
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

1998

AEGIS Data Analysis and Reduction (ADAR) in Support of the AEGIS Data Analysis and Reduction (ADAR) in Support of the

AEGIS Weapon System (AWS) AEGIS Weapon System (AWS)

June Bullard Gaines

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Computer Sciences Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/4622

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4622&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F4622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/4622?utm_source=scholarscompass.vcu.edu%2Fetd%2F4622&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

College of Humanities and Sciences
Virginia Commonwealth University

This is to certify that the thesis prepared by June B. Gaines entitled "AEGIS Data Analysis
and Reduction (ADAR) in Support of the AEGIS Weapon System (AWS)" has been
approved by his committee as satisfactory completion of the thesis requirement for the
degree of Master of Science in Computer Science.

--
Dr. Ena Gross >

Associate Professor, Teacher Education Division
Outside Committee Member

D . esA. Wood
Director of Graduate Studies
Department of Mathematical Sciences

Dr. I 'chard Moms
Chair, artment of Mathematical Sciences

D . e

Dean, C HU ties and Sciences

Dr. Jack L. Haar
Dean of Graduate Studies

Date
/o/q / rtf , ,

AEGIS Data Analysis and Reduction (ADAR)

in Support of the

AEGIS Weapon System (A WS)

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

By

June Bullard Gaines
B.S. Mars Hill College, Mars Hill, NC 1 965-1 969

Mathematical Sciences Certificate, Virginia Commonwealth University, Richmond, VA
1 986- 1 989

Director: James E. Ames, IV, Associate Professor
Department of Mathematical Sciences

Virginia Commonwealth University
Richmond, Virginia

August, 1 998

Acknowledgment

I would like to thank my husband Jack, my son David, and my daughter Angela
for their support in this endeavor over the years.

Special thanks go to Tom Poley who has always encouraged me during this
process even when I was discouraged. You have my grateful thanks for all of your help,
guidance, comments, and advice.

Thanks go to Kay Pollack for providing advice regarding the origins of the
ADAR system as well as providing needed editorial and content review.

Likewise, thanks go to Steven Canup for providing advice regarding the current
state of ADAR as well as future plans. Steven has been a great help over the years,
especially regarding changes in ADAR while I was working with it.

Additionally, I want to thank Dr. Ames for all of his support and help.

11

Table of Contents

Page

List of Figures .. v

List of Appendices .. vii

List of Abbreviations ... viii

Abstract ... xiv

Introduction .. 1

2 The AEGIS Weapon System and AEGIS Combat System ... 6

3 CMS-2 Programming Language ... 21

4 AEGIS Data ... 31

5 Functions of ADAR ... 42

5.1 Introduction ... 42

5.2 Recorded Data ... 42

5.3 Computers ... 44

5.4 Processing Data .. 46

5.5 Job Processor .. 47

6 Beginnings of ADAR: the ASP Interpreter49

6.1 Origins .. 49

6.2 The ADAR Sequential Processor ... 50

7 Second stage of ADAR: the Job Processor.. ... 56

7.1 Introduction ... 56

7.2 Beginnings - Job Processor to Automate the Use of ASP .. 56

7.3 Addition of Utility Programs to the Job Processor.. ... 58

7.4 Data Dictionary Map .. 59
7.5 Program Generators .. 62

7.5.1 The GenFLD Program ... 63

1lI

IV

7.5.2 The GenMEP Program .. 65

7.5.3 The GenPOC Program ... 68

7.6 First Data Manipulation Programs .. 69

7.7 Creation of the Training Manual .. 71

7.8 Problems 72

8 Migration of Tactical System Processing 77

9 Third Stage of ADAR: Moving Away from the Job Processor 80

9.1 Introduction 80

9.2 Changing the Primary ADAR Programming Language ... 80

9.3 Establishment of Programming Standards 82

9.4 Establishment of an ADAR Home Page 89

9.5 Old Programs and Changes .. 90

9.6 New Program Development. 94

9.7 New Extraction Point Types 95

1 0 Expanding the ADAR Environment 97

11 The Future 1 00

1 2 Conclusion 1 04

Bibliography .. 1 07

Appendices .. 1 1 0

Vita .. 1 25

List of Figures

1-1 The USS Normandy, CG-60 2

1 -2 The USS Ramage, DDG-61 2

2-1 Two-bay ANIUYK-7 computer suite 9

2-2 ANIUYK-43B computer 12

2-3 ANIUYK-20 computer .. 1 4

2-4 ANIUYK-44 computer 1 4

3-1 Generic CMS-2 Single Data Definition 23

3-2 CMS-2 Numeric Data Definition Examples 24

3-3 CMS-2 Non-numeric Data Definition Examples 25

3-4 A CMS-2 Table Block Definition Example 25

3-5 Representation of a CMS-2Y Word 26

3-6 First Line of an Example CMS-2 Horizontal Table Declaration 27

3-7 Internal Storage Representation of the Horizontal Table Declaration Example 27

3-8 First Line of an Example CMS-2 Vertical Table Declaration 27

3-9 Internal Storage Representation of the Vertical Table Declaration Example 28

3-1 0 CMS-2 Field Specification Pattern 28

3-1 1 Horizontal Table Definition 29

v

vi

3-\2 Vertical Table Definition ... 29

3-1 3 Table DUMMYV Computer Representation ... 30

4-\ General FIELD Format Used in Data Dictionaries ... 37

4-2 Data Dictionary Example ... 38

4-3 Storage of Data Dictionary Illustrated in Figure 4-2 ... 39

4-4 Three-word Header and Vertical Extraction Point Data Storage40

5-\ Comparison of V AX and ANfUYK-7 Byte Layouts .. .43

6-1 ASP Select Command 52

6-2 ASP OUTPUT Command 52

6-3 Simple ASP Command Sequence .. 54

7-\ Data Dictionary Map 61

7-2 Namelist Format Example ... 67

7-3 Columnar Format Example 68

9-\ Example of Qualifier Use .. 86

9-2 Example of Comma Delimited Output.. .. 86

9-3 Qualifier File Example .. 87

9-4 Example of /options Qualifier Use .. 87

9-5 New General FIELD Format Used in Data Dictionaries 90

9-6 Data Dictionary Example in New Format ... 92

List of Appendices

A History of AEGIS: Timelines Relating AEGIS Development and the Computer

Industry 11 0

A.l AEGIS Highlights ... 1 1 0

A.2 Computer Industry Highlights 1 20

VB

AAW

ACC

ACS

ACSC

ACSS

ACTS

ADAR

ADS

API

ASCII

ASP

ASUW

ASW

ATEP

ATES

AWS

BIL

List of Abbreviations

AntiAir Warfare

AEGIS Computer Center

AEGIS Combat System

AEGIS Combat System Center, Wallops Island, Virginia

AEGIS Classified Support System

AEGIS Combat Training System

AEGIS Data Analysis and Reduction

AEGIS Display System

Application Program Interfaces

American Standard Code for Information Interchange

ADAR Sequential Processor

AntiSurface Warfare

AntiSubmarine Warfare

AEGIS Tactical Executive Program (later ATES)

AEGIS Tactical Executive System

AEGIS Weapon System

BaseLine

Vlll

BPI

C&D

CC

CG

CGN

CGTN

CS-I

CND

CNO

COTS

CSED

CSEDS

CSG

CSGN

CSSQT

DC

DCL

DD

DD

DD

DDFM

IX

Bytes per inch

Command and Decision system (also CND)

Command Control (later became Command and Decision)

Gas turbine-powered Guided Cruiser

Nuclear-powered Cruiser

Control Group Track Number

Compiling System-l

Command and Decision system (also C&D)

Chief of Naval Operations

Commercial-off-the-Shelf

Combat System Engineering Development

CSED Site

Strike Cruiser

Nuclear-powered Strike Cruiser

Combat Systems Ship Qualification Trials

Dictionary Compare program

Digital Command Language

Data Dictionary

Destroyer

Display Dictionary program

Double Density Film Memory

DDG

DEC

DG

DLGN

DOD

DR

DRIST

DSARC

DXEP

DXMOV

DXR

DXSUM

EDM

EISA

EP

EPAC

EPID

FCDSSA

FCS

FORTRAN

GenFLD

x

Gas turbine-powered Guided Missile Destroyer

Digital Equipment Corporation

Gas turbine-powered Destroyer

Nuclear-powered Destroyer

Department of Defense

Data Recording

Data Recording Item Selection Table

Defense System Acquisition Review Council

Data Extraction Point Analyzer program

Data eXtraction MOVe program

Data eXtraction and Recording

Data eXtraction SUMmary program

Engineering Development Model

Extended Industry Standard Architecture

Extraction Point

Extraction Point Attribute Collection program

Extraction Point IDentifier

Fleet Combat Direction Systems Support Activity, Dam

Neck, Virginia

Fire Control System

Formula Translation programming language

Generate FieLDs program

GenMEP

GenPOC

GMLS

GOTS

GRD

GUI

HOLWG

HP

HPUX

IDS

LAMPS

LBTS

LSE

LSEA

Mk

MIT

MW

NFS

NSWC

Xl

Generate Multiple Extraction Points program

Generate Print-On-Change program

Guided Missile Launching System

Government -off-the-Shelf

Get Recorded Data program

Graphical User Interface

High Order Language Working Group

Hewlett-Packard

Hewlett-Packard computers running the UNIX operating

system

Interface Design Specification

Light Airborne Multi-Purpose System

Land Based Test Site

Lifetime Support Engineering

Lifetime Support Engineering Agent

Mark

Massachusetts Institute of Technology

MegaWords

Network File System

Naval Surface Weapons Center (1975-1 987), Naval

Surface Warfare Center (1987-1994), former names for

NSWCDD

NSWCDD

NSWCPHD

NWL

OPREDEX

ORTS

PC

PGC

POC

PTC

RCA

RAM

RDT

RlSC

SECDEF

SECNAV

SOl

SM

Spy

STN

xii

Naval Surface Warfare Center Dahlgren Division,
Dahlgren, Virginia (since 1 994), previously NSWC, NWL,

etc.

Naval Surface Warfare Center Port Hueneme Division,

Port Hueneme, California

Naval Weapons Laboratory (1 959-1 975), a former name
for NSWCDD

Operational Readiness Exercise

Operational Readiness Test System

Personal Computer

Program Generation Center

Print-On-Change

Production Test Center

Radio Corporation of America

Random Access Memory

Recorded Data Tapes

Reduced Instruction Set Computer

Secretary of Defense

Secretary of the Navy

Silicon Graphics Incorporated

STANDARD Missile

AN/SPY Radar system

System Track Number

TWS

U.S.

VAX

VLS

WCS

WDS

TOMAHA WK Weapon System

United States

Virtual Address eXtension

Vertical Launching System

Weapons Control System

xiii

Weapon Direction System (later WCS)

Abstract

AEGIS Data Analysis and Reduction (ADAR) and the AEGIS Weapon System (A WS)

By June Bullard Gaines, B.S.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at Virginia Commonwealth University.

Virginia Commonwealth University, 1 998.

Major Director: James E. Ames, IV, Associate Professor, Department of Mathematical

Sciences

The AEGIS Weapons System (A WS), part of the AEGIS Combat System (ACS),

is an integral part of the defense system on U.S. Navy AEGIS-class ships. AEGIS Data

Analysis and Reduction (ADAR) has been developed to assist in the evaluation of the

A WS data. ADAR, along with the A WS and ACS, has evolved through the years to

accommodate advances in technology and computer programming languages.

Additionally, ADAR has evolved so that users located at sites other than the Naval

Surface Warfare System Dahlgren Division (NSWCDD), Dahlgren, Virginia, can reduce

tactical system data and perform data analysis using the reduced data.

xv

This paper is a study of the growing pains experienced by the ADAR system as it

has evolved. Some of the changes affecting ADAR have included the addition of new

elements to both the A WS and the ACS, the multiplication of AEGIS baselines, and the

provision of portability both to a multitude of platforms and to several sites supporting

the AEGIS program.

1 I ntroduction

AEGIS is the United States' most advanced shipboard antiair warfare weapon

system. Further, AEGIS is the highly integrated total ship combat system built around

the weapon system. It is capable of simultaneous warfare on many fronts: air, surface,

subsurface, and strike. As one might gather, the word "AEGIS" in the U.S. Navy has

several meanings. At the top there is the AEGIS program under which are the AEGIS

facilities including the AEGIS ships as well as anything connected to them. The land­

based AEGIS facilities encompass the sites that contribute a variety of services to the

AEGIS program such as system engineering, development, manufacturing, and

installation. The AEGIS class ships, beginning with the guided cruiser USS

Ticonderoga, CG-47, and the guided missile destroyer USS Arleigh Burke, DDG 51 ,

have been specially designed and built to accommodate the requirements of the AEGIS

Combat System (ACS) with the AEGIS Weapon System (A WS).

Figure 1 -1 , the USS Normandy, CG-60, shows is an example of the guided

cruiser Ticonderoga ship class. Figure 1 -2, the USS Ramage, DDG-61 , shows an

example of the guided missile destroyer Arleigh Burke ship class.

The name "AEGIS" was chosen for this program due to its meaning in both

Roman and Greek mythology. The goatskin breastplate worn by Zeus, the supreme

2

Figure 1-1 : The USS Normandy, CG-60

Figure 1 -2: The USS Ramage, DDG-61

3

Greek god, was called an "aegis" and represented power and majesty. The ancient

Greeks saw Zeus as a protector. On the other hand, Athena, the Greek goddess of

wisdom, who also had an aegis, was seen as the patron deity of war. Athena represented

intelligence and strategy. A protector with intelligence and strategy is defensive in

nature. However, the ancient aegis also had an offensive nature. The aegis of Zeus was

said to have been made by the god of fire and has been described as being "awful" and

"fearful to behold." Similarly, Athena's aegis was a shield covered with goatskin,

bordered with snakes, and had the head of Medusa, the Gorgon, attached to it. The head

of Medusa was said to turn anyone who looked at it into stone. From this one can

determine that an aegis \Vas considered to be an instrument of both defense and divine

protection.

Several of the U.S. Navy's AEGIS facilities are located at the Naval Surface

Warfare Center, Dahlgren Division (NSWCDD) in Dahlgren, Virginia. Of these

facilities, the AEGIS Computer Center (ACC) is of primary concern in this paper. The

original mission of the ACC was to provide a site which was adequately equipped and

staffed to support the Lifetime Support Engineering Agent (LSEA) in the activities of

generating, maintaining, updating, and certifying ACS computer programs. As the

lifetime support engineering (LSE) activity of the ACS has matured, the evolving

mission of the ACC has changed into one which provides the facilities, equipment, and

support services needed for the ACS LSEA activities, the evaluation of the applicability

of emerging technology to future combat systems, and advanced systems modeling

4

In support of these missions, the ACC contains computers as well as peripherals

and display consoles needed to run the tactical system and simulate the ACS.

Additionally, the ACC contains a general purpose computer suite that is used in the

reduction and analysis of data. Both test data generated in the ACC and real data

generated on ships are processed in the ACC. The system of application programs that

has been built to reduce then begin the process of analysis of the AEGIS data is called

the AEGIS Data Analysis and Reduction (ADAR) system.

ADAR is an evolving collection of programs that have been and continue to be

developed at NSWCDD for use with data recorded by an AEGIS tactical system. ADAR

programs are used to interpret, analyze, and reduce AEGIS data then generate reports

with the results. As the AEGIS computer programs have continued to develop and

change with advances in technology, early decisions regarding ADAR programs have

created problems that have required changes in methodology. While some of these

changes have been minor, many of them have been major. Currently the ADAR system

is evolving to handle new types of data and media that were not even imagined when the

AEGIS program began.

This paper is a study of the early decisions regarding ADAR programs, the

reasons for these decisions, and the problems they later caused. Additionally, this paper

examines the evolving technology both within the AEGIS program and the computer

industry that has led to or dictated additional changes within the ADAR system.

5

The audience of this paper is anyone who is interested in the development of the

ADAR system. This person may or may not be from the AEGIS community. While the

examples given within this paper are intended to accurately illustrate the concepts

discussed, they are not intended to be exact representations of AEGIS data. This paper is

not intended to be a "how to" for working with ADAR.

The ADAR user or analyst may be anyone from the AEGIS community who

works with AEGIS data. They could be engineers, data analysis, programmers, or

testers.

2 The AEGIS Weapon System and AEGIS Combat System

A WS is a fast-reaction, high-performance, computer-controlled weapon system.

The radar used by A WS was developed specifically for it. This radar does not have a

dish or any moving parts. Instead, it appears as special flat sections on the ship's

surface. The roughly octagonal-shaped sections can be seen in Figures 1 -1 and 1 -2.

While there are four of these panels on each ship, only one can be seen in Figure 1 -1 and

two can barely be seen in Figure 1 -2. This radar is able to detect contacts in all

directions. It can detect and track hundreds of targets, engage threats, and, at the same

time, continuously maintain surveillance of the skies from the horizon through the

zenith. A WS integrates the functions of shipboard detection, control, and engagement.

