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The decreasing costs of next generation sequencing technologies and the

increasing speeds at which they work have lead to an abundance of ’omic

datasets. The need for tools and methods to analyze, annotate, and model

these datasets to better understand biological systems is growing. Here we

present a novel software pipeline to reconstruct the metabolic model of an

organism in silico starting from its genome sequence and a novel compi-

lation of biological databases to better serve the generation of metabolic

models. We validate these methods using five Gardnerella vaginalis strains

and compare the gene annotation results to NCBI and the FBA results to

Model SEED models. We found that our gene annotations were larger and

highly similar in terms of function and gene types to the gene annotations

downloaded from NCBI. Further, we found that our FBA models required

a minimal addition of transport reactions, sources, and escapes indicating

that our draft pathway models were very complete. We also found that on

average our solutions contained more reactions than the models obtained

from Model SEED due to a large amount of baseline reactions and gene

products found in ASGARD.
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Chapter 1

Introduction

Historically the hallmark of biology has been the study of the individual

molecular components that make up living organisms. However, since the

advance of sequencing technology and high performance computing this

paradigm has shifted to a more complete approach in which a biologist

considers the biological networks that make up the systems that regulate

and sustain life for an organism. Continued research into genomes, gene

expression and regulation continues to develop and with it so does our

understanding of how each of the elements of an organism interact with

one another.

Along with this systematic, holistic approach to understanding biolog-

ical complexity and an increase in computational power have lead to the

emergence of new methods for modeling these networks. By using mathe-

matics one can now represent a metabolic pathway and simulate dynamic

and complex biological cellular behaviors. The ability to experimentally

obtain genomic data coupled with these modeling approaches has lead to a

top-down approach in which the experimental data can be integrated with

the models. This lends greater credibility in the models themselves and

the ability to more accurately represent life in silico.

The ability to represent an organism in silico has allowed research to
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be conducted without the overhead costs associated with a traditional ex-

periment. Using computers you can now predict the outcomes of gene

knockouts, and gene up/down regulation. You can also identify drug tar-

gets and study complex pathways to identify methods to turn them on, off

or bypass them completely. All of this together has lead to a deepening of

our understanding of biology and increased the effectiveness of traditional

experiments while reducing costs.

However put into the time line of biological research using in silico mod-

eling is still very new and was initially cost prohibitive. It takes a lot of

computational overhead to be able to perform these types of experiments.

First, it requires databases that contain experimentally obtained informa-

tion. Databases hosted by NCBI and other resources are freely available

and often can be accessed without downloading the entire dataset. While

other databases are proprietary and require you to download them be-

fore using them. Next, the sheer amount of data generated by sequencing,

genome annotation, and modeling does require a lot of physical disk space.

Most of the intermediate files can be compressed or removed after a func-

tional model is produced but even this can require gigabytes of space per

model. Finally, computational time, as in the actual cost of CPU usage

while the modeling procedures are running can also be quite high but due

to parallelization and job queuing engines like Sun GridEngine utilizing

large amounts of computational time for generating in silico has become

much easier.

The major contributions from our work here is the ability to start from

the nucleotide sequence and use our pipeline in a semi-automated fashion

to reconstruct the metabolic networks of a given organism. Previously
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this process was laborious and there were no tools to parse a genome an-

notation and derive its reactions based on the gene products determined

during the annotation. Further, we completely redesigned the MetModel

into a software tool that will execute all of the necessary steps to create a

constraint-based model using flux balance analysis (FBA) all the way to

generate the KGML pathway maps from a single execution of the new tool.

1.1 Reference Databases

Most in silico tools and projects involve using a reference database at

some point. The internet is a great method for sharing information from

databases and a number of biological databases already exist to share in-

formation about genes, metabolites, and their reaction pathways (Keseler

et al., 2013).

However, there is no standardization among these databases and often

minimal curation of the data once it has been made available. So not only

is there no one source of information that houses all of the data but there

is also no standardized form for the information in these databases. This

is particularly true when it comes to the metabolic reactions and their

metabolites. This makes it difficult to verify the data in these reference

databases and it also makes it difficult to obtain a consensus of information

from these databases as comparing them is often difficult.

Kyoto Encyclopedia of Genes and Genomes (KEGG), is one such database

that contains genes, metabolites, reactions, and more for many different

organisms(Ogata et al., 1999). However, it lacks transport reactions and
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does not denote where reactions are occurring, i.e. within the cytosol, ex-

tracellular or other places. KEGG is also no longer freely downloadable.

They still have a web page and REST API to access their data, but the user

is not informed if they actively update this information or if it lags behind

the paid subscribers version. The Model SEED database is another re-

source for genomes, metabolites, reactions and even full models(Overbeek,

Disz, and Stevens, 2004). The Model SEED utilizes Rapid Annotation us-

ing Subsystems Technology (RAST) which performs the gene annotation

and FBA modeling for you. RAST models can utilize genomes uploaded

in FASTA or publicly available sequences in the Model SEED database.

The big limitation to using Model SEED is that this data does not appear

to be actively curated at this time and thus the possibility of inaccurate

or incomplete data exists. When using RAST with Model SEED, another

limitation is that during the gap filling step it adds a large number of low-

confidence reactions in order to complete pathways. Finally, two manually

created databases were created and curated by Dr. Niti Vanee and pub-

lished by Dr. Bernhard Palsson (Vanee, 2013; Shlomi et al., 2008). These

databases were built to address the missing transport reactions, lack of de-

tail about reaction locations, and otherwise update and curate the missing

pieces of data for KEGG and SEED.

