) > 0. Thus (A.6) is true in two cases: either

both factors are greater than 0 or both factors are less than 0. That is

1. M > L
b

and M > aL, or

2. M < L
b

and M < aL.

Since ab > 1, we know a > 1
b

. Then multiplying by L on both sides gives us aL > L
b

.

Then case 1 implies that M > aL, and case 2 implies M < L
b

.

In summary, λ− < 1 if

1. b > 1, M >
−L(a− 1)

b− 1
and either M < L

b
or M > aL, or

2. b < 1, M <
−L(a− 1)

b− 1
and either M < L

b
or M > aL.

Right-hand Side (−1 < λ−):

Since multiplying by (1− ab) changes the direction of the inequality,

−1 < λ− =⇒ L(a− 1) +M(b− 1) −
√
D < −4(1− ab).

This implies

L(a− 1) +M(b− 1) + 4(1− ab) <
√
D. (A.7)

We have two possibilities.

1. If L(a− 1) +M(b− 1) + 4(1− ab) < 0, that is,

(a) for b > 1 if M <
−L(a−1)−4(1−ab)

b−1
, or

(b) for b < 1 if M >
−L(a−1)−4(1−ab)

b−1
.

Then (A.7) is clearly true and the condition for −1 < λ− is met.
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2. If instead L(a − 1) +M(b − 1) + 4(1 − ab) > 0, we note the following conditions

must hold

(a) for b > 1, M > −L(a−1)−4(1−ab)
b−1

, or

(b) for b < 1 if M 6 −L(a−1)−4(1−ab)
b−1

.

These conditions ensure that the left-hand side of (A.7) is nonnegative so that we

may square both sides.

Squaring both sides of (A.7) we get

(L(a− 1) +M(b− 1) + 4(1− ab))2 <
(√
D
)2

, (A.8)

and plugging in the value of D and collecting like terms gives

bM2(ab−1)+aL2(ab−1)+(1−a2b2)LM+2L(a−1)(1−ab)+2M(b−1)(1−ab)+4(1−ab)2 < 0.

(A.9)

Since 1− ab < 0 (Case ii) dividing (A.9) by (ab− 1) gives

bM2 + aL2 − (1+ ab)LM− 2L(a− 1) − 2M(b− 1) − 4(1− ab) < 0, (A.10)

which is a quadratic in M.

Recall γ(M) = bM2 + aL2 − (1+ ab)LM− 2L(a− 1) − 2M(b− 1) − 4(1− ab). Then

−1 < λ− when γ(M) < 0. We know that γ is an upward-facing parabola since b,

which is the coefficient of M2, is positive. Recall that the roots of γ are as follows:

M1 =
1

2b
[2(b− 1) + (1+ ab)L

−
√

(1− 2ab+ a2b2)L2 + (4ab2 + 4ab− 4b− 4)L+ (4b2 + 8b− 16ab2 + 4)
]

M2 =
1

2b
[2(b− 1) + (1+ ab)L

+
√

(1− 2ab+ a2b2)L2 + (4ab2 + 4ab− 4b− 4)L+ (4b2 + 8b− 16ab2 + 4)
]
.
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As long as the discriminant of M1 and M2 is nonnegative (and thus M1 and M2

are real), it is possible for γ(M) < 0 for some M between M1 and M2. Since the

quadratic is upward-facing, the critical point must be a minimum. If the minimum

value of γ is negative, we are guaranteed that γ is negative between M1 and M2.

To find the minimum value of γ, we first take the derivative of γ and set it equal

to zero in order to find the critical point, M, as follows:

dγ

dM
= 2bM− (1+ ab)L− 2(b− 1)

set
= 0

⇐⇒ M =
1

2b
[(1+ ab)L+ 2(b− 1)] .

Finally, to find the minimum of γ we evaluate γ at M:

γ(M) =
−1

4b

[
(1− ab)2L2 + 4(b+ 1)(ab− 1)L+ 4

(
b2(1− 4a) + 2b+ 1

)]
.

Letting

τ(L) = (1− ab)2L2 + 4(b+ 1)(ab− 1)L+ 4
(
b2(1− 4a) + 2b+ 1

)
the above equation becomes γ(M) =

−1

4b
τ(L). Note that τ is a quadratic in L.

Recall that within this case if γ(M) is negative, there will be a region of M for

which γ is negative. If γ(M) is negative, −1 < λ−, and there is a possibility for the

stability of EP4, as seen in Figure A.1.

M

M

M1 M2

γ

L

L
L1L2

τ

Figure A.1: The regions where γ is negative for M and τ is positive for L
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In order to show where γ(M) is negative, we first notice that since b > 0, the first

factor of γ(M) is negative. It is then sufficient to show that where τ is positive,

γ(M) is negative so that stability is possible.

Note that the coefficients of L2 and L are positive. This is since we are assuming

1 − ab < 0, i.e., ab − 1 > 0. Thus clearly τ > 0 if a < 1
4
. We can also see the

possibility that τ > 0 for additional values of a, which we will now explore.

