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Abstract

Benzenoids are graphs representing the carbon structure of molecules, defined by a

closed path in the hexagonal lattice. These compounds are of interest to chemists study-

ing existing and potential carbon structures. The goal of this study is to conjecture and

prove relations between graph theoretic properties among benzenoids. First, we generate

conjectures on upper bounds for the domination number in benzenoids using invariant-

defined functions. This work is an extension of ideas to be presented in C. E. Larson,

et. al. [7]. Next, we generate conjectures using property-defined functions. As the title

indicates, the conjectures we prove are not thought of on our own, rather generated by

a process of automated conjecture-making. This program, named Conjecturing
1, is

developed by Craig Larson2 and Nico Van Cleemput3.

1http://nvcleemp.github.io/conjecturing/
2Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Rich-

mond, VA 23284, clarson@vcu.edu
3Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281 S9, 9000 Ghent, Bel-

gium, nico.vancleemput@gmail.com



Chapter 1

Invariant investigation

Our motivation for studying benzenoid hydrocarbons, benzenoids for short, stems from

research on the chemical properties of carbon chains. Initially, ideas conjectured by

Müller and Müller-Rodloff in [12] motivated a topological investigation of benzenoids

with stability results recorded by Longuet-Higgins in [10] showing certain benzenoid

structures have a low chemical stability. S. J. Cyvin and I. Gutman note in [3] of this

topological development and later define algebraic relations on graphs of benzenoids

embedded in the plane in their book Introduction to the Theory of Benzenoid Hydrocar-

bons [5]. This is a study of applying graph theory by defining graph invariants from

benzenoids for interpretation on the respective chemical structure. We begin by dis-

cussing benzenoid embeddings to explain the graph theory used in proving automated

conjectures on upper bounds of the domination number of a benzenoid, denoted γ(B).

These bounds, and other results of this chapter, are a joint work with Laura Hutchinson,

Vikram Kamat, Craig Larson, Shailya Mehta, and Nico Van Cleemput.

1.1 Embeddings

A benzenoid, denoted B, may be drawn as a graph defined with a vertex set and an

edge set. Benzene is the benzenoid with six vertices and six edges. These edges connect
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Figure 1.1: Benzene graphed as C6

the vertices in a closed loop in which neither a vertex nor edge is repeated. This type

of closed loop, in which no vertex or edge is repeated, is defined as a cycle. A cycle

graph of order n is a graph with n vertices consisting of a single cycle. Cycle graphs are

denoted Cn. Benzene is equivalent to cycle graph C6. The graph of benzene in Figure

1.1 has vertex set V(C6) = {0, 1, 2, 3, 4, 5} and edge set E(C6) = {01, 12, 23, 34, 45, 50}.

An arbitrary benzenoid is constructed by defining a closed curve on the hexagonal

lattice, shown in Figure 1.2. The closed curve that forms the benzenoid is called the

perimeter. We define benzenoids by carving them out of the hexagonal lattice. The act

of slicing the hexagonal lattice defines the vertex and edge set of a benzenoid. Benzene

is the graph represented as a single hexagon from the lattice. Structuring benzenoids as

hexagonal rings is practical and allows for graph theoretic interpretation and computa-

tion. A benzenoid formed from a closed curve is a nonseparable graph. Figure 1.3 shows

three more benzenoids embedded in the plane.

Definition 1. A graph G is nonseparable if, for any v ∈ V(G), the graph G− v is connected.

One analogy used to visualize a benzenoid is to consider one comprised of blocks

forming a nontrivial connected graphG. The individual blocks combine to form a cluster,

which is the full picture of a benzenoid. The definition for a block is imported from

Chartrand, Lesniak, & Zhang [2]; cluster is introduced here.
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Figure 1.2: Defining a benzenoid by closing a curve in the hexagonal lattice

(a) antracene (b) pyrene (c) triphenylene

Figure 1.3: Three benzenoids
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Figure 1.4: Methylcoroene is not a benzenoid as there are six edges that can form a
hexagon in the center, but a hexagon is not present.

Definition 2. A block of nontrivial connected graph G is a maximal nonseparable subgraph of

G.

Definition 3. A cluster is a nonseparable subgraph of the hexagonal lattice, not necessarily

maximal.

Benzenoids have three chemical properties that are not represented in an embedding.

First, hydrogen atoms bonded to carbon atoms are not shown. Hydrogen atoms are

assumed to be bonded to carbon atoms on the perimeter. Second, double and single

bonds in benzenoids are not distinguished in an embedding. Each edge is single sided.

Finally, embeddings do not account for π−electrons that may exist in double bounds of

a benzenoid.

In addition, there are guidelines to follow when constructing a benzenoid. First, is

the slicing rule, which means that we may define benzenoids by peeling them for the

hexagonal lattice. This ensures the absence of holes in an embedding and is analogous

defining benzenoids by forming closed curves. Any possible hexagon that may form

where six edges form a cycle must be present in an embedding. An empty space flanked

by six hexagons is not allowed. For example, the graph of methylcoroene shown in

Figure 1.4 is not an embedding of a benzenoid–it does not follow the slicing rule as

there is hexagon missing where six edges form a cycle.

Methylcoroene is from a larger class of hydrocarbons known as polycyclic aromatic

4



hydrocarbons (PAHs). Benzenoids are PAHs that are constructed from benzene rings.

Gutman & Cyvin in [5] distinguish the PAH class from the benzenoid subclass by ex-

plaining that PAHs may be, and often are, formed cycles with fewer than six carbon

atoms. In addition, many PAHs have other carbon activity that the hexagonal embed-

ding does not account for. They later note that most PAHs are thermodynamically

and chemically stable. Comparatively, the reactive nature of some benzenoids allow

for varying chemical stability dependent on carbon structure. Vertex positioning in the

embedding of benzenoids may be significant in determining chemical stability. One

measure of efficient vertex placement is given by the domination number of a benzenoid,

which denotes how many vertices are needed to dominate the vertex set. Bounding the

domination number of benzenoids is the primary motivation of this invariant study.

1.2 Domination number and dominating sets

For an arbitrary graph G, a vertex v ∈ V(G) is said to dominate both itself and any vertices

adjacent to v. That is, a vertex v dominates the vertices in the closed neighborhood N[v].

So vertex v and vertices sharing an edge with v are dominated by v. Understanding the

concept of domination is the first step to forming dominating sets of vertices from V(G).

Definition 4. A set S of vertices of graph G is a dominating set of G, if every vertex of G is

dominated by at least one vertex of S.

There is at least one dominating set for any arbitrary graph G, the trivial dominating

set S containing every element of V(G). As with many mathematical objects, we are

not interested in an arbitrary dominating set, but rather a minimum dominating set. A

minimum dominating set of G is a dominating set of G containing the fewest number of

elements. The domination number of a graph G, denoted γ(G), is described by Chartrand

& Lesniak in [2] as the minimum cardinality among all dominating sets. This invariant

reports the fewest number of vertices needed to dominate every vertex in the vertex

5
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Figure 1.5: A minimum dominating set of benzene: {0, 3}, the Petersen Graph: {0, 7, 8}

set. The domination number of a graph is the basis of this invariant investigation and

warrants a formal definition.

Definition 5. The domination number γ(G) of a graph G is the cardinality of a minimum

dominating set.

Again, this number counts fewest number of nodes in a dominating set so that these

nodes are adjacent to all other nodes. These dominating nodes are vertices from the

dominating set of a graph, which is a subset of the vertex set of a graph.

Remark. Let Dmin(B) denote a minimum dominating set of benzenoid B.

Benzene has a minimum dominating set from choosing two vertices in V(C6) which

will not share an edge in E(C6). It is possible to form three minimum dominating sets of

benzene. Let Dmin(C6) denote a minimum dominating set of benzene. Once we select

a vertex to be the first in the minimum dominating set, the remaining vertex must be

the one that shares no edge with a vertex already dominated by the vertex chosen for

Dmin(B). One dominating set of benzene is shown in Figure 1.5 as well as a dominating

set of the Petersen graph. Gold vertices in the figure belong to the minimum dominating

set. From the labeling of Figure 1.1, the three minimum dominating sets of benzene are

{0, 3}, {1, 4}, and {2, 5}.
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Figure 1.6: Example of overlap: let B be Triphenylene with n(B) = 18,h(B) = 4,γ(B) = 6
and B ′ be Tetraphene with n(B ′) = 18,h(B ′) = 4, and γ(B ′) = 5

In the best case, for an benzenoid B with h(B) hexagons and order n(B), each dom-

inating vertex in Dmin(B) dominates at most three other vertices uniquely. This shows

that for any benzenoid the domination number γ(B) has a lower bound of n(B)
4

. One

of every four vertices appear in the dominating set. Some benzenoids are less efficient

than others at spreading their dominating vertices. When a vertex v ∈ Dmin(B) is ad-

jacent to a vertex already dominated by a different vertex u ∈ Dmin(B), the minimum

dominating set is said to have overlap. For a benzenoid with every minimum dominat-

ing set containing overlap directly affects the domination number. Consider a different

benzenoid B ′ of the same order and number of hexagons as B, but has a minimum dom-

inating set without overlap. Necessarily, γ(B ′) 6 γ(B) and the cardinality of Dmin(B) is

larger than or equal to the cardinality of Dmin(B
′). Refer to Figure 1.6 for an example of

overlap through a side-by-side comparison of the dominating sets of Triphenylene and

Tetraphene. From the figure we see that, although Triphenylene and Tetraphene have

the same order and number of hexagons, a minimum dominating set of Tetraphene con-

tains fewer elements than a minimum dominating set of Triphenylene. In other words,

this minimum dominating set of Triphenylene contains overlap. It turns out that all

minimum dominating sets of Triphenylene have overlap as well.

A large number of dominating vertices in B may be interpreted as a strain on the

vertices to reach every element of V(B). One idea is that a larger spacing of carbon
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atoms causes a strain by introducing more π−electrons than another benzenoid of equal

order with compact structure, meaning it has a smaller domination number.

A dominating set may be quickly checked to be minimum if provided, although an

efficient way to find a minimum dominating set is not known. In computer science, this

problem of not having an efficient algorithm to generate a solution is indicated as an

NP-complete decision problem. This term refers the problem of determining minimum

dominating sets of graphs not having a known solution in polynomial time. Instead,

finding minimum dominating sets of graphs is solved by current algorithms in exponen-

tial time. See Section 3.2 in [2] for an introduction to P and NP decision problems in

graph theory. Calculating the domination number for an arbitrary graph is known to be

NP-complete from Garey & Johnson [4].

It is useful to use properties found in all benzenoid graphs as a filter separating

out arbitrary graphs for ones with specific structure. Benzenoids belong to the class of

graphs that are bipartite. The characterization of bipartite graphs are that their vertex

sets can be separated into two independent sets of nonadjacent vertices. Another class

benzenoids belong to are planar graphs. A planar graph may be embedded in the plane

without any edge crossings. Benzenoids are constructed by defining a closed path on the

hexagonal lattice and thus do not contain edge crossings. Determining minimum dom-

inating sets in planar graphs and bipartite graphs are additional known NP-complete

decision problems from [4] and M. Liedloff [9]. Benzenoids have more properties which

further restrict the graphs belonging to its class. One restriction found in all benzenoids

are on the degree of vertices in a vertex set. The following definition appears in [2].

Definition 6. For a graph G, the degree of a vertex v in G is the number of vertices in G that

are adjacent to v.

For an arbitrary benzenoid B, any v ∈ V(B) has a degree of 2 or 3. Similar to mem-

bership in planar graphs, this is due to benzenoids being connected by closed curves on

the hexagonal lattice. Defining a closed curve introduces internal vertices and external

8



vertices. Internal vertices have a degree of 3, and external vertices (internal in the infinite

hexagonal lattice) have a degree of 2. From this observation it must be that any vertex

v ∈ Dmin(B) may have a maximum degree of at most 3. However, this extra specification

on vertex degrees does not make finding minimum dominating sets easier. A result by

T. Kikuno, N. Yoshida, and Y. Kakuda in [6] shows that determining minimum dominat-

ing sets in planar graphs with maximum degree of 3 is NP-complete. Still, benzenoids

possess even more structure that may play a significant role in determining an algorithm

to find minimum dominating sets in polynomial time. It remains an open question if

finding minimum dominating sets of a benzenoid is NP-complete.

In the face of not knowing an efficient algorithm for finding minimum dominating

sets it is useful to determine bounds on a benzenoid’s domination number. Upper and

lower bounds narrow the interval containing the domination number. Narrowing the

interval becomes the goal. Defining more invaraints in addition to the domination num-

ber gives Conjecturing more bounds to work with. Strengthening an upper bound on

γ(B) is our primary motivation for defining more graph invariants for benzenoids. We

use a systematic approach for generating the upper bounds on γ(B) by deploying Con-

jecturing. The Conjecturing program serves as a tool to help us refine conjectures

by relating other defined graph invariants to the domination number in combinations

we may have glossed over. As the list of benzenoids and invariant-defined functions

supplied to Conjecturing grows, so does the program’s generated output.

1.3 Invariants

Graph invariants are split into two categories for this study. The first group of invari-

ants may be calculated for any arbitrary graph. The second group of invariants are

those for which it only makes sense to talk about in the context of benzenoids. In this

group, invariants are defined specifically for the benzenoid class of graphs. First we

9



will discuss the invariant-defined functions that apply for arbitrary graphs. Defining an

invariant is synonymous with programming an invariant-defined function. All of the in-

variants below are programmed in SageMath, the back-end for running Conjecturing.

The conjecture-making process is detailed in Section 2.2 and code for each invariant is

included in Appendix A. Using Conjecturing, SageMath, and the provided code it is

possible to reproduce the study for individual experimentation.

Graphs are defined by a vertex set and edge set, and the first two invariants often

determined for a graph are its order and size. The order of a graph is the cardinality of

its vertex set and the size of a graph is the cardinality of its edge set. These are the first

invariants we define for benzenoids.

Invariant 1 (Number of vertices). For a benzenoid B, define B.order() as the number of

vertices of B.

Invariant 2 (Number of edges). For a benzenoid B, define B.size() as the number of edges

of B.

These invariants are programmed with the names B.order() and B.size(). We

shorten the notation by referring to the two invariants as n(B) and m(B) respectively.

Next, we program an invariant-defined function to determine a benzenoid’s domination

number. This is our invariant of interest for this investigation and is formally stated as

follows.

Invariant 3 (Domination number). For a benzenoid B, define domination number(B) to be

the cardinality of a minimum dominating set of B.

In this study we denote the domination number of a benzenoid as γ(B) in compliance

with the established notation found in graph theory texts.

We observed in the previous section that vertices in a benzenoid may have a degree

of 2 or 3. The number of degree-2 and degree-3 vertices in a benzenoid could help bound

its domination number, so these two invariants are worth defining. We can define these

10



invariants by looking at degree sequences of benzenoids and counting the amount of

times 2 and 3 appears in the sequence.

Invariant 4 (Number of degree-2 vertices). For a benzenoid B, define degree 2 vertices(B)

as the number of degree-2 vertices in B.

Invariant 5 (Number of degree-3 vertices). For a benzenoid B, define degree 3 vertices(B)

as the number of degree-3 vertices in B.

For simplificaiton, denote the number of degree-2 vertices in B as δ2(B) and the

number of degree-3 vertices in B as δ3(B). Using a shorter notation is more convenient

when writing and proving propositions containing many invariants.

Using this same mindset we also want to determine the number of different edge

types found in a benzenoid. By construction, for any benzenoid, an edge may have

endpoints with two degree-2 vertices, two degree-3 vertices, or one degree-2 vertex and

one degree-3 vertex. The varying amounts of these three edge types are something worth

accounting for. These are three more graph invariants to define.

Invariant 6 (Number of 2-2 edges). For a benzenoid B, define number of 2 2 edges(B) as

the number of edges in B that are connected by two degree-2 vertices.

Invariant 7 (Number of 2-3 edges). For a benzenoid B, define number of 2 3 edges(B) as

the number of edges in B that are connected by a degree-2 vertex and a degree-3 vertex.

Invariant 8 (Number of 3-3 edges). For a benzenoid B, define number of 3 3 edges(B) as

the number of edges in B that are connected by two degree-3 vertices.

We denote these three invariants as e22(B), e23(B), and e33(B), respectively. Comput-

ing these three numbers turns out to be more involved than the previous invariants as

SageMath does not have a built-in method for the calculations. Programming the invari-

ants is left to us. As shown in Appendix A, we determine these invaraints by initializing

11



a counter (at 0) and defining two endpoints for each edge. We denote these two end-

points as endpoint1 and endpoint2. Then the degree is calculated for each endpoint.

Using an if-then statement SageMath checks each edge and determines if the edge’s

endpoints have the degrees we are seeking. If so, the counter is increased by 1 and the

total is returned after all edges are checked. For instance, if we wanted to determine

the number of 2-2 edges in B, we specify the if statement such that if both endpoint1

and endpoint2 are degree-2, then add 1 to the counter. In this way we filter through the

endpoints and only count the edges joined by two degree-2 endpoints. The invariants

e23(B) and e33(B) are found in a similar fashion.

