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Abstract 

DETERMINATION OF RATES AND PATTERNS OF RECOMBINATION AT THE 
MAIZE RED COLOR (R 1)  LOCUS 

By William R. Dietrich, B .A. 

A thesis submitted in partial fulfil lment of the requirements for the degree of 
Master of Science at Virginia Commonwealth University 

Virginia Commonwealth University, 1998 

Director: Dr. William B. Eggleston, Ph.D. 
Assistant Professor 
Department of Bio logy 

Homologous recombination has been studied in many p lant and animal 

systems. In maize, most recombination occurs intragenically. The current 

study assessed the frequency and location of meiotic recombination at the 

maize red color (r1) gene. Three independent mutant (colorless seed) alleles 

derived from the colored seed al lele, R-sc: 124, were made heterozygous with 

the colored plant al lele, r-r:n 142. Each mutant resulted from the insertion of a 

Dissociation (Ds) transposable element into the 3' end of R-sc: 1 24. In the 

presence of Activator (Ac), each Ds insertion al lele (r-sc:mutables) produced 

spotted seeds and germinal reversion to ful ly  colored seeds due to the 

vi 

excision of Ds. In the absence of Ac, each insertion al lele stable and produces 
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colorless or very faintly pigmented seeds. The r-sc:mutablelr-r:n 142 

heterozygotes were pol l inated with R-g:Bpale, an r1 allele that produces pale 

brown seeds, in  the absence of Ac, to recover revertant progeny l ikely resulting 

from recombination rather than Os excision. Revertant progeny were self­

pol l inated to verify paternity. Molecular analysis using polymerase chain 

reaction, Southern blot and DNA sequence analyses showed that 92 out of 94 

of the revertant al leles arose via a cross over event between the r-sc:mutable 

and r-r:n 142 chromosomes. The remaining two revertant al leles l ikely arose 

via gene conversion, double cross over or cryptic Ac activity. The ratio of genetic 

to physica l distance ( 1 /p) calculated for the 3' end of r1 is approximately 0 .07 

cM/kb, which is comparable to 1 /  p values calculated for a 1 ,  b 1 ,  b z 1 and wx 1 

loci. Given the average value for 1 /p throughout the genome is 0. 00021 cM/kb, 

this analysis supports the hypothesis that recombination in maize primari ly 

occurs i ntragenical ly and that r1 serves as a recombinat ion hot spot in the 

maize genome. Molecular analysis also revealed that the majority of 

exchanges occurred at the 3' end of r1 as has been previously observed. The 

pattern of recombination observed at r1 is different from those observed at 

other maize loci. The recovery of substantial ly more cross over events (92/94) 

relative to non-cross over events (2/94) or the nature of the recombination event 

is consistent with previous observations at a 1, b 1 and bz 1 .  The frequency of 

potential gene conversion is estimated at 3. 97 x 1 o-s and the gene conversion 
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tract length is maximally 2 .5  kb. The possibi l ity of the influence of insertional 

mutations, amount and structure of DNA sequence homology, cis- and trans­

factors and preference for cross over versus non-cross over events could 

explain the observed pattern at r1 .  



Introduction 

Homologous recombination occurring in eukaryotic genomes can effect 

a change in genetic diversity (Schnable et a/. 1 996) as wel l  as repair double 

strand breaks in DNA. Two products of recombination in eukaryotic genomes 

are crossing over and gene conversion. Crossing over involves the reciprocal 

exchange of information between homologous DNA duplexes, whereas gene 

conversion is the unidirectional transfer of information without reciprocity 

(Roeder 1 990). Central to these processes is the Hol l iday Junction and its 

resolution (Hol l iday 1 97 4) (Figure 1 ). Several models (see Stahl 1 994 for 

review) have been postulated to explain the mechanistic basis for 

recombination and gene conversion; however, most retain the central tenets of 

Hol l iday's original model. An important aspect of current models is the 

recognition of homologous sequences to repair double strand gaps which 

induce recombination. Several models have proposed the involvement of 

multiple proteins and/or the synaptonemal complex to effect homology 

recognition (Roeder 1 990; 1 995). Recombination models also propose that 

once recognition occurs, the broken ends are degraded by a 5' to 3' 

exonuclease leaving overhanging 3' ends which invade the homologous 

template via the action of Rec-A-I ike proteins. Each invading strand acts as a 

primer to init iate DNA synthesis using the intact duplex as template (F igure 1 ) .  
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Breakage and rejoining of the two resulting Holl iday junctions formed yield two 

possible arrangements, crossing over or gene conversion, depending on 

whether the inner or outer strands are cleaved and re-ligated. 

Recombination has been studied in many plant systems i ncluding 

Arab idops is (e.g. , Assaad and Signer 1 992; Mourad et a/. 1 994}, Brass ica (e.g. , 

Gal et a/. 1 991 }, Zea mays (Nelson 1 968; Moore and Creech 1 972; Freel ing 

1 976; Dooner and Kermicle 1 971 , 1 976, 1 986; Dooner 1 986; Kermicle 1 988; 

Dooner and Ralston 1 990; Robbins et a/. 1 991 ; Sudupak et a/. 1 993; Civardi et 

a/. 1 994; Hu and Hulbert 1 994; Richter et a/. 1 995; Eggleston et a/. 1 995; 

Patterson et a/. 1 995; Xu et a/. 1 995; Schnable et a/. 1 996; Timmermans et a/. 

1 996, 1 997; Dooner and Martinez-Ferez 1 997; Okagaki and Wei 1 1 997), 

N icot iana tabacum (Lee et a/. 1 990; Peterhans et a/. 1 990; Tovar and 

Lichtenstein 1 992; Offringa et a/. 1 993) and Tr it icum sp. (Dvorak and Appels 

1 986). Furthermore, the resolution of the Hol l iday junction has been proposed 

to occur preferentially in eukaryotic genic sequences (Thuriaux 1 977). While 

the number of genes remains fairly constant among eukaryotes, Thuriaux 

( 1 977) showed that the length of genetic maps among eukaryotes also 

remains fairly constant despite an increase in genome size. Thus, he 

concluded that the majority of recombination exchanges occur within ,  not 

between, the short DNA segments corresponding to structural genes. 

Recombination has been studied at many loci in  maize. At the red color 

(r1) locus, Robbins et a/. ( 1 991 ) determined the position and orientation of 
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genic elements in R-r:standard (R-r) by examining patterns of unequal crossing 

over among tandemly repeated genes in the complex. Southern blot analysis of 

the presence or absence of restriction site polymorphisms between progenitor 

and progeny alleles with altered phenotypes determined that R-r:standard 

consists of two genetic components, (P)  and (S) .  The (P)  component pigments 

plant tissue (e.g. coleoptiles and anthers) whereas the (S)  complex directs 

pigment deposition in the aleurone layer of the kernel (Robbins et a/. 1 991 ) .  

(P)  is comprised of a single r1 gene, P, whereas (S)  is comprised of several r1 

genes or fragments of genes in  the proximal to distal order q, S1 and S2 

(Robbins et a/. 1 991  ) . These molecular data support previously obtained 

genetic data on the structure of R-r:standard ( Dooner and Kermicle 1 971  ) .  

Using similar methods, Eggleston et a/. ( 1 995) determined the structure and 

orientation of genic elements in the maize R-stippled complex. R-stippled 

consists of four tandemly arranged r1 genes ( Sc, Net, Nc2 and Nc3) oriented 

in the same direction as the P gene of R-r (Eggleston et at. 1 995). Both studies 

demonstrated that the majority of recombination events were intragenic and 

could be localized to the 3' ends of identified r1 genes (Robbins et a/. 1 991 ; 

Eggleston et a/. 1 995) 

Dooner ( 1 986),  Civardi et at. ( 1 994) ,  Patterson et a/. (1 995), Xu et a/. 

( 1 995) and Okagaki and Wei l  ( 1 997) hypothesized that regions within genes 

[e.g. anthocyaninless 1 (a 1), booster1 (b 1)] or entire genes themselves [e .g .  

bronze 1 (bz  1), waxy1 (wx 1)] may be hot spots for recombination events in  
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maize. For example, the ratio between genetic and physical distance ( 1 /p) at 

a 1  (0.03 cM/kb), b 1 (0.05 cM/kb) ,  b z  1 (0.07 cM/kb), and wx 1  (0.07 - 0. 1 0  cM/kb) 

loci is considerably higher than the overall average for the entire maize genome 

(0.00021 - 0.00068 cM/kb) ,  indicating that simple sequences such as genes 

act as hot spots for recombination. Further study suggested that most if not al l  

recombination in maize occurs within  genes (Dooner 1 986; Xu et a/. 1 995; 

Patterson et a/. 1 995; Dooner and Martinez-Ferez 1 997; Okagaki and Wei l  

1 997). The pattem or where recombination occurs in  a gene varies among 

different maize loci . Within a 1 , Xu et a/. ( 1 995) determined that one-fifth of al l  

recombination events occurred i n  a 377 base pair region at the 5' end of the 

locus. S imilarly, Patterson et a/. ( 1 995) determined that the 5' end of the b 1 

locus is recombinationally more active than 3' sequences. However, Dooner 

and Martinez-Ferez ( 1 997) determined that the pattem of recombination at b z  1 

is dispersed throughout the gene. The wx 1 1ocus was characterized 

extensively in search of possible mechanisms to explain why it is a 

recombination hot spot in the genome. A deletion of promoter sequences (see 

below) and/or insertion polymorphisms have l ittle effect on recombination 

frequencies. The data also show that there is no preferred site for 

recombi nation within wx 1  (Okagaki and Wei l 1 997). 