The function τ is an upward-facing parabola since (1−ab)2, the coefficient of L2, is

clearly positive. This is illustrated in Figure A.1. Since τ is upward-facing, we are

guaranteed that τ > 0 for some region or regions of L.

In order to find where these regions of L may occur, we use the quadratic formula

and get that the roots of L are as follows:

L1 =
1

(1− ab)

[
2(b− 1) − 4b

√
a
]
, L2 =

1

(1− ab)

[
2(b− 1) + 4b

√
a
]
.

In order to explore the roots of τ more fully, we let

L11 = 2(b− 1) − 4b
√
a and L22 = 2(b− 1) + 4b

√
a, (A.11)

so L1 and L2 become :

L1 =
1

(1− ab)
(L11) and L2 =

1

(1− ab)
(L22). (A.12)

Note that L11 is clearly less than L22. Since the first factor of L1 and L2 is negative

because 1− ab < 0 (Case ii), then L2 is clearly less than L1.

We make a note about the behavior of τ by determining where its minimum occurs.
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In order to find the critical point, L, we take the derivative and set it equal to zero:

dτ

dL
= 2(1− ab)2L+ 4(b+ 1)(ab− 1)

set
= 0

=⇒ L =
2(b+ 1)

1− ab
.

Clearly L < 0 since the numerator is positive and 1 − ab < 0 (Case ii). Mathemat-

ically, the minimum of τ occurs when L < 0, which indicates that at least one of

the roots of τ must be negative and thus discarded when looking at the biological

application of this system introduced by Equations (1.1) and (1.2).

The root L2 must be less than L and thus is guaranteed to be negative. We then

discard root L2 since it does not have a biological application.

(a) If L1 > 0, then τ(L) > 0 for L > L1.

(b) If L1 < 0, then τ(L) > 0 for all L > 0.

Note that L1 < 0 =⇒ L11 > 0 =⇒ 2(b + 1) − 4b
√
a > 0. We can rewrite

our new result as a 6 1
4
+ b + 1

b2 . This is a more generalized statement of

the earlier observation that τ > 0 if a < 1
4
. Recall that L denotes the carrying

capacity for our y population, so that L > 0 by assumption. Since L2 < 0 and

L1 < 0, we are guaranteed that L > L1 regardless of the parameter values for

a,b, and u.

When τ > 0, then γ(M) < 0, which means that there exists a range of values for M

in which for M1 < M <M2, then −1 < λ−.

In summary of −1 < λ−:

1. If b > 1 and if M <
−L(a−1)−4(1−ab)

b−1
, or

2. If b < 1 and if M >
−L(a−1)−4(1−ab)

b−1
, or
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3. If b > 1, M > −L(a−1)−4(1−ab)
b−1

, γ(M) < 0, and M1 < M <M2, or

4. If b < 1, M 6 −L(a−1)−4(1−ab)
b−1

, γ(M) < 0, and M1 < M <M2,

then the conditions for −1 < λ− are met.

Stability Conditions from λ+

To find where EP4 might be stable, we now look at the conditions given by λ+. As before,

we will look at the left-hand side and right-hand side of the inequality separately. For

stability it is necessary

|λ+| < 1 =⇒ −1 < λ+ < 1 =⇒ 0 < L(a− 1) +M(b− 1) +
√
D < −4(1− ab).

Left-hand Side (λ+ < 1):

Recall since 1− ab < 0, then λ+ < 1 becomes

0 < L(a− 1) +M(b− 1) +
√
D. (A.13)

This implies

−M(b− 1) − L(a− 1) <
√
D. (A.14)

We then have the following cases.

1. If −M(b− 1) − L(a− 1) < 0, that is,

(a) for b > 1 if M >
−L(a−1)

b−1
, or

(b) for b < 1 if M <
−L(a−1)

b−1
.

Then (A.14) is clearly true and the condition for λ+ < 1 is met.

2. If instead −M(b− 1) − L(a− 1) > 0, we note the following conditions must hold
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(a) for b > 1, M 6 −L(a−1)
b−1

, or

(b) for b < 1, M > −L(a−1)
b−1

.

These conditions guarantee that both sides of (A.14) are nonnegative, and we can

safely square both sides:

M2(b− 1)2 + 2LM(a− 1)(b− 1) + L2(a− 1)2 < D.

Note that this is the reverse inequality of (A.4), so upon simplification we get

bM2(ab− 1) + LM(1− a2b2) + aL2(ab− 1) < 0. (A.15)

Dividing by (ab− 1) which is positive since we are in Case (ii), this simplifies to

bM2 − (1+ ab)LM+ aL2 < 0 (A.16)

which is a quadratic in M, and is the same inequality as in (A.6) but with the

reverse direction.