It is also capable of a fully automatic reaction to an intense air attack.

ACS is a federation of A WS, the U.S. Navy anti air, antisubmarine, and surface

warfare systems, and the weapons located aboard an AEGIS ship. With the diversity of

weapons available, the ACS is able to adapt its system so as to be able to fight in all

warfare areas simultaneously.

ACS is composed of the nine subsystems or elements of A WS plus more than

fifteen additional elements. These elements are integrated system components that are

loaded primarily into ANIUYK-43B or ANIUYK-7 mainframe computers, depending on

6

7

the applicable baseline. These elements are able to communicate with other ACS

elements. In addition, these elements are able to communicate with the other A WS

elements, as well as with systems external to the AEGIS systems.

The A WS is composed of the following nine elements: the AN/SPY Radar

System (SPY), the Weapons Control System (WCS), the Fire Control System (FCS), the

Command and Decision System (CND), the Operational Readiness Test System

(ORTS), the AEGIS Combat Training System (ACTS), the AEGIS Display System

(ADS), the STANDARD Missile (SM), and the Vertical Launching System (VLS).

Originally, CND was called the Command and Control System, and the Guided Missile

Launching System (GMLS) was used to launch missiles rather than the current VLS:

The elements of the ACS are grouped into functional groups for detection, control,

engagement, and mission support.

The U.S. Navy uses Block upgrades when implementing improvements to ships.

Block upgrades provide for the installation of specified changes or change packages to a

group of ships. The intention is to standardize the configuration of a specific group of

ships while at the same time permitting the modification of ship groups to take

advantage of improvements in either technology or capabilities. Block upgrades along

with their associated configurations are referred to as baselines.

While there are nine elements, a minimal configuration, for baselines I through 3

testing purposes, consists of CND, WCS, and SPY. On the other hand, for baselines 4

and 5, a minimal configuration consists of CND, WCS, SPY, and ADS. There are

8

simulation programs that interface with these systems to provide the needed inputs via

messages to WCS, SPY, and CND and to receive the messages output by them. These

simulation programs also have the ability to provide any feedback needed after receiving

messages. The messages generated by the simulations include tracks for Spy to detect

as well as the communications between SPY and the STANDARD missile. Tracks are

items that may be detected by SPY, usually moving objects. Some examples of tracks

are outgoing missiles, incoming missiles, chaff, and debris. Chaff is material put into the

air in an attempt to confuse the radar in the hope that an incoming missile will go

undetected. Debris is created when a target is hit.

Each of the A WS elements communicates directly only with specific elements

either in the ACS or external to it. The A WS elements also may communicate with

other elements indirectly via messages sent through the elements with which they

directly communicate. This direct and indirect communication is defined in various

interface design specifications (IDSs). For example, the WCS element communicates

directly with the CND and SPY elements along with the engagement grouping of

elements. However, any communication between the WCS element and the detection

grouping must be through the CND element. Also, WCS serves as the interface element

between CND and all the ship's weapon systems.

The main computers housing the tactical system programs are the Univac

designed ANfUYK-7 for baselines 1 through 3 and the Sperry designed ANfUYK-43B

for baselines 4 and above. While the ANfUYK-7 computer can be a stand-alone unit,

9

most of the time within the A WS, the ANIUYK. -7 computers are found in four-bay

computer suites. Figure 2-1 shows an example of a two-bay ANIUYK.-7 computer suite.

Figure 2-1 : Two-bay ANIUYK-7 computer suite

A four-bay computer suite consists of four separate cabinets containing a total of

four central processing units, four input-output interface adapters, and four input-output

controllers. The input-output interface adapters and controllers as well as the memory

modules are located in removable plug-in modules. These four computer bays are

connected via cables in the back and are able to support memory sharing and memory

overlap data processing. The cables serve as computer buses for instruction, operand,

and 110 processes.

10

The ACS in the baselines 1 through 3 configurations utilizes 1 7 ANIUYK-7

computer bays. One of these bays is used for maintenance with the others arranged in

four four-bay computer suites for the elements CND, SPY, WCS and FCS combined,

and ADS. Baselines 1 through 3 are still deployed on active ships. Due to the expense

of converting the physical configuration of the earlier baseline ships, it will be difficult

to convert them to higher configurations. However, there are several proposals to

convert and upgrade the earlier baseline ships.

Originally these ANIUYK-7 four-bay computers contained a total of 1 6 standard

magnetic core memory modules. Four of these memory modules, one per four-bay

computer suite, have since been replaced with double density film memory (DDFM)

modules that, as the name implies, can store twice the amount of data. The DDFM

module, due to the larger number of address available, counts as two memory modules.

The first module is DDFM, containing the addresses for two modules. This essentially

gives each four-bay ANIUYK-7 computer suite seventeen memory units. Each standard

magnetic core memory module contains 40K8 addresses, that is, 1 6,38410 32-bit words.

Each DDFM holds 77,7778 addresses, that is, 32,76710 32-bit words. With seventeen

memory units the number of addresses available comes to just under the maximum of

one megabyte that can be addressed.

While each ANIUYK-7 memory module contains eight access ports, a given

memory module can address only seven other modules. As a result, not all modules are

1 1

reachable from a given module. On the other hand, each central processor and input-

output controller can address up to 262K words or 1 6 modules.

The ANIUYK-7 computers are built so that the memory modules, with their

handles protruding away from the computer, occupy the bottom two-thirds of the front of

each computer. The control panel for each computer contains rows of button lights with

identifying words for each grouping of lights printed on the cabinet. Additionally, there

are several flip switches. Commands are issued via entering the correct binary numbers

by pushing the correct buttons or, in some cases, by flipping the switches to the correct

position. Feedback to the user is likewise displayed via these button lights. There is no

front cover for the computer, one bay of which measures approximately 20 inches across

the front, 22 inches front to back, and 41 inches high. The control panel, sitting on top

of the computer, measures approximately 1 9 inches across the front, 6 inches front to

back, and 1 9 inches high.

Beginning with baseline 4, the tactical code was ported to ANIUYK-43B

mainframe computers with most elements housed on one ANIUYK-43B per element.

Since then, the ANIUYK-43B computers have been upgraded with more memory and

other capabilities. Figure 2-2 shows an example of an ANIUYK-43B computer.

The ANIUYK-43B computers provide more processing capability, memory, and

110 capacity than the ANIUYK-7 computers. The amount of memory in the ANIUYK-

43B computers varies between the baselines with baseline 5 requiring more memory

than baseline 4. Each ANIUYK-43B computer contains 1 0 memory modules along with

1 2

two central processing units, two input-output interface adapters, and two input-output

controllers. Each memory module can contain one or two megabytes, depending on the

Figure 2-2: ANIUYK-43B computer

specifications provided by the U.S. Navy. The memory modules are still located in

removable plug-in modules. However, the input-output controllers and interface

adapters are located on plug-in memory cards. The memory cards are located behind an

easily removed panel above the memory modules. All of these modules and the panel

are hidden behind a front cover that contains buttons and a light panel. The buttons have

either numbers or words displayed on them. Commands are entered via these buttons.

Frequently the commands used on the ANIUYK-43B computers are the same as are used

1 3

on the ANIVYK-7 computers but converted to octal numbers. Feedback to the user is

provided via a light panel that displays the appropriate words and numbers.

Generally, the ANIVYK-43B computers emulate ANIVYK-7 computers except

that they can address higher memory addresses. The tactical program was written

originally for the ANIVYK-7 computers and has never been completely rewritten. In a

given ANIVYK-43B, the applicable executable tactical program is loaded into modules

o through 4, then redundantly into modules 5 through 9. The redundant executable is

kept updated by the main executable. This way, if there is a problem with the tactical

program in the first grouping of modules, the second grouping is ready to take over the

processing. This would .be especially important if there were a real engagement

occurring at the time that a problem occurred in the first group of modules.

The ACS in the baselines 4 and above configurations utilizes eight ANIVYK-

43B computer bays. One of these bays is used for maintenance. The other ANIVYK-

43B bays contain one element per bay.

While the basic AEGIS computer for baselines 1 through 3 is the ANIVYK-7,

ANIVYK-20 computers provide additional processing capacity. Several ANIVYK-20

computers help distribute the processing load, keep the ANIVYK-7s informed of new

statuses for the A WS, the associated hardware, and configuration as well as provide

dedicated processors as required. The ANIVYK-20 computer was designed to handle

small and medium-sized applications within military environments and physically is

approximately half the size of an ANIVYK-7. They are stacked two high when in use.

1 4

When the ANIUYK-43B computers for later baselines replaced the ANIUYK-7

computers, the ANIUYK-44 computers replaced the ANIUYK-20 computers. Figure 2-3

shows an ANIUYK-20 computer while Figure 2-4 shows an ANIUYK-44 computer.

Figure 2-3: ANIUYK-20 computer

Figure 2-4: ANIUYK-44 computer

15

SPY detects targets automatically then tracks these targets using computer

control . SPY also transmits uplink commands and receives downlink data from the

STANDARD missiles via Link- I I and Link- 1 6 datalinks. For baselines I through 3 the

radar is under the direction of the SPY computer program housed in one four-bay

ANIUYK-7 computer suite. All baselines since baseline 3 use one ANIUYK-43

computer for the SPY computer program.

CND is a manned display and computer complex that performs management and

coordination functions for the Combat System. Additionally, CND performs threat

evaluation, establishes reaction modes and priorities, and makes weapon assignments for

ownship weapons, assigned aircraft, and other participating units while coordinating the

inputs from the SPY system. For baselines I through 3 the control functions of

Command and Decision are provided via the CND computer program housed in one

four-bay ANIUYK-7 computer suite. All baselines since baseline 3 use one ANIUYK-

43B computer for the CND computer program.

WCS provides the weapon engagement scheduling, control, and assessments for

the combat system. WCS uses computers that interface with the operator display

consoles via the Command and Decision System to coordinate and direct the

employment of interceptor aircraft, STANDARD missiles, close-in defense weapons,

surface-to-surface weapons, and antisubmarine warfare weapons. Additionally, WCS

controls STANDARD missiles, both SM- I s and SM-2s, via both the FCS and either

GMLS for Baseline I ships or VLS for all other ships. Update commands to and data

16

from STANDARD missiles are communicated via the data contained in uplinks and

downlinks transmitted through SPY. For baselines I through 3 the weapon control

functions are provided via the WCS computer program housed in a four-bay ANIUYK-7

computer suite. This computer suite also houses the FCS computer program. All

baselines since baseline 3 use one ANIUYK-43B computer for WCS by itself.

FCS controls the guidance of STANDARD missiles during the last moments of

flight before intercepting their targets. Additionally, FCS controls launcher pointing and

missile initialization on the AEGIS ships that have GMLS. For baselines 1 through 3 the

FCS computer program resides in one bay of the WCS four-bay ANIUYK-7 computer

and four ANIUYK-20 cqmputers. Since baseline 4, the FCS has been housed in one

ANIUYK-43B compl;lter of its own.

GMLS is capable of launching both STANDARD missiles and antisubmarine

rockets. GMLS is used only in baseline 1 ships.

VLS is capable of launching both STANDARD missiles and TOMARA WK

cruise missiles. VLS is on all ships in baselines 2 through 6 beginning with CG-52.

STANDARD missiles, the primary weapon in the ACS, are launched from either

GMLS or VLS. They have surface-to-air as well as surface-to-surface capabilities.

ORTS performs on-line monitoring, testing, and readiness assessments. All

functions are handled automatically and are controlled by the ORTS computer program

that is resident in several ANIUYK-20 computers, depending on the configuration being

used, for baselines 1 through 3 and an ANIUYK-43B for baselines 4 and above.

1 7

ADS, a manned computer-driven display complex, provides management

information and tactical situation displays for ownship command. This system receives

tactical data from CND via a direct digital interface along with manually entered data.

The various data, including maps, are displayed overhead on large screens and automatic

status boards as well as on cathode ray tubes at the ADS associated consoles. The ADS

computer program was added after baseline 3 to provide large screen displays in the

operations room and is housed in one ANIUYK-43B computer. Later, the ADS was

back-fitted on the baselines I through 3 ships where ADS is housed in one four-bay

ANIUYK-7 computer.

ACTS is designed to train operators using on-line operator displays and controls.

Previously generated scenarios, loaded into the ACTS computer, are used to provide a

variety of antiair, antisubmarine, and antisurface warfare situations for training

operators. Large-scale force training in battleground situations is handled via datalinks

from Link- I I and Link- I 6. During this training sailors do not need to be in the same

local area. The ACTS computer program is housed in one ANIUYK-43B computer for

baselines 4 and above.

SPY and the other radar and surveillance systems compose the detection

grouping of ACS. These elements provide the capability to detect, identify, and track

air, surface, and subsurface contacts.

The control group includes both CND and WCS. These elements provide the

needed management, coordination, and control of the combat system from the time

18

detection i s made through the time that either engagement occurs or CND determines

that there is no threat.

The engagement grouping of elements includes all the forms of weapons located

on an AEGIS ship as well as on aircraft in the vicinity of the ship. Some of these

elements are FCS, STANDARD missile, VLS, and the Light Airborne Multi-Purpose

System (LAMPS) with its associated helicopter housed on the AEGIS ship. These

elements work together to provide defense against long-range and short-range air,

surface, and subsurface targets.

The mission support group contains the elements that provide support to the

overall functions of the detection, control, and engagement groups. The ship's

Navigation and the Radio Communications Systems, along with ORTS are included in

this group.

The AEGIS Tactical Executive System (ATES) computer program manages the

elements in the ACS. ATES, coded in the standard Navy CMS-2Y programming

language, is resident in the memory of each of the AN/uYK computers. While A TES

performs several different functions, the one of concern in this paper is the management

of data recording for all the ACS elements.

Most of the A WS tactical code was written using one of the CMS-2

programming languages, either CMS-2Y or CMS-2M. While some tactical code is still

being written in CMS-2, much of the tactical code developed for baseline 6 or code that

1 9

needed extensive modifications from previous baselines has been written i n either C++

or Ada 83 .

Baseline changes are not limited to the installation of physical improvements.

Through the years some of the changes have included the addition of the TOMAHAWK

Weapon System (TWS), the addition, then improvement, of ADS, the replacement of

older operator consoles by more advanced equipment, and the replacement of the

ANIUYK-7 tactical system computers by the ANIUYK-43B computers. The ANIUYK-

43B computers take up less space while at the same time providing more memory, more

processing capability, and more 110 capacity than the ANIUYK-7 computers. Also, the

tactical system software,has been enhanced with both additional capability and

corrections of previously undetected errors both in logic and coding.

Baseline 6 of the A WS, using ANIUYK-43B computers, is currently being

developed and tested. Baselines 1 through 5, in various partial baseline increments, are

currently deployed on ships. For instance, baseline 5 may actually be deployed as

baselines such as 5 .0.3, 5 . 1 .4, or 5 .2,5.

The executable tactical computer programs for all deployed and developmental

baselines are housed in the ACC. The tactical computers in the ACC may be configured

and loaded with the executable code for any of the existing baselines. This is done to

check out reported problems or to answer questions that might arise regarding the

baselines.

20

The four computer suites in the ACC accommodate baselines 1 through 3, 4 and

5, 5 only, and 6 only. The computer suites in the ACC can be reconfigured easily and

quickly at any time to specific desired baselines. Currently this is routinely done every

four hours to accommodate testing schedules.

3 The CMS-2 Program ming Language

Originally, all of the A WS tactical code was written one of the CMS-2

programming languages. CMS-2Y is used on both the ANIUYK-43B and ANIUYK-7

computers while CMS-2M is used on the ANIUYK-44 and ANIUYK-20 computers.

The CMS-2 programming languages are high-level, structured languages that are

table and data driven. They are used to write programs for military and scientific

applications. Military type applications include real-time command and control, radar

control, and weapons control systems. The large-scale tactical data processing and real­

time systems required by the U.S. military make stringent space and time demands.

These demands require a language that is flexible and provides programmer control of

machine features. Most high-level computer programming languages do not provide

enough flexibility or programmer control to serve the needs of the U.S. military.

The CMS-2 programming languages, both the M and Y variations, originated

with CS- I . CS- l stood for Compiling System- I . The U.S. Navy developed CS- l in the

1 950s for use on the CP-642IUSQ-20 family of second-generation computers. Once

third generation computers were introduced, with the realization that more advanced

computers were in development, it was decided that a programming language with more

power and flexibility was needed.

2 1

22

CMS-2Q, the first version of CMS-2, was used for programs running on the CP-

642 and the ANIUYK-7 computers. Since CMS-2Q recognized some of the CS-I

statements, it served as a transition during the development of the full CMS-2

programming language. The CMS-2M version of CMS-2 incorporated some features

that were specifically designed for mini-computers using 1 6-bit words. On the other

hand, the CMS-2Y version, using 32-bit words, implements the full scope of CMS-2.