Consistent with the hypothesis that recombination may occur 

I 

preferential ly in unique sequences, Dvorak and Appels ( 1 986) observed no 

homo logous crossing over between rONA repeat units in wheat. Additionally, 



5 

Timmermans et a/. ( 1 996) characterized a recombination event without 

phenotypic selection ( i .e . ,  without a change in gene function) by using a 

physical mapping approach. The cross over mapped to a 534 bp region of 1 00 

percent homology between the two parental chromosomes. This unmethylated 

region was located in a 2,  773 bp unique sequence embedded in a region of 

repetitive DNA sequence. 

Transposable elements have been used in many studies of 

recombination . The insertion of transposable elements into genes can create 

stable mutants. Such mutants can be used as starting materials in a series of 

genetic crosses to generate "wild  type" progeny resulting from recombination 

(F igures 2 and 3). Transposable elements are units of DNA capable of 

movement from one region and insertion into another. Certain transposable 

elements are capable of removing themselves (excision) from pre-existing 

sites during transposition whi le others are not. One of the most useful is the 

AciDs (Activator/Dissociation) fami ly of transposable elements in  maize first 

discovered by Barbara McCl intock and now wel l  characterized (reviewed in 

Federoff 1 989) .  AciDs elements belong to a class of transposable elements 

with short, terminal inverted repeats (TIRS) and may transpose via a DNA 

intermediate using a "cut-and-paste" mechanism (reviewed in Federoff 1 989) . 

Ac and Ds have simi lar TIRS which play a role in transposition (reviewed in 

Federoff 1 989) .  Ac elements contain an open reading frame (ORF) encoding a 

transposase which mediates the element's excision as wel l  as that of other 
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fami ly members; such elements are termed autonomous (Pohlman et a/. 

1 984 ). Ds elements typical ly are deletion derivatives of Ac with the central 

portion missing and are not capable of producing transposase (reviewed in 

Federoff 1 989). However, Ds elements can transpose in the presence of Ac 

elements, and therefore are termed non-autonomous. As noted above, 

transposable element insertions can disrupt gene function, resulting in a 

mutant phenotype (reviewed in Berg and Howe, 1 989). Transposable 

elements often create direct dupl ications of short sequences, typically 3-9 bp of 

host DNA (e.g. target site dupl ications), during insertion (reviewed in Berg and 

Howe 1 989). Loss of a transposable element insertion by excision or 

recombination can restore gene function, producing progeny (termed 

revertants) with a wild type or near wild type phenotype. 

The i nsertion of transposable elements has been found to influence the 

rate of recombination at several loci (Dooner and Kermicle 1 986; Dooner and 

Ralston 1 990; Lowe et a/. 1 992). Insertions of a Mutator1 (Mu1) transposable 

element, in the absence of the autonomous MuOr elements, suppress the rate 

of crossing over in a 1 (Xu et a/. 1 995). Dooner ( 1 986) also noted that relative to 

a point mutation, a Os insertion in  bz 1 reduced intragenic cross ing over. 

Based on molecular data, Dooner and Martinez-Ferez ( 1 997) further detailed 

the suppressive effect Ds insertions have on recombination. They found that 

recombination between two bz 1 alleles with Os i nsert ions separated by 600 bp 

in a completely homologous region was reduced fourfold relative to point 
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mutations at the same locations. However, in the presence of an Ac element, 

Ds i nsertions in r1 did not increase the rate of crossing over in the vicinity of r1 

(J. L. Kermicle, pers. comm. ) .  

Dooner and Kermicle ( 1 986) observed that transposable element 

insertions in b z  1 and r1 1oci alter the nature of intragenic recombination . 

Recombination between r1 alleles with Ds insertions at distinct sites and in the 

absence of Ac, produced many different recombinant types. However, revertant 

progeny with parental flanking genetic markers, indicating that these revertants 

resulted from a gene conversion or double cross over event, were most 

common ( i .e . , approximately 50% of the total number of recombinant types) 

(Dooner and Kermicle 1 986). Revertant progeny derived from plants 

heterozygous for the same Ds insertion mutation al leles and point mutation 

al leles typical ly had non-parental flanking marker composition consistent with 

crossing over ( i .e . ,  approximately 92% of the total) .  Additional data at a 1 

suggest that Mu1 does not appear to play a role in the resolution of 

recombination events (Xu et a/ . 1 995 ). Recombination data at b 1 using Ds 

insertions also indicate transposable elements may alter the ratio of crossover 

to non-crossover products (Patterson et at. 1 995). Simi larly, Dooner and 

Martinez-Ferez ( 1 997) observed that the majority of revertant b z  1 al leles arose 

via a crossover event as opposed to gene conversion based on flanking 

marker analysis. Dooner and Ralston ( 1 990) used Mu and Ds insertion 

mutations in heterozygous combinations at b z  1 to determine the nature of 
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recombination events. They found that insertion heterozygosities may not affect 

the pattern of intragenic recombination (e.g. a change in the ratio of cross over 

vs. non-cross over events) ,  but rather the nature of the mutation (e.g. insertion 

vs. point) may cause a change in the pattern of recombination (Dooner and 

Kermicle 1 986; Dooner and Ralston 1 990). Athma and Peterson ( 1 991 ) 

reported that active Ac elements between, but not in, two 5.2 kb repeats 

flanking the maize pericarp color (p 1) locus increased the frequency of unequal 

crossing over between the repeats. Lowe et a/. ( 1 992) also reported that Mu 

element insertions located between the repeats at the knotted1 (kn1) locus 

and in the presence of active MuDr elements, increased the frequency 1 00 -

2000 fold of unequal recombination between repeats. 

Additional ly, recombination studies at a1, b1 and bz 1 have documented 

that cross over events, as opposed to non-cross over events such as gene 

conversion or double cross overs, are recovered at a higher frequency (Dooner 

1 986; Patterson et a/. 1 995; Xu et a/. 1 995; Dooner and Martinez-Ferez 1 997) .  

The lack of gene conversion or double cross overs potentially may be explained 

by the high chiasma interference in certain genomic regions (Dooner 1 986; 

Dooner and Martinez-Ferez 1 997). 

Recombination events also play a role in generating new disease 

resistance in plants (Sudupak et a/. 1 993; Hu and Hulbert 1 994; Richter et a/. 

1 995). Screening of the Rp1-J and Rp1-G loci, which are part of a complex of 

rust resistance genes in maize, determined that novel resistance specificities 
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l ikely were generated by unequal pairing ( intrachromosomal recombination} ,  

intragenic crossing over and/or gene conversion (Sudupak et at. 1 993; Richter 

et at. 1 995). Hu and Hulbert ( 1 994) determined that gene conversion occurs at 

the Rp 1 locus at a rate of approximately 7 x 1 0-4 gametes per generation and 

contributes to the meiotic instabi l ity of this complex locus. 

Gene conversion has been studied in bacteria ( reviewed in Klein 1 995; 

see also Yamamoto et at. 1 996}, Neurospora (Bowring and Catcheside 1 996}, 

S. cerevisae (reviewed in Klein 1 995; see also Vincent and Petes 1 989; Welch 

et at. 1 991 ; Nicolas and Petes 1 994; Gangloff et at. 1 996; Weng et at. 1 996} ,  

Drosophila (Engels et a/. 1 990; Gloor et a/. 1 99 1 ;  Nassif and Engels 1 993) and 

in plants (Lee et at. 1 990; Peterhans et at. 1 990; Assaad and Signer 1 992; 

Tovar and Lichtenstein 1 992; Offringa et at. 1 993; Dooner and Martinez-Ferez 

1 997; Mathern and Hake 1 997). As noted above, differential cleavage and 

resolution of the Holl iday Junctions produced during recombination wi l l  yield 

either crossover or gene conversion products (Figure 1 ). 

Gene conversion tracts generally are between 300 and 850 bp long in 

bacteria (Kowalchuk et at. 1 995) and between 1 and 2 kb long in yeast (Judd 

and Petes 1 988; Barts and Haber 1 989}, Drosophila (Gloor et at. 1 991 ) and 

plants (Assaad and Signer 1 992). However, Voelkei-Meiman and Roeder 

( 1 990) reported that some gene conversion tracts lengths induced by HOT-1 ,  a 

recombinational ly active sequence in yeast, were between 33 kb and 77 kb in 

length. HOT- 1  is thought to induce double strand DNA breaks fol lowed by a 



replicative repair mechanism which may account for the extended gene 

conversion tracts at this site (Voelkei-Meiman and Roeder 1 990). 

1 0  

Clusters of recombination events i n  particular intervals at several yeast 

genes result in higher recombination frequencies at one end of the gene 

relative to the other end, a condition referred to as polarity. That is, 

recombination is non-random throughout these genes. Evidence from the 

yeast ARG4 gene and other genes indicates that specific sites at the 5' end, 

possibly promoter sequences, may initiate meiotic gene conversion (Nicolas et 

a/. 1 989; Fan et a/. 1 995; reviewed in Roeder 1 995). Recombination data 

obtained from the maize a 1 and b 1 loci indicate that hot spots for 

recombination events exist at the 5' ends of these genes (polarity) (Patterson et 

a/. 1 995; Xu et a/. 1 995). However, work at bz1 and wx1 indicates that the 

recombination pattern is dispersed throughout the gene ( l ittle or no polarity) 

(Dooner 1 986; Dooner and Martinez-Ferez 1 997; Okagaki and Wei l 1 997). 

Gene conversion tracts can extend in both directions from the initial double 

strand gap, as documented in yeast (Schultes and Szostak 1 990) and 

Drosophila (Gloor et a/. 1 991 ). Preferential breakage at one end of a gene 

coupled with a greater l ikelihood that sequences closer to the break will 

participate in conversion is thought to account for the polarity (reviewed in 

Lichten and Goldman 1 995). Gene conversion tracts typically are continuous, 

meaning that there is no switching of templates used in copying homologous 



sequences from one duplex to another (Voelkei-Meiman and Roeder 1 990; 

Gloor et a/. 1 991 ; Nassif and Engels 1 993; Weng et a/. 1 996). 