1.2 Constraint-based Modeling

Constraint-based modeling is an approach that has been evolving since

the 1980s (Fell and Small, 1986; Majewski and Domach, 1990). Initially,

the approach was first shown to be viable when experimentally obtained
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metabolic fluxes and growth rates were shown to be consistent with com-

putationally derived fluxes calculated from cellular objective functions

(Savinell and B. O. Palsson, 1992; Schuster and Hilgetag, 1994). Then

in the early 2000s when the ability to sequence whole genomes became

more readily accomplished it became possible to link the genome directly

to a constraint-based model. This link paved the way for using these mod-

els to predict experimental outcomes. For example, gene knockouts and

changes in cellular behavior. As biology entered into the age of ’omic data

it became possible to incorporate experimentally obtained transcriptomic,

exomic, proteomic, and even metabolomic data into these models to fur-

ther the ability to analyze and experiment in silico.

In general, constraint-based modeling works under the law of conser-

vation of mass and that biomass growth and energy use can be used to

predict metabolic fluxes for an organism (Schilling, Letscher, and B. O.

Palsson, 2000; Schuster and Hilgetag, 1994). This is accomplished by first

curating all the metabolites and reactions determined, or predicted, to be

present in an organism. In the case of genome-scale metabolic networks,

this is done by creating a stoichiometric matrix. The stoichiometric ma-

trix is a versatile and consistent format present in constraint-based models

that indicates the number of molecules used and created in reactions. Here

we focus on constraint-based modeling for genome-scale metabolic recon-

structions, it has also been used for signaling, transcriptional regulation

and macromolecule synthesis (Papin and Bernhard O. Palsson, 2004; Li

et al., 2009).

Compared to other modeling methods constraint-based modeling, in

general, allows greater influence of metabolic networks for an organism

and in a more realistic fashion. More specifically, an organism in vivo is
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subjected to physical, environmental, and physiochemical inhibitors and

thus doesn’t have an unlimited growth potential. By having the ability to

apply these constraints makes the in silico models more accurate and also

expands the ability to perform in silico experiments. Utilizing constraint-

based modeling we are able to better determine the cellular behaviors of

an organism when subjected to different external or internal influences.

The end result of this is a series of reaction pathways represented as a flow

chart or map that represents what an organism uses to sustain life and

these pathways can often vary based on the specific constraints applied to

the model.

1.2.1 Flux Balance Analysis

Flux Balance Analysis (FBA) is one such mathematical approach to

modeling and analyzing the networks that make up an organism and is

particularly common in genome-scale metabolic network reconstructions

(Schuster and Hilgetag, 1994; Varma and B O Palsson, 1994; Thiele et al.,

2009). FBA is a specific application of linear programming (LP) used to

calculate and optimize the flow of metabolites over time through the bio-

chemical reactions present in an organism to determine the steady-state

flux distribution that maximizes the biomass yield. Given the stoichio-

metric matrix (S) and fluxes (v), the steady-state is represented as Sv = 0

and defines a system of linear equations. Next, to solve these equations

we define an objective function, like biomass, and to predict the maximum

growth rate we use Z = cTv, where c is a vector of zeros with a value of 1

only in the reaction of interest. When we’re using the biomass reaction, c

has a value of one so we can represent this as:
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Z = vbiomass

with parameters:

Sv + bsrc − besc = 0

L ≤ v ≤ U

Lsrc ≤ bsrc ≤ U src

Lesc ≤ besc ≤ U esc

where L and U define the lower and upper bounds for each reaction, and

bsrc, besc are the escape and source reactions specifically(Brooks et al.,

2012). Finally we calculate the flux values that maximize Z.

1.2.2 Mixed Integer Linear Programming (MILP)

Mixed Integer Linear Programming (MILP) is another modeling method.

MILP and LP are both general optimization modeling frameworks and

have many applications outside of metabolic reconstructions. In compar-

ing MILP and LP, MILP is designed to better incorporate and optimize

the use of experimentally obtained data into the model as it lets you add

integer restrictions variable values(Bordbar et al., 2014). This step helps

improve model quality by attempting to reduce false positive and false neg-

ative values from experimental data(Vanee, 2013). A false positive is when

a metabolite is predicted to be present but the reaction/gene that is asso-

ciated with producing the metabolite is not actually shown to be present

based on experimental evidence. Similarly, a false negative is when a gene

or reaction is incorrectly omitted from a model but experimental evidence

shows that the associated gene and gene product are in fact present. These

false values are believed to be caused by post-transcriptional regulation or
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alternative flux distributions, which are likely from isozymes and alterna-

tive pathways. In MetModel and Model SEED, MILP is used in FBA-Gap

and GapFill which are two different algorithms designed to identify and

correct reactions missing from pathways. As mentioned previously MILP

can be an effective way to incorporate proteomic and other data into the

pathway reconstructions (Shlomi et al., 2008).

In the case of MILP we have a problem expressed as:

maximize cx+ dy

with parameters:

Ax+By ≤ b

x ∈ Rn
+

y ∈ Zp
+

where cx + dy is the objective function, Ax + By ≤ b are constraints, x

and y are vectors of the decision variables(Brooks, 2005). We can now de-

termine solutions for our objective function if they exist. It is possible for

no solution or multiple solutions to exist, and the solution that provides

the best objective function value is called the optimal solution. When we

model using this type of function we look for these optimal solutions if

they exist.