While many of the constructs and declarations are different in CMS-2Y and

CMS-2M, they are, nevertheless, very similar. The CMS-2 programming languages use

block structures and have structured programming capabilities. They use English words

and phrases along with algebraic phrases and arithmetic statements to solve problems.

They also feature the ability to compile program segments independently. Two other

features, providing a relatively machine-independent programming language as well as

programs that are easily read and understood, are debatable by today's standards.

A CMS-2 program has two parts. Declarative statements, grouped into units

called data blocks, both provide direction to the compiler and define the data to be

manipulated. Grouped into procedures and functions, dynamic statements both

manipulate data and describe logic flow. Data declarations include variables

representing single pieces of data as well as tables consisting of groups of related items.

A data table defines a database that can be both used within the context of the program

for data storage and referenced as an extraction point. Extraction points will be

explained in section 4.

23

The CMS-2 languages have six types of variables. Three of these variable types

are numeric and three are non-numeric. Figure 3- 1 illustrates the general pattern used

for single data unit definitions in CMS-2.

VRBL <identifier> <type> [P <preset value>]$

Figure 3- 1 : Generic CMS-2 Single Data Definition

In Figure 3 - 1 , "VRBL" is a reserved word that must precede all individual

variable definitions. "Identifier" is the name of the variable. "Type" is a description of

the variable that includes all information needed to describe the kind of value, its size,

and its sign. While type is optional in the CMS-2 languages, it is generally spelled out in

AEGIS code. Additionally, "P" indicates there is a preset value. Both the "P" and the

following preset value are also optional . If "P" is present, a value for the variable must

follow the "P." All lines are ended with a "$" sign.

The three numeric variable types in the CMS-2 languages are integer, fixed­

point, and floating point. Integer variables, represented by "I," may be only whole

number values. Fixed-point variables, represented by "A," are real numbers and may

represent fractional values with a fixed number of bits. The number of fractional bits is

declared in the definition of a fixed-point variable. Floating-point variables, represented

by "F," have values expressed in the format of the executing computer's floating-point

hardware. The computer determines the sign of floating-point numbers, along with the

24

size of the fractional parts. Floating-point operations tend to consume great amounts of

computer time; therefore, they generally are not used in AEGIS tactical code.

VRBL COUNT 8 U P 6 $
VRBL PAY A 1 9 U 7 $
VRBL RATE A 1 9 S 5 $
VRBL FPAY F P 3 .75E-4 $

Figure 3-2: CMS-2 Numeric Data Definition Examples

Figure 3-2 illustrates single numeric data unit declarations that can be found in

CMS-2 code. The first line, with type "I 8 U," is read "an integer with 8 bits that is

unsigned with a preset value of 6." Unsigned values can only be positive. The second

line, with type "A 1 9 U 7," is read "a fixed-point value of 1 9 bits that is unsigned and

has 7 fractional bits." The third line, with type "A 1 9 S 5," is read "a fixed-point value

of 1 9 bits that is signed and has 5 fractional bits." The last line, with type "F," is read "a

floating-point number with a preset value of 3 .75E-4." The variable assignment values

must be written in specific columns.

The three non-numeric variable types in the CMS-2 languages are Boolean,

character, and status. Boolean variables, represented by "B," have a size of one bit and

may only have the values of "O" or " 1 ." Character variables, represented by an "H," are

strings whose size must be specified. Status variables, represented by an "S," are similar

to enumerated types in other programming languages. When a status variable is defined,

25

the possible values that can be assigned to the variable also are specified. Status

variables generally are not used in AEGIS tactical system code.

VRBL HOLD B
VRBL LINE H
VRBL HEADER H
VRBL CHECK S

$
1 20 $

1 5 P H(NUMBER OF ITEMS) $
'LOW','MEDIUM' ,'HIGH' $

Figure 3-3 : CMS-2 Non-numeric Data Definition Examples

Figure 3-3 illustrates single non-numeric data unit declarations that can be found

in CMS-2 code. The first line, with type "B," is read "a Boolean value." The second

line, with type "H 1 20," is read "a character data unit with a maximum of 1 20

characters." Character data units may contain a maximum of 1 32 characters. The third

line, with type "H 1 5," is read "a character data unit with a maximum of 1 5 characters

with a preset character constant that has a value of 'NUMBER OF ITEMS' ." The "H"

before the parenthesis indicates a character constant. The last line, with type "S," is read

"a status constant that may have the values of LOW, MEDIUM, and HIGH and no

others."

TABLE <name of table> <type> <number of words > <number of items >$
FIELD <field specification> $
[FIELD <field specification> $]
END-TABLE <name of table > $

Figure 3-4: A CMS-2 Table Block Definition Example

26

Figure 3-4 illustrates the pattern used when defining a table block in CMS-2Y.

The first line in a table block contains the table declaration, the last line has the end-table

declaration, and all lines in between contain the declarations of any data units to be

considered within the table. These data units, also called fields, are declared in the same

manner as the single data unit definitions.

A table declaration consists of the word "TABLE," the name and type of the

table, and the number of words per item as well as the number of items in the table. In

the above pattern, the word "TABLE" indicates a table declaration. Each table must

have a unique name, indicated by "name of table." Type can be either "H," for

horizontal, or "V," for vertical. The number of words refers to the number of 32-bit

words in each item. The number of items refers to the number of times the set of fields

is repeated each time that the table is accessed.

A CMS-2Y word has 32 bits with the high order bits on the left. Figure 3-9

illustrates the layout of a CMS-2Y word.

3 1
I I

2 3 1 5 7
I

Figure 3-5 : Representation of a CMS-2Y Word

o

Data storage can be either horizontal or vertical. Horizontal storage permits a

rapid search of one word or field in all items while vertical storage permits a rapid search

27

of an entire item. The following illustrations show the differences between horizontal

and vertical storage.

Figure 3-5 illustrates an example of a CMS-2 horizontal table declaration. The

representation of the corresponding internal computer data storage of the various items

and words in this horizontal table is shown in Figure 3-6.

TABLE DUMMYH H 2 3 $

Figure 3-6: First Line of an Example CMS-2 Horizontal
Table Declaration

Word Item

II 0
0 < 1 1

\1 2

II 0

1 < I
\1 2

Figure 3-7: Internal Storage Representation of
the Horizontal Table Declaration Example

Figure 3-7 illustrates an example of a CMS-2 vertical table declaration. The

representation of the corresponding internal computer data storage of the various items

and words in this vertical table is provided in Figure 4-8.

TABLE DUMMYV V 2 3 $

Figure 3-8: First Line of an Example CMS-2 Vertical
Table Declaration

Word Item
0 1 ____ 1\ 0
I I II
o I 1\ 1
1 I II
o I 1\ 2

I I II

Figure 3-9: Internal Storage
Representation of the Vertical Table

Declaration Example

28

The word "FIELD" indicates a field declaration within a table declaration. There

maybe one or more field specifications in a table. The field definitions look much like a

single data unit declaration with the "VRBL" replaced by "FIELD." Complete table

specifications must include all field names and their applicable descriptions. Each data

word may contain from 1 field to 32 fields. The starting bit position is the left most bit

of the field. The items needed for each field are written in columnar format. The pattern

used for field specifications is shown in Figure 3 - 10.

FIELD <field name> <data type> <number of bits occupied for non-Boolean
fields> <field sign for non-Boolean fields> <number of fractional bits>
<word number> <starting bit> <optional P and preset value>$

Figure 3- 10 : CMS-2 Field Specification Pattern

29

The word "END-TABLE" indicates the end of the table declaration. The line

with "END-TABLE" must also contain the name of the table along with the end of line

marker, "$" as shown in Figure 3-4.

Tying all of the above items together, a more concrete illustration for a horizontal

table definition is given in Figure 3 - 1 1 , and that for a vertical table is given in Figure 3-

1 2.

TABLE DUMMYH H 2 3
FIELD NI l 8 U 0 3 1 $
FIELD N2 I 8 U 0 23 $
FIELD N3 I 1 3 S O l S $
FIELD N4 B 0 2 $
FIELD N5 B 0 1 $
FIELD N 6 B O O $
FIELD N7 A 32 S 1 0 I 3 1 $
END-TABLE DUMMYH $

Figure 3-1 1 : Horizontal Table Definition

TABLE DUMMYV V 2 3
FIELD N I I 8 U 0 3 1 $
FIELD N2 I 8 U 0 23 $
FIELD N3 I 1 3 S O l S $
FIELD N4 B 0 2 $
FIELD N 5 B 0 1 $
FIELD N6 B O O $
FIELD N7 A 32 S 1 0 1 3 1 $
END-TABLE DUMMYV $

Figure 3- 12 : Vertical Table Definition

30

Tables in the AEGIS tactical system code are always stored as vertical tables

during the recording process, regardless of their original definition. In other words, a

table that is defined to be horizontal is converted to a vertical representation during the

recording process. Since the horizontal representation is not used, only the internal

computer representation for vertical table storage is given. The internal computer

representation for table DUMMYV, defined in Figure 3- 1 2, is given in Figure 3- 13 .

3 1 2 3 1 5 7 °
I N1 I N2 I N3 IN4 1N5 1N6 1 item 0 , word °
I N7 I item 0 , word 1
I N1 N2 N3 IN4 1N5 1N6 1 item 1 , word °
I N7 I item 1 , word 1

I N1 N2 N3 IN4 1N5 1N6 1 item 2 , word °
I N7 I item 2 , word 1

Figure 3 - 1 3 : Table DUMMYV Computer Representation

4 AEGIS Data

Data is recorded during tactical system testing for later analysis. The analyst

uses the recorded data to validate various operational aspects of the AEGIS tactical

system. Some examples are system performance and effectiveness, testing of differences

between baselines, determination of problems caused by software, and determination of

the accuracy of data received from external sources. The recorded data falls into the

categories of mission assignments, inserted doctrine, operating configurations, tactical

engagement data, maintenance reports, fault isolation reports, and fault detection reports.

The fault detection reports can be subdivided into the areas of system operability,

element operability, element monitoring, and element error detection.

Data recording consists of extracting the desired data from the memory of the

. computer running the tactical computer program and writing the data onto magnetic

media. Until recently, the primary magnetic media used has been tapes. The data to be

extracted are stored in predefined areas of a tactical system's memory.

The ANIUYK computers have two buffers for storing recorded data. In baselines

1 through 3, the buffers in the ANIUYK-7s have a maximum size of 1 024 32-bit words.

In baselines 4 and up, the buffers in the ANIUYK-43Bs have a maximum size of 4096

32-bit words. When the active buffer is full, the buffer is marked as inactive and the data

3 1

32

recording function of the operating system initiates the transfer of the buffer's contents

to the recording medium. At the same time, the other buffer becomes the active buffer.

The buffer is full when there is not enough room left in the buffer to record another

extraction point without exceeding the buffer's size limit. As a result, while one buffer

has data written to it, the data in the other buffer is being written to another location.

The magnetic tapes used are 9-track, i.e., 9 bits wide, 1600 BPI, phase encoded with a

capacity of 1 0 MW. The amount of data generated per test can run from a small portion

of one tape per element to spanning several tapes per element. Some of the factors

affecting the amount of data generated are as follows:

- The particular extraction point(s) specified, which in tum depends on the
purpose of the test,

- The number of items in the environment to be tracked, and
- The length of the test.

The ATES handles the management of data recording for the ACS elements

running on the ANIUYK computers by writing the data in ATES format. Data are

written to the tapes only when data recording is turned on via the data recording function

of A TES during testing of the tactical system. Since the different elements run on

separate computers, the data recording for each element is controlled separately. Data

recording needs to be turned on only for the desired element(s).

When data recording is turned on, the operator must enter the needed

identification information. This generally consists of the current date, the number pre-

assigned to the tape, and the numbers for the desired extraction point sets for each

element of interest.

33

All tapes for recording data are obtained from the tape library located in the

ACC. Each tape has a unique identifying number assigned to it by the library. It is left

to the user to keep track of his or her tapes along with their contents.

An extraction point is a data structure, i.e., table, in the tactical program code

from which data will be recorded if data recording is turned on. An extraction point

number, also called the extraction point identifier (EPID), is a unique number that

identifies the data table that is to be recorded. An extraction point set consists of one or

more extraction point numbers. While there are pre-defined extraction point sets, users

can also either create an extraction point set or modify an existing extraction point set to

contain only the desired extraction points. Additionally, each element has a default

extraction point set that is recorded unless the operator indicates otherwise.

When an extraction point set is turned on during tactical system testing, each

time an associated recording point for one of the extraction points is reached in the

tactical program, the data stored in the computer's memory are written to an internal

buffer. Each time the data is written, the specific instance reflects the state of the data

structure at the time. The recording of extraction points is much like the printing of

statements with the current value of variables while debugging a program. There can be

a delay in transferring the stored data from the buffer to the tape. The various functions

performed by the tactical system have priorities that determine which takes precedence

when more than one function needs the computer resources. The data recording function

has a lower priority than any of the tactical functions do.

34

The extraction point numbers for each baseline and element correspond to

specific data tables in the CMS-2Y or CMS-2M generated tactical code. The extraction

point number is used as a pointer to an area in the core memory for the applicable

element. These tables are stored in the user common data area of the computer memory

for the applicable element. The characteristics of the data tables, i.e., extraction points,

that can be recorded are defined in a data recording item selection table (DRIST). The

table definitions, i.e., DRISTs, are available to the ATES recording function when the

tactical executable programs are loaded into the applicable ANIUYK computers.

DRISTs later are used to produce data dictionaries. A DRIST specification file contains

the DRIST definition section that defines a data dictionary. That is, the DRIST

definition section contains the specific information needed to determine both the location

of the data to be recorded and the amount of data to record for each extraction point.

Each extraction point can be defined as an item of DRIST.

While each extraction point contains related data, several groupings of extraction

points also contain related data. For example, an identifying track number, the x, y, and

z coordinate positions of an item being tracked along with the x, y, and z velocities, and

other related data may be contained in one extraction point. Due to the movement of a

tracked item, the values for these items change frequently. As a result, this extraction

point is recorded frequently. Another extraction point may contain the same identifying

track number along with many flags that are set based on the type of the track as

determined by either the tactical system or user entry. The values for these items tend to

35

change relatively seldom. As a result, this second extraction point does not need to be

recorded very often. These two extraction points, in turn, may contain data that are

related both by the identifying track numbers and by the time frame. These related data

might need to be coordinated when evaluating the meaning of the data.

As the baselines have evolved the number of available extraction points have

increased as well as the number of fields in some of the extraction points. Additionally,

some of the extraction points have been modified in other ways. For instance, the fields

in the eND extraction points 1 78 and 1 79 for baselines 1 through 3 were reorganized to

form extraction points 1 04 and 1 05 for baselines 4 and above. Both extraction points

1 78 and 179 are recorded on a periodic basis. On the other hand, the recording of both

extraction points 1 04 and 1 05 is handled on an event-driven basis. When extraction

points 1 78 and 1 79 are requested, the data tapes fill up quickly. When the fields in these

extraction points were reorganized, all fields that changed frequently, thus needing to be

recorded frequently, were put in one extraction point while the fields that changed less

often, thus needing to be recorded less frequently, were put in the other extraction point.

Some examples of frequently changing fields are those involving distances, velocities,

and accelerations. Many of the less frequently changing fields involved statuses. Both

extraction points 1 04 and 1 05 are recorded when any of their values change, i.e., print­

on-change (POC). This allows the values that change frequently to be recorded in one

extraction point while the other extraction point, containing fields that do not change

36

often, is recorded much less frequently. As a result, more time can pass during a test of

the tactical system before the CND-recorded data tape is full.

Each A WS baseline has its own set of extraction points divided by elements.

The definitions for these extraction points are stored in data dictionaries on the classified

Virtual Address Extension (V AX) mainframes used for ADAR programs. Data

dictionaries are used to provide a relatively easy to read format of the definitions of the

extraction points used by the tactical programs. Data dictionaries and data files are the

primary input for ADAR programs.

The data dictionaries are initially generated from the DRIST via a data dictionary

generator program, SYSBLD. The SYSBLD program links the CMS-2Y object to a

DRIST specification file. The SYSBLD program uses the DRIST definjtion section

from the DRIST specification file to generated data dictionaries. A new dictionary is

produced every time a user links CMS-2Y object code. Once the data dictionary has

been generated, the ADAR group may make modifications and additions, if desired.

Several forms of data dictionaries are available, both in binary and American Standard

Code for Information Interchange (ASCII) format. Programs reading data from either

the recorded tape or the data file, created when the data were moved from the magnetic

tape to a computer disk, use the binary data dictionary. One of the ASCII text file

formats is a listing that is printed out and bound into documents. While ADAR

programs can use several of the ASCII text file formats, it is faster to use the binary data

dictionary.