1 1  

The use of Agrobacterium-mediated transformation of cel l  cultures has 

provided an important tool in studying recombination, particularly gene 

conversion, in plants. Peterhans et a/. ( 1 990) inserted plasmids containing 

pairs of nonfunctional antibiotic drug resistance genes into tobacco protoplasts 

to study recombination . Only crossing over or gene conversion could restore 

function to these genes. Selection for drug resistance provided a simple and 

effective means to identify and quantify recombinant cell progeny. Lee et a/. 

( 1 990) ,  Tovar and Lichtenstein ( 1 992) and Assaad and Signer ( 1 992) also 

used similar constructs to study gene conversion and homologous 

recombination.  Al l four investigations produced simi lar recombination 

frequencies in the range of 1 0-4 and 1 0-6 gametes for germinal events. These 

events most l ikely occurred intrachromosomal ly as opposed to studies 

involving al leles on homologous chromosomes ( interchromosomal)  typical ly 

tested in maize (see above) .  Additional ly, complex al leles and transgenes 

often are susceptible to genome si lencing mechanisms such as cytosine 

methylation or condensed chromatin and may complicate these results (Bestor 

and Tycko 1 996; Martienssen 1 996; Kass et al .  1 997). 

Zea mays provides an important tool for recombination research. It has 

been the subject of intense investigation and a large body of knowledge 

already exists regarding recombination. The mating system of corn permits 
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controlled poll inations to be performed easily due to the physical separation of 

"male" and "female" flowers. A large number of progeny can be generated 

using maize since each ear can contain 200 - 400 kernel progeny. 

The maize r1 locus belongs to small family of regulatory genes encoding 

transcriptional activator protein  containing a helix-loop-hel ix motif related to the 

myc fami ly of proto-oncogenes. Other family members include b 1, leaf color 

(lc1) and scutell ar node (sn1) loci (Kermicle 1980; Ludwig et a/. 1989; Ludwig 

and Wessler 1990; reviewed in Dooner et a/. 1991 ) .  lc1 and sn 1 are displaced 

duplicated r1 genes (Dooner and Kermicle 1976; Ludwig et a/. 1989) and are 

98% homologous to R-sc:124 (Dooner et a/. 1991; Al leman and Kermicle 

1993). Al leles of the b 1 locus are "highly homologous" to r1 at the 3' end 

(Chandler et a/. 1989; Dooner et a/. 1991; Radicel la et a/. 1992) . Anthocyanins 

are red, dark purple pigments and most commonly associated with floral 

tissues but also can be present in leaves, roots and seeds. If maize plant 

tissues such as leaves or roots lack anthocyanins they are green or white, 

respectively, and seeds are yellow. In the work performed here, the phenotype 

of rare revertant kernels (darkly colored) is easi ly d istinguishable from the 

phenotype of non-revertant kernels (yel low to pale brown) .  For simplicity, the 

phenotype of revertant kernels wi l l  be termed black. 

Tissue specificity for b1, lc1, r1 and sn1 al leles is determined by their 

promoter regions (Kermicle 1980; Ludwig et a/. 1989; Ludwig and Wessler 

1990; Dooner et a/. 1991 ) . Certain r1 al leles are described using a two letter 
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nomenclature with the first letter designating seed color and the second, plant 

color. For example, R-g alleles specify a colored (R-) aleurone and green plant 

(-g) parts; similarly, r-r alleles indicate a colorless aleurone (r-) and red plant 

(-r) parts. However, not all r1 al leles are described using this system . R-sc, a 

seed color derivative of R-stippled, produces darkly pigmented or self-colored 

seeds and green plant parts ( Eggleston et a/. 1 995) .  R-sc:124, a simplex al lele 

derived from R-stippled by unequal crossing over between Sc and Nc3 

(Alleman and Kermicle 1 993; Eggleston et a/. 1 995), di rects strong anthocyanin 

pigmentation in  the aleurone and scutellum layers of the maize kernel. 

R-sc:124 also d irects strong pigmentation in  coleopti le tips. In  contrast, 

r-r:n142, a simplex al lele derived from R-r:standard by unequal crossing over 

(Robbins et a/. 1 991 ) , directs anthocyanin production in plant parts (anthers, 

coleopti les and roots) but not in kernels. Screening coleoptiles and roots of 

germi nating seedl ings permits easy identification of R-sc:124 (red coleoptiles 

tips) versus r-r:n142 (red coleopti les and roots) al leles. The coding regions of 

R-sc:124 and r-r:n142 are interchangeable (Kermicle 1 980), providing suitable 

substrates for recombination to occur. 

The current study expands recombination work at r1 in a number of 

ways. The data were used to test for a polarity gradient of recombination in 

R-sc. Data from Robbins et a/. ( 1 991 ) and Eggleston et a/. ( 1 995) suggest that 

recombination preferential ly occurs between the 3' ends of r1 genes in R-r and 

R-st as opposed to the 5' ends or central regions. However, these are complex 



al leles contain ing multiple tandem r1 genes and can recombine 

intrachromosomally. Thus, the pattem of recombination observed for these 

al leles could be an artifact of intra- versus interchromosomal recombination 

due methylation at the 5' ends which has been shown to i nfluence 

recombination. 

14 

Restriction fragment length polymorphisms (RFLPs) and DNA sequence 

data are used to characterize the location of recombination events between the 

three r-sc:mutable alleles, each contain ing a Os insertion, and r-r:n 142. 

Additionally, the frequency of intragenic recombination and the value of 1/p at r1 

were compared to those calcu lated at a1, b1, bz1 and wx1. This analysis 

further tested whether r1 serves as a recombination hot spot in the maize 

genome. DNA sequence analysis also was used to characterize the structure 

of homology with respect to the location of recombination. The value of 1/p was 

calculated for different regions of R-sc and was used to explain the impact 

large regions of divergent DNA sequences ( in the range of 2 kb or greater) have 

on recombination . Relative to a single nucleotide mutation, Os insertions or a 

cluster of single nucleotide polymorphisms that have been reported to reduce 

intragenic recombination were examined with respect to their influence at r1. 
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Methods 

Genetic Stocks 

The inbred line W22 was used as a source for all al leles. r-sc:mutable 

alleles contain ing Ds insertions were recovered by cycl ically mutagenizing R-sc 

alleles derived from R-sc:124 with Ds insertions using Ac as a source of 

transposase (F igure 2; Kermicle et a/. 1989; Alleman and Kermicle 1993). 

Selection for a r1 mutant phenotype provided a means of recovering novel Ds 

insert ion mutations of R-sc (Figure 3; Kermicle et a/. 1989; Alleman and 

Kermicle 1993). Ds transposed via the action of Ac into R-sc: 124 resulted in a 

mutant termed r-sc:m3. The yel low, pale brown or spotted kernels on an 

otherwise colored ears ( indicating that Ds had transposed i nto R-sc) were 

selected. In the absence of Ac, Ds insertions into R-sc interrupt r1 expression, 

producing yellow to pale brown kernels. In the presence of Ac, kernels typically 

are spotted. Ds elements were excised from r-sc:m3 using Ac and fully colored 

seeds ( reversions) were selected. Ds elements typically transpose to 

genetical ly l inked sites but may not be phenotypical ly observed during this 

stage and therefore are termed cryptic (Greenblatt and Brink 1962; Greenblatt 

1984; Dooner and Belachew 1989; Chen et a/. 1992; Dooner et a/. 1994). 

Through a second round of Ac addition, Ds was transposed back into r1 to 

create a series of insertional mutations of R-sc (r-sc:m300's) each with Ds 
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located at a different position. Subsequently, Ac was removed from the 

genome to produce germinal ly and somatical ly stable mutants (Kermicle et a!. 

1989; Alleman and Kermicle 1993). Thirty-eight stable (-Ac) r-sc:mutable 

al leles were recovered using this technique (Kermicle et a/. 1989) including the 

three r-sc:mutable alleles used in the current study. Each r-sc:mutable al lele 

used has a Ds insertion at a different position at the 3' end of the Sc gene 

(Figure 3; Alleman and Kermicle 1993; M. Alleman pers. comm. ) .  

R-g:Bpale derived from R-r i s  a d ist inguishable r1 allele which produces 

pale brown kernels and green p lant parts and was used to pol l inate 

r-sc:mutablelr-r:n142 heterozygotes. 

A recessive mutation making the endosperm appear opaque in the 

unl inked wx gene at the wx1 locus served as a genetic marker to identify and 

el iminate pol len contaminates from final analysis. 

r-!l902 is a deletion encompassing the r1 locus and served as a 

negative control in Southern blot analyses (Al leman and Kermicle 1993) . 

Allele Recovery 

Three independent Os i nsertion alleles, r-sc:m301, r-sc:m302 and 

r-sc:m335were made heterozygous with r-r:n142 in the absence of known Ac 

elements. r-sc:mutable/r-r:n142 heterozygotes were allowed to be open 

pol l inated in an isolation plot by interplanted male rows carrying R-g:Bpale and 

the wx1 mutation. Most of the resulting kernel progeny should· be heterozygous 
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combi nations of r-sc:mutables/R-g:Bpale or r-r:n142/R-g:Bpale and have a pale 

brown seed color (F igure 4) .  Revertant black kernels that arise should be 

heterozygous for a revertant R-sc allele lacking the Ds element, and R-g:Bpale. 

To verify the paternity of putative revertant al leles, black kernel progeny 

were selected, germinated and self-pol l inated. After self-pol l ination, only 

revertant progeny that produced a 3: 1 ratio of wild type to mutant wx 1 and black 

to pale kernels were considered to be bona fide revertants and selected for 

further study. Of the black kernels on these self-pol l inated ears, only one-third 

were expected to be homozygous for R-sc. The remaining two-thirds of black 

kernels were expected to be heterozygous for R-sc and R-g:Bpale. Black kernel 

progeny arising from pollen contaminates and subsequently self-pol l inated 

were not expected to segregate for the R-g:Bpale or mutant waxy phenotypes. 