The final invariant-defined function applicable in an arbitrary graph is the graph’s

matching number. This invariant counts the number of elements in a graph’s maximum

independent edge set. Both terms are formally defined below, followed by a statement of

the invariant.

Definition 7. For a graph G an independent edge set of G is a subset S ⊆ E(G) such that no

two edges in S share a vertex in V(G).

Definition 8. For a graph G, the matching number of G is the cardinality of a maximum

independent edge set of G.

Invariant 9 (Matching number). For a benzenoid B, define matching number(B) to be the

cardinality of a maximum independent edge set of B.

SageMath has built-in functionality for finding a maximum independent edge set for

a graph G; the method is programmed as G.matching(). Calculating the length of this

set is an easy way to define the matching number.

Next we move to defining invariants that do not necessarily apply to an arbitrary

graph, rather ones in a specific class. These next few invariants are all about a ben-

zenoid’s two bipartite sets. As mentioned in the previous section, benzenoids are known

12



bipartite graphs. Before stating the invariants we introduce the notation for the smaller

bipartite set and the larger bipartite set.

Remark. Let Bs(B) and Bl(B) denote the smaller and larger bipartite sets, respectively, of an

arbitrary benzenoid B.

The smaller and larger bipartite sets are just that: sets; they are not numbers and

therefore not invariants. However, we may define invariants based on the cardinality of

these sets.

Invariant 10 (Cardinality of the smaller bipartite set). For a benzenoid B, define

smaller bipartite set(B) as the number of elements in the smaller partite set of B.

Invariant 11 (Cardinality of the larger bipartite set). For a benzenoid B, define

larger bipartite set(B) as the number of elements in the larger partite set of B.

The notation for Invariant 10 is |Bs(B)| and for Invariant 11 is |Bl(B)|. When the two

invariants are equal (that is, when |Bs(B)| = |Bl(B)|) each set has the same number of

elements. In this case, we say that benzenoid B has balance. This is a property, not a

number. For any benzenoid we can determine if the property is True or False. Either

the benzenoid has the property balance or it does not. Property conjectures are examined

in Chapter 2 of this paper, an extension of this study on invariants. When a benzenoid

does not have balance, it must be that |Bl(B)| > |Bs(B)|. This property is denoted color

excess. The amount of color excess, denoted /(B), varies between benzenoids and gives

us another invariant to define on the bipartite sets of B.

Invariant 12 (Color excess). For a benzenoid B, define color excess(B) as the difference

between the cardinality of the larger bipartite set of B and the cardinality of the smaller bipartite

set of B.

The next invariant-defined function counts the number of hexagons in an embedding

of a benzenoid.

13



Invariant 13 (Number of hexagons). For a benzenoid B, define hexagons(B) as the number

of hexagons the embedding of B.

The notation h(B) is used to denote Invariant 13. While it is apparent this is a useful

invariant, it is not immediately clear how to go about defining it. There is not a built-in

method in SageMath which will recognize and count each hexagon in an embedding and

return the total amount. This is the case for most categorically benzenoid invariants. We

need to come up with our own method. Many of these invariants already have defined

relations, appearing in Gutman & Cyvin’s book [5]. The formula for the number of

hexagons, as well as other invariants, may be imported from the book into SageMath

for use in Conjecturing. Along the way we will prove some of these relations, starting

with h(B).

Many of the formulas for invariants and automated conjecture results rely on an

assumption that every non-trivial benzenoid, i.e. not benzene, has a removable hexagon.

A removable hexagon is a hexagon H in benzenoid B where, if we remove the vertices

and edges in V(B) and E(B) that are unique to H, the resulting graph is a benzenoid. The

benzenoid formed from removing H is often denoted B ′. In the induction step of many

proofs we often use the following removable hexagon lemma to guarantee the existence

of a benzenoid after the removal of a removable hexagon. This lemma makes use of a

benzenoid’s inner dual which we define first. Examples and applications of inner duals

and appear in Section 1.4.

Definition 9. The inner dual of a benzenoid B is a graph that has a vertex for each face of

B, excluding the outer face. This graph contains an edge between two vertices whenever two

hexagons in B share an edge.

Lemma 1. Every non-trivial benzenoid B has a removable hexagon.

Proof. Let H1 and H2 be hexagons in B of maximum distance from the diameter of the

corresponding inner dual. We claim that H1 is removable. Suppose not. Then B − H1

14



is disconnected. Let C1 and C2 be two components of B − H1 with H2 contained in C1.

Then any path of hexagons from H2 to C2 must contain H1. Let H3 be any hexagon in

C2. Then the distance from H2 to H3 is greater than the distance from H2 to H1. This is

a contradiction to the assumption that H1 and H2 were at maximum distance. Then we

were wrong to assume that H1 is not removable. It follows by contradiction that every

non-trivial benzenoid has a removable hexagon.

Theorem 1. Suppose benzenoid B is of order n(B) and sizem(B). Then the number of hexagons

in B, denoted h(B), is given by h(B) = m(B) − n(B) + 1.

Proof. Let B be a benzenoid and let H be a removable hexagon of B. By Lemma 1 we

know at least one removable hexagon must exist in B. Let B ′ be the benzenoid found

by removing the edge(s) in H not shared by any other removable hexagon of B. By

assumption, we have that h(B ′) = m(B ′) − n(B ′) + 1 and h(B) = h(B ′) + 1. Suppose

removing H removes m ′ edges from E(B) such that m(B ′) = m(B) −m ′. Then m ′ − 1

vertices are removed, and n(B ′) = n(B) − (m ′ − 1). Therefore,

h(B) = h(B ′) + 1

= m(B ′) − n(B ′) + 1+ 1

= (m(B) −m ′) − (n(B) −m ′ + 1) + 1+ 1

= m(B) − n(B) + 1.

When programming this invariant in SageMath we may take advantage of knowing

the formula by defining hexagons(B) to return the quantity m(B) − n(B) + 1.

Let’s return to the discussion of vertices and edges. The amount of vertices and

amount of edges in a vertex and edge set are typically the first invariants determined

when given a graph. Earlier, we split edges into three types based on the degrees of their
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endpoints. In a similar manner we may categorize vertices into two groups: internal

vertices and external vertices. An external vertex is one that lies on the perimeter of

a benzenoid. Recall the term perimeter from Section 1.1. We simply mean that an

external vertex of a beznenoid lies on the closed curved defined on the hexagonal lattice

forming the benzenoid. Internal vertices are the vertices that are not external; they do not

lie on the closed curve forming the benzenoid. Every benzenoid has external vertices,

but having internal vertices is not a requirement. The amount of internal and external

vertices in a benzenoid constitutes the next two invariants.

Invariant 14 (Number of internal vertices). For a benzenoid B, define

number of internal vertices(B) as the number of internal vertices in B.

Invariant 15 (Number of external vertices). For a benzenoid B, define

number of external vertices(B) as the number of external vertices in B.

Let ni(B) denote the number of internal vertices in B and ne(B) denote the number

of external vertices in B. Necessarily, internal vertices of a beznenoid have a degree of 3.

However, external vertices may have a degree of 2 or 3. The point is it would be wrong

to assume a vertex is internal or external just from its degree. These invariants may be,

and usually are, different than δ2(B) and δ3(B). A formula for the number of internal

vertices appears in [5], and is proven in the following theorem.

Theorem 2. Let B be a benzenoid with h(B) hexagons and n(B) vertices. Then the number of

internal vertices in B, denoted ni(B), is given by 4h(B) + 2− n(B).

Proof. Using Theorem 1, we want to show that

ni(B) = 4h(B) + 2− n(B)

= 4 (m(B) − n(B) + 1) + 2− n(B)

= 4m(B) − 5n(B) + 6.(∗)
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Use mathematical induction on h(B). In the base case when h(B) = 1, benzenoid B is

benzene which has 0 internal vertices. Notice that ni(B) = 0 = 4(1)+ 2− 6 = 4h(B)+ 2−

n(B), so the base case holds.

Suppose that the assumption that ni(B) = 4h(B)+2−n(B) holds for benzenoids with

k − 1 > 1 hexagons for k ∈ N. We will show the assumption holds when h(B) = k. Let

B be a benzenoid with h(B) = k. By Lemma 1, there exists a removable hexagon H in

B. Let B ′ = B−H be the benzenoid defined by the removal of H from B. Removing this

hexagon defines the following relations:

1. The number of hexagons in B ′ is given by h(B ′) = h(B) − 1 = k− 1.

2. Removing H from B removesm ′ edges in B, returning the relationm(B ′) = m(B)−m ′.

3. Since m ′ edges are removed from B, m ′ − 1 vertices are removed from B as well,

showing that n(B ′) = n(B) − (m ′ − 1).

As h(B ′) = k− 1 we may apply the inductive hypothesis. Observe that

ni(B
′) = 4h(B ′) + 2− n(B ′)

= 4 (m(B ′) − n(B ′) + 1) + 2− n(B ′)

= 4m(B ′) − 5n(B ′) + 6

= 4(m(B) −m ′) − 5 (n(B) −m ′ + 1) + 6

= 4m(B) − 5n(B) +m ′ + 1.(∗∗)

What remains to be shown is that equations (∗) and (∗∗) are equivilant. That is, we

want to show

ni(B
′) −m ′ − 1 = ni(B) − 6

ni(B
′) −m ′ + 5 = ni(B).

We proceed by cases. First suppose thatm ′ = 1, meaning 1 edge was eliminated from
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B by the removal of H. When 1 edge is removed, the vertices lying on the perimeter in B ′

where H was removed switch from internal to external vertices. There are 4 vertices that

external in B ′ and internal in B. Then the equation determining the number of internal

vertices in benzenoid B ′ is given by ni(B
′) = ni(B) − 4. From the relation above

ni(B) = ni(B
′) −m ′ + 5

= ni(B) − 4− 1+ 5

= ni(B),

as we wanted to show. The remaining cases follow in a similar manner.

Now suppose that m ′ = 2. Then 2 edges are removed from E(B) by the removal of H.

Removing 2 edges removes 1 vertex from the perimeter of B, and now 3 more vertices

lie on the perimeter of B ′, with 5 total external vertices on the perimeter where H once

was. Removing m ′ = 2 edges creates 3 external vertices, so ni(B
′) = ni(B) − 3. Then

ni(B) = ni(B
′) −m ′ + 5

= ni(B) − 3− 2+ 5

= ni(B).

Suppose that m ′ = 3. Removing 3 edges from E(B) removes 2 external vertices on the

perimeter of B. Then 4 vertices in B ′ lie on the perimeter where H was removed. So 2

vertices that were internal in B are external in B ′, giving the relation ni(B
′) = ni(B) − 2.

Now we find that

ni(B) = ni(B
′) −m ′ + 5

= ni(B) − 2− 3+ 5

= ni(B).
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Consider when m ′ = 4. Removing 4 edges from E(B) also removes 3 external vertices

lying the perimeter of B, leaving 3 external vertices on the perimeter of B ′ where H was

removed. There is 1 internal vertex in B that is now external in B ′. This gives the relation

ni(B
′) = ni(B) − 1, and we determine that

ni(B) = ni(B
′) −m ′ + 5

= ni(B) − 1− 4+ 5

= ni(B).

In the final case m ′ = 5. Removing 5 edges from E(B) removes 4 external vertices from

V(B). Since 5 edges are removed, it must be that H shares only 1 edge with another

hexagon. Then the 2 vertices in B ′ that remain from the removal of H are external

vertices, and we find that ni(B
′) = ni(B) − 0. Then the relation we want to show is now

ni(B) = ni(B
′) −m ′ + 5

= ni(B) − 0− 5+ 5

= ni(B).

In all cases, we are able to show that ni(B
′)−m ′+ 5 = ni(B). It follows by mathematical

induction that the number of internal vertices in B is given by ni(B) = 4h(B) + 2 −

n(B).

Corollary 1. Let B be a benzenoid with h(B) hexagons and n(B) vertices. The number of

external vertices in B is equal to the order of B minus the number of internal vertices of B.

Proof. A vertex v ∈ V(B) may be placed in one of two disjoint sets dependent on if v

is an internal vertex or external vertex. The order of B may be calculated by summing

the number of internal vertices and the number of external vertices. That is, n(B) =

ni(B)+ne(B). Subtracting both sides of the equation by ni(B) proves the statement.
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Figure 1.7: A benzenoid containing all four possible bay regions

Edges can be classified as external or internal as well. Defining usable formulas

first requires an understanding of bay regions in a benzenoid. Bay regions are structural

features that exist on the perimeter of a benzenoid. There are four possible bay regions

that may appear in a benzenoid: fissures, bays, coves and fjords. The meaning of each of

these terms is best explained visually, and each bay region is shown in Figure 1.7.

The number of bay regions, as well as the number of each type of bay regions, form

the next four invariants.

Invariant 16 (Number of bay regions). For a benzenoid B, define number of bay regions(B)

as the number of bay regions in B

Let b(B) denote the number of bay regions in benzenoid B. Gutman & Cyvin provide

the following relation on b(B).

Theorem 3 (Gutman & Cyvin [5]). Let B be a benzenoid with e22(B) 2-2 edges. The number

of bay regions in B is given by b(B) = e22(B) − 6.

In SageMath we can define Invariant 16 using Theorem 3. Have the invariant-

defined function number of bay regions(B) return number of 2 2 edges(B)−6. We want

to count the number of times each type of bay region appears in a benzenoid as well.

Invariant 17 (Number of fissures). For a benzenoid B, define fissures(B) as the number of

fissures in B.

20



Invariant 18 (Number of bays). For a benzenoid B, define bays(B) as the number of bays in

B.

Invariant 19 (Number of coves). For a benzenoid B, define coves(B) as the number of coves

in B.

Invariant 20 (Number of fjords). For a benzenoid B, define fjords(B) as the number of fjords

in B.

These structural features in a benzenoid can have an impact on its domination num-

ber. However, like finding h(B), it is not immediately clear how to define a formula com-

puting these invariants. Instead, using SageMath, we can write code to index over the

list of vertices on the perimeter of a benzenoid and search for specific degree sequences.

For example, when computing the number of bays in benzenoid, we filter through all

vertices on the outer face and count the number of times the sequence 2, 3, 3, 2 appears.

This is the specific sequence that designates a bay. The total number of times this degree

sequence occurs is returned as Invariant 18. Similarly, we search for the degree sequence

2, 3, 2 to count the number of fissures. For coves: 2, 3, 3, 3, 2, and for fjords: 2, 3, 3, 3, 3, 2.

Now that the bay region invariants are defined, we focus on adding more edge invari-

ants. The following three invariants are similar to the earlier edge invariants separated

by degree of the endpoint. Now we take into account whether a particular edge lies

along the perimeter or interior of a benzeoid.

Invariant 21 (Number of external 2-3 edges). For a benzenoid B, define

number of external 2 3 edges(B) as the number of external 2-3 edges in B.

Invariant 22 (Number of external 3-3 edges). For a benzenoid B, define

number of external 3 3 edges(B) as the number of external 3-3 edges in B.

Invariant 23 (Number of internal 3-3 edges). For a benzenoid B, define

number of internal 3 3 edges(B) as the number of internal 3-3 edges in B.
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Denote the above three invariants as ex23(B), ex33(B) and in33(B), respectively. Note

that we may also define an invariant for the number of external 2-2 edges, but this

already equal to an invariant we previously defined. For any benzenoid, the number of

external 2-2 edges is equal to the total number of 2-2 edges, e22(B). A 2-2 edge may only

lie on the perimeter of a benzneoid. Formulas for calculating the above invariants are

given below, imported from [5]. For a benzenoid B:

• ex23(B) = 4h(B) − 2b(B) − 2ni(B) − 4

• ex33(B) = m(B) − in33(B) − ex22(B) − e23(B)

• in33(B) = h(B) + ni(B) − 1

The final invariants defined in this section determine the number of hexagons with

varying amounts of external edges. An external edge in a hexagon is an edge that lies

on the perimeter of a benzenoid. We will use these invariants to determine quantities

such as the amount of hexagons in B having 5 external edges, corresponding to number

of hexagons sharing only one edge with another hexagon. Another invariant will deter-

mine how many hexagons in B have 0 external edges. These hexagons are completely

surrounded by other hexagons; all of their vertices are internal.

Invariant 24 (Number of hexagons with 0 external edges). For a benzenoid B, define

faces with 0 external edges(B) as the number of hexagons in B that contain 0 external

edges.

Invariant 25 (Number of hexagons with 1 external edge). For a benzenoid B, define

faces with 1 external edge(B) as the number of hexagons in B that contain 1 external edge.

Invariant 26 (Number of hexagons with 2 external edges). For a benzenoid B, define

faces with 2 external edges(B) as the number of hexagons in B that contain 2 external

edges.
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Invariant 27 (Number of hexagons with 3 external edges). For a benzenoid B, define

faces with 3 external edges(B) as the number of hexagons in B that contain 3 external

edges.