37

With the exception of the listing form, all types of data dictionaries available on

the classified cluster local-area network (LAN) contain all the information needed, by

element and baseline, to unpack the raw recorded data. The data dictionaries contain

specifications that match those used in the ACS tactical code. These specifications

include all applicable extraction points and their fields. Figure 4- 1 illustrates the general

format used for the FIELD specification within an ASCII TABLE declaration.

FIELD <field name> <data type> <number of bits> <field sign>
<number of fractional bits> <word number> <starting bit>$

Figure 4- 1 : General FIELD Format Used in Data Dictionaries

In Figure 4- 1 , the number of bits refers to the size of the field. The field sign can

be either "U" for unsigned or "S" for signed values. Word number refers to the number

of the data word in the extraction point where the field is written. The starting bit is the

first bit in the applicable word for the field.

In an ASCII data dictionary, the field values are written in columns. A specific

number of character positions are allocated for each column with one space between the

columns. If a field does not apply to a data type, it is left blank. For example, Boolean

values generally are assumed to require one bit and do not have any fractional bits so

those columns are not specified. All lines end with a "$" sign. Comments are indicated

with the keyword "COM. Figure 4-2 contains an example of an ASCII data dictionary.

38

TABLE TAB I V 3 1 $

COM: TAB 1 I S A 3 WORD TABLE WITH ONE ITEM.
FIELD Tl lAA I 8 U 0 3 1 $

FIELD Tl IBB I 8 U 0 23$
FIELD T l ICC I 16 S 0 1 5$
FIELD Tl IDD I 1 6 U 0 3 1 $

FIELD T l BAA B 1 5$

FIELD T l BBB B 1 4$

FIELD T l IEE I 1 4 U 1 3$

FIELD: T l DAE A 32 S 1 4 2 3 1 $
TABLE TAB2 V 5 1 $
COM: T AB2 I S A 4 WORD TABLE.

FIELD T2IAA I 1 6 U 0 3 1 $

FIELD T2IBB I 1 6 S 0 1 5$
FIELD T2AAX A 32 S 1 6 3 1 $
FIELD T2AAY A 3 2 S 1 6 2 3 1 $

FIELD T2AAZ A 3 2 S 1 6 3 3 1 $
TABLE TABB V 5 1 $

FIELD T4IBB I 3 2 S
FIELD T4ICC 1 6 S

FIELD T4IDD 8 U
FIELD T4IEE 4 U

FIELD T4BAA B
FIELD T4BBB B

FIELD T4BCC B

FIELD T4BDD B

o 3 1 $
3 1 $
1 5$
7$

3$

2$
1 $
0$

Figure 4-2: Data Dictionary Example

The first line in Figure 4-2, the header, contains the keyword "TABLE" followed

by the fields <table name>, <V for vertical or H for horizontal>, <number of words in

the table>, and <number of items in the table>. These fields are separated by spaces.

The lines after the comment line contain the field definitions beginning with the

keyword "FIELD", e.g., FIELD T l IAA.

39

If the ASCII listing is classified, the possible valid values may be listed along

with the interpretation of these values. However, the meanings of combinations of fields

are generally not contained in these listings.

Figure 4-3 illustrates the how the data recorded via the data dictionary in Figure

4-2 is represented within the computer memory and as stored on data tapes. In Figure 4-

3, a blank line separates the various extraction point representations. The top line shows

the bit positions within each word.

3 1 2 3 1 9 1 5 7 °

TAB1 :
I T1IAA T1 IBB I Tl ICC item 0 , word °
I Tl IDD IAI BI T1IEE item 0 , word 1
I T1DAE item 0 , word 2

TAB2 :
I T2 IAA T2 IBB item 0 , word a
I T2AAX item 0 , word 1
I T2AAY item 0 , word 2
I T2AAZ item 0 , word 3

TABB :
I T4 IBB item 0 , word a
I T4 ICC I T4 IDD I T4 IEEIAIBI ciDI item 0 , word 1

Figure 4-3 : Storage of Data Dictionary Illustrated in Figure 4-2

Every time an extraction point is recorded, a header is attached to the data fields.

This header always has the following fields:

- T (for Third word header) containing 1 if the header has three words and 0 if the
header has two words,

- EPID containing the extraction point identifier, i.e., number of the extraction

point,

40

- SID containing the system element identification number associated with the
applicable AEGIS element,

- Number-of-Words containing the number of data words in the extraction point,
including the header, and

- Time-Of-Day containing the time the recording of the extraction point occurred.

The third word of the header, if applicable, contains the following two additional

fields: Module ID containing the number associated with the module from which the

data is recorded, and Item Index containing the identification of the single item from the

multi-item table recorded by the extraction point.

Application programs use the header information to determine how to read the

recorded data. Figure 4-4 contains a representation of a three-word header along with

extraction point fields that correspond to the vertical table definition given in Figure 3-

12. Since tables in AEGIS tactical code are always recorded as vertical tables regardless

of their definition, there is no need to illustrate the storage of horizontal tables

separately.

3 1 2 3 1 9 lS 7 °
TI EPID I SID I NUMBER OF - WORDS header word °

TIME - OF-DAY header word 1
MODULE - ID I ITEM- INDEX header word 2

N1 N2 I N3 IN4 1NS IN6 item 0 , word °
N7 item 0 , word 1
N1 N2 N3 IN41NSIN6 item 1 , word °
N7 item 1 , word 1
N1 N2 N3 IN4 1NS IN6 item 2 , word °
N7 item 2 , word 1

Figure 4-4: Three-word Header and Vertical Extraction Point Data Storage

41

Since CMS-2Y has been the primary programming language used for the tactical

program code, the data tables used when extracting data from tapes are defined via

CMS-2Y table constructs. Data from non-AEGIS elements, which have been recorded

using other formats, also can be extracted by having appropriate data tables defined in a

CMS-2Y format.

5.1 Introduction

5 Functions of ADAR

Before data can be examined effectively, it needs to be accessible to the programs

chosen by the user. The application programs included in the ADAR system handle this

accessibility in addition to providing special purpose analysis tools for the user.

Additionally, new special purpose programs are developed and added to the ADAR

system as the need arises.

5.2 Recorded Data

In the simplest terms, ADAR reduces the amount of data to be processed and aids

the analyst in examining the data. Since a data tape easily can contain over half-a­

million extraction point records, being able to reduce the amount of data to be examined

is a must. During the early days of ADAR development, database and spreadsheet

application program development was in its infancy. Therefore, the ADAR system was

developed independently of any commercial database or spreadsheet applications.

Originally, even the mainframe computers could not hold the data from many

data tapes. Therefore, the analysis programs frequently processed the data directly from

the tapes without copying the data to disk files. Currently, in order for the data to be

accessible to the programs, the data are usually copied from the recorded data tape onto a

42

43

disk drive of a mainframe computer, creating an ATES tape image disk file. This process

is referred to as "moving the data." The only changes in the data at this point are those

dictated by the manner in which the various computer platforms record their data words.

That is, data recorded on an ANfUYK-43B must be converted to the correct format when

it is transferred to a V AX mainframe and to yet another format if it is transferred to a pc.

The ANfUYK-7 computer records data in 32-bit words, from bit number 3 1 as the

highest order bit to bit 0 as the lowest. This is referred to a little Endian order. On the

other hand, the DEC 2020 used 36-bit words, with bit number 35 as the highest order bit.

Any programs used to copy the recorded data from tapes to the DEC 2020 memory had to

be written to change one ANfUYK-7 word into one DEC word. This change included

right shifting all bits in each word four bit positions. When V AX computers replaced the

DEC computers, these same programs had to be rewritten to accommodate the V AX's 32-

bit words. The V AX's 32-bit words had the added wrinkle that the byte order was the

reverse of that found in the ANfUYK -7 generated data. The word order on V AX

computers is referred to as Big Endian order.

bits 3 1 -24
ANfUYK-7 bytes A

VAX bytes D

23- 1 6

B

C

1 5-8
C

B

7-0

D

A

Figure 5-1 : Comparison of VAX and ANfUYK-7 Byte Layouts

As illustrated in Figure 5 - 1 , bits 3 1 through 24 (Group A) on AEGIS data tapes

became bits 7 though 0 when stored on the VAX . Bits 23 through 1 6 (Group B) on

44

AEGIS data tapes became bits 1 5 though 8 when moved to the V AX. Bits 1 5 through 8

(Group C) on AEGIS data tapes became bits 23 though 1 6 when stored on the VAX. Bits

7 through 0 (Group D) on AEGIS data tapes became bits 3 1 though 24 when moved to

the VAX.

One of the utility programs in the ADAR system handles the moving of the data

from the recorded data tape to a file location on the disk drive. Then a program that

reduces the amount of data to be analyzed may be run on the data contained in the raw

data file. The resulting data file may then be used "as is" by the analyst, as input into

another special-purpose program, or as input into an application such as a spreadsheet.

Through the years, many analysis programs have been developed for processing the data

generated by the ACS. These analysis programs are also part of the ADAR system.

Additionally, the ADAR system includes several programs that generate data reduction

program skeletons.

5.3 Computers

The mainframes used by the analysts during the early days of ADAR,

DECSYSTEM-20s, had limited memory compared to the amount of data that was

generated. Due to the amount of disk space required to store all data from a given tape,

the analysts were encouraged to not move the data to disk files. This meant a desired tape

had to be mounted on a tape drive each time a program was to be run on the data

contained on tape.

45

At the current time, the entire contents of many recorded data tapes are stored on

the disk drives of the mainframes, primarily V AX 6460s and 8650s. Since the data that

are recorded are generally classified, the mainframes used are part of a LAN that is

generally known as the "classified cluster. " The classified cluster LAN is only available

via terminals, desktop computers, and workstations that are connected directly to the

classified cluster LAN or are connected via a classified wide-area network (WAN). At

one time all of these computers and mainframe terminals were located on or near the

NSWCDD base. Now other sites can access this classified cluster. Some of these

additional sites are NWAS; NSWC Port Hueneme (NSWCPHD), California; ACSC;

CSEDS; and Lockheed Martin, Moorestown, NJ. This list of sites is always growing.

Since approximately 20 to 30 files can be stored per gigabyte of available space,

the amount of disk space now available for desktop computers is large enough to allow

the contents of several data tapes to be put on the hard drive of a classified personal

computer. Lap top computers can hold the contents of approximately 50 data tapes. This

provides for easier use of the data by the analysts. However, the data are not moved

directly from the recorded data tapes to the various desktop computers and workstations.

The data are fust put onto V AX disk drives, then using File Transfer Protocol (FTP), are

transferred to the desired personal computer. However, this ability is available only to

those personnel whose offices are housed in the building adjacent to the ACC.

Special types of computers have been used to host the various application

programs that operate on the recorded data. Originally, only DEC 2020s were used; then

46

DEC 2060s replaced the DEC 2020s. V AX computers later replaced these computers.

The original V AX computers were first augmented then replaced by other V AX

computers. Now the recorded data can be processed on many other platforms. Some of

these platforms are the following: PCs, Silicon Graphics Incorporated (SGI)

workstations, Alpha DECstations, Suns, etc. Currently, V AX 6460s, V AX 8650s, Alpha

DEC station 3400s, a Silicon Graphics Onyx, and Silicon Graphics Indigo2s are being

used along with PCs and Suns. Additionally, the ability to process the data tapes has

been extended to other sites. This allows users who are familiar with one set of programs

to continue using the same familiar programs while working at other sites.

5.4 Processing Data

Once the recorded data are transferred to the classified cluster, any of the

various programs that have been written to process these data maybe used. Since the data

are stored in binary format, processing is required in order to obtain results that are

printable and humanly readable. In order to process the recorded data, the correct data

dictionary first must be referenced. The binary data dictionaries can be referenced both

by application programs when unpacking the recorded data and by programs that create

either listings in ASCII format or plots for reference by users.

The two types of data manipulation programs either process data to create

ASCII output or create plots. Since the amount of data recorded on any one tape can be

overwhelming, an important aspect of processing data is to be able to select only those

fields of data that are desired. This process helps to reduce the amount of data to a more

47

manageable size. The various special purpose programs that have been developed for use

with ACS data either automatically handle this or provide a means for the user to specify,

as a minimum, the desired extraction points and field or fields.

Additionally, the ADAR system includes several programs that generate data

reduction program skeletons. Two such programs are Generate Multiple Extraction

Points (GenMEP) and Generate Print-On-Change (GenPOC). They will be discussed in

section 7.

Originally, the ADAR Sequential Processor (ASP) was the only method

available for processing the recorded data. The ASP system was created in the 1 970s at

RCA (now Lockheed Martin), in Moorestown, NJ, during the early development of the

ACS. ASP was designed for the general-purpose data reduction and analysis of the data

generated by the AEGIS tactical computer programs during testing. Even though ASP

proved to be cumbersome to use, its use continued through the early 1 990s.

5.5 Job Processor

The Job Processor began as a tool to automate the development of ASP

programs. Later, separate programs, written in the Formula Translation (FORTRAN)

programming language, were incorporated into the Job Processor. The job processor

gathered user input then created a command file to actually run the application program.

The input provided by the user was written in the command file along with other inputs

needed for the chosen application program. Once the command file had been completed,

the job processor submitted the command file to the batch queue. As more programs and

48

AEGIS baselines were developed, the maintenance of the Job Processor and its various

related programs became increasingly difficult.

Later, different programs, written in the C programming language, were

developed to replace the most generic and frequently used FORTRAN programs. The

most general of these programs is the Data Extraction Point Analyzer (DXEP). The

original DXEP was introduced in 1 995. It has continued to be enhanced extensively so

that it now is a very versatile program. Consequently, it has become the most frequently

used of the ADAR programs. Since the mid-1 990s, many of the special purpose data

analysis programs either have been rewritten in C or have been replace by new programs

written in C.

6.1 Origins

6 Beginnings of ADAR: the ASP Interpreter

The tactical computer code and the original ADAR system were developed at

RCA in Moorestown, NJ, during the early development cycle of the ACS. This original

ADAR system centered on the ASP command language, which was designed for

general-purpose data reduction and analysis of the data generated by the AEGIS tactical

computer programs during testing. The design philosophy behind ASP was to create an

interactive system whose basic commands could be leamed quickly and easily. At the

same time the ASP system would be flexible and powerful enough to do most data

reduction tasks using short, easily written command sequences.

The first effort to bring the ADAR system to the Naval Surface Weapons Center

(NSWC) occurred in 1 979. A version of ASP on tape in binary format was hand-carried

down to NSWC by base personnel and put on a DEC 2020 in the ACC. At that time,

RCA was not willing to release the source code for ASP. Existing ASP programs, i.e.,

files containing a list of ASP commands that could be run via batch processing, for each

of the AEGIS elements were also brought down to be used as examples. Since

development of the elements was just starting, only the CND, SPY, WCS, and FCS

49

50

elements existed. Additionally, the user's guide for ASP, AEGIS Data Reduction System

(ADAR) User's Guide (Preliminary), Version 2.0, published January 1 2, 1 978, was

hand-carried down to NSWC along with some existing data tapes for each of the existing

elements. The person who was working on this project at NSWC spent many months

trying to get the programs from Moorestown to work with the ACC computers. Finally,

in 1 989, some of the ASP source code was delivered to NSWC.

Once the people using ASP at NSWC had determined how to make it work, they

found the ASP programs from Moorestown were very inefficient. When these ASP

programs were rewritten, frequently they ran in half, or better, of their original time.

Originally, each ASP control file had to be generated manually. This very

repetitive work was quite time consuming as well as being prone to many errors. In

order to speed program development and reduce errors, a job processor was written to

. generate the control files needed to run ASP programs.

6.2 The ADAR Sequential Processor

The ASP Data Reduction System had two components: a language processor and

a data processor. The language processor interpreted the commands the user entered via

the defined ASP command language. Once the commands had been interpreted, the

language processor generated another form of the command sequence called the process

control table. This form was used by the data processor to direct the various data

processing activities. The language processor and data processor communicated only via

the process control table.

5 1

The ASP system was an interpreted language rather than being compiler driven.

As a result, the issued commands, unless the user specified otherwise, were checked for

correctness and acted upon immediately. If the user specified, the commands could be

stored for later use.

In order to use ASP, the user must first have a copy of the data dictionary

available on the computer system to be used. This data dictionary had to be compatible

with the data file to be read. The data file could be either a disk file or the contents of a

magnetic data tape. In order to be used, the magnetic data tape was "mounted" on a tape

drive. The computer room operators handled "mounting" tapes.

Generally, the users were encouraged to copy both the data file and the associated

data dictionary to the their area on the computer system, then to rename them. The data

dictionary file was renamed "ASPCDT.DAT" while the data file was renamed to

"RDTl .ATS." If a data tape was used, the user needed to set a variable in his

environment to identify the tape drive on which was mounted the tape whose contents

were to be used for input. The renaming of the files was done primarily because the

ASP system used only these names when looking for files. Otherwise, the user needed

to set variables to relate these default names to the actual names of the files. In addition,

by copying the files, the user would be sure he did not change the original files.