As a control for cryptic Ac activity in the genetic background used, 

r-sc:m3011r-sc:m301 homozygotes were crossed as above to test whether 

reversion could occur in the absence of the possibi lity for gene conversion or 

recombination with a heteroallele. 

Reversion rates from r-sc to R-sc were calculated by dividing the number 

of true revertant progeny by the effective population size. The latter was 

determined by multiplying the total kernel population size by a ratio of the 

number of potential revertants successfu l ly tested to the number of potential 

revertants initial ly recovered. 
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DNA Isolation and Southern Blot Restriction Map Analysis 

Revertant progeny were germinated on wet paper towels under constant 

i l lumination until coleoptiles emerged. Seedl ings were screened for coleoptile 

tip color due to R-sc expression and the absence of root and ful l  coleoptile 

color due to r-r expression. DNA was extracted and purified from 4 - 5 leaf 

seedl ings as described by Eggleston et a/. ( 1 995) with modifications of Shure 

et a/. ( 1 983) and Chen et a/. 1 992. Purified DNA was subjected to restriction 

endonuclease digestion, fractionated on 1 %  agarose (Sigma) 0.5 x TBE [1 X 

TBE = 0.09M Tris-Borate; 0.004 M EDTA] gels. Restriction enzymes were used 

under conditions recommended by the manufacturers (Promega, Bethesda 

Research Laboratories ( BRL), Un ited States Biochemical (USB) ,  New England 

Biolabs (NEB) ) .  The 1 kb ladder (BRL) was used as a molecular weight 

standard in al l  gels. Reactions were terminated with Stop Mix [final 

concentrations= 0.09% sodium dodecyl sulfate (SDS), 3 .5% sucrose, 8.7 mM 

EDTA pH 8.0, 0.009% Bromophenol blue, 0. 009% Xylene cyanol] as described 

by T. Hsieh, pers. comm. and Eggleston et a/. ( 1 995). 

Agarose gels were stained with eth idium bromide and photographed 

under UV i l lumination using the Eagle Eye photoimaging system (Stratagene). 

Gel photographs were used to determine fragments sizes of RFLPs using the 

1 kb ladder as a reference and compared to autoradiographs. Agarose gels 
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were washed for 1 0  minutes with 0.25 M Hel , fol lowed by two 20 minute 

washes in 0.5 M NaOH,  1 . 5 M Nael and two 25 minute washes in 0.5 M Tris 

(pH 7.5) ,  1 . 5 M Nael .  Gels were p laced well-side down on three layers of 3MM 

chromatography paper Saturated with, and the edges submerged in, 20 X SSe 

( 1  X SSe= 1 50 mM sodium chloride, 1 5  mM sodium citrate) .  Duralon-UV 

(Stratagene) membranes fi rst rinsed in deionized water then in 20 X SSe were 

placed on top of gels. A piece of 3MM rinsed with 20 X SSe and placed on top 

of the Duralon and covered by a stack of paper towels to facil itate DNA transfer 

by capil lary action (Southern 1 975; Eggleston et a/. 1 995). DNA was fixed to 

Duralon membranes by UV-crosslinking with 1 200 iJJ/cm2 and baking at ao·e 

for 2 hours. 

Membranes were prehybrid ized at 42oe for 1 - 2 hours with a solution 

containing 50% formamide (v/v) ,  5 x SSe, 0.2% SDS, 2X Denhardt's solution 

(1 X = 0.02% (w/v) Ficol l ,  polyvinylpyrrol idone and BSA]. DNA fragments used as 

probes were prepared according to methods described in Feinberg and 

Vogelstein ( 1 983) using the Prime-a-gene kit (Promega) .  Fragments were 

released from plasmid subclones using restriction endonucleases, size 

fractionated and excised from 1 %  (w/v) low melting point agarose gels (S igma) 

in  1 X TAE gels (1  X TAE = 40 mM Tris-acetate, 1 mM EDTA] and placed in 1 . 5 

ml microcentrifuge tubes. DNA fragments (approximately 25 - 50 ng) were 

denatured completely for 1 0  minutes at >90oe and then centrifuged for 5 
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seconds to reincorporate condensation. The fol lowing was added to each 

labeling reaction: 1 1Jg/1JI BSA, 5X Labeling buffer (250 mM Tris pH 8.0, 25 mM 

Mgel2, 1 0  mM OTT, 1 M  Hepes pH 6.6, 26 A260 random hexanucleotides),  500 

IJM of each non-radioactive dNTP, either a32P-dGTP, deTP or both (Amersham, 

Andotek) at >3000ei/mmole and 5 units of Klenow fragment. Reactions were 

allowed to incubate for 2 hours at 3JCe. Reactions were terminated with Nick 

translation stop mix (40 mg/ml dextran blue, 20% SDS, 0.5M EDTA pH 8.0, 1 0  

mg/ml Phenol Red). Sephadex G-50-1 50 chromatography columns poured in  

5 ml plastic pipettes were used to separate radiolabeled DNA fragments from 

unincorporated radionucleotides. Labeled DNA fragments in TE migrating with 

dextran blue dye were collected and stored at -20oe after the addition of carrier 

DNA (50 !lg/ml sheared salmon sperm DNA) . For hybridization,  DNA fragment 

mixtures were boi led at >90°e, chi l led on ice for 1 0  minutes, added directly to 

the prehybridization solution and al lowed to incubate under constant agitation 

for 1 2 - 1 6  hours at 42°e. 

Following the removal of hybridization solution, membranes were 

posthybridized as fol lows: one room temperature rinse in 2 X SSe, two 1 0  

minute washes in 2 X SSe, 0.2% SDS at 58oe followed by two ten minute 

washes in 0.2 X sse, 0.2% SDS at 58°e. Membranes were blotted dry, 

wrapped in plastic wrap and exposed to X-ray fi lm using intensifying screens 



(Dupont) for 5 - 7 days at -aooc. Membranes were stripped of hybridizing 

probes using two 1 5  m inute boi l ing water washes, the first with 20% SDS, 

under constant agitation. Membranes were blotted dry using 3MM paper and 

rehybridized as necessary. 

2 1  

r1 fragments from the following clones were used as probes in Southern 

blot analysis: the 5' end fragments in pR-Nj: 1 and pR-Sc-1 : U and the 3' end 

fragments in pSc323:1 1 4  and pSc323: J20 (Figure 3; Al leman and Kermicle 

1 993). 

PCR Amplification, Cloning and DNA Sequence Analysis 

Synthetic oligonucleotides ( Integrated DNA Technologies, IDT) derived 

from the sequences of R-sc:124 (M. Alleman, C. l l lingsworth, J. Kermicle and 

W. Eggleston, pers. comm. )  and lc1 (Ludwig et a/. 1 989; S.  Ludwig, L. Habera 

and S. Wessler, pers. comm. ) were used in PCR ampl ifications (Table 1 ;  

Figure 3). The approximate location of Ds element i n  r-sc:m335 was 

determined previously whereas the Ds elements located in r-sc:m301 and 

r-sc:m302 were local ized only to the 3' end of r1 (Al leman and Kermicle 1 993; 

M. Alleman, pers. comm. ) .  

Using r1 locus ol iogonucleotides near the insertion sites together with 

either the 5' or 3' ol igonucleotides directed out from the end of the Os 

elements, the relative orientation of each Ds was determined based on the 
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predicted PCR fragment s ize. Because Ac and Ds have simi lar T IRS Ds ' 

oligonucleotides were derived from the sequence near the end of the canonical 

Ac element (Pohlman and Starlinger 1984, Shure et a/. 1983) The 5' Ds 

oligonucleotide is located 110 bp from that end and the 3' oligonucleotide is 

located 1 04 bp from that end. Depending on the orientation of the Ds element 

in R-sc:124, only one combination of primers (r1 1ocus with either 5' or 3' Ds 

ol igonucleotides) was expected to yield an ampl ified junction fragment. r1 and 

Ds primers directed away from each other wil l  not produce ampl ified fragments 

from r1 .  However, it is possible that Ds elements located elsewhere in the 

genome and near r1-related sequences could be ampl ified under these 

conditions. Amplifications were performed using a standard protocol of 30 

cycles of 1 min . ,  94°C denaturing; 1 min . ,  55°C anneal ing; 1 min . ,  72°C (68°C 

with eLONGase) elongation. All amplifications were performed using 1 mM 

MgS04 1 or 2 units of either Taq polymerase (Promega) or eLONGase enzyme 

mix (BRL). Modifications included: increased denaturing time and 

temperature, alternative elongation times based on expected fragment size and 

anneal ing temperature based on ol igonucleotide Tm values (Table 2) . 

Reactions were terminated with stop mix, electrophoresed through 1 - 2% 

agarose gels in 0.5 x TBE and visual ized by ethidium bromide staining. Where 

appropriate, gels were Southern blotted and hybridized as described above to 

confirm that ampl ified fragments were homologous to r1 probes and derived 

from r1. 



When multiple ampl ified fragments were observed, r1-hybridizing 

fragments were excised from 1 X TAE gels and purified by either AgarACETN 

23 

(Prom ega) or Geneclean ™ (B IO 1 0 1 ) as described by the manufacturer. One­

fourth PCR ampl ification volume of 4.4 M NH40Ac and 3 X the resulting volume 

of 1 00% ethanol was used to precip itate ampl ified fragments when single 

amplified fragments were observed. Purified fragments were l igated to EcoRV­

digested ddT-ta i led pBiueskript II SK(+) (Stratagene) or pGEM5Z(+/-)(Promega) 

plasmids (Sambrook et a/. 1 989; Holton and Graham 1 991 ). Ligation reactions 

were as follows for 50- 1 00 ng of plasmid DNA: 0.751-JI of 1 0  X Ligase 

Reaction Buffer, 0 .5 units of Ligase enzyme (USB),  and purified PCR DNA to a 

total volume of 1 0  1-JI. Ligase reactions were incubated at room temperature 

(21 - 24 ") for a minimum of 30 minutes. After digestion with EcoRV, pBiueskript 

II SK(+) and pGEM5Z(+/-) were tai led using the following protocol: 20 1-1 1  of 

plasmid DNA, 8 1-JI of 5 X Terminal transferase Buffer, 4 1-JI of 1 00 M ddTTP and 

6 1-1 1  Terminal transferase enzyme ( 1 7  U/1-JI) were added per reaction and 

allowed to incubate at 37" for 2 hours. The ddT-tai led plasmid was purified 

using ethanol precipitation (see above).  The TA TOPO™ cloning kit ( Invitrogen) 

also was used according to the manufacturers instructions to clone PCR 

fragments . 