Invariant 28 (Number of hexagons with 4 external edges). For a benzenoid B, define

faces with 4 external edges(B) as the number of hexagons in B that contain 4 external

edges.

Invariant 29 (Number of hexagons with 5 external edges). For a benzenoid B, define

faces with 5 external edges(B) as the number of hexagons in B that contain 5 external

edges.

Determining these invariants involves initializing a counter and finding the endpoints

appearing on the perimeter of a benzenoid. The counter is updated dependent on the

specific invariant we are seeking and the degree sequence. This is just the idea behind

the code. A defined function for each invariant is provided in Appendix A.

After the invariants discussed in this section are defined in SageMath, Conjectur-

ing has the majority of ingredients needed to begin outputting conjectures that provide

upper bounds on γ(B). Generating the conjectures is half of the battle. Our end goal is

to prove interesting conjectures, or provide a counterexample to refine a bound. In the

next section we discuss the techniques used to prove most generated conjectures.

1.4 Methods of proof

There are two useful methods unique to benzenoids, as a class of graphs, that are used

when proving Conjecturings’s conjectures. The first is the removable hexagon lemma,

which is stated as Lemma 1 in the previous section. The second technique is to tighten

the domination number bound on classes of benzenoids. In particular, one class of

interest for generating upper bounds are catacondensed benzenoids. Catacondensed ben-

zenoids have the property of every carbon ring in the hydrocarbon molecule connects to
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Figure 1.8: Example of a benzenoid I and its inner dual Iid.
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Figure 1.9: Another benzenoid J and its inner dual Jid.

another ring via one carbon bond. In the plane, a catacondensed benzenoid is embedded

with all hexagons in the benzenoid’s cluster sharing a single edge. The graph theoretic

interpretation of the catacondensed property is given as the following definition.

Definition 10. A benzenoid B is catacondensed if its corresponding inner dual is a tree.

To fully explain the catacondensed property it is necessary to investigate a ben-

zenoid’s inner dual, given in Definition 9, and determine if the inner dual is a tree. To

illustrate the idea of the inner dual the following two figures provide a benzenoid with

its corresponding inner dual. The benzenoid in Figure 1.8 is not catacondensed and

benzenoid in Figure 1.9 is catacondensed. These visuals will help explain the definition

of a tree.

Definition 11. A tree is an acyclic, connected graph.

Notice in Figure 1.8 that the inner dual Iid contains four vertices, the furthest to
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Figure 1.10: Additional catacondensed benzenoids

the right of the margin, which are connected in a closed loop. These closed loops are

cycles. If we select any two vertices on this cycle we will find two independent paths

connecting the two chosen vertices. An acyclic graph does not contain this property. A

connected graph is a graph in which every vertex is incident to at least one edge.

Between benzenoids I and J in Figures 1.8 and 1.9 there is a significant difference

in their inner duals. We have observed that the inner dual of I contains a cycle, and

therefore is not a tree. Let’s turn our attention to the inner dual of J. Every vertex in

Jid is connected as each vertex is incident to at least one edge. Selecting an arbitrary

vertex, we see that this vertex is not part of a closed chain. There is not a way to find

two independent paths between any two vertices. So Jid is acyclic. As Jid is acyclic and

connected, Jid is a tree. Further, as J’s corresponding inner dual is a tree, we conclude

that J is catacondensed.

Additional examples of catacondensed benzenoids are shown in Figure 1.10. It is

straightforward to check that their inner duals are trees.

Catacondensed benzenoids allow us to define two new invariants based on the struc-

ture of the inner dual. The first invariant counts the number of leaves a inner dual, while

the second counts the number of branching hexagons an embedding.

Definition 12. A hexagon H in benzneoid B is called a leaf if the vertex corresponding to H in

the inner dual Bid has a degree of 1.

By Corollary 2.12 in [2], every nontrivial tree contains two leaves. By extension, every

catacondensed benzenoid contains two leaves.
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Definition 13. A hexagon H in B is called a branching hexagon if the vertex corresponding to

H in the inner dual Bid has a degree of 3 or a degree of 2 where the two shared edges in H do not

form a pair.

In the definition above we mention shared edges forming a pair. We called an edge e in

hexagon H of benzenoid B shared if e also belongs to another, different hexagon H ′ in B.

For an edge existing in only one hexagon we say the edge is independent. Pairs of edges

in a benzenoid are specific to a single hexagon. For a hexagon H in the embedding of B,

we call the parallel edges in H pairs. Pairs of edges are antipodal, meaning they are on

opposite sides of H. This covers the terminology used in the following invariants.

Invariant 30 (Number of leaves). For a catacondend benzenoid B, define leaves(B) as the

number of leaves in B.

Invariant 31 (Branching number). For a catacondensed benzenoid B, define

branching number(B) as the number of branching hexagons of B.

The two invariants above are denoted hl(B) and hb(B), respectively. It is helpful to

program a function returning the inner dual of a benzneoid to help code Invariant 30.

First return B’s inner dual Bid. Count the number of degree-2 vertices in Bid and return

that integer as hl(B). Similarly, for Invariant 31, the number of vertices of degree-3 is

determined in Bid. This amount is added to the number of degree-2 vertices in Bid

whose edges in the corresponding hexagon of B do not form a pair. To find the number

of times this occurs we search the embedding of B looking for the degree sequence

2, 3, 3, 2. This sequence corresponds to a branching path in the inner dual and resembles

a bay in the embedding of B. The total quantity is returned as hb(B).

Catacondensed benzenoids are a superset to an introductory class of benzenoids

known as linear benzenoids. Linear refers to the hexagons in an embedding maintain-

ing parallel lines among pairs of edges. A linear benzenoid is a catacondensed ben-

zenoid with 0 branching hexagons. The linear benzenoid with the smallest number of
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hexagons is benzene. Linear benzenoids are denoted Ln where n identifies the number

of hexagons. Figure 1.11 shows L2,L3, and L4. Computing γ(L2),γ(L3), and γ(L4) reveals

a pattern relating the domination number of a linear benzenoid with it hexagon count.

The relation is proven in the following statement.

Proposition 1. For a linear benzenoid B with h(B) hexagons, γ(B) = h(B) + 1.

Proof. The proposition is true for small linear chains. When h(B) = 1, benzenoid B

is benzene and γ(B) = 2 = h(B) + 1. Notice that when h(B) = 2, benzenoid B is

anthracene and γ(B) = 3 = h(B) + 1. Assume the proposition is true for benzenoid B

with h(B) = k−1 > 2 hexagons. Let B be a benzenoid with h(B) = k hexagons. Suppose

hexagons H1 and H2 in B are at maximum distance with respect to Bid.

Without loss of generality, create an antipodal dominating set D(B) by first choosing

vertex v in H1 that has maximum eccentricity in B. By construction of linear benzenoids,

vertex v is antipodal to degree-3 vertex w. Choose w as the next vertex in D(B) and re-

peatedly select antipodal vertices as the remaining elements of D(B) ending with vertex

z in H2 that has maximum eccentricity in B. Then D(B) is a minimum dominating set of

B. This construction dominates all vertices in B without overlap.

As k−1 > 2, and B is a linear benzenoid, there exists at least one hexagon separating

H1 and H2. Let H3 be one hexagon between H1 and H2. Removing H3 from B disconnects

B into two components. Let L be the component in B − H3 containing H1 and R be the

component in B − H3 containing H2. We can form minimum dominating sets for L and

R by setting D(L) := V(L) ∩D(B) and D(R) := V(R) ∩D(B). Then D(B) = D(L) ∪D(R).

By the inductive hypothesis γ(L) = h(L) + 1 = |V(L) ∩D(B)| and γ(R) = h(R) + 1 =
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Figure 1.11: Linear benzenoids L2,L3, and L4: naphthalene, anthracene, and naphthacene

Figure 1.12: From left: Triangulenes T2, T3 and T4

|V(R) ∩D(B)|. Notice that

|D(B)| = |V(L) ∩D(B)|+ |V(R) ∩D(B)|

= h(L) + 1+ h(R) + 1

= (h(L) + h(R) + 1) + 1

= h(B) + 1.

As D(B) is a minimum dominating set, |D(B)| = γ(B). It follows by mathematical

induction that γ(B) = h(B) + 1.

Outside of catacondensed benzenoids, another class of benzenoids are triangulenes. A

triangulene is a pyramidal benzenoid of i levels. Each level is a row in the graph embed-

ding. Benzene is triangulene of smallest order and has 1 level. An arbitrary triangulene

is denoted Ti and named triangulene-i. The second and third level triangulenes are T2

and T3. Figure 1.12 shows T2 and T3 along with triangulene-4.

The last class of benzenoids we discuss are ciruclenes. A circulene is a benzenoid
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Figure 1.13: Circulenes C ′
2 (left) and C ′

3 (right)

that can be constructed from benzene by adding some number of layers in an itera-

tive method. Each additional layer in a circulene adds a hexagon to each edge on the

perimeter of the previous circulene. The circulene with the smallest order is benzene. A

circulene with n layers is denoted as C ′
n and named circulene-n. Recall that Cn, without

the prime, denotes a cycle graph. Circulene C ′
2 is coronene and C ′

3 is circulene-3. Figure

1.13 shows C ′
2 and C ′

3.

In the next section we will prove invariant conjectures given by Conjecturing. Some

conjectures are proven for any arbitrary benzenoids and others are tighter bounds on

classes of benzenoids.

1.5 Results

After all invariants are defined in SageMath, and a few initial benzenoids are pro-

grammed, we are ready to generate conjectures. Load Conjecturing into SageMath

to run the conjecture-generating conjectures() function. The process of adding ben-

zenoids and functions in SageMath for use by Conjecturing is detailed in Section

2.2. Conjecturing uses these known benzenoids and invariants as ingredients for out-

putting automated conjectures. Specifically, the program returns conjectures that bounds

any invariant we specify as the invariant of interest. For this study, all of the conjectures

are generated with the domination number as the invariant of interest. The domination
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number is defined in Section 1.3 as Invariant 3. We choose to generate upper bounds on

γ(B) as opposed to lower bounds. As we discussed earlier, the domination number has

a natural lower bound of n(B)
4

.

We will prove two bounds on γ(B) found from observation before presenting auto-

mated conjectures from Conjecturing. The first bound makes use of the removable

hexagon lemma to bound the domination number in an iterative way. The domination

number of benzenoid B ′ obtained by subtracting a removable hexagonH from benzenoid

Bwill have a resulting smaller domination number by at most 2. That is γ(B ′) > γ(B)−2.

Adding 2 to both sides of the inequality results in the following upper bound.

Proposition 2. Let B be a non-trivial benzenoid and let B ′ be a benzenoid obtained by eliminating

a removable hexagon from B. Then γ(B) 6 γ(B ′) + 2.

Proof. By Lemma 1 every non-trivial benzenoid has a removable hexagon. Let B ′ be

the benzenoid obtained from eliminating removable hexagon H from B. Assume the

maximal case in which B ′ is obtained by removing four vertices from B. If the upper

bound holds for the maximal case it must hold for all cases. Attach H to B ′ to form B.

Select a vertex in B not in B ′ that is adjacent to two vertices also not in B ′. By construction

there are two such vertices. One of these two vertices must be in a minimal dominating

set. Then there is one remaining vertex that is not dominated. Add this vertex to the

dominating set, and it must be that γ(B) 6 γ(B ′) + 2.

The next upper bound on γ(B) is observed from choosing two antipodal vertices from

each hexagon in B to be in a dominating set of B. Antipodal vertices are opposite in

each hexagon. These vertices do not share any common neighbors in the hexagons they

dominate.

Proposition 3 (Upper bound for hexagons). Let B be a benzenoid with h(B) hexagons. Then

γ(B) 6 2h(B).
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Proof. Notice that each hexagon can be dominated by 2 antipodal vertices. Let D(B) be

any set of vertices in V(B) which includes 2 antipodal vertices from each hexagon. Then

D(B) is a dominating set. It must be that γ(B) 6 |D(B)| 6 2h(B).

A useful way to generate stronger bounds on classes of benzenoids is to restrict

the benzenoids known to Conjecturing. Building a list of benzenoids that reside in

one class will limit the knowledge of Conjecturing so the program will only generate

conjectures for that class of benzenoids. First we generate and prove conjectures for

all benzenoids. Then we compute a separate conjecture run with only catacondensed

benzenoids defined. In this way Conjecturing will return conjectures specifically ap-

plicable to catacondensed benzenoids.

Conjecturing outputs automated conjectures in terms of the function names defined

for each invariant. Our results follow a conjecture-proposition-proof format. First the

generated conjecture is shown, followed by a proposition relating the function names to

standard notation. Then a proof is given after each proposition.

1.5.1 General benzenoids

Conjecture 1.

domination number(B) 6 B.size()/2

Proposition 4. Let B be a benzenoid with h(B) hexagons and m(B) edges. Then γ(B) 6 m(B)
2

.

Proof. We will prove this using mathematical induction. For the base case when h(B) = 1

we note m(B) = 6 and γ(B) = 2 6 6
2
= 3. So the base case holds. Assume the statement

holds for a benzenoid with k − 1 > 1 hexagons. We will show it holds for a benzenoid

with k hexagons. Let B be a benzenoid with h(B) = k hexagons. By Lemma 1, B has a

removable hexagon H. Let B ′ = B −H be the benzenoid formed from removing H in B.

Then h(B ′) = h(B) − 1 = k − 1 and we may apply the inductive hypothesis. We have

multiple cases. First suppose that B ′ is formed by removing one edge in E(B). Then we
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find

γ(B) 6 γ(B ′) 6
m(B ′)

2
=
m(B) − 1

2
6
m(B)

2
,

which is what we needed to show. Now suppose the case that B ′ is formed by removing

two edges in E(B). Notice that

γ(B) 6 γ(B ′) + 1

6
m(B ′)

2
+ 1

6
m(B) − 2

2
+ 1 =

m(B)

2
.

Following a similar set of steps, when B ′ is formed by removing three edges in E(B) we

have

γ(B) 6 γ(B ′) + 1

6
m(B ′)

2
+ 1

=
m(B) − 3

2
+ 1 6

m(B)

2
.

When m(B ′) = m(B) − 4, the induction works out as well:

γ(B) 6 γ(B ′) + 1

6
m(B ′)

2
+ 1

=
m(B) − 4

2
+ 1 6

m(B)

2
.

Finally, consider when B ′ is constructed by removing a hexagon by removing five edges
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from E(B). It is clear that

γ(B ′) 6 γ(B) + 2

6
m(B)

2
+ 2

=
m(B ′) − 5

2
+ 2 6

m(B ′)

2
.

It follows by induction that γ(B) 6 m(B)
2

.

Conjecture 2.

domination number(B) 6 smaller bipartite set(B)− 1

Proposition 5. For any benzenoid B, γ(B) 6 |Bs(B)|− 1.

Proof. We will prove this by induction on the number of hexagons in B. Notice that when

h(B) = 1, B is benzene. It is clear that γ(B) = 2 6 3 − 1 = |Bs(B)| − 1. Similarly, when

h(B) = 2, B is anthracene and we see that γ(B) = 3 6 10− 1 = |Bs(B)|− 1. Assume that

the statement is true for a benzenoid with k−1 hexagons where k−1 > 2. We will show

the statment holds for k hexagons. Let B be a benzenoid with k hexagons. By Lemma

1, there is a removabile hexagon H in B. Let B ′ = B − H be the benzenoid defined by

removing H from B. We have multiple cases. First, suppose that H has two degree-2

vertices. Since H has only two degree-2 vertices, they must be adjacent. As the vertices

are adjacent, each one belongs to a separate bipartite set. Notice that

|Bs(B
′)| = |Bs(B)|− 1 and |Bl(B

′)| = |Bl(B)|− 1.
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By the inductive hypothesis, γ(B ′) 6 |Bs(B
′)|− 1. It must be that that

γ(B) 6 γ(B ′) + 1

6 |Bs(B
′)|− 1+ 1

= |Bs(B)|− 1.

Now suppose the case that H has four degree-2 vertices. This case is very similar to the

first one. It must be that removing H removes two vertices from each bipartite set. Then

|Bs(B
′)| = |Bs(B)|− 2 and |Bl(B

′)| = |Bl(B)|− 2.

Again, by the inductive hypothesis γ(B ′) 6 |Bs(B
′)|− 1. Observe that

γ(B) 6 γ(B ′) + 1

6 |Bs(B
′)|− 1+ 2

= |Bs(B)|− 1.

Consider the final case where H has three degree-2 vertices. Subcase 1: Only one of the

three vertices that we remove from B are in Bs(B). Then |Bs(B
′)| = |Bs(B)|− 1 and

γ(B) 6 γ(B ′) + 1

6 (|Bs(B
′)|− 1) + 1

= |Bs(B)|− 1.