1.3 In Silico Bacteria Research

Modeling unicellular organisms in silico provides a number of bene-

fits. It allows us to work and analyze with extremophiles and pathogens
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without expensive equipment or health hazards. It allows us to make pre-

dictions about the outcomes for in vivo or in vitro experiments before

having to incur the temporal and fiscal costs associated with performing

one (Langowski and Long, 2002). All of this together allows us to push

research of treating and preventing diseases further by focusing and de-

veloping our understanding of virulence, pathogenesis and identifying new

drug targets(Shlomi et al., 2008)(Nurputra et al., 2012). In industry differ-

ent strains or even customized genomes can be tested using these methods

and we can select a particular genome or strain of bacteria that provides

optimal amounts of a given metabolite which can be collected for purposes

like biofuels (Nogales, Gudmundsson, and Thiele, 2012).

1.3.1 Genome Annotation using ASGARD

Understanding the genes, their products and the metabolic reactions

of G. vaginalis is crucial for researching the virulence, transmission, and

therapeutics. We used the genomes of G. vaginalis strains obtained from

NCBI and other sources, then use the Automated System for Gene An-

notation and Metabolic Pathway Reconstruction Using General Sequence

Databases (ASGARD) to determine open reading frames and annotate the

genome(Alves and Buck, 2007).

ASGARD can take assembled sequences in FASTA file format and per-

form gene annotation and predicted metabolic pathways. The data pro-

vided by ASGARD can be regarded as a draft model, and this creates the

first step to a high-quality metabolic model of our organism.

ASGARD creates these models by first determining the open reading
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frames within a genome by comparing it to annotated genomes stored in

databases like NCBI Nucleotide and KEGG. Once the genes and their

functions are determined it places them within the appropriate pathways.

From here the model can be regarded as a "rough draft" as ASGARD has

made an educated guess about the pathways and enzymes present based

on translated nucleotide sequence homology only.

Using ASGARD thus allows one to take assembled genomic nucleotide

sequences in FASTA file format and obtain gene annotation and predicted

metabolic pathways. The data provided by ASGARD begins the search

for an accurate metabolic model of our organism. We used both well-

documented strains (i.e. strains that have already been annotated thor-

oughly) and novel strains. This "draft" model was then integrated with

our MetModel where a series of scripts were used to integrate gene ex-

pression data, metabolic data and our other information to increase the

accuracy and precision of the draft model.

1.3.2 Metabolic Pathway Reconstruction Using Met-

Model

For our purposes, ASGARD is just the first step and the model will

undergo further revisions as it goes through the MetModel pipeline. The

MetModel pipeline will gap fill pathways then use FBA to derive the reac-

tions rates for optimal growth. It can then be used to build KGML maps

of the reaction pathways and if available increase the accuracy and con-

fidence we have in the metabolic reconstruction model by incorporating

experimental data. mRNA expression data can be obtained from NCBI
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Gene Expression Omnibus (GEO) and incorporated during this process in

order to provide experimental data to support the analysis and solutions

obtained from the FBA. Finally the model pathways were viewed and

reviewed manually using KGML-ED(Klukas and Schreiber, 2007).

MetModel is Python library which can be used in a pipeline to gap-fill

reaction pathways determined by ASGARD to then apply a constraint-

based modeling approach. This modeling approach considers all of the

potential biochemical reactions and then applies constraints in the same

way that an organisms environment, physiochemical, regulatory and evo-

lutionary sources would constrain its growth potential. Thus MetModel

allows us to incorporate metabolic data with gene/reaction network, ther-

modynamics, gene regulation and other information. Using MetModel

allows us to consider the states that an organism can and cannot achieve

which gives us a broader view as to the factors that are involved in deter-

mining an organism’s survivability, growth potential and even its ability to

produce metabolites under various conditions and with greater accuracy

than other modeling tools(Roberts et al., 2009).

In order for MetModel to perform these tasks it first converts the bio-

chemical reaction network reconstruction into a mathematical form. To

do this we went through three steps, the first is the analysis of the reac-

tions within the network. They usually fall into three main categories like

metabolic, regulatory, and signaling. Next, the data derived from this anal-

ysis is used to form the stoichiometric matrix. This stoichiometric matrix

is the mathematical representation or map where the chemical constraints

are applied to the model. Now that we had our mathematical representa-

tion of the organism’s pathways, flux balance analysis (FBA) can be per-

formed to generate a solution or solutions(Orth, Thiele, and B. Ø. Palsson,
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2010). FBA calculates the flow of metabolites through the network, and

this makes it possible to predict the production rates of metabolites, the

growth rate of an organism, and analyze specific pathways and even predict

experimental outcomes (Lee et al., 2005). Put another way these in silico

models allow predictions of phenotypes given a set of genes and reactions.

For example, we can perform an in silico knockout model or we can try

to optimize gene products which is particularly useful for nitrogen-fixing

bacteria used in biofuel production (Nogales, Gudmundsson, and Thiele,

2012). In the case of pathogens like G. vaginalis we can use MetModel to

test out new drug designs, or better understand how it might infect and

gain a foothold among the normal vaginal bacterial community.