The user then entered the System Identification (SID) and extraction point

numbers that were to be used following the ASP keyword "SELECT." Figure 6- 1

contains two examples of the SELECT command.

SELECT 7, 256;
SELECT 6, 45;

Figure 6-1 : ASP SELECT Command

52

The first line in Figure 6- 1 uses the SELECT command to tell the ASP system to

use 7 for the SID value, i.e., the WCS element, and 256 for the extraction point number.

The second line uses the SELECT command to tell the ASP system to use 6 for the SID

value, i .e., the SPY element, and 46 for the extraction point number.

A line indicating where and how the output is to be produced follows the

SELECT command. F igure 6-2 contains several examples of the OUTPUT command.

OUTPUT TO PRINTER; (I)
OUTPUT TO TERMINAL(XSM,YSM,ZSM); (2)
OUTPUT TO FORT l .FORTRAN(MSLNUM,TIME); (3)

OUTPUT TO PRT2.PRINTER(LNCHNUM,MSLNUM); (4)
OUTPUT PRNTI ($ALT, $AZ, $ELEV) (EI S.7, E I S.7, E I S .7, /); (5)

Figure 6-2 : ASP OUTPUT Command

In Figure 6-2, the output from line (1) is to be printed straight to the line printer.

Since there are no indications as to which fields should be printed out, the output, using

the default value, will have the contents of all fields for every instance of the extraction

point specified before this point. On the other hand, the output from line (2) will be

displayed to the terminal screen. Since the XSM, YSM, and ZSM fields are specified,

this output will have the contents of only those fields.

53

The output from line (3) in Figure 6-2 will be printed to an unformatted binary

file named FORT1 .UFD. A FORTRAN program with the proper read statements will be

able to process the data from the unformatted binary file. This unformatted binary file

will consist of the occurrences of the MSLNUM and TIME fields.

Line (4) in Figure 6-2 shows how to cause the output to be written to an ASCII

file, named PRT2, in a form suitable for printing or reading at the terminal. The output

from this line will consist of the contents of the LNCHNUM and MSLNUM fields.

While the field specifications in the data dictionary would be used for any default

output formatting, the user could specify any desired formatting using FORTRAN-like

commands. In the line (5) of Figure 6-2, the fields ALT, AZ, ELEV would each be

written to a file with a maximum of fifteen spaces allowed for each value. Seven spaces

would be allowed for the fractional parts with a carriage return placed at the end of each

line.

As should be obvious, the above steps could be very tedious, especially when

repeated every time data in any file were to be analyzed. Creating files, or even

modifying existing files, containing the needed command lines took much time. In all

cases, it was very easy to make typographical errors.

Using some of the examples above, Figure 6-3 displays simple instructions to the

ASP program that will determine which extraction point is to be used then which fields

in the extraction point to write to the output and the type of the output.

SELECT 7, 256;

54

OUTPUT TO TERMINAL(XSM,YSM,ZSM);

Figure 6-3 : Simple ASP Command Sequence

The example in Figure 6-3 instructs ASP to look in the default data file

"RDTl .ATS" for data and to use the default data dictionary "ASPCDT.DAT" for the

data definitions. ASP will be expecting both of these files to be in the user's current

directory. ASP is then told the data dictionary is for the WCS element, i .e. , the SID

value is 7, and to look for every instance of extraction point 256 in the data file. Every

time extraction point 256 is found, the values found in the XSM, YSM, and ZSM fields

are to be printed to the terminal screen using the formatting found in the data dictionary

file.

Eventually, one of the users working with the WCS element group grew tired of

generating the ASP control files individually. She developed a command line generator

program, called a job processor, to automate the creation of these files. There were two

major advantages to creating these files via an automated means. First, the files were

created quickly with relatively little effort on the part of the analysts. This allowed them

to make better use of their time. Second, fewer typographical mistakes were made. This

also allowed the analysts to be more productive. While the job processor started out

with one major objective, its complexity grew as more functionality was added to it.

When the user ran the job processor, several things happened. First, the job

processor posed a series of questions to the user regarding the element, the baseline, the

55

extraction points, and the fields to be used. The user was expected to make any desired

formatting changes in the local copy of the data dictionary before running the job

processor. The job processor then used the answers supplied by the user to first create

then submit, in batch mode, a command line file. This command line file, in turn, ran

ASP by supplying the needed information to the ASP program to produce the results

desired by the user.

7 Second stage of ADAR: the Job Processor

7.1 Introduction

The original Job Processor helped to automate the use of ASP. Later commonly

used utility programs, written in FORTRAN, were developed then were incorporated

into the Job Processor. To aid the users developing FORTRAN programs, program

generators were developed. These program generators created skeleton programs, also in

FORTRAN, that could be modified to produce the results desired by the users. While

the missing ASP source code modules were never delivered to NSWC, the people at

NSWC developed a work-around for this lack by developing their own routines and

functions that did not require the use of ASP for processing AEGIS data. Consequently,

gradually the use of ASP was discontinued as FORTRAN programs replaced generated

ASP script files. Additional special purpose FORTRAN programs were also

incorporated into the Job Processor. Eventually the Job Processor provided a way for

users to locate and use programs that might have been unfamiliar to them.

7.2 Beginnings - Job Processor to Automate the Use of ASP

The generation of ASP control files by hand could be tedious and certainly was

error prone. In addition, it could be very time consuming. Frequently, the same, or very

similar, command files were needed for several data tapes. Also, similar command files

56

57

could be needed for the same tape but for a different slice of data. Sometimes modifying

an existing command file provided a relatively easy way to create these similar

command files. Additionally, new command sequences frequently were needed. A job

processor, written in FORTRAN, was developed to help automate the development of

the new command files. Each of these command line scripts was put into separate files.

When used, these scripts acted as programs written in an interpreted language.

A separate subroutine was created within the job processor to handle each

specialized use of ASP. Within each subroutine the job processor presented the user

with a series of questions about ACS elements, extraction point(s), fields, and output

format. All of the questions were centered on obtaining the information needed to create

a command file to perform the desired operations. In addition to creating command

files, the job processor would submit the command file for batch processing. When

requested by the user, output files could also be sent to the printer queue. The data

dictionaries located on the main frame computer provided the needed default formatting

for the generated output.

By having a copy of the data dictionary in the user's disk space, the user was also

able to modify the data dictionary so that the desired output format could be created by

default. In addition, by removing unwanted fields from the local data dictionary file,

only the desired fields would be put into the output. This eliminated the need to specify

the fields in the command file, simplifying the creation of command files. This was

58

especially true when the command procedures required one or more of the following

items:

a) Many items of input from the user,
b) Specific items of input from the user, or
c) Multiple programs to reach the final results.

7.3 Addition of Utility Programs to the Job Processor

The next step in automating some of the data processing steps involved

enhancing the job processor to run commonly used FORTRAN programs. The first

programs to be handled via the job processor addressed the most generic functions.

Some examples of these FORTRAN programs are Data eXtraction MOVe (DXMOV),

Data eXtraction SUMInary (DXSUM), and Extraction Point Attribute Collector (EP AC).

The DXMOV program copied the extraction point data from the recorded data

tapes to a file on the disk ofthe current mainframe computer. DXMOV also handled the

formatting changes to the data required by this move. The required changes, discussed

previously in section 5 .2, were created by the differences in computer storage

requirements. The headers that were attached to each extraction point when put into the

buffer before being written to the recording tape were read and used by DXMOV. These

headers provided the information needed to break the data into logical records by

allowing DXMOV to find the beginning and ending of the logical records on the tape.

The DXSUM program produced a summary of the extraction points that were

recorded on a data tape or were in a disk file created from a recorded data tape. This

59

summary included the beginning and ending recording times as well as the number of

instances of each extraction point on the tape or in the file.

The EPAC program generated ASCII and binary data dictionaries. ADAR

Librarians or the ADAR group could change the ASCII data dictionaries to add more

fields or to make corrections. Once a data dictionary was modified, EP AC could use it

as input to check the changes and create a binary data dictionary for use on the system.

7.4 Data Dictionary Map

When there were just a few AEGIS baselines with which to work, it was not

difficult to keep track of their associated data reduction programs. As the number of

baselines multiplied, the amount of space required for storing separate data reduction

programs for each baseline and element likewise multiplied. Eventually, the amount of

disk storage space required to handle the baseline associated data reduction programs

became prohibitive. Several factors contributed to the space difficulties: the number of

elements increased, the number of extraction points for each element increased, and the

number of fields in some of the extraction points also increased. As the number of

extraction points increased towards the maximum of 1 024 for each element, the memory

and disk space requirements also increased.

However, not all of the extraction points changed between each baseline. Since

this was the case, it was not necessary to store multiple copies of the Print-On-Change

(POC) data reduction programs for the unchanged extraction points. Each POC

program, developed for only one extraction point in one baseline, when run, would write

60

a new line whenever the value for any of the contained fields changed. The poe

programs provided an easy way for the users to determine the times and new values for

each change. Each time a poe data reduction program was developed, it was stored for

future use. To help control the rapidly expanding memory and disk requirements needed

to store all of the poe programs, a scheme was devised that created a Data Dictionary

Map. This Data Dictionary Map is illustrated in Figure 7- 1 .

When a new baseline arrived at NSWC, a new computer directory was created

and named for the baseline. Then poe data reduction programs for any new or changed

extraction points were generated and stored in the directory named for the new baseline.

The Data Dictionary Map then was updated to show the presence of the new computer

directory and the new poe programs. When a user asked the job processor to run a

poe program, he rust indicated the baseline of interest then the job processor used the

Data Dictionary Map to determine where to start looking for the program. If an

applicable poe program were found, it would be run. Otherwise, an applicable poe

program would be generated by the system, stored for future use, and then run .

With the Data Dictionary Map in place, a poe program for a given extraction

point only needed to be stored if it were new or had been changed. Any poe job request

would look at the Data Dictionary Map first. In the Data Dictionary Map, as illustrated

in Figure 7- 1 , the " 1 " meant that the data reduction program existed for that extraction

point in that particular baseline directory. On the other hand, the "0" meant the data

reduction program for that extraction point would be found in the directory of an earlier

6 1

extraction extraction extraction explanation
point point point
257 3 1 5 370

BL 5 1 0 1 Both extraction points 257 and 370
have changed. Data reduction programs
may be found in the BL5 directory for
extraction points 257 and 370 and in the
directory of an earlier baseline for
extraction point 3 1 5 .

BL 4 0 0 1 Only extraction point 370 has changed.
Data reduction programs may be found
in the BL 4 directory for extraction
point 370 in the directory of an earlier
baseline for extraction points 257 and
3 1 5 .

BL 3 0 1 0 Only extraction point 3 1 5 has changed.
Data reduction programs may be found
in the BL 3 directory for extraction
point 3 1 5 and the directory of a
previous baseline for extraction points
257 and 370.

BL 2 1 0 0 Only extraction point 257 has changed.
Data reduction programs may be found
in the BL 2 directory for extraction
point 257 in the directory of a previous
baseline for extraction points 3 1 5 and
370.

BL 1 1 1 1 The original directory, i .e., BL 1 ,
contains POC programs for all
extraction points.

Figure 7- 1 : Data Dictionary Map

baseline. So if a "0" was found, the Data Dictionary Map was consulted for the previous

baseline. This process was repeated, one baseline at a time, until a " 1 " was found. Only

when a " 1 " was found would the desired data reduction program be found. When this

example is expanded many times, the savings in disk space requirements is obvious.

62

Reading from the bottom of Figure 7- 1 , BL 1 represents the starting baseline

directory containing data reduction programs for all extraction points. The next line up,

BL 2, has a " 1 " for extraction point 257, a "0" for extraction points 3 1 5 and 370. Only

extraction point 257 has changed, so a data reduction program for extraction point 257

would be found in the computer directory named for BL 2. To find the data reduction

programs for extraction points 3 1 5 and 370, one must fall through until a " 1 " is found, in

this case, in the BL 1 directory.

Going up the table, BL 3 has a "0" for extraction point 257, a " 1 " for extraction

point 3 1 5, and a "0" for extraction point 370. Only extraction point 3 1 5 has changed.

The data reduction program for extraction point 3 1 5 would be found in the computer

directory for BL 3 . To find the data reduction programs for extraction points 257 and

370, one must fall through until a " I " is found. The data reduction program for

extraction point 257 would be found in the BL 2 directory while that for extraction point

370 would be found in the BL 1 directory. A similar situation exists for both BL 4 and

BL 5 .

Referencing Figure 7- 1 , a poe program for baseline 4 would be obtained from

the BL 2 directory for extraction point 257, from the BL 3 directory for extraction point

3 1 5, or from the BL 4 directory for extraction point 370.

7.S Program Generators

In addition to the job processor, other programs were developed that created

skeleton FORTRAN data analysis programs. These program generators were called

63

GenMEP and GenPOC. When run, the GenMEP and GenPOC programs produced

FORTRAN programs designed for specific extraction points and fields. These

FORTRAN programs were developed by users to provide specific information. These

generated programs, in turn, would unpack the binary data contained in their selected

extraction points and their associated fields then print this data out in the user-

determined format. It was left up to the user to modify these programs to produce the

desired output data. This modification frequently involved putting in program constructs

to help with the filtering of the data, any repetition needed, and changing the output

statements to produce data in an easier to read format.

The GenMEp 'and GenPOC programs required the output produced by the

Generate Fields (GenFLD) program as input.

7.5 . 1 The GenFLD Program

Before either the GenMEP or the GenPOC program could be used, a data

definition file had to be generated. This file, created by the GenFLD program, contained

field definitions from the data dictionary, including default output format specifications,

for every field chosen by the user.

When running GenFLD, the user was guided via a series of questions to choose

the desired items needed for the output file. The user had to enter information for the

following items:

- A data dictionary based on the desired baseline and element,
- The extraction point(s) to be used,
- The field(s) to be used in each of the selected extraction points,
- The sort field(s) to be used, and

64

- The colwnn order in which the fields would be output.

The sort field could be none or one of several ways of sorting the data by specific

fields. When no sort order was chosen, the desired fields would be output in the order in

which they appeared in the data dictionary. While the user could choose any ofthe

selected non-Boolean fields on which to sort, the usual choices were one or more of the

identification numbers used within the ACS. These identification numbers, assigned by

different AEGIS elements, are Control Group Track Number (CGTN), Weapons Control

Index (WCI), Central Track Stores Locator (CTSL), and System Track Number (STN).

The column order in which the desired data was to be output could be the order the fields

appeared in the data dictionary, i .e . , dictionary order; in the order the fields were chosen;

alphabetically by fieldname; by field type only; or by field type then alphabetically by

fieldnarrie. However, only the GenPOC program used any of the sorting choices. Any

time data were output in sorted order, the data were first written to a temporary file,

sorted, then written to the final data file.

Implicit in this process was the assumption that the user knew exactly which

field(s) to choose and in which extraction point they would be found. A novice at this

process would need to do some preliminary research in order to determine the desired

information. Frequently, the user would check with other users to determine the needed

information. If this was not possible, the user could check the descriptions of the various

fields in an ASCII version of the data dictionary. Once the user knew which extraction

point was needed, the user could proceed. If the user was unsure of which fields to be

65

used, it was better to choose all possible fields in the applicable extraction point. Any

fields that were later determined to be unneeded could be removed easily.

Once the data definition file was created, the user could easily edit it to remove

unwanted fields, change the order in which the fields would be processed and/or output,

or change the output format specifications. The contents of this file looked much like

the contents of the ASCII formatted version of the data dictionary. If the file indicated a

field was to be output as an integer, the user could easily change the format

specifications for the field to be octal or binary. Once this file was created, the user

could run either the GenMEP or the GenPOC program, specifying the name of the file

when prompted.

7.5.2 The GenMEP Program

The GenMEP program produced data reduction programs written in FORTRAN

for any number of extraction points from the same element and baseline. When the user

ran the GenMEP program, only the name of the data definition file to be used needed to

be specified; the type of output format and the classification to be assigned to any output

data files. To make things easier, let us call the GenMEP generated program ExarnMEP.

The output from ExarnMEP could be in ASCII format, i.e., "formatted", or

unformatted binary format. If the user wanted to be able to personally read the file

generated by ExamMEP, the user would choose the ASCII format. On the other hand, if

the user were planning to use the output from ExamMEP as input into yet another

program, the user would generally choose the unformatted binary output. Since

66

unformatted binary data is faster for a computer to process, this was an important

consideration when working with large amounts of data on the slower computers of

years ago. Once ExamMEP was created, it had to be compiled and linked like any other

FORTRAN program before it, in tum, could be run.

The programs produced by the GenMEP program started out with a main

program body followed by one unpack subroutine and one print subroutine for each

extraction point specified by the user. When ExamMEP was run, it would read a data

file specified by the user. Every time ExamMEP found a new instance of an extraction

point, it would determine whether or not the program handled the extraction point. If it

was handled by ExamMEP, the main program of ExamMEP called the unpack

subroutine for the given extraction point that in tum called the print subroutine for the

same extraction point. This process was repeated, via a loop, until the end of the data

file was reached. Since the original data was stored as unformatted binary, the term

"unpacked" was used when converting the data into readable form.