Fol lowing l igation, the phagemid containing the junction fragment was 

transformed into XL-1 blue cells by directly adding the phagemid to the cel ls 

and placing on ice for 30 minutes. Samples were placed in a 42°C water bath 
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for exactly 45 seconds then chil led on ice for 2 minutes. Luria-Bertani (LB) [1 L 
deionized water = 1 0  g bacto-tryptone, 5 g bacto-yeast extract, 1 Og NaCI] Media 

was added to the cells and i ncubated at 3rC for 1 hour at 250 rpm. Cells 

were concentrated by brief centrifugation and half of the supernatant was 

discarded. Cells were resuspended and plated on LB agar containing 50 !lg/ml  

ampici l l in ,  20 IJg/ml X-gal and 20 IJg/ml IPTG and incubated overnight at  3rC 

(Sambrook et a/. 1 989). Putative successful transformants (white colonies) 

were selected and cultured overnight in  LB broth under 50 !lg/ml ampici l l in  

selection at  3rC at  250 rpm. Cultured cel ls ( 1 .5  ml)  were transferred to 

microcentrifuge tubes and briefly centrifuged. Supernatants were discarded 

and pelleted cel ls were resuspended in STET (8% glucose, 50 mM Tris pH 8.0,  

50 mM EDTA pH 8.0,  5% Triton X-1 00), to which 50 mg/ml lysozyme was added 

and al lowed to incubate for 5 minutes at room temperature. Samples were 

boi led for 45 seconds, centrifuged at 4°C for 1 0  minutes and the supernatant 

col lected. Recombinant plasmid DNA was precipitated with an equivalent 

amount of 1 : 1 0  4.4 M N H40Ac: lsoproanol to the supernatant and centrifuged for 

1 0  minutes at 4°C. Pel lets were washed with 80% ethanol and resuspended 

in TE (K. Brigle, pers. comm. ). Plasmid DNA was digested with appropriate 

restriction endonucleases and size fractionated as described above to verify 

the presence of plasmid and insert before further purification. Plasmid DNA 
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was purified further by adding equivalent amount of 1 : 1 Phenoi :Chloroform to 

TE, vortexing and centrifuging for 1 0  minutes at 4°C. The aqueous phase 

containing DNA was removed and precipitated with 1 : 1 2  ratio 4.4 M 

N H40Ac: Ethanol and centrifuged for 1 0  minutes at 4°C. Pel lets were washed 

twice with 80% Ethanol and a l lowed to dry completely before resuspension 

with water h ighly purified water (Sigma) (K. Brigle, pers. comm. ) .  

Purified plasmid DNA was sequenced by  the dideoxy method using 

Sequenase v. 2.0 and conditions recommended by the manufacturer (USB) 

and Zhang et a/. ( 1 988) .  Approximately 2 - 5 !lg of plasmid DNA was purified 

using 1 3% PEG 8000 and 5 M NaCI precipitation, chi l led on ice for 1 hour and 

centrifuged at 4 ·c for 20 minutes. Pellets were washed with ch i l led 80% 

ethanol and allowed to dry completely (S. Taylor, pers. comm. ) .  Pel lets were 

resuspended in 5 1-1 1  of highly purified water (S igma), 2 1-11 of 5 X Sequenase 

reaction buffer (USB) .  F ive nanograms of primer were allowed to anneal slowly 

to plasmids following a 2 minute incubation at 65·c.  Elongation was 

performed for 3 minutes at room temperature (22 - 25°C} and labeling was 

performed at 3TC for 5 minutes. a35S-Iabeled fragments were 

electrophoresed through 5% Long Ranger polyacrylamide (FMC), 1 . 2 X TBE 

gels at 70 W in a 0.6 x TBE running buffer. Gels were transferred to 3MM 

chromatography paper, vacuum dried at 80°C and exposed directly to X-ray fi lm 

for 3-4 days at room temperature. 
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The ABI Prism cycle sequencing kit (PE Applied Biosystems) also was 

used to sequence p lasmid DNA. Reaction conditions were followed as 

directed by the manufacturer with the following modifications: 600 ng of 

plasmid, 20 ng of primer and 75% of the recommended amount of kit mix was 

used in each reaction. Amplifications were performed using conditions 

recommended by the manufacturer of 25 cycles of 30 seconds, 96'C 

denaturing, 1 5  sec, 50'C annealing, 4 minutes, 60'C elongation. 

Polyacrylamide gel electrophoresis analysis was performed by Molecular 

Biology Core Facil ity at MCV and/or Commonwealth Biotechnologies, Inc . ,  

Richmond, VA. DNA sequence data was assembled and compared using 

DNASTAR (Laser Gene). 
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Results 

Molecular Analysis of R-sc:124 and r-r:n142. 

Southern blot analysis identified numerous restriction site 

polymorphisms between R-sc:124 and r-r:n142 (Robbins et a/. 1991, 

Eggleston et a/. 1995) . These sites are i l lustrated in Figure 3 and provide a 

means to localize the region of recombination resolution points and gene 

conversion tracts. For example, there are two BamHI sites present in the 3' 

end of intron 2 of r-r:n142 but none in R-sc:124. Additional ly, there is a Hindl l l  

site present in  exon 8 of r-r:n 142 but absent in exon 8 of R-sc: 124. The location 

of Sspl sites at the 3' end of intron 2 differs by 200 bp between the two 

progenitor al leles. Analysis of these diagnostic sites could be used to 

characterize the pattern of recombination across R-sc. There also were 

nucleotide differences uncovered by DNA sequence analysis between the 

R-sc:124 and r-r:n142 but the differences did not generate useable restriction 

sites for Southern b lot analyses. 

The bottom of F igure 5 represents the alignment using DNASTAR (Laser 

Gene) of DNA sequence data from R-sc:124 (M. Alleman, C. l l l ingsworth, J .  

Kermicle and W. Eggleston, pers. comm. )  and r-r:n142 (M. Alleman and W. 

Lison pers. comm.; current study) recorded as percent simi larity. DNA 

sequence analysis revealed regions where there is low DNA sequence 
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homology ( i .e . ,  d iscontinuities) between R-sc: 1 24 and r-r:n142. Multiple large 

discontinuities exist in intron 2 where similarity between the two alleles ranges 

from 26 to 62%. Discrete regions of high sequence identity ranging from 20 to 

130 bp in length were present within these discontinuities and potentially could 

facil itate recombination. There is greater than 99.4 percent similarity between 

the 5' ends R-sc:124 and r-r:n142. Further 5' of this region exists additional 

promoter region sequences for each al lele and the DNA sequence simi larity 

between R-sc:1 24 and r-r:n142 in this region is low, representing the major 

discontinuity between the two al leles. As noted previously, the 3' coding 

regions of R-sc: 124 and r-r:n142 are functionally interchangeable. This 

analysis demonstrated that the 3' ends of the al leles was characterized by 

greater than 95% similarity. 

Local ization of Ds insertions 

Each of the r-sc:mutable al leles has a Ds element inserted at a different 

position withi n  R-sc: 1 24. PCR and DNA sequencing analyses were performed 

to map precisely the nucleotide of insertion. Since the Ds primers are located 

approximately 100 bp from the end of the element, using either the 5' or 3' 

primer in conjunction with r1 primers d irected toward the element was 

expected to produce an amplified fragment. Thus, the relative orientation could 

be determ ined and the fragment size produced was used to determine the 

approximate location of each Ds insertion. 
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Primers Lc81 80 and Ds3' were used to ampl ify regions adjacent to the 

Ds element in r-sc:m301. Based on ethidium bromide staining, a fragment of 

approximately 400 bp was produced. Since Ds sequences constitute 

approximately 1 00 bp of the amplified fragment, the element was local ized 

approximately 300 bp from the r1 primer which is in the 5' region of intron 8. 

The combination of Lc8 1 80 and Ds5' did not produce an ampl ified fragment, 

consistent with the orientation of the Ds element in r-sc:m301 being reversed 

with respect to the direction of R-sc:124 transcription. The primer combination 

of Lc8681 and Ds5' produced an ampl ified fragment approximately 300 bp 

further supporting the initial local ization and orientation of the Ds element in 

intron 8. As predicted from the above data, the primer combination of Lc8681 

and Ds3 ' did not produce an ampl ified fragment. 

The same primer combinations were used to determine the location of 

the Ds element in r-sc:m302. However, PCR ampl ifications using Lc81 80 and 

Ds5' produced a fragment of approximately 300 bp whereas using Lc8681 and 

Ds3' produced fragment of about a 425 bp. No ampl ified products were 

observed when Lc81 80 and Ds3' or Lc8681 and Ds5' combinations were used 

in amplifications with r-sc:m302 DNA. These analyses local ized the Ds 

element in r-sc:m302 to the 3' region of exon 8 in the same orientation as the 

direction of R-sc: 124 transcription (F igure 3) . 

The orientation and approximate location of the Ds insertion in r-sc:m335 

had been determ ined previously (Alleman and Kermicle 1 993). Using Lc627 4 
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and Ds3' i n  PCR amplifications, a fragment of about 300 bp was produced. 

The primer combination of Lc671 0 and Ds5' produced a 400 bp fragment. 