Using this modeling approach considers all of the potential biochemical

reactions and then applies constraints in the same way that an organism’s

environment, physiochemical, regulatory and evolutionary sources would

constrain its growth potential. Thus MetModel allows us to incorporate

metabolic data with gene/reaction network, thermodynamics, gene reg-

ulation and other constraints. This approach to modeling allows us to

consider the states that an organism can and cannot achieve which gives

us a broader view as to the factors that are involved in determining an

organism’s survivability, growth potential and even its ability to produce

metabolites under various conditions.

1.4 Gardnerella

Gardnerella is a genus of bacteria for which G. vaginalis is presently

the only known species. G. vaginalis is a clinically significant bacterium

that can disrupt the normal vaginal flora and cause bacterial vaginosis
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(BV). BV is a major medical problem, causing discomfort to millions of

women every year and has been shown to cause complications for many

pregnant women resulting in preterm labor and birth which may result

in death or long-term health problems for the baby. Many patients with

BV are asymptomatic but occasionally have yellow or gray discharge, ir-

ritation, or a foul odor. Diagnosing BV can be difficult especially if the

patient is asymptomatic. Figure 1.1 shows a diagrammatic depiction of

how these bacterial cells are identified once stained. G. vaginalis is not

considered to be the single microbe inducing BV but rather a signal that

the normal vaginal tract flora has been disrupted, thus paving the way for

other anaerobes to work synergistically to reduce the protective, hydrogen

peroxide producing Lactobacillus species that suppress the harmful bacte-

ria from proliferating. Further, the G. vaginalis cells are so small they do

not reliably show up as gram-positive and thus can be difficult to detect.

Presently, the main treatment for patients with BV caused by G. vaginalis

are antibiotics such as clindamycin or metronidazole.

Gardnerella vaginalis is a gram-variable anaerobic coccobacilli. It

is a facultative anaerobe and can metabolize glucose under both aerobic

and anaerobic conditions, and has a complex metabolism (Patterson et

al., 2010). It is the sole member of the Gardnerella genus and is a small

(1.0µm), non-motile and nonspore-forming bacterium. The G. vaginalis

genome is a circular DNA and is without plasmids. Within G. vaginalis

there are genetic variants that include both virulent and avirulent strains.

It is considered to be a key component in the initiation and progression

of BV (Schwebke, Muzny, and Josey, 2014). Models of the pathogenesis

of BV suggest the virulent stains of G. vaginalis are usually transmit-

ted through sexual intercourse and its virulence factors allow it to adhere
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Figure 1.1: Artist’s rendering of how a clinician is able
to use microscopy to identify G. vaginalis cells that have
infected vaginal tissue. Image reprinted with permission
from: (Bacterial Vaginosis | Center for Young Women’s

Health 2016)

to vaginal epithelial tissue. Once attached to epithelial cells it creates a

biofilm where a community of normally dormant vaginal anaerobes flour-

ish. Gardnerella vaginalis also exhibits cytotoxic activities (Patterson et

al., 2010). Once established this biofilm community then aggressively com-

petes with microorganisms of the typical vaginal flora. For example, the

predominant Lactobacillus populations that help regulate a healthy pH,

and creates conditions for an overgrowth of G. vaginalis and its associated

pathogenic anaerobes. This microfloral replacement results in the clinical

symptoms associated with BV (odor, discomfort, itch etc.). Studying the

pathogens’ genes gives biochemical and metabolic information to inter-

pret its cooperative and competitive interactions with its human host and

co-occurring species, suggesting how it overgrows and out-competes the

established healthy microflora. Understanding the etiology of the disease

will hopefully give insights into the best methods to prevent and control

it.
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There are over 1,365 genes in the reference genome of Gardnerella vagi-

nalis ATCC 14019. Not all of the G. vaginalis strains identified are vir-

ulent and more research is needed in order to understand the virulence

factors. It does appear that G. vaginalis forms symbiotic relationships

with other vaginal anaerobes that are normally dormant, and these rela-

tionships contribute to its success, resulting in symptoms and progression

of BV(Gardner, 1983; Schwebke, Muzny, and Josey, 2014).
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Chapter 2

Curating a Database for

Metabolic Reconstructions

2.1 Reference Databases

Upon starting this project MetModel already used a comma separated

file (CSV) that contained reactions from the Kyoto Encyclopedia of Genes

and Genomes (KEGG), the SEED database and contributions from Dr.

Niti Vanee and published by Dr. Bernhard Palsson (Ogata et al., 1999;

Overbeek, Disz, and Stevens, 2004; Vanee, 2009; Shlomi et al., 2008).

However, despite these reactions all being in a single file, there was no

way to relate the reactions to each other. It was apparent that there were

duplicate reactions that were represented in different formats and that the

overall process of looking up reactions could be improved by creating a

standardized format for the reactions.
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Table 2.1: An example of the data stored in new Com-
pound Reference SQL Table.

KEGG ID SEED ID CHEBI ID VANEE PALSSON Name

C00001 cpd00001 15377 H2O H2O Water
C00002 cpd00002 15422 ATP ATP ATP
C00003 cpd00003 13389 NAD+ NAD+ NAD
C00004 cpd00004 16908 NADH NADH NADH

2.1.1 Reference Database Collection and Clean Up

To collect and clean up the information housed in the Kyoto Ency-

clopedia of Genes and Genomes (KEGG), Chemical Entities of Biologi-

cal Interest (ChEBI), and the SEED database, when SQL or CSV files

were available they were downloaded, but often information needed to be

scraped from these online sources(Ogata et al., 1999; Degtyarenko et al.,

2008; Overbeek, Disz, and Stevens, 2004). Web scraping was performed

using Scrapy (Scrapy | A Fast and Powerful Scraping and Web Crawling

Framework 2016). Scrapy is a web scraping toolkit written in Python.