The original output generated by ExarnMEP was in namelist format. As shown

in Figure 7-2, this output format consisted of each instance of an extraction point along

with the number and title of the extraction point printed as a heading. Under the

heading, the name of each unpacked field was printed out, followed by, first, an equal

sign then by the value for the field as determined from the data. Consecutive field names

and their values were printed on the same line until the 1 32-character line was full. When

the next field name or value could not fit onto the current line, a new line was started.

67

EPID 256: EO THREAT VALUE UPDATE

DXTIME = 68500.235, CTSL = 0004, WCI = 035, XSM =

456.0 1 5 , YSM = 23 .987, ZSM = 23.001

EPID 360: CENTRAL TRACK STORES LOCATOR

DXTIME = 68500.238, CTSL = 0003, CGTN = 250,
MIT AG = 68500.238, TV AL = 4, PREEM = 0

EPID 256: EO THREAT VALUE UPDATE

DXTIME = 68500.255, CTSL = 0004, WCI = 035, XSM =

456. 9 1 5, YSM = 24.054, ZSM = 23.504

Figure 7-2: Namelist Format Example

This line wrapping was repeated until all desired fields in the particular extraction point

had been unpacked. As can be seen, the original namelist output format was difficult to

read when a large amount of data was processed.

The programs produced by GenMEP could be used as "starter" programs when

developing analysis programs. The user could modify the initial program to produce an

analysis program that would perform the needed operations on the data and output the

resulting data in a desired format. The user could make many possible modifications to

provide very complicated processing. For example, the program could be modified to do

any of the following:

- Put all the fieldnames on one line and their associated values below them as
illustrated in Figure 7-3 in the next section.

- Only print when a certain value of a given field was found, e.g., only when the
value of the CTSL field was 4.

- Write the values found in different extraction points to different files.

68

- Relate fields found in one extraction point to fields found in another extraction
point via the values found in specific fields then print the values for these fields
and other associated fields.

7.5.3 The GenPOC Program

The GenPOC program also produces data reduction programs written in

FORTRAN but for only one extraction point. When the user ran the GenPOC program,

only the name of the data definition file to be used and the classification to be assigned

to any output data files had to be specified. GenFLD previously had created the data

definition file. To make things easier, let us call the GenPOC generated program

ExamPOC. Whenever the value for any of the fields handled by ExarnPOC changed, the

values for all of the fields were printed, hence the POC name. The ExamPOC generated

output was only in ASCII format. This output was written out with field names as

column headings at the top of each page with the corresponding values for each field

written under its heading in columnar format. The last column, labeled "OCCURS,"

provided a count of the number of times each printed line occurred without a change.

While programs produced by the GenPOC program could be modified, this was more

limited than with the GenMEP generated programs. Figure 7-3 contains an example of

output produced by ExamPOC.

DXTIME CTSL WCI MTTAG TVAL PREEM OCCURS
68500.235 0004 004 456.0 1 5 3 0 1 0
68500.255 0004 004 456.9 1 5 3 0 5
68500.273 0004 004 458.205 4 0 1 5

Figure 7-3 : Columnar Format Example

7.6 First Data Manipulation Programs

69

While many of the first FORTRAN-based data manipulation programs started

out as GenMEP generated programs, others were developed without the use of the

program generators. Two examples of the latter type of program were Get Recorded

Data (GRD) and Do_Plot. The GRD program and the Do]lot program were designed

to be used for all baselines and all elements. When run, GRD would obtain the desired

extraction point number and the names of fields from the user then produce output files

with columns of data. The Do_Plot program could read the files produced by GRD and

use the data to produce plots, i .e. , graphs, using the field(s) selected by the user. While

these programs were versatile, they were also very difficult to use. GRD and Do_Plot

frequently required many user responses in order to produce desirable results. In order

to produce comparable results, many of the same user entries were required each time.

To make it easier to obtain consistent results using GRD and Do_Plot, subroutines were

developed in the job processor. These subroutines worked like the subroutines that

created batch files to run ASP.

The job processor subroutines, created for specific results, first queried the user

for any needed information then created batch files to run the underlying program, for

example GRD. The batch file would then supply the specific extraction point numbers

and field names, in the proper order, to the program. Sometimes running one job

processor subroutine would cause the same program to be run more than once with

different inputs. In that case, the batch program would use the first output files as input

70

into yet another program that, in turn, would process and combine the data in some way.

This new program expected input files that had the specific names and contents that were

produced by the batch file before the new program was run . These batch files also took

care of any needed file renaming in addition to the printing of the final results and the

removal of intermediate files.

For example, the subroutine called WCS_SUM created batch files that ran GRD

three times, once for each extraction point used. After each run of GRD, the generated

files were rename to specific names. Once the three files were created, the batch file ran

another program, also called WCS _SUM. The WCS _SUM program expected as input

the three files, with their specific names, that had been created before it was run.

WCS _SUM would process the data read from the three files, then generate a fourth file.

Once the WCS_SUM program finished, the batch file deleted the files created by GRD

and printed the file produced by WCS _SUM.

As the ADAR system matured, many specialized programs were developed.

Some of these additional programs were used in place of the GRD and Do_Plot

programs. While GRD and Do_Plot have not been removed from the classified cluster,

they are no longer being maintained.

As each element group at NSWC developed programs, they were also

incorporated into the job processor. Although the job processor was originally WCS­

specific, it was eventually turned over to the ADAR group where the WCS-portion of the

7 1

processor became one o f several modules. The other modules were for the other

elements. Job processor modules also were developed for utility programs.

At first, each data analysis program handled all of its own processing. Only the

system FORTRAN l ibraries were linked to the data analysis program. The programmers

duplicated the coding of common functions from program to program. After a while

functions and subroutines to handle commonly used program functions were developed.

These functions were stored in libraries on the classified computer system. They could

be linked with the programs after compilation. Once these functions and subroutines

were developed, those sections were taken out of the older programs and replaced by

calls to these functions and subroutines. This helped to standardized some of the output

produced by the programs, particularly regarding page breaks, headers, banners, input

and output of time and tape number.

7.7 Creation of the Training Manual

When the ASP system was brought to NSWC, a user's guide was provided to

those working with ASP, but as the ADAR system developed, it soon became obvious

that a training manual was needed to introduce basic AEGIS concepts and V AX

commands. A training manual was especially important for people who did not know

anything about these topics. Consequently, the Introducing ADAR manual was

developed.

This training manual was intended to serve as a self-guided course to help new

ADAR users become familiar with the most commonly used ADAR programs. The new

72

ADAR user was stepped through the use of batch command files, the common utility

programs, and data dictionary determination. This manual also included instructions to

help guide novice computer users in the most basic computer functions, such as viewing

and editing ASCII files. Basic AEGIS concepts and other helpful background

information needed for understanding the required steps to be performed during data

reduction and analysis were also included in the manual.

While some new ADAR users may not have needed all the subjects covered in

the Introducing ADAR manual, almost without exception they needed some basic

instruction regarding AEGIS elements. Once the Introducing ADAR manual was

developed, regular login accounts on the classified cluster computers were not assigned

until each person could pass a verbal test covering the most important concepts in the

manual. This helped to ensure computer users had become familiar with the information

in Introducing ADAR before having access to data available via regular accounts on the

classified cluster computers.

The ADAR group on the NSWC base produced Introducing ADAR in a PVC­

bound format. As changes developed in the ADAR system, updates were made to the

training manual. The ADAR group also became the ones responsible for testing the

knowledge of the new users.

7.8 Problems

Early in the AEGIS program there was a great need for data analysis programs.

The primary driving force behind program development in those early days was the need

73

to quickly produce something that worked. Little thought was given to making the

programs easy to use or modify. In addition, little thought was given to creating a

library of common functions beyond a few basic input and output functions.

As more programs and AEGIS baselines were developed, the maintenance of the

Job Processor as well as of the various programs became increasingly difficult. Many

things contributed to making the data analysis programs difficult to use and maintain.

The following were some of the contributing factors:

Many baseline-specific programs,
Little or no coordination between element groups,
Lack of uniformity in programming standards, and
No standard user interface in regards to input, questions for the user, or
output.

When an analysis program, written to handle the data dictionary for baseline 1 .2,

was rewritten to handle the changed data dictionary for another baseline, say 2 . 1 , two

similar programs existed on the system. The older program had to be kept along with

the newer program. These programs probably had either the same name or names that

were very similar. These two programs needed to be to kept track of and differentiated

for both the programmers and the analysts. The addition of lines of code to the job

processor inquiring about the baseline helped the user but not the programmer.

The next time the data dictionary changed for the applicable extraction point, say

with baseline 3 .2, the same thing happened. By the time baseline 5 was reached, the

number of baseline-specific programs had grown quite large. These baseline-specific

programs required a large amount of disk space to hold both the source code and the

74

executable programs. If functionality was added to one program, the corresponding

programs for the other baselines might also need to be modified. This was another

source of duplication of effort. Keeping the different versions straight also became a

configuration problem. In order to use the program version for the correct baseline when

processing data, the user had to know exactly which baseline was used during the

recording of the data. While not generally a problem, this was just one more detail of

which the users had to keep track.

As each element group at NSWC developed programs, there was little or no

coordination between the groups. Consequently, there were some programs across the

various groups that handled similar data. While the duplicated programs were never

exactly the same, there was still a duplication of effort.

The different programmers in the element groups who had developed the data

analysis programs had many different backgrounds. Additionally, no programming

standards had been developed. Consequently, many programming styles and standards

were represented among the data analysis programs. This lack of uniforrnity in

programming standards made it difficult for other programmers to modify the programs.

The original ADAR programs did not have a standard way to query the user for

input. This lack of uniforrnity with the user interface resulted in a variety of needed

inputs and questions. Often the programs required something special that would not be

obvious to the users. The following are some of the possible special required items:

Special user input information items,
A certain order for the input,

75

A special input file,
The need to run one or more programs to create intermediate results to be
used as input into the final program,
The need to work from a special directory, and
Special print commands.

There was no way for the users to determine these special items unless messages

regarding them were displayed to the users. Even when messages were displayed, they

could be wrong. This might have occurred because either the message had never been

right or some situation had changed without the message being updated. Frequently, the

results were not what the user expected. Running the programs from the job processor

reduced some of these problems. In order to do this, subroutines were written for the job

processor to handle frequently desired input and output combinations. These subroutines

were given names and added to the job processor. When these subroutines were run

using the job processor, many program use surprises were avoided. Additionally, the

user had the advantage with these subroutines of not needing to know which extraction

points, the which fields and their required order, or which programs were used. On the

other hand, the job processor was not always right.

Once the initial data analysis programs had been developed, some of the common

user interface functions were pulled out of the programs and put onto the system in

libraries of functions. While this helped to produce some uniformity for the programs

regarding input and output items, it also helped to point out problem areas that could

have been avoided if the process had been reversed. Some of these problems were

discussed above. Additionally, there were common computations, constants, and unit

76

conversions used by many programs. These items had never been placed in system

libraries and frequently were implemented differently from one programmer or element

to another. The value of Pi and the conversion between nautical miles and feet are just

two examples of these items.

Another set of problems centered on the portability of the ADAR programs. It

gradually became necessary to be able to run ADAR programs on other computer

platforms and at other AEGIS sites. Since the ADAR programs had been developed

using the common functions, subroutines, and data dictionaries only available on V AX

computers at NSWC, this was not possible with the existing setup and the lack of

portability built into the programs.

Additionally, planning had already begun for baseline 6 tactical computer code.

During this planning a decision was made to have the new tactical code developed using

both the C and Ada programming languages. At this time, the ADAR group realized the

programs that had been developed in FORTRAN would not necessarily be able to handle

data that could be produced by these newer programming languages. The ADAR group

and users had to adapt.

8 Migration of Tactical System Processing

Beginning with baseline 6 of the tactical code, all new code is being written in

either the C or the Ada 83 programming languages. Additionally, some of the old code,

as needed due to required changes involving large amounts of code, is being rewritten in

these languages. However, some programming is still being done in the CMS-2

languages. The primary reason for requiring changes to the tactical code is due to

changes in requirements for either the ACS or A WS. Another possible reason is errors

in the code that require possibly extensive recoding to correct.

Also beginning with baseline 6, the user interface on the tactical consoles is

being changed to use graphical user interfaces (GUIs), X-windows, and Motif on top of a

UNIX operating system. These changes also require recoding of the tactical system

code. In addition to both these changes and the usual types of changes between

baselines, the data recording for the tactical system is moving from AN/uYK computers

to Hewlett-Packard (HPs) workstations and other platforms.

C and Ada 83 can handle many data types and structures not available in either

CMS-2Y or FORTRAN. As a result, data analysis programs that had been written using

FORTRAN could not easily be adapted to handle the new data types and structures now

possible. Instead, new programs were needed to be able to handle the unpacking of the

77

78

data created using these new data types and structures. Also, the changes being made to

the tactical code and to the ADAR programs required changes to the data dictionary

format.

When the AEGIS program began, any software development needed by a given

government program was handled within that program. Since those early days, however,

much commercial software has become available. Also, government programs have

developed many hardware and software items. Consequently, the emphasis within the

United States government has changed to encourage the use of both commercial software

and government developed software rather than developing all new software for new

programs. Commercially available software and hardware has come to be referred to as

commercial-off-the-shelf (COTS) whil\! government developed software and hardware is

known as government-off-the-shelf (GOTS).

Additionally, there has been a push to incorporate hardware items created by

outside groups when a government program has required additional functionality. The

incorporation of both software and hardware from other developers into the AEGIS

program has contributed to the increasing complexity of data analysis. The data

dictionary structure used for the ADAR programs had to be modified to allow the

inclusion of outside sources of data.

Since the ADAR group was made aware of these changes early in the

development process, they were able to plan ahead. Being aware of the problems that

79

were created by the way things were handled previously, they decided to start over.

They started by first developing an ADAR library of low-level functions using C.

Three main things contributed to the move from FORTRAN to C for ADAR

programs:

1 . A programming language was needed that supported complex data structures
and memory allocation.

2. A programming language was needed that was portable to other platforms and
locations.

3. A programming language was needed that was in the main stream of the
programming industry. It is much easier to find programmers for current
languages than for older languages. In addition, it is easier for other people to
use material that is current.

For these same reasons, ADAR programming will be moving to the C++

programming language eventually.

9 Third stage of ADAR: Moving Away from the Job Processor

9.1 Introduction

The new ADAR C function library began with the most basic functions. The

following represent some of these:

- Queue and stack processing,
- Common unit conversions,
- Variables to represent constants, and
- Reading data file headers.

As the first functions were developed and put on the classified system, additional, more

complex functions that used these first functions were developed. Since then many more

functions have been developed. Finally, programs were developed to use these

functions. Some of the FORTRAN-based programs were updated to use these new

functions. Other new programs were designed to replace or streamline old programs or

methods. Additionally, since the old help files could be difficult to locate and use,

improved on-line help resources were developed to replace the old help files.

9.2 Changing the Primary ADAR Programming Language

All new ADAR programs and functions are being developed using the C

programming language. The language change for data analysis programs was dictated

partially by the changes being made to the tactical program. Most new code in the

tactical program is being written in C and Ada. These languages are capable of creating

80

8 1

and using complex data types and structures that the older FORTRAN-based programs

cannot handle. At the time ADAR development was begun in C, it was a more capable

language than was FORTRAN since it supported dynamic memory and complex data

structures. Since C was one of the two new languages used for tactical code

development, it seemed logical to also develop data analysis programs using C . By

using the same language, any data type that can be recorded by the tactical code can be

duplicated and handled by the data analysis programs. C has the added advantage that it

is backward compatible with CMS-2Y-generated data. Consequently, any newly

developed programs can be used with data generated by the older baseline tactical

programs. Additiomilly, by changing to C it became easier to find programmers since C

is closer to the main stream of the rest of the programming world.

Now, all of the planned C library functions have been developed. Additions and

changes will be made as they are needed. Several of the new functions have been

changed to incorporate new functionality as the need arose. Additionally, all the utility

programs 'needed to replace the FORTRAN utility programs have been developed along

with several new programs.

To make the library of ADAR functions more user-friendly, a user's guide to

these functions was developed. The user's guide, the ADAR Library Functions manual,

has been updated many times as new functions and functionalities have been added to

the library. The ADAR Library Functions manual provides the following information

for each function:

82

- The type of function, e.g., conversion, input/output, etc. it is,
- The number and type of parameters needed when the function is used,
- The meaning of each of these parameters,
- The value(s) returned when the function is used, and
- At least one example i llustrating the use of the function.