Using our knowledge from the case of λ− < 1, the left-hand side of (A.16) factors

into (bM − L)(M − aL). Thus (A.16) holds when one factor is negative and one

factor is positive, that is

(a) M > L
b

and M < aL or

(b) M < L
b

and M > aL.

Since we are in Case (ii) where ab > 1, we know a > 1
b

. Then multiplying by L on

both sides gives us aL > L
b

. Then case (a) implies that L
b
< M < aL, and case (b)

contains two conditions that can never be simultaneously true. Then (A.16) implies

L
b
< M < aL.
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In summary of λ+ < 1:

1. If b > 1 and if M >
−L(a−1)

b−1
, or

2. If b < 1 and if M <
−L(a−1)

b−1
, or

3. If b > 1, M 6 −L(a−1)
b−1

, and L
b
< M < aL, or

4. If b < 1, M > −L(a−1)
b−1

, and L
b
< M < aL,

then the conditions for λ+ < 1 are met.

Right-hand Side (−1 < λ+):

Recall since 1− ab < 0, then −1 < λ+ becomes

L(a− 1) +M(b− 1) +
√
D < −4(1− ab). (A.17)

To simplify this inequality, we would like to isolate the
√
D term as such:

√
D < −L(a− 1) −M(b− 1) − 4(1− ab) (A.18)

and then square both sides. The above inequality is only true if L(a − 1) +M(b − 1) +

4(1− ab) < 0. We then get two cases.

1. If b > 1 then we obtain the condition M <
−L(a−1)−4(1−ab)

b−1
.

2. If b < 1 then we obtain the condition M >
−L(a−1)−4(1−ab)

b−1
.

If either of the above cases hold, then both sides of (A.18) will be nonnegative, and

we can square both sides of (A.18) to reach:

(√
D
)2
< (−1)2 [L(a− 1) +M(b− 1) + 4(1− ab)]2

which is the reverse inequality of (A.8) that we see in the −1 < λ− case.
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As in the −1 < λ− case, simplifying and collecting like terms we obtain:

bM2(ab−1)+aL2(ab−1)+(1−a2b2)LM+2L(a−1)(1−ab)+2M(b−1)(1−ab)+4(1−ab)2 > 0

(A.19)

Since 1− ab < 0 (Case ii), then ab− 1 > 0. Dividing (A.19) by (ab− 1) gives us

bM2 + aL2 − (1+ ab)LM− 2L(a− 1) − 2M(b− 1) − 4(1− ab) > 0 (A.20)

which is still a quadratic in M. This can also be written as γ(M) > 0, where γ is an

upward-facing parabola.

Using our work from the −1 < λ− case, we know that the minimum of γ is found at

M, the roots of γ (when real) are M1 and M2, and the minimum of γ is γ(M). From here

we see that we have three possible cases illustrated in Figure A.2:

1. If γ(M) < 0 then γ(M) > 0 if M < M1 (for M1 > 0 else discard) or M > M2. We

note that if both M1 and M2 are negative, γ(M) > 0 for all M > 0.

2. If γ(M) = 0 then γ(M) > 0 for all M 6=M.

3. If γ(M) > 0 then γ(M) > 0 for all M.

Then −1 < λ+ if one of the previous conditions holds.

M

M

M1 M2

γ

Case 1

M
M

γ

Case 2

M
M

γ

Case 3

Figure A.2: Cases for γ(M) > 0
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Summary of Conditions for Stability when 1− ab < 0 (Case ii)

A condition from each of the following four cases must be true for the stability of EP4

to occur.

1. λ− < 1 if :

(a) b > 1, M >
−L(a− 1)

b− 1
and either M < L

b
or M > aL, or

(b) b < 1, M <
−L(a− 1)

b− 1
and either M < L

b
or M > aL.

2. −1 < λ− if:

(a) b > 1 and if M <
−L(a−1)−4(1−ab)

b−1
, or

(b) b < 1 and if M >
−L(a−1)−4(1−ab)

b−1
, or

(c) b > 1, M > −L(a−1)−4(1−ab)
b−1

, γ(M) < 0, and M1 < M <M2, or

(d) b < 1, M 6 −L(a−1)−4(1−ab)
b−1

, γ(M) < 0, and M1 < M <M2.

3. λ+ < 1 if:

(a) b > 1 and if M >
−L(a−1)

b−1
, or

(b) b < 1 and if M <
−L(a−1)

b−1
, or

(c) b > 1, M 6 −L(a−1)
b−1

, and L
b
< M < aL, or

(d) b < 1, M > −L(a−1)
b−1

, and L
b
< M < aL.

4. −1 < λ+ if:

(a) either b > 1 and M <
−L(a−1)−4(1−ab)

b−1
, or b < 1 and M >

−L(a−1)−4(1−ab)
b−1

, and

(b) one of the following holds:

i. γ(M) < 0 and if M <M1 (for M1 > 0 else discard) or M >M2, or

ii. γ(M) = 0 and if M 6=M, or

iii. γ(M) > 0.
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