Subcase 2: Two of the three vertices we remove from B are in Bs(B). Notice that
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|Bs(B
′)| = |Bs(B)|− 1 and

γ(B) 6 γ(B ′) + 1

6 (|Bs(B
′)|− 1) + 1

= |Bs(B)|− 2

6 |Bs(B)|− 1.

It follows by induction that γ(B) 6 |Bs(B)|− 1.

Lemma 2. For all benzenoids B, |Bs(B)| 6
n(B)

2
.

Proof. By construction, bezenoids are bipartite. The vertices in V(B) may be split into

two bipartite sets Bs(B) and Bl(B) bounded by the inequality |Bs(B)| 6 |Bl(B)|. At

most, Bs(B) will contain half of the elements of V(B). Then the cardinality of Bs(B) is

bounded by half the order.

Corollary 2. Proposition 5 implies that, for a benzenoid B,

γ(B) 6
n(B)

2
− 1.

Proof. By Lemma 2,

|Bs(B)| 6
n(B)

2
.

Then by Proposition 5,

γ(B) 6 |Bs(B)|− 1 6
n(B)

2
− 1.
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1.5.2 Catacondensed benzenoids

Conjecture 3.

domination number(B) 6 B.size()/2− hexagons(B)

Proposition 6. For any catacondensed benzenoid B,

γ(B) 6
m(B)

2
− h(B).

Remark. Proposition 6 is equivalent to γ(B) 6 3h(B)+1
2

.

Observe. In [5], the formula for the number of edges is given bym(B) = 5h(B)+1−ni(B).

As B is a catacondensed benzenoid, there are 0 internal vertices. Then Conjecture 6 may

be expressed as γ(B) 6 5h(B)+1
2

− h(B). Notice that

γ(B) 6
5h(B) + 1

2
− h(B) =

5h(B) + 1

2
−

2h(B)

2
=

3h(B) + 1

2
.

We now write the equivalency as the following proposition.

Proposition 7. For any catacondensed benzenoid B,

γ(B) 6
3h(B) + 1

2
.

Proof. We have two cases. First assume that there are no branching hexagons. If this

is the case, we may divide our benzenoid into two parts in which one has an even

number of hexagons. By induction, assume this is true for benzenoids with less than

h(B) hexagons. Let B be a catacondensed benzenoid with h(B) hexagons. Divide B

into two parts, B1 and B2 where, without loss of generality, B2 has an even number of
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hexagons. By the inductive hypothesis, we have that

γ(B1) 6
3h(B1) + 1

2

and

γ(B2) 6
3h(B2) + 1

2
6

3h(B2)

2
.

Then it must be that

γ(B) 6 γ(B1) + γ(B2)

6
3h(B1) + 1

2
+

3h(B2)

2

=
3
(
h(B1) + h(B2)

)
+ 1

2

=
3h(B) + 1

2
.

Now suppose the case in which we have a branching hexagon. Divide the benzenoid

into three pieces, B1, B2, and B3, at the midpoint of the branching hexagon. By the

inductive hypothesis,

γ(Bi) 6
3h(Bi) + 1

2
.

Observe that

γ(B) 6 γ(B1) + γ(B2) + γ(B3)

6
3h(B1) + 1

2
+

3h(B2) + 1

2
+

3h(B3) + 1

2

=
3
(
h(B) − 1

)
+ 3

2
=

3h(B)

2

6
3h(B) + 1

2
,

which is what we needed to show.

37



Conjecture 4.

domination number(B) 6 number of 2 2 edges(B)/2+ hexagons(B)− 2

Proposition 8. For a catacondensed benzenoid B,

γ(B) 6
e22(B)

2
+ h(B) − 2.

Proof. We have two cases. First assume that there is a branching hexagon. Then we

may split the benzenoid into three parts and find that γ(B) = γ(B1) + γ(B2) + γ(B3).

We have the equality since splitting the benzenoid at the branching hexagon leaves zero

remaining vertices undominated. Also, the number of external 2-2 edges of B is given

by e22(B) = e22(B1) + e22(B2) + e22(B3) and the number of hexagons in B is gven by

h(B) = h(B1) + h(B2) + h(B3) + 1. Then

γ(B) = γ(B1) + γ(B2) + γ(B3)

6

(
e22(B1)

2
+ h(B1) − 2

)
+

(
e22(B2)

2
+ h(B2) − 2

)
+

(
e22(B3)

2
+ h(B3) − 2

)
6
e22(B) + 9

2
+
(
h(B) − 1

)
− 6

=
e22(B)

2
+ h(B) − 2−

1

2

6
e22(B)

2
+ h(B) − 2,

completing the first part of the proof. Now suppose that there is not a branching hexagon

in B. Consider splitting the benzenoid at a hexagon beside a hexagon on the outer face
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of B. Then

γ(B) = γ(B1) + γ(B2)

=

(
e22(B1)

2
+ h(B1) − 2

)
+

(
e22(B2)

2
+ h(B2) − 2

)
6
e22(B) + 6

2
+
(
h(B) − 1− 4

)
=
e22(B)

2
+ h(B) − 2.

For the next proposition it will be helpful to show the following lemma which states

every catacondenzed benzenoid has a minimum dominating set containing one vertex

from the independent edge in leaf H opposite the shared edge of H.

Remark. For edge e in benzenoid B, we denote the edge that forms a pair with e in hexagon H

by e ′H.

Lemma 3. Let H be a leaf hexagon in catacondensed benzenoid B, and let e be its shared edge.

Then B has a minimum dominating set S that contains one vertex from e ′H.

Proof. Let H be a leaf hexagon in a benzenoid B. Let {v1, . . . , v6} be the vertices of the

hexagon, and let {(vi, vi+1) : i ∈ [6]} (addition done modulo 6, so i + 1 = 1 when i = 6)

be the set of edges in H. Without loss of generality, let e = {v1, v2} be the shared edge

of H, and let e ′H = {v4, v5}. We will construct a minimum dominating set that contains

either v4 or v5. Let S be a minimum dominating set that contains neither. This implies

that {v3, v6} ∈ S. We now split into two cases.

Case 1: Suppose {v1, v2} ∩ S = ∅. In this case, S ′ = S \ {v3, v6} ∪ {v1, v4} is a minimum

dominating set containing v4.

Case 2: Suppose {v1, v2} ∩ S 6= ∅. Without loss of generality, suppose v1 ∈ S. Then

S ′ = S \ {v6} ∪ {v5} is a minimum dominating set containing v4.
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Conjecture 5.

domination number(B) 6 hexagons(B)+ branching number(B)+ 1

Proposition 9. For a catacondensed benzenoid B,

γ(B) 6 h(B) + hb(B) + 1,

where hb(B) denotes the branching number of B.

Proof. We will prove this by induction on the number of hexagons in B. When h(B) = 1,

we have that

γ(B) = 2 6 2 = 1+ 0+ 1 = h(B) + hb(B) + 1.

Similarly, when h(B) = 2 we find

γ(B) = 3 6 4 = 2+ 1+ 1 = h(B) + hb(B) + 1.

Assume the statement holds for a benzenoid with k − 1 > 2 hexagons. Let B be a

catacondensed benzenoid with h(B) = k hexagons. By Lemma 3, we know that there is

a leaf, say v1, in the inner dual Bid whose neighbor, say v2, has a degree-2 or a ”twin

leaf”, say v3, i.e. a leaf adjacent to v2. We can handle the two cases separately.

Case 1. First suppose that v2 has a degree of 2. Let B ′ be the benzenoid obtained from

B by removing the leaf hexagon H1, i.e. removing all four vertices in H1 not belonging

to the shared edge of H1. Let h(B ′) and hb(B
′) denote the number of hexagons and

branching hexagons in B ′ respectively. Note that h(B ′) = h(B) − 1 and hb(B
′) = hb(B).

Suppose first that H2 is not a branching hexagon in B. By definition, the two shared

edges of H2 form a pair. Let e be the edge H2 shares with H3; then, e ′H2
is the edge

H2 shares with H1 in B. Using Lemma 3, there is a minimum dominating set that

contains one vertex from e ′H2
, which implies that γ(B) 6 γ(B ′) + 1. Using the induction
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hypothesis on B ′, this gives γ(B) 6 h(B ′) + hb(B
′) + 1 + 1 = h(B) + hb(B) + 1. Now

suppose that H2 is a branching hexagon in B. Then H2 is not a branching hexagon in B ′,

as it has a degree of 1 in B ′
id. Consequently, h(B ′) = h(B) − 1 and hb(B

′) = hb(B) − 1.

Furthermore, γ(B) 6 γ(B ′) + 2. Using the induction hypothesis on B ′ yields γ(B) 6

h(B ′) + hb(B
′) + 1+ 2 = h(B) + hb(B) + 1, as required.

Case 2. Now suppose that v2 has degree-3 and v1 and v3 are twin leaves adjacent to

v2. Suppose v4 is the third vertex adjacent to v2, and we may assume that v4 is not a

leaf. (If it is, the benzenoid B has h(B) = 4,hb(B) = 1 and γ(B) = 6, thus proving

the bound.) Let {x1, x2, ..., x6} be the vertices in H2. Without loss of generality, let the

three shared edges be e1 = {x1, x2}, e2 = {x3, x4}, and e3 = {x5, x6}. Let e1 be an edge in

H1 and e3 be an edge in H3. We will consider the benzenoid B ′ obtained by removing

H1 and H3, i.e. removing all vertices belonging to either H1 or H3 except the endpoints

of e1 and e3. Note that v2 is now a leaf in inner dual B ′
id, and by using Lemma 3

there is a minimum dominating set in B ′ that contains either x1 or x6 (the endpoints

of the edge that forms a pair with e2). This implies γ(B) 6 γ(B ′) + 3. Now, we have

h(B ′) = h(B) − 2 and hb(B
′) = hb(B) − 1, so by the induction hypothesis for B ′ we see

that γ(B) 6 h(B ′)+hb(B
′)+4 = h(B)+hb(B)+1, which is what we needed to show.

Definition 14. Denote hb(B)i, with i ∈ {2, 3}, as the number of branching hexagons that have

exactly i shared edges.

Note that hb(B) = hb(B)2 + hb(B)3. This refinement to the number of branching

hexagons will help us prove the following corollary.

Corollary 3. Proposition 9 implies that

γ(B) 6 h(B) + ex33(B) + 1,

where ex33(B) denotes the number of external edges connected by two degree-3 vertices.
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Proof. Using Proposition 9, it is sufficient to show that ex33(B) > hb(B). Note that no

shared edges are counted by ex33(B) since shared edges must be internal edges. If a

hexagon in B is either a leaf hexagon or a non-branching hexagon with exactly 2 shared

edges, then it does not contain any edges that are counted by ex33(B). On the other

hand, a branching hexagon containing 2 shared edges contributes exactly 1 to ex33(B),

which a branching hexagon containing the 3 shared edges contributes exactly 3. Thhen

ex33(B) > hb(B)2 + 3hb(B)3 > hb(B). By Proposition 9, γ(B) 6 h(B) + hb(B) + 1 6

h(B) + ex33(B) + 1.

Conjecture 6.

domination number(B) 6 B.order()/3

Proposition 10. For a catacondensed benzenoid B,

γ(B) 6
n(B)

3
.

Proof. We will prove this statement using mathematical induction on h(B). The state-

ment can be verified easily for h(B) 6 3, so suppose h(B) > 4. Let B be a catacondensed

benzenoid with h(B) hexagons and inner dual Bid. As B is catacondensed, Bid is either

a path or contains a vertex of degree-3. We handle the two cases separately.

Case 1. Let Bid be a path, say Bid = (v1, v2, . . . , vn) and let B3 be the subgraph of B in-

duced by the hexagons H1, H2 and H3. Let e ∈ B3 be the (unique) shared edge of H3 that

also belongs to H4. Let B ′ be the benzenoid obtained from B by deleting every vertex in

B3 except the two endpoints of e. Using the inductive hypothesis, γ(B ′) 6 n(B)−12
3

. We

know that γ(B3) = 4, which implies γ(B) 6 n(B)−12
3

+ 4 = n(B)
3

, as required.

Case 2. Suppose Bid contains a degree-3 vertex v, and consider the hexagon H in B

corresponding to v. If e and f are any two shared edges in H, then e and f do not share

a common vertex, as it would result in a triangle in the inner dual Bid. Let e1, e2 and

e3 be the three independent edges in H, and let f1, f2 and f3 be the three shared edges
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in H. Let G be the graph obtained by removing edges e1, e2 and e3 from B. Then G

is a disjoint union of three benzenoids, say B1, B2 and B3 (containing edges f1, f2 and

f3 respectively), each of which contain a strictly smaller number of hexagons than B.

Moreover, γ(B) 6 γ(B1) + γ(B2) + γ(B3). By the inductive hypothesis, γ(Bi) 6
n(Bi)

3
for

i ∈ {1, 2, 3}. This implies γ(B) 6 n(B1)
3

+ n(B2)
3

+ n(B3)
3

= n(B)
3

, as required.

1.6 More conjectures

Finally, we compile a list of upper bound conjectures on the domination number for a

benzenoid that are unproven. These conjectures are separated into two tables dependent

on if they apply to general benzenoids or catacondensed benzenoids, similar to the result

sections above. One conjecture in particular is of interest: Conjecture 6 in Table 1.1. We

showed in Proposition 6 that the bound γ(B) 6 m(B)
2

− h(B) holds for catacondensed

benzenoids. Proving the bound holds for all benzneoids is a $10 USD prize problem to be

awarded by C. E. Larson1. As the conjecture is of significance it is stated independently

below.

Proposition (Prize problem). For any benzenoid B,

γ(B) 6
m(B)

2
− h(B).

1See Abstract for contact information.
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1. domination number(B) 6 hexagons(B) + number of external 3 3 edges(B) - 1
2. domination number(B) 6 1/2*number of 2 2 edges(B) + number of internal 3 3 edges(B) - 1
3. domination number(B) 6 -number of external 3 3 edges(B) + 1/2*B.size()
4. domination number(B) 6 1/2*degree 2 vertices(B) + 2*number of 2 3 edges(B)

5. domination number(B) 6 maximum(hexagons(B), number of 2 3 edges(B)) + 1
6. domination number(B) 6 B.size()/2 - hexagons(B)

Table 1.1: Open conjectures for any benzenoid

1. domination number(B) 6 number of 2 3 edges(B)+2
2. domination number(B) 6 B.size()/coves(B)
3. domination number(B) 6 maximum(degree 3 vertices(B), sqrt(order(B)))
4. domination number(B) 6 maximum(degree 3 vertices(B), hexagons(B) + 1)
5. domination number(B) 6 bays(B) + 1/2*degree 2 vertices(B)

6. domination number(B) 6 maximum(hexagons(B), number of 3 3 edges(B)) + 1

Table 1.2: Open catacondensed conjectures
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Chapter 2

Property probe

Now we generate property based conjectures on benzenoids. The method of defining

functions in SageMath changes from invariant-defined functions to property-defined

functions. Property-defined functions differ from invariants in that property functions

return a truth value of True or False as opposed to a numeric value. A property based

conjecture is proposed as an ’if P, then Q’ statement: If a benzenoid has property P,

then the benzenoid has property Q. A property conjecture is not limited to two prop-

erties. Generated conjectures often are combinations of multiple properties and logical

operators such as and, or, and xor. The Conjecturing program generates the prop-

erty conjectures from user-defined benzenoids and properties in SageMath. Loading the

Conjecturing program also loads the function propertyBasedConjecture() which uses

a list of benzenoids and properties to return automated conjectures. The program works

to check combinations of properties on the list of known benzenoids in hopes of finding

pairings of properties that hold for all known benzenoids. Adding more properties and

more benzenoids in the program increases the complexity and number of automated

conjectures.

Properties of benzenoids are often defined from numeric attributes of invariants. For

instance, two properties can be defined from the parity of any invariant. Much of the
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properties defined in this study are directly related to previously defined invariants from

the earlier investigation. Before defining properties we will revisit the opening section

on benzenoid embeddings. Embeddings are an important topic that allow us to give

a graph theoretic interpretation of benzenoids. All benzenoids are defined as graphs

comprised of vertex sets and an edge sets. A benzenoid is formed by closing a curve in

the hexagonal lattice. The closed curve method is used to make sure the resulting graph

is a valid benzenoid. We saw that defining benzenoids this way is useful for computing

invariants. An invariant is a numeric property on the graph of a benzneoid that does

not change based on a drawing. Two invariants that can be found for any graph G

are its order: the number of vertices in G, and its size: the number of edges in G. In

Section 1.3 we defined invariant functions for order and size as well as more invariants

that are computable in any benzenoid. Properties are defined in the same way; they

are definable for all benzenoids. A property-defined function returns a True truth value

when a benzenoid has the defined property and returns a False truth value otherwise.

Similar to an invariant-defined function, a property-defined function does not change

truth value based on an embedding of a benzenoid.