9.3 Establishment of Programming Standards

At the same time the C function library was being developed, the ADAR group

also set up programming standards to be used with all future program development. To

guide the data analysis program developers, an ADAR Programming Standards guide

also was written. The following are some of the areas covered by the new programming

standards :

- Al l new data analysis programs are to be developed using the C programming
language.

- The development of new data analysis programs is to be coordinated through
the ADAR group.

- New data analysis programs will be non-baseline specific. Baseline differences
will be checked and handled within each program.

- New data analysis programs will have a standard method for inputting the
users' processing choices.

- A requirements document is to be developed for every new data analysis
program.

- Once new data analysis programs and their accompanying requirement
documents are complete, they are to be turned over to the ADAR group for
maintenance.

With all of the element groups on base coordinating any new AEGIS data

analysis programs with the ADAR group, the possibility of duplication of effort is

reduced. The ADAR group serves as a clearinghouse for new program development.

83

When someone approaches the ADAR group from any of the element groups regarding a

possible new data analysis program, the members of the ADAR group can do several

things:

- Inform the person from the element group about another similar program that is
being developed, if that is happening,

- Discuss with that person how an existing program can be modified to provide
the needed ability, or

- Provide guidance to that person during the development of the new program
and any associated documentation.

The same thing can happen if anyone wants to be able to examine data generated

by COTS or GOTS software that has been incorporated into the AEGIS system. This

generally requires the creation of a new data dictionary to handle the new data. The

ADAR group will advise and help check the accuracy of the data dictionary being

generated. Several of the most general ofthe ADAR programs can be used for data

analysis once the new data dictionary has been developed. Even if only one extraction

point has been put into the new data dictionary, it can be used by several of the general

data extraction programs. This is because the user can specify which extraction point(s)

is (are) to be examined when running many of the ADAR programs. This permits the

analysts to use familiar programs while analyzing data. Additionally, the users are not

dependent on whatever data analysis programs may have been provided by the

originators of the non-AEGIS software.

Each new data analysis program contains code to provide for differences in the

data dictionaries between the various baselines. Since the new function that opens the

84

data file also returns values for the items written in the file header, the program can use

this header information. With this information available to the program, the code can

test for the DRlST value that was written at the beginning of the data file. This

information provides a means to determine the appropriate data dictionary to be

referenced without requiring input from the user. The data dictionary value then can be

used to determine any baseline appropriate processing. This portability across the

baselines makes using the various ADAR programs easier for the users. With baseline

differences handled internally to the programs, the user does not have to remember

which version of a program to use. A major disadvantage to making the various

programs handle multiple baselines is the extra programming, design and regression

testing needed to obtain a single dependable working program. Additionally, a multiple-

baseline program is much more complex than a single-baseline program.

While the new ADAR programs may be run via the job processor, they are very

easy to run from the command line. All new programs must use standard expressions as

input to specify the processing choices to be performed by the program. These standard

expressions are called "qualifiers." While not all programs use all possible qualifiers,

where a particular qualifier is applicable, its use is required for input into the program

versus some other method. On the V AX computers, all qualifiers begin with a "/," while

on HP computers running the UNIX operating system and on pes, a "-" is used. The

following are some examples of these qualifiers using the notation applicable for V AX

computers:

85

- IEP - This qualifier permits the user to select one or more extraction points to be
used by the program. While many programs require this qualifier, there is no
default value provided.

- lfield - This qualifier permits the user to specify which field(s) in the extraction
point(s) are to be used. All specified fields must be in at least one of the
selected extraction points. The default value for this qualifier is "all."

- !poe - This qualifier permits the user to specify fields that are to be printed out
only when their value changes. The default value for this qualifier is "all."

- Itime - The default time range is the beginning-of-the-tape (BOT) to the end-of­
the-tape (EOT). This qualifier permits the user to select a shorter time range.

- Iformat - This qualifier permits the user to choose the format of the output.
Iformat = vertical produces data in columns (see Figure 7-3). Iformat=namelist
produces data in the "field-name = field-value" format (see Figure 7-1).
Iformat=export produces comma delimited data that can be imported into a
spreadsheet (see Figure 9-2 below.)

- Iselect - This qualifier permits the use of logical expressions to filter the data.
There is no default value for this qualifier.

- loptions - This qualifier allows the user to write all of the other qualifiers and
their associated values in a file. This qualifier permits short entries on the
command line along with reusable qualifier lists. There is no default for this
qualifier.

An options file provides an easy means for the user to determine what

command was used when unexpected results are produced. By having the option, via the

loptions qualifier, to store the qualifiers and their values in a file, the user can reuse the

same set of qualifiers and values. The file also can be changed easily to correct mistakes

or change values before being reused.

86

One of the new ADAR programs is Data Extraction Point (DXEP). While more

will be said later in this paper about this program, Figure 9- 1 illustrates the use of

qualifiers with the DXEP program.

dxep/ep=360/field =measx,measy,measzlformat=export z905

Figure 9- 1 : Example of Qualifier Use

The line in Figure 9- 1 can be read as the following: using the DXEP program,

examine the data found in the file created from tape z905. Print out, in comma delimited

format (lformat=export), the values for the measx, measy, and measz fields

(lfield=measx,measy,measz) in each instance of extraction point 360 (/ep=360). The

output generated by the above command would look like that shown in Figure 9-2.

24: 1 5 : 1 8 .396(873 1 8.396) 360,240.59462,1 89.00923,20 . 1 2348
24: 1 5 : 1 8.697(873 1 8.697) 360,241 .49012 , 1 80.89293 , 1 9.78561

Figure 9-2: Example of Comma Delimited Output

If the qualifiers used in Figure 9- 1 are put into a file, perhaps called

z905_360.opt, the file contents would look like the contents of Figure 9-3 . Each

qualifier is put on a separate line. The default extension for options files is .opt.

/ep=360
/field=measx,measy,measz
/format=export

Figure 9-3: Qualifier File Example

87

The new DXEP call line referencing the file illustrated in Figure 9-3 is illustrated

in Figure 9-4.

dxep/options=z905 _360 z905

Figure 9-4: Example of /options File Use

The requirements document that is to be developed for each new data analysis

program includes information regarding expected input, processing that occurs within

the program, and sample output. Additionally, the requirements document includes any

other information that might be needed by a user such as the applicable element,

extraction point(s), and fields(s). Generally, data analysis program development is

performed on the classified cluster computers. Even if not all of the development is

handled there, the development must be finalized on that system to ensure that it will

perform as expected. Consequently, when the data analysis program is turned over to the

ADAR group, the program is already on the classified cluster computers. The act of

turning over a program to the ADAR group consists of giving them the file name and the

directory where it is located. At the same time, both hard and soft copies of the

requirement document for the program also are turned over.

88

There are several advantages to the ADAR group being responsible for

maintaining all of the ADAR programs. The various AEGIS element groups can

concentrate on developing new data analysis programs without having to worry about

redoing older programs to accommodate changes to either ADAR functions or AEGIS

baselines. When something comes up that requires some change to the existing ADAR

programs, the ADAR group can systematically change all affected programs without

bothering the programmers or users in the element groups. This helps to make changes

to both the ADAR system and programs transparent to the other programmers as well as

to the users.

Once the ADAR group has control over a program and its documentation, they

are able to provide information to the users regarding the program. This information

includes the following: the existence of the program, what the program is called, what

the program does, and how to use the program. The newest way for the ADAR group to

let the users know this information is via a web Home Page on the classified cluster

computers and workstations. This will be discussed later.

As the ADAR group has developed functions and programs using C, they have

followed their own guidelines. As they did so, incomplete and confusing sections in the

programming standards guide were found and corrected. After a basic core of new

functions had been developed, the ADAR group started rewriting the older utility

programs using C. Additionally, new programs were developed to replace some of the

89

older programs. Since then all of the older utility programs have been replaced by C

versions. Additionally, most of the element programs have been rewritten in C.

9.4 Establishment of an ADAR Home Page

Originally, the only interface the classified cluster computer users had with the

data analysis computers were dumb terminals that were only capable of displaying lines

of text. While there were help files, they were difficult to use. Later, a few terminals

became available for handling the graphics required by plot programs. However, these

terminals were not capable of handling windowing environments. It was not until about

1 995 that any X-windowing terminals became available. Now most of the available

terminals are capable of handling X-windows.

With the availability of X-windows, the ADAR group was able to develop a web

Home Page that could be accessed via a web browser such as Netscape. When a user

goes to the ADAR Home Page, on the classified cluster terminals, he is able to find out

all he could possibly want to know about data analysis programs. The following are

some of the items found on this Home Page:

- Information about all ADAR functions and programs, such as requirements
documents, source code, sample output, and reported problems;

- ASCII data dictionary access;
- The ability to e-mail comments, questions, or problems to the ADAR group;
- Information, including documentation, regarding the ADAR software

development process; and
- Help files on other ADAR related items.

9.5 Old P rograms and Changes

90

During the transition to C developed programs, the fonnat used for the data

dictionaries was modified both to contain more infonnation and to make the data field

specifications orthogonal. A new line was added to the header section of each dictionary

definition. This line lists the type of computer that records the given extraction point

using the fonnat provided. Not only can the data dictionaries still have multiple tables,

the new fonnat can handle nested tables, long field names, long tables names, arrays of

tables and fields, IEEE floating point numbers, enumerators, big and little Endian order,

both 1 6 and 32 bit word sizes, and other items.

For extraction points that contained more than one table, another field is applied

to the EP line to indicate the level of the corresponding table. By having this second

field, while the extraction point number is the same, the multiple parts are

distinguishable by the level number.

The new fonnat for the FIELD lines within a TABLE declaration has both

changed the order of the contained fields and required all contained fields to have a

value. Figure 9-5 illustrates the new general fonnat.

FIELD: <field name>,<data type>,<field sign>,<starting bit>,
<word number>,<number of fractional bits>,<number of bits>

Figure 9-5: New General FIELD Fonnat Used in Data Dictionaries

9 1

Figure 9-6, modified from the example shown in Figure 4-2, shows the new

format with the new lines indicated by bold Italics. The first line defines the DRlST

number, i.e., MOO I 22J5. The second line contains the keyword "TYPE" followed by the

computer platform that records the following extraction points in the given formats.

This field is needed since the same extraction points can be recorded from more than one

computer platform, and not all platforms use the same format.

The third line, the first line of the extraction point definitions section, contains

the extraction point number, i.e., 1 1 . The fourth line contains the keyword "TABLE"

followed by the name of the table, TAB 1 ; the number of computer words used, 3 ; and

the number of items' in the extraction point, 1 . The next several lines, beginning with the

keyword "FIELD," contain field definitions.

Commas separate all fields description values. Contained fields that previously

may have been blank now contain a value. For example, the data types that do not have

fractional bits have a "0" in the fractional bits field. Since all tables are recorded in a

vertical format, there is no need to indicate this information.

The rewritten programs that are used to manipulate the data dictionaries are

EP AC, DD, and DC. The EP AC program is used to translate dictionaries from one

format to another. Two possibilities are from binary to ASCII format or vice versa. The

DD, for Display Dictionary, program is used to view dictionaries and perform various

types of searches on the dictionaries. The DC, for Dictionary Compare, program is used

DIeT: M00J22J5

TYPE: UYK07

EP: M,1 1 , 1
TABLE: TAB l ,3 , 1

92

COM: TAB 1 IS A 3 WORD TABLE WITH ONE ITEM.
FIELD: T l IAA, I,U,3 1 ,0,0,8
FIELD: Tl IBB,I,U,23,0,0,8
FIELD: T l ICC,I,S , 1 5,0,0, 1 6
FIELD: T l IDD,I,U,3 1 , 1 ,0, 1 6
FIELD: T1 BAA,B,S, 1 5, 1 ,0, 1
FIELD: T lBBB,B,U, 14, 1 ,0, 1
FIELD: Tl IEE,I,U, 1 3, 1 ,0, 14
FIELD: Tl DAE,A,S,3 1 ,2, 1 4,32

EP: M,1 1 ,2
TABLE: T AB2, 6 , 1

COM: T AB2 IS A 6 WORD TABLE.
FIELD: T2IAA,I,U,3 1 ,0,0, 1 6
FIELD: T2IBB,I,S,3 1 , 1 ,0,32
FIELD: T2BAA,B,U,7,2,0,1
FIELD: T2BBB,B,U,6,2,0, 1
FIELD: T2AAX,A,S,3 1 ,3, 1 6,32
FIELD: T2AAY,A,S,3 1 ,4, 1 6,3 1
FIELD: T2AAZ,A,S,3 1 ,5, 1 6,32

Figure 9-6: Data Dictionary Example in New Format

to compare data dictionaries from a whole dictionary down to a single field within a

dictionary.

The rewritten programs used to manipulate recorded data tapes and files are

DXMov, DXSum, and DXDump. The DXMov program translates data from one format

to another. This format change could be from one computer format to another, e.g.,

ANIUYK-43 format to V AX format, or from the file format produced for one purpose

into the file format required for another purpose. For instance, data files, produced at

93

Combat Systems Ship Qualification Trials (CSSQTs) in .tsf format must be converted to

.ats format for processing by ADAR programs. The moving of the data from the

recorded data tape to computer disk files on the classified cluster computer system

includes any needed changing of computer formats.

The DXSum program creates a summary of the extraction points in the data file.

This summary is useful when attempting to determine what extraction points were

recorded, the number of times each was recorded, and the time span of the recording.

The DXDump program creates a dump file of the contents of a raw data file in

octal, decimal, or hexadecimal format. This dump file is useful when debugging various

analysis programs or developing data dictionaries for non-AEGIS data.

A new program, called DXEP, that requires only one step to obtain useful

information was developed, in part, to replace the functionality provided by the

GenFLD, GenMEP, and GenPOC programs. As a result the general purpose GenFLD,

GenMEP, and GenPOC programs are being neither rewritten nor maintained. These

programs, as discussed in chapter 7, required many steps to obtain useful information.

Since most of their functionalities have been duplicated within the new DXEP program,

the old programs no longer are needed. Additionally, the POC and other old ADAR job

programs are not being maintained.

While these programs are not being maintained, they will remain available on the

various platforms supported by the classified cluster computers. When any compiler

problems arise with these programs, they will be removed from the applicable platform.

94

When the EP AC program was rewritten in C, the ability to create the data

dictionaries needed to support the GenFLD program was not put into it. As discussed in

section 7.3, the EPAC program generates the ASCII and binary data dictionaries that are

available on the classified cluster computers.

9.6 New Program Development

When the ADAR group started planning for the coming changes, they had a major

advantage over the original ADAR developers. First, they had a good idea of the

functionalities that ADAR programs needed, to support. Additionally, they had a good

idea of the analysts' needs a,s well as what output formats had proved to be useful. Some

of these items are reading the header messages found in the data fields, using this

information to locate the applicable data dictionary, and outputting selected data from

the data files in desired formats. From their knowledge, they were able to develop some

general-purpose programs to replace the most commonly used older programs. While

developing these programs, they were able to reduce the amount of work required by the

users as well as providing for more versatility from the program results.

The work horse, and most general, ofthese programs is DXEP. The original

DXEP was introduced in 1 995. Since that time it has continued to be enhanced so that

has become a very flexible and versatile program. DXEP uses an extensive set of

qualifiers to provide the user with a wide variety of options. Some of the qualifiers,

discussed previously in Section 9.3, need to be discussed further with regard to DXEP.

When DXEP is used with the /POC qualifier, the output results are much the same as

95

would be produced by a program generated by the GenPOC program. When DXEP is

used with the Iformat = vertical qualifier, the output is in column format similar to that

produced by a program generated by the GenPOC program. When DXEP is used with

the Iformat=namelist qualifier, the output is similar in appearance to that which would be

produced by a program generated by the GenMEP program. When DXEP is used with

the Iformat=export qualifier, comma delimited data is produced that can be imported into

a spreadsheet for examination.

9.7 New Extraction Point Types

The CND and SPY elements have several extraction points that are frequently used

together. Some of them are the same extraction points that were reorganized in the

changes from baseline 3 to baseline 4. While some useful information may be

determined from each of these extraction points individually, they must be correlated

before most information can be determined. While this correlation was coded into

several programs originally produced by the GenMEP program, there was no easy way

to incorporate this ability into other programs without recoding for the specific situation.

The ADAR group was aware of the need for these correlations. Consequently,

using the correlation that had been built into a GenMEP produced program as a base, an

ADAR library function was developed in C with the ability to correlate the data in two

extraction points. First this function was extended to handle all baselines. Later,

correlation with another extraction point was added to the first correlation. After the

correlation for the first set of extraction points had been completed and put on the

96

classified cluster system, another set of extraction point correlations, for another

element, was developed. Now ADAR users can access these extraction points, and take

advantage of the correlation computations, by specifying the qualifier IEP=CDTRK for

the CND extraction points or IEP=SPYTRK for the SPY extraction points.