Thus, the Ds element in r-sc:m335 was local ized to the 3' end of exon 3 (Figure 

3). 

Using PCR can result in non-specific ampl ification, therefore reactions 

were either repeated, Southern blotted and/or DNA sequence analysis of 

cloned products was performed to test if r1 DNA was amplified. In  al l  cases, 

the presence of r1 was confirmed . DNA sequence analysis placed the Os 

insertion in r-sc:m301 at position 8461 bp relative to the genomic sequence of 

Lc. The Ds element in r-sc:m302 is at position 8321 bp relative to the genomic 

sequence of Lc. Thus, these data confirm that Ds insertions are in the 5' 

region of intron 8 and the 3' region of exon 8, respectively, based on the intron 

and exon assignments of the Lc genomic sequence (Figure 3; Ludwig et a/. 

1 989; S. Ludwig, L. Habera and S.  Wessler, pers. comm. ). DNA sequence 

analysis also revealed that the target site sequence 5' -CTCAGGT -3' was 

duplicated at the insertion site of the Ds element in r-sc:m301 No target site 

duplication was found in DNA sequences adjacent to the Ds insertion in 

r-sc:m302. The precise location of Ds in r-sc:m335 could not be determined 

because ampl ified fragments could not be cloned fol lowing repeated attempts. 
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Allele Recovery Analysis 

All genetic crosses and frequency data were performed and provided by 

Dr. W. Eggleston (Table 3). No revertant progeny were observed among the 

progeny from the cross involving r-sc:m301 homozygotes suggesting that 

cryptic Ac activity was not the basis for reversion of the r-sc:mutable al leles 

(Table 3). Data from Kermicle et a/. ( 1989) tested a series of Os insertion 

al leles, including those used in this study, in homozygous condition and 

recovered no reversions in kernel populations ranging from 20, 140 to 48,460. 

Thus, the majority of Ds insertions from r-sc:mutablelr-r:n142 heterozygotes 

likely were lost due to crossing over or gene conversion. One hundred forty-six 

putative revertant progeny derived from r-sc:mutablelr-r:n142 heterozygotes 

crossed to R-g:Bpale were recovered and tested (Table 3). Of those tested, 

n inety-four were confirmed as bona fide R-sc revertants. 

Because the Os insertions are located at distinct sites in the 3' end of 

R-sc:124, the data can be used to determine if a polarity gradient exists 

(F igures 3 and 5, Table 3). The reversion rate was lowest (3.8 x 104) among 

al leles arising from r-sc:m335 which has a Os element inserted in exon 3. 

Reversion frequencies from r-sc:m301 and r-sc:m302 which have Os insertions 

in intron 8 and exon 8, respectively, were higher (8.2 x 104 and 9.3 x 1 04) than 

for r-sc:m335 (Table 3). When the reversion frequency of r-sc:m335 was 

compared to that of r-sc:m301 or r-sc:m302 using a comparative b inomial 

proportion test, the difference is sign ificant (to os.(2).� = 1.96; t = 3. 118; P < 0.001 ). 
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Although reversion frequencies from r-sc:m302 are sl ightly higher compared to 

reversion frequencies from r-sc:m301, these two frequencies are not 

significantly different from each other (t0_05 <2>.� = 1 .96, t =  0.55; p > 0.50). These 

data together suggest that there is a preference for resolution or a hot spot of 

recombination at the 3' end of r1. Alternatively, these data could represent 

additive effects of the number of recombination events increasing with the size 

of DNA being analyzed due to chance alone. If this were the case, then the 

relationship between the frequency of reversion as compared to the distance of 

each Ds i nsertion maps from the major R-sc:124/r-r:n142 discontinuity, would 

increase in a l inear fashion. Instead, Figure 5 shows that the reversion 

frequency of r-sc:mutable al leles with Ds insertions at the 3' end is 

substantial ly greater than r-sc:mutable al leles with Os insertions elsewhere in 

the gene. 

As mentioned previously, the ratio of genetic to physical distance ( 1 /p )  

can b e  calculated for entire genes as wel l  as particular regions of genes that 

serve as hot spots. The average value ( 1 /p )  for the entire r1 gene is 0.02 cM/kb 

which is about 1 00-fold h igher than the average for the genome (0. 00021 -

0.00068 cM/kb) (Civardi et a/. 1 994). Furthermore, the value of 1 /p calculated at 

the 5' end (0. 0022 cM/kb) is about 30 times lower than 1 /p at the 3' end (0.07 

M/kb). Within intron 2, 1 /p is lower (0.0045 cM/kb) relative to values calculated 

at the 3' end. There are discrete regions with intron 2 that are homologous 



between R-sc:124 and r-r:n142 and may al low recombination to occur, 

accounting for the sl ight increase in recombination observed. This analysis 

further demonstrates for more 3' Ds insertions that the 3' end of r1 is more 

recombinational ly active than the 5' end or central regions. 

Molecular Analysis of Revertant Alleles. 

33 

DNA isolated from revertant progeny was digested with Hindll l  to verify 

that each revertant al lele had the R-sc: 124 promoter region and to detect the 

presence of the polymorphic Hind l l l  site orignially present in exon 8 of r-r:n142 

but absent in R-sc:124. The membranes first were hybridized with pR-Nj : 1  

which recognizes the 5 '  end of r1 genes. If R-sc i s  heterozygous with 

R-g:Bpale, then the autoradiographs should show diagnostic 2.8 and 3.2 kb 

fragments when hybrid ized with pR-Nj: 1 .  Al l revertant alleles tested lacked 

these fragments characteristic of R-g:Bpale. These data show that DNA 

samples tested were homozygous for R-sc revertant al leles (Figure 6A). All 

revertant al leles also had the expected 4.5 kb fragment from R-sc:124 and 

lacked the 3 .8 kb fragment from r-r:n142 (Figure 6A). These data show that 

molecular characteristics of R-sc: 124 at the 5' end are retained in the revertant 

al lele population. When hybridized with pSc323: 1 1 4, 92 out of 94 revertant 

al leles had the 4 .0  kb fragment diagnostic for the 3' end of r-r:n142 (Figure 68). 

Figure 7 shows additional data for revertant alleles digested with Hindl l l  and 
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hybridized to pSc323: 1 1 4  and the two revertant al leles ( lanes 6 and 7 )  had 8 kb 

fragments diagnostic for the 3' end of R-sc:124. In al l  al leles tested an extra 

hybridizing 3.9 kb fragment corresponding to the homologous b 1 locus is 

present (data not shown) .  If Ds insertions are retained by the revertant al leles, 

then a 6.0 or 1 0.0  kb fragment is expected at the 3' end of respectively, r-r:n142 

or R-sc:124. In a l l  cases this fragment was not observed and additional 

restriction map data showed that the presence of a Ds element was never 

observed in the revertant al lele population. Since all of the revertant al leles lost 

the Ds element, the 3' boundary of recombination is represented by the location 

of the Ds insertion in each r-sc:mutable al lele. These data show that 

recombination occurred with in r1 and 5' to the Ds insertion. 

Digestion of revertant progeny DNA with Hindlll and BamHI was used to 

test for the presence or absence of the polymorphic BamHI sites originally 

present in r-r:n142 but not in R-sc:124 (Figures 3 and 8). All revertant al leles 

have the diagnostic 2. 1 and 2.3 kb bands characteristic of R-sc: 124 ( lane 1 )  

and lack the 1 .6 and 2.5 kb fragments characteristic of the 5' end of r-r:n142 

(lane 2). These data confirm that the R-sc promoter region is present in al l  

revertant alleles tested. The presence of two hybridizing fragments can be 

explained by the location of the BamHI cleavage site within the pR-Nj : 1  region 

(Figure 3) thus, yielding two hybridizing fragments. If R-sc is heterozygous with 

R-g:Bpale, then the autoradiographs also should show diagnostic 1 .6, 1 .  9 and 

2.7 kb fragments characteristic of R-g:Bpale. Instead, these fragments are 
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absent in al l  revertant al leles (Figure 8, lanes 4-1 0). None of the DNA samples 

tested was heterozygous for R-g:Bpale and the revertant R-sc al lele. 

If the polymorphic BamHI sites were present, then the resulting 

hybridizing fragment is expected to be 3. 1 kb (Figure 9, lane 2). Instead, a 4.0 

kb fragment corresponding to a fragment observed with a digestion with Hindl l l  

alone ( lanes 4 - 7, and 1 0) was observed in 92 out of 94 revertant al leles when 

hybridized to pSc323:J20 (Figure 9). Therefore, the 5' l imit of recombination 

occurred 3' to the BamHI s ite in r-r:n142 for all revertant al leles. However, 

some al leles (e.g . ,  lane 1 0  Figure 9) showed an approximate 3.2 kb band 

which could indicate that recombination occurred 5' to the BamHI sites. 

Additionally, there were multiple hybridizing fragments on the autoradiograph 

which only can be explained partially. Weak hybridization of pSc323:J20 to the 

b 1 locus and partial d igestion of BamHI sites due to cytosine methylation also 

would explain some of the extra hybridizing fragments (Figure 9). If this is the 

case, then a simple interpretation is that the BamHI sites are retained among 

the revertant al leles; thus, recombination occurred 5' to the BamHI sites. 

However, this is inconsistent for the fol lowing reasons: ( 1 ) All revertant alle les 

retained the polymorphic Sun! site which is located approximately 1 00 bp 5' to 

the BamHI sites on the R-sc:124 chromosome but absent in r-r:n142 (data not 

shown). Thus, recombination occurred 3' to this site. (2) Ol igonucleotide 

primers Sc1 -996 and Lc631 1 were used to amplifiy a region of intron 2 of a 

subset of revertant al leles using PCR and the amplified product subsequently 
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were digested with BamHI.  In al l  cases, the presence of BamHI sites were not 

detected (data not shown) .  (3) No simi larity in the DNA sequences of 

encompassi ng the Dral l l  (of R-sc:124) to BamHI (of r-r:n142) region was 

detected (Figure 5). The exact nature of the multiple hybridizing fragments 

cannot be determined at present and it is unl ikely that recombination occurred 

5' to the BamHI sites. 