In this property study we are still generating bounds for benzenoids. In general,

bounds are often numeric. We generated and proved numeric upper bounds on the

domination number of a benzenoid in Section 1.5. Those conjectures were formed by

Conjecturing from combinations of invaraints supplied by us. Given a list of invari-

ants, Conjecturing systematically applies each invariant to a list of benzenoids to re-

turn a real number upper bound. Each conjecture claimed that the real number found

through combinations of invaraints would be larger than the domination number of the

benzenoids known to Conjecturing. If a benzenoid is found with domination number

larger the conjectured upper bound, it is programmed in SageMath and added to the

list of known benzenoids. As the list of known benzenoids grew, so did the accuracy of

automated conjectures.
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We take the idea of numeric bounds and extend it to bounds on properties of ben-

zenoids. Numeric upper and lower bounds determined by invaraints are equivalently

upper and lower bounds determined by properties, given as necessary and sufficient con-

ditions.

A necessary condition is a property that all benzenoids must have to be in a certain

class. For instance, the assumption that a benzenoid B has an even number of vertices is a

necessary condition for B to be in the class of benzenoids that all have equal cardinalities

between the large and small bipartite sets. If a benzenoid does not have an even number

of vertices, than there is no way its two disjoint bipartite sets can have the same number

of elements. Supposing the necessary condition of even order is met is not enough to

conclude the existence of bipartite sets with equal cardinalities. However, without having

an even order, it is not possible to narrow the search in this subclass to find benzenoids

with equal bipartite sets.

A sufficient condition is a property Q that ensures a benzenoid B will have some

property P provided that B has property Q. The difference from a necessary condition

is assuming B has condition Q and concluding this is enough for B to have property P

as well. The next example uses the idea of bays and bay regions from Section 1.3. Let

P be the property that benzenoid B contains a bay region and Q be the property that B

contains a bay. Assuming B has property Q is enough to determine that B has property

P. Having a bay is enough to conclude the existence of a bay region, since a bay is one

type of bay region.

These bounds are structural since they provide a limit on classes a benzenoid may

belong to. Necessary conditions are upper bounds. Using the example above, let P be

the property that the larger and smaller bipartite sets of B have the same number of

elements and let Q be the property that B has an even number of vertices. If a benzenoid

has property P then it necessarily must have property Q as well. The relation between the

properties is given by P ⊆ Q. Sufficient conditions are lower bounds. Using the previous
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example, let P ′ be the property that B contains a bay region and Q ′ be the property that

B contains a bay. Knowing that B has property Q ′ is sufficient to conclude it has property

P ′. The relation between the properties is given by Q ′ ⊆ P ′.

We will generate property based conjectures using necessary and sufficient condi-

tions. First, properties need to be defined in SageMath before Conjecturing can begin

returning automated conjectures.

2.1 Initial properties

Most of the following initial properties are definable all graphs. We define them for

benzenoids. An invariant-defined function returns a numeric value and a property-

defined function returns a Boolean truth value of True or False. It seems natural to

begin the investigation in property conjectures by examining a benzenoid’s vertices and

edges. A graph is defined by a vertex set and an edge set. These two sets are usually

the first pieces of information known about a graph. The number of vertices and the

number of edges in a graph are invariants. These are integers which do not necessarily

have constraints on how large or small they may be. We examined invariant conjectures

on benzenoids, in particular on the domination number of a benezenoid, in Chapter 1.

A mathematical property differs from an invariant in that a property is either True

or False. Often the defined properties are based on the numeric properties of invariants.

Note that we are not generating conjectures on the number given by an invariant, but

rather a property that number has. For instance, a property conjecture may be that

an invariant is odd, or an invariant is not equal to zero. We first define properties on

a benzenoid’s order and size by their parity. For clarity, the following properties are

written as program name first followed by a formal definition. The program code for

each property may be found in Appendix A.

Property 1 (Even number of vertices). Let B be a benzenoid of order n(B). Define the property
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even number of vertices(B) to return True when n(B) = 2k for some k ∈ Z and return

False otherwise.

Property 2 (Odd number of vertices). Let B be a benzenoid of order n(B). Define the property

odd number of vertices(B) to return True when n(B) = 2l + 1 for some l ∈ Z and return

False otherwise.

These properties can be programmed in SageMath with the help of previously de-

fined Invariant 1, the order of a graph. Using the B.order() method built into SageMath,

we set the function even number of vertices(B) to return True when B.order()%2==0.

The % symbol is predefined to be the modulus operator and will determine the remain-

der of diving the order of B by 2. When the remainder is equal to 0, it indicates that

n(B) is even. In the same fashion, the function odd number of vertices(B) returns True

when B.order()%2==1. In this case, division by 2 leaves a remainder of 1, so the order

of B must be odd. Defining properties on the parity of a benzenoid’s size is analogous.

Property 3 (Even number of edges). Let B be a benzenoid of size m(B). Define the property

even number of edges(B) to return True when m(B) = 2q for some q ∈ Z and return False

otherwise.

Property 4 (Odd number of edges). Let B be a benzenoid of size m(B). Define the property

odd number of edges(B) to return True when m(B) = 2p + 1 for some p ∈ Z and return

False otherwise.

For determining the number of edges we use the provided size() method in Sage-

Math. Programming Properties 3 and 4 follows the same format as defining properties

on order. When B.size()%2==0 the function even number of edges(B) returns True, and

when B.size()%2==1 the function odd number of edges(B) returns True.

More properties are better than fewer when generating conjectures as more properties

gives Conjecturing more tools to work with. We may create another property relates
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the number of vertices and the number of edges. The next property determines when a

benzenoid has more edges than vertices.

Property 5 (More edges than vertices). Let B be a benzenoid of order n(B) and size m(B).

Define the property more edges than vertices(B) to return True when m(B) > n(B) and

return False otherwise.

It is helpful to use the B.order() and B.size() methods to define Property 5. Have

SageMath compare B.size() and B.order() and return True when the B’s size is larger.

So far each property we defined has a truth value applicable to any arbitrary graph.

Often it is a good idea to start a graph theoretic investigation with these universal prop-

erties and then narrow the scope to a specific class of graphs. Checking the properties

defined so far using simple examples serves as a tool to check if the defined properties

are working as intended. Clearly, it is important to make sure any programmed property

code returns True or False when either result is expected.

Our primary interest in this study is to generate conjectures using properties applica-

ble to benzenoids. The following properties are specifically attainable by benzenoids as

opposed to any general graph. We return to the basic idea of embedding a benzenoid.

In Section 1.3 we counted the number of hexagons, denoted h(B) in a benzenoid embed-

ding and returned that number as Invariant 13. Similar to order and size, we will define

two properties based on the parity of h(B).

Property 6 (Odd number of hexagons). Let B be a benzenoid with h(B) hexagons. Define the

property odd number of hexagons(B) to return True when h(B) = 2s+ 1 for some s ∈ Z and

return False otherwise.

Property 7 (Even number of hexagons). Let B be a benzenoid with h(B) hexagons. Define the

property even number of hexagons(B) to return True when h(B) = 2w for some w ∈ Z and

return False otherwise.
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Programming the two properties in SageMath is straightforward to do if Invariant

13 is already defined. If not, use the equation proved in Theorem 1. The number of

hexagons in B is given by h(B) = m(B) − n(B) + 1. For the property-defined function

even number of hexagons(B) we have SageMath return True when hexagons(B)%2==0.

In this case, Invariant 13 leaves a remainder of 0 when divided by 2, so h(B) must

be even. The property-defined function odd number of hexagons(B) works in the same

way. Have SageMath return True when hexagons(B)%2==1. Then Invariant 13 leaves a

remainder of 1 when divided by 2, so h(B) is odd.

These properties are enough to use Conjecturing and develop useful conjectures.

The next section walks through using Conjecturing in conjunction with SageMath to

generate property conjectures for benzenoids. Using the properties we just defined,

along with a few initial benzenoids, will be enough to begin proving conjectures and

providing counterexamples.

2.2 The conjecture-making process

For the purposes of this paper, Conjecturing may be thought of as a black box. We

provide Conjecturing with three inputs:

• Objects (in our case, graphs of benzenoids)

• Defined properties that assigns a truth value to each object

• A property of interest for which we want to conjecture on.

Conjecturing takes these three inputs and returns conjectures which specifically in-

volve the property of interest compared to other defined properties. A full description

of how the program runs may be found in C. E. Larson & N. Van Cleemput [8] and an

explination of the working components is discussed in A. Bradford [1]. It is up to us

to determine if a returned conjecture is true, or if there is a counterexample that refutes
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the claim. The conjecture-making process begins by defining a few objects and proper-

ties. More objects and properties are added along the way. The starting point is up to

us. We begin our investigation of benzenoid properties by first defining the properties

stated in the previous section. In addition, we now define a property that determines if

a benzenoid is catacondensed. Catacondensed benzenoids are defined and discussed in

Section 1.4 of the invariant investigation. Reminder: a benzenoid is catacondensed when

its inner dual is a tree.

There an equivalent definition of the catacondensed property that is can be defined

explicitly without the need of defining an inner dual function. For any catacondsned

benzenoid the number of internal vertices is 0. We can use this fact to define the catacon-

densed property. In this case, the property will check Invariant 14 (number of internal

vertices) and Invariant 15 (number of external vertices) and examine their ratio. When

the ratio between the two invariants is 0, it must be that there are 0 internal vertices.

Property 8 (Catacondensed). Let B be a benzenoid with ni(B) internal vertices and ne(B)

external vertices. Define the property catacondensed(B) to return True when ni(B)
ne(B)

= 0 and

return False otherwise.

To program the property in SageMath we take advantage of the already defined in-

variant functions internal vertices(B) and external vertices(B). Checking the ratio

between the two functions is enough to define Property 8. When the ratio equals 0, have

Property 8 return True.

Table 2.1 contains a summary of the properties defined in the previous section. Add

the catacondensed property into the mix. We continue the conjecture-making process by

defining a couple of initial benzenoids.

The choice of initial benzenoids are arbitrary and up to personal preference. First

let’s use benzene, the only benzenoid comprised of one hexagon, and ground zero of

the invariant investigation. In addition we will use triphenylene, a benzenoid which has

overlap in all minimum dominating sets. Discussions on both overlap and minimum
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Property Summary

even number of vertices(B) n(B) = 2k for some k ∈ Z
odd number of vertices(B) n(B) = 2l+ 1 for some l ∈ Z
even number of edges(B) m(B) = 2q for some q ∈ Z
odd number of edges(B) m(B) = 2p+ 1 for some p ∈ Z
more edges than vertices(B) m(B) > n(B)
odd hexagons(B) h(B) = 2s+ 1 for some s ∈ Z
even hexagons(B) h(B) = 2w for some w ∈ Z

Table 2.1: Initial properties definied in Section 2.1

Figure 2.1: Benzene (left) and triphenylene (right)

dominating sets are in Section 1.2. The embeddings of benzene and triphenylene are

shown in Figure 2.1.

As explained in the beginning of the section, Conjecturing requires defined objects,

defined properties, and a specific property to focus on. To start generating conjectures we

begin by loading Conjecturing into a SageMath worksheet along with a file containing

defined objects and properties. The file containing objects and properties file should use

the .sage extension, which is a SageMath notepad that does not contain executable cells.

Since our objects are graphs, let’s name the file graphs and properties.sage. Inside

this file we define the two initial graphs along with Properties 1–7 from Section 2.1 and

Property 8.

First the benzenoids are coded. The graphs of benzenoids are defined by an vertex

set and an edge set. Once we start adding more benzenoids into the file, it quickly

becomes cumbersome to define benzenoids with large order and size. For instance, to

define benzene by its vertex set and edge set we would input the following code.
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benzene = Graph(6)

benzene.add_edges([(0,2), (0,3), (2,4), (3,5), (5,1), (4,1)])

This tells SageMath to define benzene as a graph with six vertices where each vertex

is assigned a number from the set {0, 1, 2, 3, 4, 5}. Then we use the SageMath method

add edges() on benzene to add the required edge needed to form the C6 cycle that

defines benzene. Triphenylene is defined with a vertex set and edge set in a similar

fashion.

triphenylene = Graph(18)

triphenylene.add_edges([(0,2), (12,13), (15,14), (9,16), (3,8), (0,4), (2,5),

(10,12), (16,17), (7,15), (5,11), (17,8), (4,9), (10,6), (9,1), (6,0), (5,1),

(13,4), (7,2), (14,11), (1,3)])

It becomes clear to see that a benzenoid of significant size can take up space when

defining it by its vertex set and edge set in this manner. In practice, we store a graph

by its Graph6 string, which is an ASCII representation of a graph’s adjacency matrix.

The Graph6 encoding was developed by Brendan McKay from the Austrailian National

University, and a full description may be found on his webpage1. SageMath has the

method graph6 string() already built in. Using benzene and triphenylene defined

above, we run the methods on each benzenoid.

benzene.graph6_string()

triphenylene.graph6_string()

SageMath determines that the graphs benzene and triphenylene are encoded by the

Graph6 strings ’ESXO’ and ’QQ‘c?OQ?C? ?AA? ? A?C?? G’, respectively. Then we copy

the Graph6 strings for both benzenoids and store each in graphs and properties.sage.

benzene = Graph(’ESXO’)

1http://users.cecs.anu.edu.au/∼bdm/data/formats.html
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triphenylene = Graph(’QQ‘c@?OQ?C?_?AA?_?_A@?C??_G’)

Once both objects are defined we can define the properties from Table 2.1 and Prop-

erty 8 into graphs and properties.sage. Constructing code that defines these properties

requires a working knowledge of Python, a separate topic outside the scope of this inves-

tigation. Starting with the first property of Table 2.1, we enode even number of vertices

in our .sage file in the following way.

def even_number_of_vertices(B):

return B.order()%2==0

Here, the command def signals to SageMath that we want to define a new func-

tion named even number of vertices(B) which takes a benzenoid B as an input. The

colon indicates that the function is ready to be defined. The function we are defining

is a property, and we return a Boolean truth value: either True or False. For a ben-

zenoid to have an even number of vertices, it must be that its order is divisible by 2.

This function determines the order of B with the method B.order() and uses modulo

operator % to divide B’s order by 2. If the remainder of division by 2 is equal to 0,

even number of vertices(B) returns True. If the remainder of division by 2 is not equal

to 0 then even number of vertices(B) returns False. The other initial properties are

defined as follows.

def odd_number_of_vertices(B):

return B.order()%2==1

def even_number_of_edges(B):

return B.size()%2==0

def odd_number_of_edges(B):

return B.size()%2==1

def more_edges_than_vertices(B):

return (B.size() > B.order())
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def odd_hexagons(B):

return hexagons(B)%2==1

def even_hexagons(B):

return hexagons(B)%2==0

Notice that both odd hexagons(B) and even hexagons(B) call the invariant-defined

function hexagons(B), which uses the relation given in Theorem 1 to calculate the num-

ber of hexagons in benzenoid B. The hexagons(B) function is defined in Section 1.3 as

Invariant 13 and should be included as well in graphs and properties.sage or property-

defined functions odd hexagons(B) and even hexagons(B) will not execute.

def hexagons(B):

return B.size() - B.order() + 1

Finally we will program Property 8. We discussed earlier that a benzenoid is catacon-

densed when it has no internal vertices. We can import the functions determining the

number of internal and external vertices from the previous investigation. The equations

determining these two invariants are results of Theorem 2 and Corollary 1. The code

for each of the invariants, as well as the catacondensed property is given below. Add all

three to graphs and properties.sage.

def internal_vertices(B):

return 4*hexagons(B) + 2 - B.order()

def external_vertices(B):

return B.order() - internal_vertices(B)

def catacondensed(B):

return internal_vertices(B)/external_vertices(B)==0

Now the graphs and properties.sage file contains enough benzenoids and proper-

ties needed to begin generating automated conjectures. We proceed to find our first trial

run of conjectures. Each trial is preformed in an individual cell of a SageMath work-
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sheet. These workshets use the .sagews file extension and are different from .sage files

in that they contain executable cells. The code for the first conjecture run is given below,

followed by an explanation.

load(’graphs_and_properties.sage’)

load(’conjecturing.py’)

benzenoids = [benzene, triphenylene]

properties = [even_number_of_vertices, odd_number_of_vertices,

even_number_of_edges, odd_number_of_edges, more_edges_than_vertices,

odd_hexagons, even_hexagons, catacondensed]

interest = properties.index(catacondensed)

conjectures = propertyBasedConjecture(benzenoids, properties, interest)

for c in conjectures:

print c

In the cell above we first load Conjecturing and well as graphs and properties.sage

which contains the benzenoids and properties we just defined. Next we create a list,

named benzenoids that acts as Conjecturing’s list of known objects. Another list,

named properties is created and informs Conjecturing of the property-defined func-

tions available from loading graphs and properties.sage. Next, interest is set to des-

ignate our specified ”property of interest”, which tells Conjecturing to focus on gener-

ating conjectures that are bounds on this particular property. For these first conjectures

we will set the catacondensed property as our property of interest. Then, the function

propertyBasedConjecture(), which is defined in conjecturing.py, is called to be run
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upon execution of the cell. The propertyBasedConjecture() function takes the list of

benzenoids, list of properties, and a property of interest as inputs. These conjectures

are returned as a list named conjectures. Finally, a for loop is called which iterates

through the conjectures list and prints each conjecture on its own line. Every piece

needed to generate conjectures is in place, and we may execute the SageMath cell.