Scrapy made it possible to download all of the information from these

websites and simultaneously format it in a standardized way that we could

then parse and load into a PostgreSQL database.

Loading all of this data into a SQL database made it possible to

query this data simultaneously. Having all this data in a single place then

allowed us to develop a Python pipeline to query each of these sources

concurrently to return the identifiers for a given compound or reaction

associated within each of these respective databases. This allowed for the

creation of a standardized format and thus reduce duplicate information.

For example, one of the biggest issues with the reactions is how the com-

pounds are named. KEGG may refer to water as H2O while SEED may
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actually refer to it as water. In another example, when water is donating a

proton in a particular reaction some databases referred this as just H while

in others H+,H2O or even H3O+ even though the reaction was the same

and clearly involved a single H (proton) being donated. With the methods

described here we obtained the full set of metabolites and their associated

information and we used pattern matching to automate the translation of

these reactions into a standardized format using the KEGG identifiers (if

available) for that given compound. The format took after the form of

the KEGG identifiers like C00001 + C00404 <=> C02174 where C00001

represents H2O, C00404 represents polyphosphate and C02174 represents

oligophosphate. If the compound was not found in the KEGG database

but was present in others it was assigned a UNK000X identifier. Table 2.1

shows a sample of the results from the compound reference table.

Any reactions not automatically translated were flagged and reviewed

manually. Once all of the compounds and reactions were in the same for-

mat we then quickly created a mapping of like equations. This mapping

was stored in a PostgreSQL table so that we could quickly access rele-

vant information in each database by retrieving its appropriate ID from

the database. Table 2.2 shows a sample of the results from the reaction

reference table.

Once completed, using Python and SQL statements, a quick and easy

method to retrieve all of the relevant data and analysis resources from

these pathway/genome databases was created. This rapid look-up helped

us obtain and verify metabolic pathways and enzymes derived from exper-

imental results published in the scientific literature. In particular, this is

needed because unfortunately these databases are not always well main-

tained and information in any one source may be out of date or inaccurate.



20 Chapter 2. Curating a Database for Metabolic Reconstructions

Table 2.2: An example of the data stored in new Reaction
Reference SQL Table.

KEGG ID SEED ID NITI PALSSON EC Number(s)

R01867 rxn09563 R_DHORD4 R_DHORD4 1.3.3.1
R04749 rxn03250 R_ECOAH2 R_ECOAH2 4.2.1.17|4.2.1.74
R00405 rxn00285 R_SUCOAS R_SUCOAS 6.2.1.4|6.2.1.5
R03146 rxn10115 R_FDH3 R_FDH3 1.2.2.1

By using this method we kept up to date in order to best assign and verify

the function for the majority of genes in selected genomes.
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Chapter 3

From Sequence to Metabolic

Reconstruction

ASGARD and MetModel are tools that perform genome annotation,

and metabolic pathway reconstruction respectively. Both tools do their job

well but it is not easy or intuitive to use them and especially not together.

For starters, neither of these tools provide adequate documentation on

how to use them or the specific file formats and data that they require to

run. Next, they don’t integrate well on their own so it was not possible to

start from the raw nucleotide sequence data and build a metabolic model

from there before our work. Now while the process is still not completely

automated, that decision was actually intentional as it is helpful to be able

to review the output from each step in the workflow in order to ensure

nothing is missing and manually add or remove reactions or metabolites

if need be. Figure 3-1 shows an overview of the pipeline and the steps

that MetModel uses to perform FBA and generate the KGML reaction

maps. Our specific contributions are highlighted in yellow, and the scoring

function which was developed by Stephen Wunsch and then incorporated

into the pipeline is highlighted in green(Wunsch, Stephen A., 2016).
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3.1 ASGARD Parser

As mentioned before, ASGARD is a tool for determining open reading

frames and then annotating genes, then uses this protein product informa-

tion to determine the reactions present in the gene. It works by supplying

a FASTA formatted file, and the output is a BED file which contains the

enzyme commission numbers (EC) that were predicted to be present in the

organism. This is a big step toward building a complete pathway model,

but there were still missing steps before a model could be generated. First,

a python script was developed and used to parse the EC numbers from the

output, and searched within the new reference database for the associated

reactions, pathways, and if possible genes/gene products associated with

them. This information was then used to build the list of reactions needed

to run MetModel.

3.2 MetModel Pipeline

Once the data from ASGARD was formatted properly it could now be

used with the MetModel pipeline. In order to use MetModel originally you

either had to create your own scripts and call the appropriate functions or

for convenience four separate static scripts were written as example usages

and each had to be tailored specifically to the model that was being run

and each script performed a single step which needed to be executed in-

dependently and in order. As a part of this work all of the function calls,

data, and information that was contained in these four separate scripts

were incorporated into one Python script which created an user friendly,



3.2. MetModel Pipeline 23

reusable software tool. The new script uses command line arguments to

run different procedures and can be run dynamically without having to al-

ter the code of the scripts themselves. Doing this created a semi-automated

process in which a user can use to pause at each step if he or she wishes

to manually intervene or review the files produced before completing the

entirety of the MetModel FBA process.