To map more precisely the region of recombination, revertant alleles 

arising from r-sc:m335 were tested with Hincl l  and Sspl and hybridized with 

pSc323:J20. The Sspl  site located at the 3' end of intron 2 is polymorphic 

between R-sc:124 and r-r:n142. Both al leles have a common Sspl site located 

3' to exon 9 (Figure 3). Using these enzymes, a 3.8 kb fragment is expected 

from R-sc:124 and a 3.6 kb fragment is expected from r-r:n142 (Figures 3 and 

1 0) .  Fifteen out of 1 8  revertant al leles retained the 3. 8 kb fragment diagnostic 

of R-sc:124 rather than the 3.6 kb fragment of r-r:n142 when hybridized to this 

probe. Recombination therefore occurred 5' to Sspl site in r-r:n142 because 

the Sspl site in r-r:n142 was not present in these fifteen al leles accounting for 

the presence of a 3.8 kb fragment. In the remaining three revertant al leles, a 

3.6 kb fragment of r-r:n142 was observed. For these al leles, recombination 

could have occurred 5' to either of the Ssp I sites in R-sc: 124 or r-r:n 142 

because both possibi l ities include acquiring the Sspl in r-r:n142. The Sspl site 

from R-sc: 124 would be present but not detectable if recombination occurred 3' 

of the Ssp I site in R-sc: 124 but 5' of the Ssp I in r-r:n 142. Regardless, the region 
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of recombination can be mapped using the Ds insertion as the 3' boundary and 

the Ssp I site of r-r:n 142 as the 5' boundary, a region of approximately 0.8 kb. A 

subset of revertant al leles from r-sc:m301 and r-sc:m302 was digested with 

Hincll and Sspl and al l  retained the 3.8 kb fragment when hybridized to 

pSc323:J20. The recombination interval for revertant al leles arising from 

r-sc:m301 and r-sc:m302 progenitors could not be mapped more precisely due 

to a lack of polymorphic sites 3' to the Sspl site at the 3' end of intron 2 in both 

progenitor al leles. The high degree of sequence homology between the 3' 

coding regions of R-sc: 1 24 and r-r:n142 (Figure 3) precludes the use of 

Southern blot analysis where restriction site differences are needed to map the 

location of recombination junctions. 

Two revertant al leles have molecular characteristics of R-sc: 1 24 at both 

ends (Figures 7 and 9).  This suggests that these al leles arose via a gene 

conversion event, a rare double crossover event or cryptic Ac activity. Because 

no revertant progeny were isolated from genetic crosses i nvolving r-sc:mutable 

alleles in homozygous condition, the excision of Os due to cryptic Ac activity 

therefore seems unl ikely as the basis for reversion (current study, Kermicle et 

a/. 1 989). Revertant al leles R-sc:e1 268 and R-sc:e 1278 both have the 6 kb 

molecular fragment characteristic of R-sc: 124 when digested with BamHI and 

Hind l l l  and hybridized with pSc323:J20 (F igure 7, lanes 8 and 9). Evidence for 

gene conversion also is shown from digestion with Hind l l l  alone. Both 

revertant a l leles R-sc:e1268 and R-sc:e 1278 had the 8 kb fragment 
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characteristic of the 3' end of R-sc: 124 when hybridized with pSc323:J20 

(Figure 9,  lanes 6 and 7). These data suggest that the 3' end of gene 

conversion tract terminated 5' to the polymorphic Hindl l l  site present in exon 8 

of r-r:n142 (Figure 3).  Because both revertant al leles arose from r-sc:m335, 

they were digested with Hincll and Sspl and hybridized with pSc323:J20. Both 

had the diagnostic 3.8 kb fragment from R-sc:124 (see Figure 1 0  for an 

example). Thus, the 5' end of the conversion tract begins 3' of the Sspl in 

r-r:n142. Taken together these data show that the gene conversion tract length 

is maximally 2.9 kb. Minimal tract length was not possible to determine. 
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Discussion 

The pattern of recombination observed at several maize loci is different 

from that observed at r1. Recombination at b z1 and wx1 is dispersed 

throughout each gene with no preference for resolution in a particular region 

(Dooner 1 986; Dooner and Martinez-Ferez 1 997; Okagaki and Weil 1 997). 

However, at a 1 and b 1 there is preference for resolution at the 5' end of each 

locus (Xu et a/. 1 995; Patterson et a/. 1 995). Previous data from Robbins et a/. 

( 1 991 ) and Eggleston et a/. ( 1 995) local ized recombination to the 3' end of the 

r1 genes in these alleles. However, each of these alleles is complex and 

suppression of recombination from methylation at the 5' end could account for 

the observed pattern. 

Several l ines of evidence from the current study support the conclusion 

that recombination occurs primari ly in the 3' end of the gene. First, both 

r-sc:m301 and r-sc:m302 have Ds insertions located further 3' than the Ds 

insertion in r-sc:m335 and the frequency of revertant al leles arising from 

r-sc:m301 and r-sc:m302 is significantly higher than the reversion frequency for 

r-sc:m335. Second, the ratio of genetic to physical distance also supports that 

the 3' end of r1 is recombinationally more active relative to the 5' end. At the 5' 

end of the gene 1 /p is approximately 0.0022 cM/kb for a region of 0.9 kb 

whereas at the 3' end, it is 0 .08 cM/kb for a 1 . 0 kb region where recombination 
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could be mapped precisely ( i .e . ,  revertant al leles from r-sc:m335). The average 

value of 1 /p determined for recombinant al leles arising from r-sc:m301 and 

r-sc:m302 is 0.06 cM/kb for a region of 2.9 kb. Although sl ightly lower than 1 /p 

from r-sc:m335, it cannot be ruled out that this value represents an additive 

effect (thus, dispersed) of the number of cross over events occurring per unit 

DNA or whether there are recombinationally more active regions within this 2. 9 

kb region. Regardless, these values show that recombination preferentially 

occurs at the 3' end of the r1 gene. 

The complexity of r1 al leles does not appear to be the basis for the 

observed pattern of recombination since a simi lar pattern also was observed 

for the simplex al leles tested here. Recombination exchanges occurred in the 

3' end of al l  r1 genes (Robbins et a/. 1 991 , Eggleston et a/. 1 995, current 

study).  

The average value of 1/ p calculated for the entire r1 gene is 

approximately 0.02 cM/kb and is nearly 1 00-fold higher than the average for the 

entire genome (0. 00021 - 0. 00068 cM/kb; Civardi et a/. 1 994). This observation 

shows that the maize r1 gene serves as a recombination hot spot within the 

maize genome. The value of 1 /p calculated for the entire r1 gene is 

comparable to those calculated at a1 (0.03 cM/kb}, b1 (0.05 cM/kb}, bz1 (0.07 

cM/kb}, and wx1 (0.07 - 0. 1 0  cM/kb} (Dooner 1 986; Patterson et a/. 1 995; Xu et 

a/. 1 995; Dooner and Martinez-Ferez 1 997; Okagaki and Weil 1 997). 
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The amount or structure of homology does not seem to b e  the 

determining factor for recombination considering that approximately 115 bp of 

sequence homology are needed to facil itate recombination (Nassif and Engels 

1993). r-sc:mutable al leles with Os insertions at the 5' end reverted much less 

frequently than those with Os insertions at the 3' end even though DNA 

sequence analysis of R-sc:124 and r-r:n142 also revealed over 99% homology 

for a 1.0 kb region at the 5' end of both genes (Figure 5; J. L. Kermicle pers. 

comm. ) .  The presence of a large discontinuity further 5' of this 1.0 kb could 

suppress recombination from occurring in the region of high homology. 

Additionally, Dooner and Martinez-Ferez (1997) placed the recombination 

junction in some Bz revertants between two single nucleotide heterologies 

separated by 30 bp, suggesting that the amount or structure of homology is not 

the determining factor. 

Dooner (1986) and Dooner and Martinez-Ferez (1997) also have 

documented that Ds insertions at b z 1 suppress recombination up to 600 bp 5' 

to the insertion. Whether Ds insertions have a suppressive effect on 

recombination at r1 could not be ascertained directly in the current study. 

However, this study provides indirect evidence to support this possibi l ity. In 

revertant al leles from r-sc:m335 where recombination could be mapped using 

fine scale restriction map analys is, all exchanges occurred at least 0.8 kb from 

the Ds insertion. This is consistent with Ds suppressing recombination at 

directly adjacent sites though further analysis is needed. Ds insertions into 
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r-sc:m301 and r-sc:m302 also could suppress recombination , however, th is 

would require DNA sequence analysis of each revertant allele and 

documenting single nucleotide polymorphisms present from either R-sc: 124 or 

r-r:n142 to localize the crossover region to more than 600 bp upstream of the 

Ds insertion as documented at b z  1. Direct evidence would entail the 

generation of stable mutant r-sc al leles containing point mutations where each 

of the Ds insertions was located, each mutant r-sc allele placed in 

heterozygous condition with r-r:n142, and then pol l inated with R-g:8pale to 

recover revertant progeny. Restriction map analysis and DNA sequence 

analysis then could uncover whether Ds i nsertions relative to a point mutation 

at r1 suppress recombination in directly adjacent regions. 