Only one conjecture is returned in the first run. This is due to Conjecturing working

with only two benzenoids. As Conjecturing’s list of known benzenoids increases, so

to will its list of returned conjectures.

It should be stated that for every automated conjecture there is a standard assumption

that should always be assumed.

Standard Assumption. Each automated conjecture is assumed to apply to all benzenoids.

This first generated conjecture is returned in the form below.

Conjecture 7.

(even number of vertices)→ (catacondensed)

We interpret this output as an ”If P, then Q” statement. Explicitly stated: ”For all

benzenoids B, if B has property P then B has property Q”. In the case of Conjecture 7 we

have that (even number of vertices) is our P property and the hypothesis. By exten-

sion, (catacondensed) is the Q property and the conclusion. Formally, this conjecture is

stated as the following proposition.

Proposition. Suppose a benzenoid B has n(B) vertices. If n(B) is even, then B is catacondensed.

Now it is up to us to prove this conjecture, or find a counterexample that refutes

it. Intuition tells us it is unlikely that every benzenoid with an even number of vertices

has 0 internal vertices, a requirement to be catacondensed. The procedure to refute a

conjecture is to find a benzenoid where the hypothesis is true, but the conclusion is

false. It does not take long to find a counterexample to Conjecture 7.
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Figure 2.2: Pyrene, a counterexample to Conjecture 7

Disproof. Consider pyrene, shown in Figure 2.2. In this benzenoid, n(B) = 16. However,

pyrene is not catacondensed as it contains 2 inner vertices. Figure 2.2 has a vertex

labeling where vertices 11 and 12 are internal vertices.

We have determined Conjecture 7 is not true. What about the going the opposite

direction? After a bit of thought, it turns out that the converse

(catacondensed)→ (even number of vertices)

is true. We have found our first property result for benzenoids! This gives way to our

first property proposition.

Proposition 11. Suppose a benzenoid B has n(B) vertices. If B is catacondensed, then n(B) is

even.

Proof. Let B be a benzenoid with n(B) vertices and h(B) hexagons. As B is catacon-

densed, it contains 0 internal vertices. Then ni(B) = 0. By solving Theorem 2 for n(B),

we find that n(B) = 4h(B)+2. It is clear to see that n(B) = 4h(B)+2 = 2(2h(B)+1) = 2k

for some k ∈ Z and it follows that n(B) is even.

Once we find a counterexample that disproves a conjecture (in this case, pyrene is

a counterexample to Conjecture 7) the next step is to add this graph to the benzenoids
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list of objects supplied to Conjecturing. This way we allow Conjecturing to advance

past the current conjecture with new information to generate new conjectures. To add

pyrene we define a new graph using a vertex and edge set that represents pyrene in the

plane. Then apply the graph6 string() method on the graph. Pyrene’s Graph6 string

is ’OO‘c‘@G? a???CA@ C??H’. Define the graph pyrene using its Graph6 string in the file

graphs and properties.sage.

After adding pyrene to the file of graphs and properties, copy the contents of the ini-

tial trial run in first SageMath cell into a new cell. Now update the list benzene to include

pyrene. Conjecturing’s list of objects now reads benzene = [benzene, triphenylene,

pyrene]. No further changes are needed before the cell may be executed for the next

conjecture run. Activating the cell returns a new conjecture which Conjecturing has

determined to be a better bound on the catacondensed property given the addition of

pyrene.

Conjecture 8.

(even number of edges)→ (catacondensed)

Equivalently, Conjecture 8 is formally stated as the next proposition.

Proposition. Suppose that B is a benzenoid with m(B) edges. If m(B) is even, then B is

catacondensed.

Again, intuition tells us that it is unlikely this true. That is okay, our goal is to

refine Conjecturing with many examples and properties. Finding counterexamples to

generated conjectures gives the program more to work with. Our first hunch may be to

examine different benzenoids with a small number of hexagons that contain at least 1

internal vertex. If a benzenoid has at least 1 internal vertex, it can not be catacondensed.

Then we count the edges of each benzenoid and in hopes the benzenoid has an even

amount. That would be enough to disprove the conjecture. The smallest benzenoid with

containing an internal vertex is phenalene, which has a triangular structure and is shown
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Figure 2.3: Phenalene

Figure 2.4: Fluoranthene, a counterexample to Conjecture 8

in Figure 2.3. Its inner dual is not a tree, and therefore not catacondensed. Upon further

inspection, phenalene does not have an even number of edges as its size is 15. However,

we can expand off of this benzenoid to create a new benzenoid with an even number of

edges. Attaching a hexagon to phenalene such that the new hexagon is connected by a

single edge will add 5 new edges to the graph, resulting in a benzenoid with a size of 20.

This particular benzenoid is named fluoranthene, and its embedding is shown in Figure

2.4.

Disproof. Consider fluoranthene, shown in Figure 2.4, which has 20 edges and is not

catacondensed.

Note that the converse of Conjecture 8 is false as well. Each time a hexagon is added

to a catacondensed benzenoid to create a new benzenoid, 5 edges are added. Each ad-

ditional hexagon will flip the parity of m(B) between even and odd. While Conjecture 8

and its converse did not reveal new benzenoid theory, we found a counterexample to add

to Conjecturing’s knowledge of benzenoids. Similar to the previous run, we find the
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Graph6 string for fluoranthene, program the benzenoid in graphs and properties.sage,

and then start another conjecture run.

The process of automated conjecture-making continues in this fashion. With each

conjecture we either find a counterexample or a proof. Adding more properties into

Conjecturing gives the program a larger set of possible combinations to work with. In

the next section we define more properties for benzenoids to generate more conjectures.

2.3 More properties

At this point we should define more properties into SageMath for Conjecturing’s use.

Properties are the language that Conjecturing uses to output conjectures. Each prop-

erty expands the programs word bank and allows it to form new statements. More

properties means more conjectures. We could define many properties that are applicable

to all graphs. For instance, consider defining a property function that determines if a

graph is connected or not. By construction all benzenoids are connected graphs. This

property would be irrelevant to the investigation as the only objects we consider are

benzenoids. The inclusion of this property in generated conjectures would be trivial.

The idea is to define more properties that separate benzenoids into classes. The

properties should vary in truth value dependent on the benzenoid; it is not helpful

to define properties that return True or False for all benzenoids. That is a reason for

defining properties on the parity of an invariant. First we will define two properties on

the domination number of a benzenoid. Determining upper bounds on the domination

number was the goal of the invariant investigation. We will see results for property

conjectures including the domination number as well. The next two properties check to

see if the domination number of a benzenoid is even or odd.

Property 9 (Even domination number). Let B be a benzenoid with domination number γ(B).

Define even domination number(B) to return True when γ(B) = 2k for some k ∈ Z and
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return False otherwise.

Property 10 (Odd domination number). Let B be a benzenoid with domination number γ(B).

Define odd domination number(B) to return True when γ(B) = 2l + 1 for some l ∈ Z and

return False otherwise.

These two properties can be defined with Invariant 3 (domination number), which

uses the Python function len() on the SageMath built-in method dominating set()

to find the length of a minimum dominating set of a benzenoid. Since these two are

property-defined functions, we have even domination number(B) return True when the

domination number of B divided by 2 leaves a remainder of 0. In the same way, we set

odd domination number(B) return True when the domination number of B divided by 2

leaves a remainder of 1.

The next property compares the domination number of a benzenoid to its hexagon

count. When a benzenoid has the same domination number as the number of hexagons

in its embedding, we say that the benzenoid has equality. Equivalently, Invariant 13

returns the same integer as the one returned by Invariant 3. That is, h(B) = γ(B).

Property 11 (Equality). Let B be a benzenoid with h(B) hexagons and domination number

γ(B). Define equality(B) to return True when h(B) = γ(B) and return False otherwise.

Code this property by calling the invariant functions for number of hexagons and

domination number. The property-defined function equality(B) will return True af-

ter checking that hexagons(B)==domination number(B) for any B that has this equality

between the two invariants.

The following properties are similar to the one above in their methodology. Each

property is based on when two invariants are equal. First we find benzenoids that have

an equal number of internal and external vertices. The property compares Invariant 14

and Invariant 15.
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Figure 2.5: Benzenoid B with Property 12: ni(B) = ne(B) = 36

Property 12 (Equal internal and external vertices). Let B be a benzenoid with ni(B) internal

vertices and ne(B) external vertices. Define equal internal and external vertices(B) to

return True when ni(B) = ne(B) and return False otherwise.

Note that a benzenoid with the above property will have a larger order than the

examples given so far. Figure 2.5 shows one example of a benzenoid with equal inter-

nal and external vertices. Defining the property is straightforward provided Invariants

14 and 15 are already defined. Then coding the property just involves determining

if the ratio between internal vertices and external vertices is 1. That is, a benzenoid

B will have Property 12 when ni(B)
ne(B)

= 1. In SageMath, this ratio is programmed as

internal vertices(B)/external vertices(B)==1.

Whenever the ratio ni(B)
ne(B)

6= 0 means benzenoid B has at least 1 internal vertex. The

following property determines if B contains at least 1 internal vertex by checking an

aforementioned invariant-defined function.

Property 13 (Contains internal vertices). Let B be a benzenoid with ni(B) internal vertices.

Define contains internal vertices(B) to return True when ni(B) 6= 0 and return False

otherwise.

This property is easy to program in SageMath. We make use of previously defined

Invariant 14 from Section 1.3. Define Property 13 to check that that the invariant-defined

function is not equal to 0 with the line internal vertices(B)!=0. When it is indeed the
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case that ni(B) 6= 0, Property 13 returns True.

Now we will compare the cardinality of a benzenoid’s bipartite sets. The cardinality

of the smaller bipartite set, denoted |Bs(B)|, is defined as Invariant 10. Invariant 11

defines the cardinality of the larger bipartite set, denoted |Bl(B)|. In Section 1.3 we

mentioned that a benzenoid is balanced when |Bs(B)| = |Bl(B)|. The property is now

defined below.

Property 14 (Balanced). Let B be a benzenoid with smaller bipartite set Bs(B) and larger

bipartite set Bl(B). Define balanced(B) to return True when |Bs(B)| = |Bl(B)| and return

False otherwise.

In addition, a benzenoid that has the strict inequality |Bl(B)| > |Bs(B)| is said to have

color excess. A benzenoid B belongs to one of two disjoint sets: either B is in the set of

benzenoids that are balanced, or B is in the set of benzenoids with color excess.

Property 15 (Contains color excess). Let B be a benzenoid with smaller bipartite set Bs(B) and

larger bipartite set Bl(B). Define contains color excess(B) to return True when |Bl(B)| >

|Bs(B)| and return False otherwise.

A straightforward way to program Property 15 is to use previously defined Invariant

12. In SageMath, check that color excess(B)!=0. If the invariant-defined function is not

equal to 0, return True.

At the end of Section 1.3 we defined an invariant that counts the number of bay

regions in a benzenoid. There are four bay regions possible in a benzenoid: fissures,

bays, coves, and fjords. Figure 1.7 shows a benzenoid that has one of each bay region.

First we define a property that determines if a benzenoid has at least one bay region.

Property 16 (Contains bay region). Let B be a benzenoid with b(B) bay regions. Define

contains bay region(B) to return True when b(B) > 0 and return False otherwise.

The number of bay regions is defined as Invaraint 16. Then we will program the func-

tion contains bay region(B) to call the invariant function number of bay regions(B)
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and check if the integer returned by the invariant is larger than 0. If this is the case,

Property 16 will return True. We continue by defining properties for each type of bay

region. Programming each of the bay region properties is straightforward if the bay

region invariant-defined functions are carried over from Section 1.3.

Property 17 (Contains fissures). Let B be a benzenoid. Define contains fissures(B) to

return True when B contains at least one fissure and return False otherwise.

Note that benzene is the only benzenoid that does not contain a fissure. Have Sage-

Math use Invariant 17 to determine if the number of fissures is not equal to 0. This check

is programmed in Python as fissures(B)!=0.

Property 18 (Contains bays). Let B be a benzenoid. Define contains bays(B) to return True

when B contains at least one bay and return False otherwise.

Similar to Property 17, the above function checks if Invariant 18 is not equal to 0. In

SageMath, this check is coded as bays(B)!=0. The next two bay region properties are

defined and programmed in a similar manner.

Property 19 (Contains coves). Let B be a benzenoid. Define contains coves(B) to return

True when B contains at least one bay and return False otherwise.

Property 20 (Contains fjords). Let B be a benzenoid. Define contains fjords(B) to return

True when B contains at least one fjord and return False otherwise.

For Property 19 we define a function in SageMath that checks Invariant 19 to deter-

mine if coves(B)!=0. Similarly, for Property 20, a function is defined in SageMath that

determines if fjords(B)!=0 using Invariant 20. In either case, if the two invariants are

found to not equal 0, both property functions will return True.

The final properties defined in this section are based on Invariants 24–29 (number

of 0–5 external edges) having values greater than 0. These property-defined functions

determine if a benzenoid contains a hexagon with varying amounts of external edges.

66



Property 21 (Contains hexagon with 0 external edges). Let B be a benzenoid. Define

contains face with 0 external edges(B) to return True when B contains at least one

hexagon with 0 external edges and return False otherwise.

Property 22 (Contains hexagon with 1 external edge). Let B be a benzenoid. Define

contains face with 1 external edge(B) to return True when B contains at least one hexagon

with 1 external edge and return False otherwise.

Property 23 (Contains hexagon with 2 external edges). Let B be a benzenoid. Define

contains face with 2 external edges(B) to return True when B contains at least one

hexagon with 2 external edges and return False otherwise.

Property 24 (Contains hexagon with 3 external edges). Let B be a benzenoid. Define

contains face with 3 external edges(B) to return True when B contains at least one

hexagon with 3 external edges and return False otherwise.

Property 25 (Contains hexagon with 4 external edges). Let B be a benzenoid. Define

contains face with 4 external edges(B) to return True when B contains at least one

hexagon with 4 external edges and return False otherwise.

Property 26 (Contains hexagon with 5 external edges). Let B be a benzenoid. Define

contains face with 5 external edges(B) to return True when B contains at least one

hexagon with 5 external edges and return False otherwise.

Properties 21–26 are defined using Invariants 24–29. Each property-defined function

calls an corresponding invariant-defined function faces with i external edges(B) for

i∈ {0, 1, 2, 3, 4, 5} and checks if the invariant-defined function returns 0.

Armed with these properties, and a list of benzenoids, Conjecturing has enough

to work with to begin returning interesting conjectures. Next we discuss techniques for

constructing counterexamples to conjectures. Following this, we will state and prove

conjectures generated by Conjecturing.
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2.4 Clustering

This section explores methods of finding counterexamples to automated conjectures.

The process of methodically finding counterexamples is called clustering, which refers

to building a counterexample from an already defined benzenoid. Familiarization with

properties common in many benzenoids often makes it easy to guess ahead of time if

certain automated conjectures are provable or if counterexamples exist. That is, if we

conjecture that a generated conjecture has a counterexample, we often have an idea of

how to construct such a counterexample. This is a benefit that allows optimized coun-

terexample construction through pattern recognition. These counterexamples provide

more knowledge to Conjecturing, which refines the accuracy of automated conjec-

tures. First clustering is studied with balanced benzenoids, defined as Property 14 in the

previous section.

A counterexample to a balanced conjecture (meaning balanced is specified as the

property of interest in Conjecturing) is a benzenoid with color excess. In Section 1.4 we

examined triangulenes, a class of benzenoids with pyramidal structure. These pyramidal

benzenoid are likely candidates to contain color excess (defined as Property 15) based

on observations in [3]. In their paper, Cyvin & Gutman prove the following theorem that

provides an alternate way to calculate color excess by subtracting the number of valleys

in a benzenoid from its number of peaks. Peaks are vertices at the highest point in a

benzenoid’s embeddeding. Valleys are vertices at the lowest point of the embedding.

Theorem 4 (Cyvin & Gutman [3]). Let B be a benzenoid with n∧(B) peaks and n∨(B) valleys.

Then the color excess of B is given by /(B) = |n∧(B) − n∨(B)|.

Theorem 4 gives us the relation /(B) = |# of peaks−# of valleys| which will be useful

for finding counterexamples. Figure 2.6 shows an example color excess calculation with

green peaks and purple valleys.

Triangulenes by construction always have one single peak and many more valleys.
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Figure 2.6: /(B) = |# of peaks − # of valleys| = |2− 2| = 0

The only triangulene that does not contain color excess is benzene. Let’s use triangu-

lenes, and similar benzenoids, to create counterexamples to automated conjectures. Here

is one automated conjecture with balanced specified as the property of interest.