This tool we created allows the user to also select which steps in the

pathway to perform, the default being all four. Step 1 the MetModel

pipeline adds transport reactions and if desired you can even attempt to

build a model from this information. In step 2 we perform gap filling to

complete the pathways and use FBA to determine the reaction rates and

fluxes. In step 3, if experimental data is available it can be incorporated.

In Step 4, the KGML maps are rendered. These models were then scored

and validated using the scoring function implemented by Stephen Wun-

sch(Wunsch, Stephen A., 2016).

The scoring method is designed to give a relative confidence score in

the pathways that were included in the final model. It is the result of a

collaborative effor between Dr. Stephen Fong, Stephen Wunsch and myself

and was ultimately implemented by Stephen Wunsch, a PSM Bioinformat-

ics graduate student(Wunsch, Stephen A., 2016) The method he developed

works by using BeautifulSoup, a Python library and framework for web-

scraping, similar to Scrapy. It takes an individual reaction within a network

and uses BeautifulSoup to seek out publications that provide experimen-

tal evidence of that reaction within the pathway and organism. The more

unique data it can discover the higher the score. It then outputs these

scores on a scale of 1-10, 1 being the lowest and 10 being the highest. A
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score of 10 indicates that the gene, protein, and reaction all have at least

one primary journal article supporting them that contains experimental

evidence that explicitly shows that the gene products and reactions are

present in the organism. The score decreases from there when evidence

cannot be found for example, a score of 5 indicates that the gene-protein

reaction (GPR) have been associated with multiple EC numbers but are

without publications that provide direct experimental evidence to support

them.
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Figure 3.1: This shows the workflow used to reconstruct
a metabolic network starting from just the nucleotide se-
quence of an organism’s genome. My specific contributions
are highlighted in yellow, and the collaborative effort on

the scoring mechanism is highlighted in Green.
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Chapter 4

Comparison of Metabolism using

Five G. Vaginalis Strains

4.1 Gardnerella vaginalis Nucleotide Sequences

The nucleotide sequences of the genomes from five different Gardnerella

vaginalis strains: 5-1, 41V, 101, AMD, and ATCC 14019, were obtained

from NCBI Nucleotide database. These nucleotide sequences in FASTA

format were then uploaded to our computing cluster where they could be

annotated and then reconstructed into models. Initial ASGARD annota-

tions were also provided in Excel format containing ASGARD output from

these five strains and others. This data was used for comparison against

our ASGARD runs. We also downloaded the metabolic models generated

using Model SEED for these same strains so that our results could be com-

pared.
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Table 4.1: Comparison of Gene Annotations from AS-
GARD, NCBI and Model SEED.

G. vaginalis Strain ASGARD NCBI Model SEED

5-1 2140 1271 345
AMD 2417 1190 339
101 1833 1150 329
ATCC 14019 1485 1366 380
41V 1210 1230 371

4.2 Genome Annotation using ASGARD

Understanding the genes, their products and the metabolic reactions

of G. vaginalis is crucial for researching the virulence, transmission, and

therapeutics. We used genomes of G. vaginalis strains obtained from

NCBI and other sources, then used the Automated System for Gene An-

notation and Metabolic Pathway Reconstruction Using General Sequence

Databases (ASGARD) to determine open reading frames and annotate the

genome(Alves and Buck, 2007).

By using ASGARD we were able to take the assembled nucleotide se-

quences, obtained from NCBI’s nucleotide database, in FASTA file format

and obtain gene annotation and predicted metabolic pathways. The data

provided by ASGARD is a set of reactions for a given pathway, determined

by the genes which were present during the annotation. We regarded this

data as a draft model for the reactions present in each of the Gardnerella

strains. Each of these draft models was then run through our ASGARD

parser script, which extracted the EC numbers in each of the pathways

that were determined by ASGARD to be present. The EC numbers were

then used to obtained the specific reactions and when possible associated
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genes, by querying our reference database. This information was then put

into the appropriate text format so that it could move on to the next step

of being put through the MetModel pipeline where we would integrate gene

expression data, metabolic data and our other information to increase the

accuracy of the model.

To validate the gene annotation performed by ASGARD we compared

the Gene Feature Format (GFF) file created by ASGARD and the GFF

files obtained from NCBI and the Model SEED table containing genes and

their reactions. The GFF files contain genes and their coordinates and we

compared them both by looking at the number of genes and the name of

the gene. We removed redundant genes within the ASGARD GFF and

NCBI GFF files before performing this comparison. Table 4.1 shows the

results of this comparison. Overall, ASGARD showed an average of 72%

similarity in the genes determined to be present between the strains when

compared to the genes present in the NCBI annotations for each strain.

Although, there were was a strong deviation for the AMD strain which was

only 49% similar and ASGARD determined a significantly higher amount

of genes found compared to the number present in the reference strain.

On the contrary, the 41V strain was 98% similar. In all cases, ASGARD

determined a larger number of genes when compared to the number of

genes predicted by Model SEED. This difference appeared to be due to

Model SEED only regarding genes in the PATRIC database that have EC

numbers attached to them (Devoid et al., 2013).