The d ifferences in the pattern of recombination observed at d ifferent 

genes in maize suggests that there are a variety of factors influencing 

recombination. Although not identified specifically, recent evidence points to 

genetic factors present on the same chromosome (cis-factors) as wel l  as 

genetic factors produced by genes located on other chromosomes (trans­

factors) affecting the recombination frequency at distinct chromosomal areas 

(Timmermans et a/. 1997). Recombination also may be favored to occur in 

regions of open chromatin and hypomethylated sequences as is characteristic 

of many genes in both plants and yeast (Roeder 1990, 1995; Dooner and 

Martinez-Ferez 1997). Fi nally, different mechanisms for recombination may 



exist or the cel l's flexible recombination machinery may accommodate the 

different patterns observed (Dooner and Martinez-Ferez 1 997). 
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Regardless of the pattern of recombination documented at a 1, b 1 , bz1 

and wx1, there is a strong preference for crossing over compared to potential 

gene conversion. This appears to be true at r1 since out of 94 revertant 

progeny, 92 were crossover events. The remaining two, both of which 

originated from r-sc:m335/r-r:n1 42 heterozygotes, are assumed to be potential 

gene conversion or rare double cross over events. Thus, the frequency of gene 

conversion at r1 is estimated at approximately 3.97 x 1 0-S. Each convertant tract 

length is maximally 2.9 kb as determined by fine scale restriction map analysis. 

The size of these tracts is comparable but slightly larger than 1 - 1 .5 kb tracts 

reported at b z  1 by Dooner and Martinez-Ferez (1 997). As observed previously, 

the maize genome may have a mechanism promoting crossover events rather 

than gene conversion events at meiosis (Dooner and Martinez-Ferez, 1 997). 
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Figure Legends 

Figure 1 .  Molecular model of homologous recombination between al leles of 

the r1 locus. See text for al lele descriptions. Model is a modified version of 

Szostak et a/. ( 1 983) double strand DNA break repair model for crossing over 

and gene conversion. Panel (2) shows a double strand break followed by 5' to 

3' exonuclease degradation of the broken strands. Strand invasion of single 

strand 3' ends is fol lowed by DNA synthesis. Differential cleavage and 

rejoining of the backbones of the Holl iday Junctions (asterix in Panel 3) can 

yield two products: gene conversion (Panel 4A) or crossing over (Panel 48). 

Figure 2 .  Sequential mutagenesis of R-sc alleles adapted from Kermicle et a/. 

( 1 989). See text for details. Os elements are represented as triangles. 

Figure 3. Location of Ds insertions in R-sc and restriction site polymorphisms 

between R-sc: 1 24 and r-r:n 142. Ds insertions as denoted by triangles as in 

F igure 2 are superimposed on R-sc: 124. The transcription unit is based on 

analysis of let (Ludwig et a/. 1 989; M. Alleman, C. l l l ingsworth, J. L. Kermicle, 

W. Eggleston, pers. comm.) .  The arrow below the second darkly shaded box 

ind icates the presumptive translation start site (Ludwig et a/. 1 989). The arrow 

in each Os ind icates its relative presumed transcription orientation with respect 
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to R-sc: 1 24. Arrows (not to scale) flanking insertions represent ol igonucleotide 

primers used in PCR ampl ification. Darkly shaded boxes represent protein 

coding regions. Open boxes are non-coding regions. Darkly stippled boxes 

represent probes used for Southern analysis. Lightly stippled boxes represent 

transcribed, untranslated 5' and 3' sequences. Restriction sites are 

abbreviated as follows: 8 = BamHI; C = HincH; D = Oral l l ;  H = Hind l l l ; P = Pvull ;  

S = Sspl .  Not al l  sites are shown. 

Figure 4. Genetic scheme used to isolate revertants. See text for details. 

Triangles denote Ds insertions. The circled "X" denotes self-pol l ination. 

Fol lowing self-pol l ination, each class is expected to segregate for wild type and 

mutant waxy phenotypes. 

Figure 5. Combined data from 3 studies on r-sc:m reversion rates versus the 

d istance of the Ds i nsertion from the R-sc: 1 24/r-r:n 142 discontinuity. Shown 

below is the percent homology as determined by DNASTAR (Laser Gene). 

Alignments were performed using 0.5 kb DNA sequence blocks beginn ing at 

the discontinuity. The location of Ds i nsertions were determined previously 

(Al leman and Kermicle 1 993) by restriciton map analysis. Shaded boxes are 

as described in Figure 4. 
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Figure 6. Southern blot analysis of revertant progeny al leles derived from 

r-sc:m302/r-r:n 142 heterozygotes lacking Ac. DNAs were digested with Hindl l l  

and fractionated in agarose gels and hybridized to pR-Nj: 1 (Panel A)  and 

pSc323 : 1 1 4  (Panel B) .  

Figure 7 .  Southern blot analysis of revertant progeny derived from 

r-sc:m335/r-r:n 142 heterozygotes lacking Ac. DNAs were d igested with Hindl l l ,  

fractionated in  agarose gels and hybridized to pSc323 : 1 1 4. Revertant al leles 

R-sc:e1 268 and R-sc:e1 278 represent putative gene conversion events. 

Figure 8. Southern blot analysis of revertant progeny alleles derived from 

r-sc:m302/r-r:n 142 heterozygotes lacking Ac. DNAs were digested with BamHI 

and Hind l l l ,  fractionated in agarose gels and hybridized to pR-Nj: 1 .  

Figure 9. Southern blot analysis of revertant progeny al leles derived from 

r-sc:m335/r-r:n 142 heterozygotes lacking Ac. DNAs were digested with BamHI 

and Hind l l l ,  fractionated in agarose gels and hybridized to pSc323:J20. 

Figure 1 0. Southern blot analysis of revertant progeny alleles derived from 

r-sc:m335/r-r:n 142 heterozygotes lacking Ac. DNAs were digested with Hincll 

and Sspl ,  fractionated in agarose gels and hybridized to pSc323:J20. 
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Table 1 .  Sequence of oligonucleotides used in PCR amplification 
and DNA sequence reactions. 

Oligonucleotide 

Ds3' 
DsS' 
Lc3242A 
Lc3424 
Lc368 1 
Lc3876 
Lc4 504A 
Lc4 504B 
Lc4804 
Lc4807 
Lc5 1 5 5A 
Lc5 1 5 5 B  
Lc5406A 
Lc5406B 
Lc6270 
Lc6274 
Lc63 1 1 
Lc67 1 0  
Lc7072 
Lc7497 
Lc7775 
Lc7775A 
Lc8 1 80 
LC868 1 
Lc8 7 0 1  
M 1 3  
Sc1 -996 
Sc1 - 1 357 
Sc1 - 1 360 
Sc1 -2002 
Sc1 -2004 
T 7  

Oligonucleotide Sequence (5'-3') 

TTCGTTTTTTACCTCGGGTTC 
CGTTTTCGTTACCGGTATATC 
AGCGGGAGAATGCTAAGG 
CCTTAGCATTCTCCCGCT 
GAGGCCCATCCAGATAAC 
TGCATGCGACATCGATC 
CCGACCCTCCACCCTC 
GAGGGTGGAGGGTCGG 
TTGGTGCATGTGACTACT 
CCTAGTAGTCACATGCAC 
CATGTTCCTCACGAGCCCC 
GGGCTCGTGAGGAACATG 
CTGATCTTACTGACCTG 
TCAGGTCAGTAAGATCAG 
GCTGACGTGGACGGACGGGTTCTA 
GACGTGGACGGACGGG 
TTGGAGATCTTCG CGT 
CTTTGCTGCCGGCGAGGT 
AGCTCGAGCTGAACATACC 
CGTCCTCTAGCGGTAGTGGT 
GTGCTTGGGAGAGCTGTGG 
CCACGCTCTCCCAAGCAC 
GAGAGTGTGAGGAAGGAG 
TTCCATGCCCGTCATGTCC 
GCCTTCCATGCCCGTCGATGTCC 
CAGGAAACAGCTATGAC 
GCCGTTGTAGTTGTAGCTA 
GACCACCACTTGTCACGT 
TGACAAGTGGTGGTCTT 
ACCACCATATATGTGTGCT 
TGGAACACATATATGGT 
TAATACGACTCACTATAGGG 

68 
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Table 2. PCR amplification conditions for r-sc:mutab/e alleles and r-r:n142. 

Oligonucleotide Denaturing Annealing Elongation Cycle 
Allele Combination [T • t tf [T . / t] [r l tl number 

r-sc:m301 Ds3'/Lc8 1 80 94/45 58/60 68/60 30 
Ds5'/Lc868 1  94/45 58/60 68/60 30 

r-sc:m302 Ds3 '/Lc868 1 94/45 58/60 68/60 30 
Ds5'/Lc81 80 94/45 55/60 68/45 30 

r-sc:m335 Ds3'/Lc627 4 94/60 55/60 72/45 30 
Ds5'/Lc671 0 94/60 60/60 68/60 3 5  

r-r:n142 Lc6270/Lc8701  94/60 62/60 68/1 80 3 5  
Sc1 -996/Lc6 3 1 1 94/60 55/60 68/240 3 5  

1 = T "  represents temperature in Celsius and t i s  time in seconds. 



Table 3. Reversion frequencies of r-sc:mutable a lleles. 

Number of 
Number of potential R-& c 

Female genotype potential R-&c revertants Reversion 
pollinated with revertants successfully Kernel True Adjusted kernel frequency 

R-g:Bpale recovered tested Population R-sc's population• (x 10-4) 
r-sc:m301 7 9  6 0  6 4 , 344 4 0  4 8 , 8 6 9  8 . 2

2 

r-r:n 1 42 

r-sc:m302 6 1  4 9  42,64 1 3 2  3 4 , 2 5 3  9 . 32 

r-r:n142 

r-sc:m335 3 8  3 7  5 1 ,692 1 7  5 0 , 3 32 3 . 81 

r-r:n142 

r-sc:m301 0 0 1 1 ,354 0 1 1  , 3 54 0 
r-sc:m301 

a =  (# of R-sc tested/# of R-sc recovered) x total kernel population 

1 = Significantly d iffe rent (P < 0.00 1 )  when compared to the revers ion frequency of r-sc:m301 or r-sc:m302. 

2 = Not significantly d ifferent (P > 0.50) 

--..J 
0 
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