Conjecture 9.

(even number of vertices)→ (balanced)

Proposition. Suppose B is a benzenoid with an even number of vertices. Then B is balanced.

Finding a triangulene with an even number of vertices will be enough to disprove

Conjecture 9. Not much searching is needed as triangulene-3 has the even order we are

looking for.

Disproof. Consider triangulene-3, denoted T3. Figure 2.7 shows one labeling of T3. Ben-

zenoid T3 has 22 vertices, and so its order is even. However, T3 is not balanced as

/(T3) = |# of peaks − # of valleys| = |1 − 3| = 2, and B contains color excess by Theorem

4.

Figure 2.8 shows the peaks and valleys argument for T3. We proceed in the conjecture-

making process by defining triangulene-3 in SageMath and then adding it to the list of

objects in Conjecturing. Next more conjectures are generated. One of the returned

conjectures in the new batch is given below.
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Figure 2.7: A vertex labeling of triangulene-3
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Figure 2.8: Color excess in triangulene-3: /(T3) = 2

Conjecture 10.

((odd number of edges)&(even number of vertices))&(even domination number)

→ (balanced)

Proposition. Let B be a benzenoid. Suppose B has an odd number of edges, an even number of

vertices, and an even domination number. Then B is balanced.

A counterexample to Conjecture 10 may be constructed by attaching a pyramidal

cluster to a benzenoid that already has the properties specified by the hypothesis. Some

manipulation may be involved to ensure the hypothesis is still met in the resulting ben-

zenoid, but if the hypothesis can be met there likely exists a pyramidal cluster large

enough to disprove the conjecture.

Disproof. Let B be the benzenoid shown in Figure 2.9. Note that m(B) = 63, n(B) = 50,
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Figure 2.9: A counterexample to Conjeture 10

and γ(B) = 14, so B meets the assumptions given in the hypothesis. However, B is not

balanced. Observe that /(B) = |# of peaks − # of valleys| = 2. By Theorem 4, B contains

color excess.

The takeaway when generating conjectures on the property balanced is that, in many

cases, attaching a pyramidal cluster to a benzenoid meeting the hypothesis is enough to

find a counterexample. The next property we will apply clustering methods on are

benzenoids containing perfect matchings, which is yet to be defined. Recall from Section

1.3 that a matching of a graph G is a set of independent edges from E(G). A perfect

matching is explained in [2] as a matching M of graph G with the property that every

vertex from V(G) is incident to exactly one edge in the matching M. We can use perfect

matchings to create more benzenoid classes.

Property 27 (Contains perfect matching). Let B be a benzenoid and M be a matching of B.

Define contains perfect matching(B) to return True when M is a perfect matching of B

and return False otherwise.

It is fine to state this property, but the definition does not provide a programming

method. To code this property we use the fact that every perfect matching of benzenoid

B must be of size n(B)
2

. Every edge has two endpoints, and a perfect matching must

contain all vertices. As it is a matching, the edges must independently cover B. Adding

one more edge to a perfect matching would not be a matching at all. Then a perfect

matching is a maximal matching. We can define Property 27 using Invariant 9, the

matching number. For benzenoid B, defined in SageMath, code Property 27 to return
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the truth value of the equality check matching number(B) == B.order()/2.

Now set contains perfect matching as the property of interest in Conjecturing

and start a conjecture run. The next conjecture comes from the first batch.

Conjecture 11.

(balanced)→ (contains perfect matching)

Proposition. Let B be a benzenoid. If B is balanced, then B contains a perfect matching.

It is not immediately apparent if the proposition is true or false. One strategy to try

proving the proposition would be to show that, for a balanced benzenoid B, any subset

S ⊆ V(B) has the property that the cardinality of the neighboring set of S is greater than

or equal to the cardinality of S. If this could be shown, we could use Hall’s Marriage

Theorem to conclude that B has a perfect matching. This theorem, proven in 1935 by

Philip Hall, is given below.

Theorem 5 (Hall’s Marriage Theorem). SupposeG is a bipartite graph with bipartition (A,B).

Then G has a perfect matching if and only if |A| = |B| and for any S ⊆ V(G), |NG(S)| > |S|.

Given that benzenoids have a nice structure, it seems reasonable to show that all bal-

anced benzenoids have this neighborhood requirement. However, constructing a proof

of this would be in vain, as Lovász & Plummer [11] give an example of a graph that hap-

pens to be a balanced benzenoid, yet does not have a perfect matching. This benzenoid,

shown in Figure 2.10, is enough to refute Conjecture 11.

Disproof. Let B ′ be the benzenoid shown in Figure 2.10 and let µ(B ′) denote the matching

number of B ′. Observe that B ′ is balanced, since /(B ′) = |# of peaks − # of valleys| = 0.

However, B ′ does not contain a perfect matching as µ(B ′) = 20 6= 21 = n(B ′)
2

.

Add the counterexample benzenoid to the list of objects known to Conjecturing.

The strategy will be to use this counterexample to expand from on future conjectures on
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Figure 2.10: Benzenoid B’: Figure 1.1.1 in Lovász & Plummer [11]

the contains perfect matching property. With the updated list of benzenoids, the next

conjecture adds Property 21 in the hypothesis.

Conjecture 12.

((contains face with 0 external edges)&(balanced))

→ (contains perfect matching)

Proposition. Let B be a benzenoid. If B contains a hexagon with 0 external edges and B is

balanced, then B contains a perfect matching.

Knowing B ′ does not contain a perfect matching is enough to construct a counterex-

ample to Conjecture 12. We proceed by adding hexagons. Attaching a circulene to B ′

will be enough to disprove the conjecture. Circulenes are a class of benzenoids that

contain at least 1 hexagon with 0 external edges, excluding the trivial circulene benzene.

Examples of circulenes are shown in Figure 1.13 of Section 1.4.

Disproof. Let B be the benzenoid shown in Figure 2.11 with matching number µ(B).

Then B contains a hexagon with 0 external edges and is balanced as /(B) = |# of peaks−

# of valleys| = 0. However, B does not contain a perfect matching as µ(B) = 31 6= 32 =

n(B)
2

.

Continue the conjecture-making process by defining this benzenoid in SageMath and

adding the graph to the list of known objects in Conjecturing. In the next conjecture,

the hypothesis is updated again to include Property 9.
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Figure 2.11: A counterexample to Conjecture 12

Conjecture 13.

(((balanced)&(even domination number))&(contains face with 0 external edges))

→ (contains perfect matching)

Proposition. Let B be a benzenoid. If B is balanced, has an even domination number, and

contains at least one hexagon with 0 external edges, then B contains a perfect matching.

The difference between Conjectures 12 and 13 is the extra condition that B must have

an even domination number. Attaching a hexagon to a e22 edge on the perimeter of

the benzenoid shown in Figure 2.11 increases the domination number by 1, enough to

disprove the conjecture.

Disproof. Let B be the benzenoid shown in Figure 2.12 with domination number γ(B) and

matching number µ(B). Note that B is balanced as /(B) = |# of peaks − # of valleys| = 0.

Further, γ(B) = 20, which is even, and B contains a hexagon with 0 external edges.

However, B does not contain a perfect matching, as µ(B) = 33 6= 34 = n(B)
2

.

Adding this benzenoid to objects known to Conjecturing increases the program’s

knowledge and refines conjectures by increasing the complexity. In the next conjecture

run another property is added to the mix. The process is still the same. As long as

B ′ is part of the cluster we can continue to find counterexamples for many generated

conjectures.
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Figure 2.12: A counterexample to Conjecture 13

2.5 Results

Up to this point, Conjecturing has generated sufficient condition conjectures that are

lower bounds for the user-specified property of interest. By default, the sufficient

parameter in function propertyBasedConjecture() is set to True. Changing the value

to False returns necessary condition conjectures that are upper bounds for the prop-

erty of interest. The results shown here include both necessary and sufficient condition

conjectures for various properties of interest. We present the results in a conjecture-

proposition-proof format. First, the generated conjecture is shown. Next, a proposition

equivalent to the conjecture is formally stated, followed by a proof.

Conjecture 14.

(balanced)→ (even number of vertices)

Proposition 12. If a benzenoid B is balanced, then B has an even number of vertices.

Proof. Let Bs(B) be the smaller bipartite set of B and let Bl(B) be the larger bipartite set

of B. As B is balanced, |Bs(B)| = |Bl(B)|. Then the number of vertices in B is given by

n(B) = |Bs(B)|+ |Bl(B)|

= |Bs(B)|+ |Bs(B)|

= 2|Bs(B)|.

Let k = |Bs(B)| for some k ∈ Z. Then n(B) = 2k and by definition B has an even number

of vertices.
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Conjecture 15.

(catacondensed)→ (balanced)

Proposition 13. Let B be a benzenoid with h(B) hexagons. If B is catacondensed, then B is

balanced.

Proof. We prove this by induction on the number of hexagons in B. In the base case when

h(B) = 1, B is benzene. Benzene is catacondensed, as it has 0 internal vertices, and bal-

anced, as |Bs(B)| = |Bl(B)|. Suppose the assumption that whenever B is catacondensed

then B is balanced holds for benzenoids with k− 1 > 1 hexagons, where k ∈ N. We will

show the assumption holds for k hexagons. Let B be a catacondensed benzenoid with

k hexagons. By Lemma 1 there exists a removable hexagon H in B. Define B ′ = B − H

to be the benzenoid obtained by removing H from B. As B is catacondensed, removing

H from B eliminates 4 vertices from V(B). These observations show the two relations

h(B ′) = h(B) − 1 = k− 1 and n(B ′) = n(B) − 4.

By the inductive hypothesis, B ′ is balanced. Then |Bs(B
′)| = |Bl(B

′)|. Let v and w

denote the 2 vertices on the perimeter of B ′ that are incident to an edge inH. Without loss

of generality, suppose v ∈ Bs(B) andw ∈ Bl(B). The proof is analogous when v ∈ Bl(B)

andw ∈ Bs(B). Attach H to the vw edge to form B. Denote the 4 vertices that are in V(B)

and not in V(B ′) as a,b, c, and d. Again, without loss of generality, let va,ab,bc, cd,

and dw be edges in E(B) that necessarily are not in E(B ′). As v ∈ Bl(B), vertex a must

belong to smaller bipartite set Bs(B). In an alternating method, b ∈ Bl(B), c ∈ Bs(B),

and d ∈ Bl(B).

We have that |Bs(B)| = |Bs(B
′)|+ 2 and |Bl(B)| = |Bl(B

′)|+ 2. Observe that

|Bs(B)| = |Bs(B
′)|+ 2

= |Bl(B
′)|+ 2

= |Bl(B)|,
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and by definition B is balanced. It follows by mathematical induction that whenever

benzenoid B is catacondensed, B is balanced as well.

Conjecture 16.

(catacondensed)→ (~ (contains face with 0 external edges))

Proposition 14. Let B be a catacondensed benzenoid. Then B does not contain a hexagon with 0

external edges.

Proof. A hexagon with 0 external edges must have 6 internal edges. In this case each

edge connects to another hexagon. Hexagons surrounding a hexagon with 0 external

edges form a cycle of length 6 in the benzenoid’s corresponding inner dual. Benzenoid

B may not have such a cycle in its inner dual as, by assumption, B is catacondensed.

By definition of catacondensed, the inner dual of B is a tree. It follows that when B is

catacondensed, B does not contain a hexagon with 0 external edges.

Conjecture 17.

(odd number of vertices)→ (contains color excess)

Proposition 15. Let B be a benzenoid with an odd number of vertices. Then B contains color

excess.

Proof. As B had an odd number of vertices, the smaller bipartite set and larger bipartite

set must have different cardinalities. Then |Bl(B)| > |Bs(B)|. Subtract both sides of the

inequality by |Bs(B)|. Then

|Bl(B)|− |Bs(B)| > 0.

Since the difference between the cardinalities of the larger bipartite set and smaller bi-

partite set is greater than 0, benzenoid B contains color excess.
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Conjecture 18.

(equality)→ (contains internal vertices)

Proposition 16. Let B be a benzenoid with h(B) hexagons and domination number γ(B). If

h(B) = γ(B), then B contains internal vertices.

Proof. We will prove this proposition by showing the contrapositive. Let B be a ben-

zenoid that does not contain internal vertices. Then B is catacondensed. We proceed by

using mathematical induction on h(B). When h(B) = 1, benzenoid B is benzene, which

has a domination number of γ(B) = 2. Then h(B) 6= γ(B) and the base case holds.

Suppose the assumption that if B does not contain internal vertices, then h(B) 6= γ(B)

holds for k − 1 > 1 hexagons, where k ∈ N. We will show the assumption holds for

k hexagons. Let B be a benzenoid with 0 internal vertices and h(B) = k hexagons. By

Lemma 1, there exists a removable hexagon H in B. Let B ′ = B − H be the benzenoid

defined by removing H from B. Removing H removes 4 vertices. Each vertex in a

minimum dominating set may cover at most 4 vertices. Then removing 4 vertices from

B will reduce γ(B) by at least 1 or at most 2. Suppose the minimal case where γ(B) is

reduced by 1. If the induction holds in the minimal case it will hold in the maximal case.

Now we have the two relations h(B ′) = h(B) − 1 = k− 1 and γ(B ′) = γ(B) − 1.

As h(B ′) = k−1, we may apply the inductive hypothesis. Then h(B ′) 6= γ(B ′). Attach

H to B ′ to form B. From the equations above, h(B) = h(B ′) + 1 and γ(B) = γ(B ′) + 1.

Observe that

h(B) = h(B ′) + 1 6= γ(B ′) + 1 = γ(B),

and we find that h(B) 6= γ(B). It follows by mathematical inducation and proof by

contrapositive that if h(B) = γ(B), then benzenoid B contains internal vertices.

Conjecture 19.

(catacondensed)→ (~ (equality))
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Proposition 17. Let B be a benzenoid. If B is catacondensed, then γ(B) 6= h(B).

Proof. Consider the contrapositive of the statement. Let B be a benzenoid that contains

equality. That is γ(B) = h(B). By Proposition 16, as B contains equality, B also contains

internal vertices. Then ni(B) > 0 where ni(B) is the number of internal vertices in B.

Catacondensed benzenoids contain 0 internal vertices. As ni(B) > 0, benzenoid B is not

catacondensed, proving the contrapositive.

Conjecture 20.

(equal internal and external vertices)→ (even number of vertices)

Proposition 18. Let B be a benzenoid. If B has an equal number of internal and external vertices,

then B has an even number of vertices.

Proof. Let Ve(B) be the set of external vertices of B and Vi(B) be the set of internal

vertices of B. The union of sets Ve(B) and Vi(B) is the vertex set of B, so the order of B is

given by n(B) = |Ve(B)|+ |Vi(B)|. By assumption, |Ve(B)| = |Vi(B)|. Using substitution,

n(B) = |Ve(B)|+ |Vi(B)|

= |Ve(B)|+ |Ve(B)|

= 2|Ve(B)|.

Let m = |Ve(B)| for some m ∈ Z. Then n(B) = 2m and by definition B contains an even

number of vertices.

Conjecture 21.

((odd number of edges)^(odd number of vertices))→ (even hexagons)

Proposition 19. Suppose B is a benzenoid where:
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1. B has an odd number of edges and an even number of vertices or

2. B has an even number of edges and an odd number of vertices.

Then B has an even number of hexagons.

Proof. Case 1. Suppose m(B) = 2k+ 1 and n(B) = 2l for some k, l ∈ Z. By Theorem 1,

h(B) = m(B) − n(B) + 1 = 2k+ 1− 2l+ 1 = 2(k− l+ 1).

As k and l are integers, k − l + 1 ∈ Z as well. Let a = k − l + 1. Then h(B) = 2a and by

definition h(B) is even.

Case 2. Now suppose m(B) = 2g and n(B) = 2f+ 1 for some g, f ∈ Z. By Theorem 1,

h(B) = m(B) − n(B) + 1 = 2g− (2f+ 1) + 1 = 2(g− f).

As g and f are integers, g − f ∈ Z as well. Let b = g − f. Then h(B) = 2b and

by definition h(B) is even. In both cases we have that benzenoid B contains an even

number of hexagons, which is what we needed to show.

Conjecture 22.

((equality)&(odd hexagons))→ (odd domination number)

Proposition 20. Let B be a benzenoid with h(B) hexagons and domination number γ(B). Sup-

pose h(B) = γ(B) and B has an odd number of hexagons. Then B has an odd domination

number.

Proof. As B has an odd number of hexagons, h(B) = 2k+ 1 for some k ∈ Z. By assump-

tion, h(B) = γ(B). Then γ(B) = 2k+ 1, and by definition γ(B) is odd. It follows B has an

odd domination number.
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Conjecture 23.