It is clear that the ASGARD algorithm is also more greedy than the

Model SEED algorithm when it comes to gene and reaction pathway de-

termination. However, since these strains lacked experimental evidence for
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transcriptomic or proteomic data it is unknown if the accuracy of ASGARD

to determine open reading frames and predict the genes present in an or-

ganism is better or worse than Model SEED’s annotation process. This

increased amount of genes, and therefore pathways, as predicted initially

by ASGARD and used as a starting point my MetModel, did eliminate

the need for gapfilling during pathway reconstruction, which is a positive

outcome and could indicate the ASGARD is more thorough and accurate

when annotating a genome.
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4.3 Metabolic Pathway Reconstruction Using

MetModel

Each of the genes and reaction sets for all of the strains of Gardnerella

obtained from ASGARD, and parsed out into the appropriate format ex-

pected by MetModel were then run through the MetModel pipeline using

the new MetModel tool. Our MetModel tool allows a user to start from

a file that contains gene-reaction products and run through four different

steps to take a set of reactions and reconstruct the individual reaction

pathways in order to model an organism. For all of the strains of Gard-

nerella we ran all through the steps of the MetModel script, excluding step

3 as no experimental proteomic data was available for any of the individual

strains. The MetModel pipeline then allowed us to use the set of genes

and reaction pathways determined by ASGARD to then apply the FBA

constraint-based modeling approach.

The reconstructions created by MetModel were then compared to mod-

els available in the Model SEED database. We found that on average our

reconstructions had 474 more reactions than the Model SEED reconstruc-

tions. Another major difference to note is that during the gap-filling step

in the MetModel pipeline no reactions needed to be added in order to com-

plete pathways. Of course as previously mentioned we did add transports

and escapes during the first iteration in the MetModel pipeline. It ap-

pears that MetModel ended up with more reactions because the reaction

data parsed ASGARD had a much higher number of genes and reactions.

While some of these reactions were removed by MetModel a significant

amount stayed and thus increased the number of reactions compared to
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Model SEED. Comparing MetModel reconstructions to the Model SEED

reconstructions it at first seemed odd there was a difference of over 400

reactions, but when looking at other models, for example, Escherichia coli

K-12 MG1655 it contains 1366 genes and 2251 reactions in MetModel re-

construction and in the Orth et al. 2011 published model while in Model

SEED it contains only 1132 genes and 1632 reactions. Further, the E. coli

only had transports and escapes added prior to the gap-filling step (Gap-

Fill) in MetModel while in Model SEED 38 reactions were added(Brooks

et al., 2012).

One of the principle reasons for the differences in the number of genes

present from each of the annotation sources is the algorithms used to deter-

mine the genes present. ASGARD uses a greedy algorithm and it appears

it could be overestimating the number of genes present. NCBI, on the

other hand, uses information uploaded by its users so depending on the

methods used to annotate the organism’s genome the accuracy can vary.

Further, the NCBI data is not always well curated so it is also possible that

some older methods and technologies were used to sequence and annotate

these organisms which could again affect the accuracy of the sequences and

accuracy of the gene annotations. Finally, Model Seed appears to be only

including genes that are present in the PATRIC database and have known

enzymes catalog identifiers attached to them. While this approach does

ensure the genes predicted to be present have a high degree of experimen-

tal and literature support it is likely missing out on a lot of genes whose

functions have limited evidence available but are, in fact, present in the

organism.
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Table 4.2: Comparing the number and types of Reactions
in MetModel vs Model SEED.

G. vaginalis Strain MetModel total Model SEED total

5-1 1217 761
AMD 1248 744
101 1220 760
ATCC 14019 1232 769
41V 1235 745

Table 4.3: The Average Confidence scores of the five
strains.

G. vaginalis Strain Score

5-1 1.92
AMD 1.84
101 1.97
ATCC 14019 6.89
41V 1.94

4.4 MetModel Validation and Scoring

First, we compared the draft models from ASGARD to each other. We

found that ASGARD determined 153 pathways in each of the strains, con-

sisting of an average of 1802 reactions in total. We also compared these

individual models against a previous ASGARD run after as we were utiliz-

ing updated reference databases from UniProt. This comparison revealed

that there was no difference between our ASGARD pathway data and the

previous version. This data was then formatted into the appropriate for-

mat and the MetModel pipeline was used without data integration. The

MetModel pipeline added an average of 22 sources, 2 escapes and during

the FBA-GAP no reactions were added. Overall the models had an average

of 1230 reactions, and the reaction sets present in each given pathway were
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highly similar >85%. This high degree of similarity supports the results

from the gene annotations from ASGARD where both the number of genes,

types of genes and the initial pathway predictions were very similar as well.

Once we completed the models for each of these strains we then used

the scoring function to determine relative confidence scores for each of the

reactions and averaged them to produce an overall score for each individ-

ual strain model. The results shown in Table 4.3 demonstrate that with

the exception of ATCC 14019 there was very minimal experimental data

about reactions, pathways and gene products available for these Gard-

nerella strains. These scores of 2 or less indicate that there is no evidence

in PubMed that supports the presence of the gene to protein to reaction as-

sociation (GPR), with the exception of strain ATCC 14019 (with a score of

6.89) which has published evidence of the GPRs associated with its model.

First, these results indicate that there is a clear lack of evidence support-

ing the reaction pathways determined by the pipeline to be present in the

model. Thus it makes it difficult to say confidently that for these given

strains of G. vaginalis have a high degree of accuracy as it is unknown if

these GPRs are truly present in these organisms. Further, these results

also indicated a problem with the current automated scoring system. The

automated scoring system is designed to look for GPRs that have KEGG

IDs for genes. In all the strains except ATCC 14019 no KEGG ID was

given for the GPR as these organisms do not exist in KEGG, and thus the

results are likely skewed.
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Chapter 5

Future Directions

Here we have developed a semi-automated process for taking the nu-

cleotide sequence of an organism’s genome to reconstruction it’s metabolic

reaction networks. From there using our in-house developed scoring func-

tion we were able to assign a confidence score to help determine the quality

of the reactions present in the model. While our results validate this pro-

cess there are a few things that need more research and development.