((equality)&(even hexagons))→ (even domination number)

Proposition 21. Let B be a benzneoid with h(B) hexagons and domination number γ(B). Sup-

pose h(B) = γ(B) and B has an even number of hexagons. Then B has an even domination

number.

Proof. The proof is analogous to Proposition 20. By assumption, B has an even number of

hexagons and by definition h(B) = 2l for some l ∈ Z. Also by assumption, h(B) = γ(B).

Then 2l = h(B) = γ(B), and by definition B has an even domination number.

Conjecture 24.

(contains perfect matching)→ (balanced)

Proposition 22. Let B be a benzenoid. Suppose B contains a perfect matching, then B is balanced.

Proof. Suppose benzenoid B contains a perfect matching. By Theorem 5 (Hall’s Marriage

Theorem), if B has a perfect matching then, in particular, |Bl(B)| = |Bs(B)| for bipartite

sets Bl(B) and Bs(B). By definition, B is balanced.

Conjecture 25.

(contains color excess)→ (~ (contains perfect matching))

Proposition 23. Let B be a benzenoid. Suppose B contains color excess, then B does not contain

a perfect matching.

Proof. Consider the contrapositive of this statement. Suppose B contains a perfect match-

ing. We want to show B does not contain color excess. By Proposition 22, as B con-

tains a perfect matching, B must be balanced. Then |Bs(B)| = |Bl(B)|. Notice that

|Bl(B)|− |Bs(B)| = 0, and by definition B does not contain color excess.
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Conjecture 26.

(catacondensed)→ (contains perfect matching)

Proposition 24. Let B be a benzenoid. If B is catacondensed, then B contains a perfect matching.

Proof. We will prove this statement using mathematical induction. When h(B) = 1,

benzenoid B is benzene which contains a perfect matching. Assume the statement holds

for a benzenoid with k − 1 > 1 hexagons, where k ∈ N. Let B be a benzenoid with

h(B) = k hexagons. By Lemma 1 there exists a removable hexagon H in B. Let B ′ = B−H

be the catacondensed benzenoid obained by removing H from B. Then B ′ contains

h(B ′) = h(B) − 1 = k − 1 hexagons. By the inductive hypothesis B ′ contains a perfect

matching. Let Mp(B
′) be a perfect matching of B ′.

By construction of catacondensed benzenoids, removing H from B removes 4 vertices

from V(B) and 5 edges from E(B). Let a,b, c,d ∈ V(B) be the 4 vertices in B that are

not in V(B ′). Further, let v and w be the 2 vertices from H that are elements of both

V(B ′) and V(B). Then vw ∈ E(B) and vw ∈ E(B ′). Without loss of generality, suppose

va,ab,bc, cd, and dw are the edges eliminated by the removal of H from B.

Attach H to B ′ to form B. There are two cases to consider on edge vw: either vw ∈

Mp(B
′) or vw /∈Mp(B

′).

Case 1. First suppose that edge vw is in perfect matching Mp(B
′). Then vertices

v,w ∈ V(B) are matched by edge vw. Define M(B) :=Mp(B
′)∪ {ab, cd} to be a matching

B. By assumption, Mp(B
′) is a perfect matching of B ′ and V(B) ∩ V(B ′) = V(B ′) −

{a,b, c,d}. Note that ab and cd are edges independent to edge vw that match vertices

a,b, c, and d. Then B contains a perfect matching defined by M(B) =Mp(B
′)∪ {ab, cd}.

Case 2. Now suppose that edge vw is an element of perfect matching Mp(B
′). Since

Mp(B
′) is a perfect matching v and w are matching by to independent edges. De-

fine M ′(B) := Mp(B
′) ∪ {ab, cd} to be a matching of B. Note that V(B) ∩ V(B ′) =
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V(B ′)− {a,b, c,d}. Since all vertices in B ′ are matched by Mp(B
′) and ab and cd are two

independent edges, M ′(B) =Mp(B
′) ∪ {ab, cd} is a perfect matching of B.

In both cases we have shown B contains a perfect matching. It follows by induction

that if benzenoid B is catacondensed, then B contains a perfect matching.

Conjecture 27.

(~ (contains perfect matching))→ (contains internal vertices)

Proposition 25. Let B be a benzenoid. Suppose B does not contain a perfect matching. Then B

contains internal vertices.

Proof. Consider the contrapositive of the statement. Let B be a benzenoid that does

not contain internal vertices. Then B is catacondensed. As a result of Proposition 24,

benzenoid B contains a perfect matching.

2.6 Open conjectures

We close the investigation by stating a couple of property conjectures generated by Con-

jecturing that remain open for proof.

Conjecture 28.

((equal internal and external vertices)&(even number of edges))

→ (even domination number)

Proposition. Let B be a benzenoid with ni(B) internal vertices, ne(B) external vertices, m(B)

edges, and domination number γ(B). If ni(B) = ne(B) and m(B) is even, then γ(B) is even.
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Conjecture 29.

(equal internal and external vertices)→ (contains bays)

Proposition. Let B be a benzenoid with ni(B) internal vertices and ne(B) external vertices. If

ni(B) = ne(B), then B contains at least 1 bay.
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Appendix A

Invariant and property code

The following invariant and property-defined functions are listed in order of appearance,

starting in Section 2.1.

Invariant 1 (Number of vertices).

return B.order()

Invariant 2 (Number of edges).

return B.size()

Invariant 3 (Domination number).

def domination_number(B):

return len(B.dominating_set())

Invariant 4 (Number of degree-2 vertices).

def degree_2_vertices(B):

return B.degree().count(2)
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Invariant 5 (Number of degree-3 vertices).

def degree_3_vertices(B):

return B.degree().count(3)

Invariant 6 (Number of 2-2 edges).

def number_of_2_2_edges(B):

count = 0

for e in B.edges():

endpoint1 = e[0]

endpoint2 = e[1]

degree1 = len(B.neighbors(endpoint1))

degree2 = len(B.neighbors(endpoint2))

if degree1 == 2 and degree2 == 2:

count += 1

return count

Invariant 7 (Number of 2-3 edges).

def number_of_2_3_edges(B):

count = 0

for e in B.edges():

endpoint1 = e[0]

endpoint2 = e[1]

degree1 = len(B.neighbors(endpoint1))

degree2 = len(B.neighbors(endpoint2))

if (degree1 == 2 and degree2 == 3) or (degree1 == 3 and degree2 == 2):

count += 1

return count
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Invariant 8 (Number of 3-3 edges).

def number_of_3_3_edges(B):

count = 0

for e in B.edges():

endpoint1 = e[0]

endpoint2 = e[1]

degree1 = len(B.neighbors(endpoint1))

degree2 = len(B.neighbors(endpoint2))

if degree1 == 3 and degree2 == 3:

count += 1

return count

Invariant 9 (Matching number).

def matching_number(B):

return len(B.matching())

Invariant 10 (Cardinality of the smaller bipartite set).

def smaller_bipartite_set(B):

Sets = B.bipartite_sets()

return min(len(Sets[0]),len(Sets[1]))

Invariant 11 (Cardinality of the larger bipartite set).

def larger_bipartite_set(B):

Sets = B.bipartite_sets()

return max(len(Sets[0]),len(Sets[1]))

Invariant 12 (Color excess).
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def color_excess(B):

return larger_bipartite_set(B) - smaller_bipartite_set(B)

Invariant 13 (Number of hexagons).

def hexagons(B):

return B.size() - B.order() + 1

Invariant 14 (Number of internal vertices).

def internal_vertices(B):

return 4*hexagons(B) + 2 - B.order()

Invariant 15 (Number of external vertices).

def external_vertices(B):

return B.order() - internal_vertices(B)

Invariant 16 (Number of bay regions).

def number_of_bay_regions(B):

return number_of_2_2_edges(B) - 6

Invariant 17 (Number of fissures).

def fissures(B):

degrees_outer_face = [B.degree(v) for v in largest_face(B)]

degrees_outer_face = degrees_outer_face + degrees_outer_face[:2]

return len([i for i in range(len(degrees_outer_face)-2) if degrees_outer_face[

i:i+3]==[2,3,2]])
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Invariant 18 (Number of bays).

def bays(B):

degrees_outer_face = [B.degree(v) for v in largest_face(B)]

degrees_outer_face = degrees_outer_face + degrees_outer_face[:3]

return len([i for i in range(len(degrees_outer_face)-3) if degrees_outer_face[

i:i+4]==[2,3,3,2]])

Invariant 19 (Number of coves).

def coves(B):

degrees_outer_face = [B.degree(v) for v in largest_face(B)]

degrees_outer_face = degrees_outer_face + degrees_outer_face[:4]

return len([i for i in range(len(degrees_outer_face)-4) if degrees_outer_face[

i:i+5]==[2,3,3,3,2]])

Invariant 20 (Number of fjords).

def fjords(B):

degrees_outer_face = [B.degree(v) for v in largest_face(B)]

degrees_outer_face = degrees_outer_face + degrees_outer_face[:5]

return len([i for i in range(len(degrees_outer_face)-5) if degrees_outer_face[

i:i+6]==[2,3,3,3,3,2]])

Invariant 21 (Number of external 2-3 edges).

def number_of_external_2_3_edges(B):

return 4*hexagons(B) - 4 - 2*number_of_bay_regions(B) - 2*

number_of_internal_vertices(B)

Invariant 22 (Number of external 3-3 edges).
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def number_of_external_3_3_edges(B):

return B.size() - number_of_internal_3_3_edges(B) - number_of_2_2_edges(B) -

number_of_2_3_edges(B)

Invariant 23 (Number of internal 3-3 edges).

def number_of_internal_3_3_edges(B):

return hexagons(B) - 1 + internal_vertices(B)

Invariant 24 (Number of hexagons with 0 external edges).

def faces_with_0_external_edges(B):

count = 0

lf = largest_face(B)

leng = len(lf)

for f in B.faces():

temp_count = 0

if len(f) == 6:

for e in f:

x = e[0]

y = e[1]

if x in lf:

x_index = lf.index(x)

if x_index == 0 and (y == lf[1] or y == lf[leng-1]):

temp_count +=1

if x_index == leng-1 and (y == lf[0] or y == lf[leng-2]):

temp_count +=1

if x_index != 0 and x_index != leng-1 and (y == lf[x_index-1]

or y == lf[x_index+1]):
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temp_count +=1

if temp_count == 0:

count +=1

return count

Invariant 25 (Number of hexagons with 1 external edge).

def faces_with_1_external_edge(B):

count = 0

lf = largest_face(B)

leng = len(lf)

for f in B.faces():

temp_count = 0

if len(f) == 6:

for e in f:

x = e[0]

y = e[1]

if x in lf:

x_index = lf.index(x)

if x_index == 0 and (y == lf[1] or y == lf[leng-1]):

temp_count +=1

if x_index == leng-1 and (y == lf[0] or y == lf[leng-2]):

temp_count +=1

if x_index != 0 and x_index != leng-1 and (y == lf[x_index-1]

or y == lf[x_index+1]):

temp_count +=1

if temp_count == 1:

count +=1

return count
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Invariant 26 (Number of hexagons with 2 external edges).

def faces_with_2_external_edges(B):

count = 0

lf = largest_face(B)

leng = len(lf)

for f in B.faces():

temp_count = 0

if len(f) == 6:

for e in f:

x = e[0]

y = e[1]

if x in lf:

x_index = lf.index(x)

if x_index == 0 and (y == lf[1] or y == lf[leng-1]):

temp_count +=1

if x_index == leng-1 and (y == lf[0] or y == lf[leng-2]):

temp_count +=1

if x_index != 0 and x_index != leng-1 and (y == lf[x_index-1]

or y == lf[x_index+1]):

temp_count +=1

if temp_count == 2:

count +=1

return count

Invariant 27 (Number of hexagons with 3 external edges).

def faces_with_3_external_edges(B):

count = 0

lf = largest_face(B)
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leng = len(lf)

for f in B.faces():

temp_count = 0

if len(f) == 6:

for e in f:

x = e[0]

y = e[1]

if x in lf:

x_index = lf.index(x)

if x_index == 0 and (y == lf[1] or y == lf[leng-1]):

temp_count +=1

if x_index == leng-1 and (y == lf[0] or y == lf[leng-2]):

temp_count +=1

if x_index != 0 and x_index != leng-1 and (y == lf[x_index-1]

or y == lf[x_index+1]):

temp_count +=1

if temp_count == 3:

count +=1

return count

Invariant 28 (Number of hexagons with 4 external edges).

def faces_with_4_external_edges(B):

count = 0

lf = largest_face(B)

leng = len(lf)

for f in B.faces():

temp_count = 0

if len(f) == 6:

for e in f:
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x = e[0]

y = e[1]

if x in lf:

x_index = lf.index(x)

if x_index == 0 and (y == lf[1] or y == lf[leng-1]):

temp_count +=1

if x_index == leng-1 and (y == lf[0] or y == lf[leng-2]):

temp_count +=1

if x_index != 0 and x_index != leng-1 and (y == lf[x_index-1]

or y == lf[x_index+1]):

temp_count +=1

if temp_count == 4:

count +=1

return count

Invariant 29 (Number of hexagons with 5 external edges).

def faces_with_5_external_edges(B):

count = 0

lf = largest_face(B)

leng = len(lf)

for f in B.faces():

temp_count = 0

if len(f) == 6:

for e in f:

x = e[0]

y = e[1]

if x in lf:

x_index = lf.index(x)

if x_index == 0 and (y == lf[1] or y == lf[leng-1]):
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temp_count +=1

if x_index == leng-1 and (y == lf[0] or y == lf[leng-2]):

temp_count +=1

if x_index != 0 and x_index != leng-1 and (y == lf[x_index-1]

or y == lf[x_index+1]):

temp_count +=1

if temp_count == 5:

count +=1

return count

Invariant 30 (Number of leaves).

def leaves(B):

return inner_dual_benzenoid(B).degree().count(1)

Invariant 31 (Branching number).

def branching_number(B):

return inner_dual_benzenoid(B).degree().count(3) + count_cyclic_sublists([B.

degree(v) for v in largest_face(B)], [3,2,2,3])

Property 1 (Even number of vertices).

def even_number_of_vertices(B):

return B.order()%2==0

Property 2 (Odd number of vertices).

def odd_number_of_vertices(B):

return B.order()%2==1
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Property 3 (Even number of edges).

def even_number_of_edges(B):

return B.size()%2==0

Property 4 (Odd number of edges).

def odd_number_of_edges(B):

return B.size()%2==1

Property 5 (More edges than vertices).

def more_edges_than_vertices(B):

return (B.size() > B.order())

Property 6 (Odd number of hexagons).

def odd_hexagons(B):

return hexagons(B)%2==1

Property 7 (Even number of hexagons).

def even_hexagons(B):

return hexagons(B)%2==0

Property 8 (Catacondensed).

def catacondensed(B):

return internal_vertices(B)/external_vertices(B)==0

Property 9 (Even domination number).
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def even_domination_number(B):

return domination_number(B)%2==0

Property 10 (Odd domination number).

def odd_domination_number(B):

return domination_number(B)%2==1

Property 11 (Equality).

def equality(B):

return hexagons(B) == domination_number(B)

Property 12 (Equal internal and external vertices).

def equal_internal_and_external_vertices(B):

return internal_vertices(B)/external_vertices(B)==1

Property 13 (Contains internal vertices).

def contains_internal_vertices(B):

return internal_vertices(B)!=0

Property 14 (Balanced).

def balanced(B):

return smaller_bipartite_set(B) == larger_bipartite_set(B)

Property 15 (Contains color excess).
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def contains_color_excess(B):

return color_excess(B)!=0

Property 16 (Contains bay region).

def contains_bay_region(B):

return number_of_bay_regions(B)>0

Property 17 (Contains fissures).

def contains_fissures(B):

return fissures(B)!=0

Property 18 (Contains bays).

def contains_bays(B):

return bays(B)!=0

Property 19 (Contains coves).

def contains_coves(B):

return coves(B)!=0

Property 20 (Contains fjords).

def contains_fjords(B):

return fjords(B)!=0

Property 21 (Contains hexagon with 0 external edges).
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def contains_face_with_0_external_edges(B):

return faces_with_0_external_edges(B)!=0

Property 22 (Contains hexagon with 1 external edge).

def contains_face_with_1_external_edge(B):

return faces_with_1_external_edge(B)!=0

Property 23 (Contains hexagon with 2 external edges).

def contains_face_with_2_external_edges(B):

return faces_with_2_external_edges(B)!=0

Property 24 (Contains hexagon with 3 external edges).

def contains_face_with_3_external_edges(B):

return faces_with_3_external_edges(B)!=0

Property 25 (Contains hexagon with 4 external edges).

def contains_face_with_4_external_edges(B):

return faces_with_4_external_edges(B)!=0

Property 26 (Contains hexagon with 5 external edges).

def contains_face_with_5_external_edges(B):

return faces_with_5_external_edges(B)!=0

Property 27 (Contains perfect matching).

def contains_perfect_matching(B):

nu = B.matching(value_only=True)

return nu == B.order()/2
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