Since there was no expression data available for these G. vaginalis

strains if expression level data becomes publicly available it would be

constructive to rebuild these models and incorporate that data. By in-

corporating experimental data the MetModel results will more accurately

represent the organisms pathways. It would also be useful to determine

the KEGG ID GPRs for these organisms, even if experimental data is un-

available at least by similarity, it could be possible to lend confidence to

the models by relating known genes within the reference strains of Gard-

nerella.

Next, it would be useful to further improve the scoring process to return

more information about the publications found. For example, the scoring

function only does a single search for the GPR based on the information

about the GPR in KEGG. It would be beneficial if it could also return
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data based on EC or even gene functional type in the event the organism

is not a direct match. Further, the function presently does not return the

dates or methods of the relevant publications and this could help improve

confidence as more recent papers likely may have a greater degree of accu-

racy and precision.
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Appendix A

Users Guide - Building Genome

Scale Metabolic Reconstructions

This will serve as a guide on how to actually execute the steps required

to go from a nucleotide FASTA file to the complete KGML pathway maps

for a given organism. This is targeted at VCU faculty, students, and staff

as it will refer to specific locations and servers housed in the CHPC.

A.1 Using ASGARD

Asgard is installed on the distributed computing cluster called Godel. It

makes use of Grid Engine to distribute the various Blast processes and

other jobs to different nodes. Since it is installed on Godel you first have

to have an account there. If you do not already have access to Godel

ask your advisor for how you can go about obtaining one. For the rest of

the guide we will assume that you have access to Godel via SSH/SFTP

(remember off campus will require VPN access as well) and proper per-

missions to access the ASGARD and BLAST executables.

Start by uploading the FASTA file you wish to run through ASGARD,

then login to Godel and enter the directory where your sequence is stored.
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Reconstructions

I highly recommend you have this sequence file alone and in its own appro-

priately named directory as it will make your life easier later on. Once in

the directory you can run the following command to queue the ASGARD

jobs: /usr/global/blp/bin/asgard -i YOURSEQUENCE.fasta

-p blastx -n 20 -d /gpfs_fs/data/refdb/asgardDB/UniRef100

-d /gpfs_fs/data/refdb/asgardDB/KEGG

-f /gpfs_fs/data/refdb/asgardDB/uniref100.fasta.gz

-f /gpfs_fs/data/refdb/asgardDB/genes.pep.gz

-l /gpfs_fs/data/refdb/asgardDB

Where /usr/global/blp/bin/asgard is the location of the ASGARD ex-

ecutable, -i is the flag for your FASTA file, -p is which blast program to

use (generally blastx but consult the NCBI Blast documentation if you are

unsure), -n is the number of nodes to use, -d specifies the locations of the

protein databases, while -f specifies the FASTA files that correspond to

the databases specified in the -d command, and finally -l is the location of

the mapping files.

Once ASGARD completes successfully, usually within a few hours, you

will find a number of new files present in the directory where you stored

your sequence. I’m going to focus on the four that are of interest in re-

lation to create metabolic reconstructions. These five files will be named

YOURSEQUENCE.fasta but have the extensions: .gff, .path_rec, .paths,

.paths.detail, again where YOURSEQUENCE.fasta is the name if your

FASTA file given to ASGARD. There are usually two files with the exten-

sion GFF which are the General Feature Format (GFF) files that contain

information about the open reading frames identified by ASGARD. Next,

the path files contain summary or detailed information about the genes

implicated in pathways, and the pathways that were matched based on
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those genes. It is worthwhile at this time to review and make sure you

understand what the output of these files are before continuing, but once

satisfied run:

python asgard_parse.py YOURSEQUENCE.fasta.paths

and it will generate a single file that contains the information required to

run the MetModel pipeline.

A.2 Using MetModel

Since MetModel is a Python Library it may be difficult to setup, luckily

it is already installed on Dr. Brooks’s server as well as godel. There aren’t

a lot of prerequisites for MetModel but you will need install Gurobi if it is

not installed and you will need a license for Gurobi (even if it is already

installed). Once you have Gurobi installed you can clone git repository

hosted on GitHub: Met-Modeling on GitHub. In any case, you just need

to make sure that the install locations are provided to your PYTHON-

PATH environmental variable. Contact a system administrator if you are

unsure how to do this yourself. From here we will assume you can import

metmodel from within Python. The rest of this guide assumes you are

working with ASGARD data and are already within the working direc-

tory where you have your asgard_parse output. Once you have cloned the

GitHub or have access to the MetModel Python library in your Python

path and have downloaded the met_model.py script, you can now run the

four steps in our metabolic reconstruction pipeline by typing:

python met_model.py -i YOURSEQUENCE.txt -t TXT -x exchanges

-b biomass -ndi

If you have metabolomic or gene expression data available you can specify

https://github.com/metabolic-reconstruction/met-modeling
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-m or -d for each respectively and omit the -ndi flag. For more informa-

tion you can also run python met_model.py -h for a list of all the

available options.

Once met_model.py is invoked it will run a step and then pause, ask-

ing you to continue, while paused it is possible to modify and view files

as your see fit. Then once complete you will be able to view the KGML

pathway maps using a KGML viewer of your choice.
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