1 0 Expanding the ADAR Environment

With the explosion in the variety of computer platforms being used by the

various ADAR users, a need has arisen to make the data analysis programs portable

across many different platforms. Additionally, data recording for the tactical system is

expanding from only ANfUYK computers to incorporate other platforms such as HP

running their UNIX operating system (HPUX) and Personal Computers (PCs) with

baselines 6 and 7. For instance, the ACTS element is being rehosted to Sun workstations

using both the C and Ada-83 programming languages. Data reduction for the rehosted

ACTS can be performed on the same Sun workstations. Also, other elements are being

incorporated into the ACS that use non-ATES formats for recording their data.

Two of the new formats being used are Data Extraction and Recording (DXR)

and C2P. DXR-formatted data is recorded from COTS systems using a set of

Application Program Interface (API) functions. These API functions have been written

in C. C2P-formatted data is recorded from a C2P system. With the analysis programs

being made portable to other computer platforms, the users, if desired, will be able to

analyze data on the same platform that was used to record the data.

While ADAR programs are still available on V AX computers using the VMS

operating system, other computer platforms are beginning to be used for data analysis.

97

98

There are a variety of computers using their own version of the UNIX operating system

being used for data analysis. Some of these are the following: SUN computers using the

Solaris operating system, HPUX:, SGI computers using the IRlX operating system, and

Alpha computers using Digital UNIX. Additionally, Alpha computers using the VMS

operating system and PC computers using either the Windows or NT operating systems

are being used.

The explosion in the use of these various types of computer platforms is

primarily due to the developments that have occurred in recent years. Some of these

developments include the expansion of both the disk space and the memory available for

non-mainframe computers. With this expansion, it is now possible to fit the data from at

least twenty recorded data tapes on the disk drive of a desktop computer.

The AEGIS Classified Support System (ACSS) program has been developed to

allow PCs in secure offices to be networked with the classified cluster V AX computers.

In addition to the advantage to users of being able to work from their own offices, fewer

common use terminals are needed in the ACC. Needing fewer terminals in the ACC has

its own advantages such as taking up less space for data analysis and opening up more

space for other uses.

Even though several different computer platforms can be networked to the

classified V AX computer, at the present time this networking only allows the users to

copy files from one platform to another. A copy of the ADAR function library, the

needed data dictionaries, the data files, and program files must appear to be resident on

99

the same computer before they can be used together. This is generally accomplished via

network file system (NFS) mounting. Therefore, although the computers are networked

together, ADAR data analysis programs still work in a stand-alone mode.

Making the ADAR data analysis programs portable across different platforms

makes the programs usable at other AEGIS sites. Testers, observers, and analysts travel

to other AEGIS sites and need to be able to examine data while there. Since the users

find familiar programs much easier to use than unfamiliar programs, there has been a

great demand in the past for the ADAR data analysis programs to be available at the

other sites. In addition to the output from unfamiliar programs being difficult to use due

to different data layouts and contents, the output generated by these programs may not

contain the information that a user needs.

In order to port ADAR programs to other sites, special programs have been

developed that create executable versions of programs for the other sites. This was

necessary since the computer configurations available at the other sites are generally not

the same as in the ACC. At first, either someone from the ADAR group or users from

the element groups would take executable versions of the ADAR programs to the site.

Once there, either the person from the ADAR group or a systems person already at the

site would install the programs. Now it is possible to use FTP to move the executables

to the various sites. This makes it easier for the programs at the other sites to be kept up

to date when changes are made. In addition to programs, the same situation applies to

maintaining the ADAR function files and data dictionary files.

1 1 The Future

The ADAR group is continuing to convert the remaining element programs to C.

While this process has been going on for about four years now, it will probably continue

for several more years.

The ADAR group is working on having the different computer platforms

networked together with a single ADAR in a client-server arrangement. That is, the

ADAR job processor, programs, data dictionaries, and function library will be on only

one computer, the server. The users will be able to access the ADAR system from the

computer platforms of their choice, the clients. No matter which platform they may be

working from, they will be accessing the ADAR system on the server where it resides.

The platform differences will be invisible to the users. When a user wants to run a

program, it will appear to run on his "home" platform. However, the ADAR system will

determine which computer platform will be used based, in part, on the processing speed

ofthe platforms as well as the availability of the platforms. As the need arises the

ADAR programs may be moved to other, probably faster, platforms. When the ADAR

system files are moved to another platform, the processing will occur on the new

platform but the move will be transparent to the users.

1 00

1 0 1

Currently, the server platform i s an H P computer. The server platform can be

whichever computer platform the ADAR group might want. The computer platform in

use at a particular time will probably be the fastest available.

There are two ways of achieving this client-server ability: write one's own code

using sockets and API functions or use existing web servers and browsers. Since API

functions are different from platform to platform, the disadvantage of this method is

obvious. Additionally, it can be difficult to get programs to be portable to all platforms

when writing one's own code. Not having to learn the API functions is the only real

advantage of writing one's own code. Since web servers and browsers were not meant

to run programs, the ADAR group is not sure that using the web servers and browsers in

this way will work. If it does work, web servers and browsers may prove to be too slow

to be useful. On the other hand, there are many advantages to using existing web servers

and browsers. Three of the primary advantages are listed here. First, they are free,

relatively, and can be used without needing to write new programs to perform their

functions. Second, they are portable across computer platforms. Third, web servers and

browsers are becoming increasing familiar environments to users. After weighing the

advantages and disadvantages of each, the ADAR group has decided to use web servers

and browsers, especially Netscape using HTML format, to handle this networking.

A major aspect of the networked ADAR system will be a new job processor. It

will be a windowing version of the old job processor. This new job processor, called the

ADAR Task Manager (TM), is currently under development by the ADAR group. Once

1 02

finished, when the ADAR Task Manager is run, the user interface will display file tabs

from which the user will choose the desired program area to be used, e.g., utility

programs, CND programs, etc. Once the user chooses the desired program area, the

applicable programs for the indicated area will be displayed. When the user makes the

program choice, the displayed window will have blanks to be filled in as applicable for

the needed input to the chosen program. One set of choices will involve picking whether

to run the program interactively or in the background, i.e., batch mode. Once all of the

required blanks have been filled in, the user will select the j'Submit" button to run the

program.

The new job processor will permit access to the new graphical programs that are

being developed. The users will able to create plots, i.e., charts, comparing the values in

the user's choice of fields when these programs are used. While these graphical

programs do not currently have a standardized development process, the developers are

still able to draw on the standards that have been developed for the non-graphical

programs. The graphical programs are also being developed to be portable to other

computer platforms though not all platforms are able to handle the graphics involved.

Some of the platforms to be used are X -windows on V AX, SGI, HP, and Alpha

platforms as well as PCs using the Window operating system.

Most users are resistant to changing from the familiar V AX ADAR environment.

This is the primary reason for making the server computer platform transparent to the

1 03

users. Rather than forcing the users to change, the ADAR group is just going to

accommodate them.

In order to improve the installation process at other sites, the ADAR group has

recently started developing an install program. This program will eventually be able to

install programs at all sites on all major platforms. Even when the program can handle

one platform type at one site, much work will remain to finish this task.

The ADAR group is planning several additional things to enhance the many

ADAR programs. One possibility will effect how the output is displayed on the terminal.

Currently, when the output is displayed to the terminal, all lines scroll up and off the

screen. After the heading has disappeared, the user can have difficulty interpreting the

displayed data when the scrolling is paused. One possible enhancement to help this

situation will keep the headers at the top of the screen but let the data lines keep scrolling

up and off the screen.

12 Conclusion

The ability to run the ADAR programs from the command line will not go away.

Many users prefer this method and do not wish to change. The old, non-supported

programs such as GenMEP and GenFLD will not disappear anytime soon. They just

will not work with the new data formats. Additionally, there are compiler issues when

they are ported to some computer platforms. For instance, they cannot be used on Alpha

workstations. Since GenMEP and GenFLD are not being supported, the compiler issues

will not be addressed. This situation was handled by removing these programs from the

Alpha workstations. As the ADAR personnel change and new people start working with

the ADAR system, they are only exposed to the new programs. Eventually the old

programs will become outdated and will die.

The ADAR system will continue to be enhanced well into the future. There are

several hundred people working with the AEGIS program at NSWCDD. There are many

more people working with the AEGIS program both at other sites and onboard the

AEGIS ships. Since new ships are still being commissioned, the AEGIS program is

expected to continue well into the 2 1 st century. With the life expectancy of the ships

being around 50 years, data analysis will be needed for the AEGIS system for many

more years.

1 04

1 05

When the ADAR system first began, the computer industry was very immature

compared to what it is today. The user base frequently had limited exposure to any

computers and data analysis programs. In addition to training the users to be able to use

the needed computers, useful programs had to be developed for the user community.

Despite the handicaps, the people working with the ADAR system still managed to

produce a variety of useful programs.

While it would have been better for the original ADAR group to have done some

things differently, they did the best that probably could have been done with the

constraints put upon them. It would have been better to develop programs that were not

baseline specific as 'well as those that did the whole job at once rather than piecemeal.

At the time no one realized that so many baselines would be developed. As a result no

one could have anticipated the configuration management problems that could arise.

They were under pressure to produce useful programs quickly, which they were able to

do. Additionally, they had to work within the knowledge, people, and technology base

available to them.

As the AEGIS program has evolved, the ADAR group and system have also

evolved and adapted. From the early, difficult beginnings to the present, the ADAR

system has grown into a set of highly sophisticated data analysis tools that are flexible

enough to be used at many sites, on many platforms, to produce a variety of outputs

while at the same time being relatively easy to use. If the original ADAR group

members had made different choices, either some of the growing pains could have been

1 06

avoided or there could have been more growing pains. The pioneers in any field need to

be admired when they are able to overcome obstacles to achieve their goals. This

certainly holds true for the pioneer ADAR developers and users.

The current ADAR developers also must be commended for their vision for the

future. New technology and needs have provided challenges that the ADAR developers

have tackled. They have been successful, thus far, in providing improved programs and

user interfaces as well as enhancing the capabilities of the ADAR system. Thanks to

their efforts, the users are able to use the ADAR programs at several sites with more ease

to provide quicker answers than ever before.

Bibliography

1 07

Bibliography

Augarten, Stan. Bit by Bit. Ticknor and Fields, New York: 1 984.

Bunch, Bryan, and Alexander Hellemans. The Timetables of Technology: A
Chronology of the Most Important People and Events in the History of Technology.
Simon and Schuster, New York: 1 994.

Campbell, George P. AEGIS Data Reduction System (ADAR) User's Guide
(Preliminary), January 1 2, 1 978. RCA Missile and Surface Radar Division,
Moorestown, NJ: 1 978.

Canup, Steven. Conversations. ADAR group, NSWCDD, V A: 1 995- 1 998.

CMS-2Y Programming: A Self-Instructional Manual. Fleet Combat Direction Systems
Support Activity, San Diego: 1 98 1 .

Combat Systems Department. AEGIS Data Reduction System (ADAR) User's Guide,
July 1 985. Naval Surface Weapons Center, Dahlgren, VA: 1 985.

Computer Program Performance Document for the AEGIS Data Analysis and
Reduction (ADAR) Sequential Processor (ASP). Science Applications International
Corporation, Dahlgren, VA: 1 989.

Orientation Handbook of Personnel Oualification Program (POP). AEGIS Shipbuilding
Project: 1 983.

N23/ADAR group. Introducing ADAR. NSWCDD, Dahlgren, VA: 1 993.

N86/ADAR group. Introducing ADAR. NSWCDD, Dahlgren, VA: 1 995.

N86/ ADAR group. ADAR Library Functions. NSWCDD, Dahlgren, VA: 1 996.

N86/ ADAR group. ADAR Programming Standards. NSWCDD, Dahlgren, VA: 1 996.

1 08

1 09

N86/ADAR group. ADAR Requirements Document for ADAR Task Manager, Version
LQ. NSWCDD, Dahlgren, V A: 1 997

N86/ADAR group. ADAR User's Manual: AEGIS Display System (ADS) Programs.
NSWCDD, Dahlgren, VA: 1 998.

N86/ADAR group. ADAR User's Manual : Command and Decision (CND) Programs.
NSWCDD, Dahlgren, VA: 1 998.

N86/ADAR group. ADAR User's Manual : Introduction. NSWCDD, Dahlgren, VA:
1 997.

N86/ADAR group. ADAR User's Manual : General Utilities. NSWCDD, Dahlgren,
VA: 1 997.

N86/ADAR group. ADAR User's Manual : Spy Programs. NSWCDD, Dahlgren, VA:
1 998.

N86/ADAR group. ADAR User's Manual : Weapon Control System (WCS) Programs.
NSWCDD, Dahlgren, VA: 1 998.

Naval Sea Systems Co
·
mmand. Condition of AEGIS, March 1 975. Naval Sea Systems

Command: 1 975.

Pollack, Kay. Conversations. ADAR Group (retired), NSWCDD, V A: 1 997.

RCA Corp. RCA Proposal for Inclusion of the ANIUYK-43 Computers on the Lead
DDG Ship. RCA Corp: 1 982.

Smith, Pearl. Conversations. ADAR group (retired), NSWCDD, V A: 1 997.

Sperry Univac Corp. ANIUYK-7 Technical Description. Sperry Univac Corp. : 1 980.

US Navy. Pictures of the ANIUYK-7, ANIUYK-20, ANIUYK-43, and ANIUYK-44.
Available via the internet at www.m42.crane.navy.miI170617063.

US Navy. Pictures of the USS Normandy and USS Ramage. Available via the internet
at www.milnet.comlmilnetlindex.html.

Appendices

Appendix A Timelines Relating AEGIS Development and the

Com puter Ind ustry

A.l AEGIS Highlights

Pre-1960 - Developments preceding AEGIS program

- In the late 1 940s radar, a critical component of AEGIS in its Anti-Air Warfare
(AA W) role, was being developed.

- In 1 945 the first flight of a supersonic ramjet missile was made.

- In 1 947 successful control of a supersonic missile was gained.

- In 1 948 a supersonic missile was made to ride a radar beam.

- In the 1 950s the first higher-level computer languages for the United States (US)
military were developed. The CS-I programming language was developed for
use on the CP-642/USQ-20 family of second-generation computers.

1960 through 1 969 - Decisions made that resulted in the development of the AEGIS

program

- In 1 963 the Department of Defense directed the Navy to formulate an AA W
missile system as a replacement for the 3-T AA W systems.

- In 1 965 the Navy and contractors assessed the 28 system concepts with various
system characteristics that had been proposed by seven different contractors for
the AEGIS program. From these proposals they defined an optimum system
then forwarded the report to the Chief of Naval Operations (CNO).

- In 1 967 the Army/Navy Missile System Commonality Study concluded that
unique systems were required for AEGIS. The Office of the Secretary of
Defense (SECDEF) agreed.

1 1 0

1 1 1

- In 1 968 the AEGIS Development Concept Paper was approved for Contract
Definition. Three prime contractors were selected for the Phase B Contract
Definition of the AEGIS program.

- In 1 969 the AEGIS Engineering Development Contract was awarded to the
Radio Corporation of America (RCA) on December 23'd .

1 970 through 1979 - The beginnings of the AEGIS program

1 970 - The AEGIS Preliminary Design Stage Completed

The RCA management of AEGIS was assigned to the AEGIS Program Office.
The AEGIS Program Office was established at the Missile and Surface Radar
Division of RCA in Moorestown, NJ. Other RCA locations were subcontracted
as well as other contractors and vendors. The Preliminary Design Review
(Milestone A) was completed towards the end of the year. The first ANIUYK-7
mainframe computers become operational and were delivered for the Command
Control (CC) Mark (Mk) 1 30. The planned AEGIS Combat System elements at
this time were the Radar System AN/SPY -1 (SPY), CC Mark 1 30, Operational
Readiness Test System (ORTS), and a combined Fire Control System Mark 99
and Weapon Direction System Mark 1 2 (FCSIWDS). The AEGIS Weapon
System (A WS) was planned to be the anti-air weapon system for the nuclear­
powered destroyer (DLGN)-38 ship class. The STANDARD MISSILE (SM)-2
missile was to be launched by the Guided Missile Launching System (GMLS).
The tactical system code development was begun using the CMS-2M
programming language.

1 97 1 - The AEGIS Critical Design Stage Began

The fust modified ANIUYA-4 operator display consoles were delivered. Also,
launchers, missiles, and other additional necessary equipment items were either in
final tests or being delivered. The first launch of the SM-2 missile occurred at the
end of the year. Many of these equipment items were modified from either the
Navy's current store or from equipment originally intended for other
developmental programs. The newly established program generation centers
began receiving equipment. An intensive effort was being made at interface
management between the elements. Work had started on the executive program
to be run on an ANIUYK -7 computer. The first training of sailors was begun this
year at contractor sites. Congress reduced the DLGN-38 ship class on which the
A WS was to have been the anti-air weapon system from 23 ships to only five
ships. The DLGN-38 ships were too few, and they would be ready too soon for

1 1 2

the A WS. The DLGN-38 ship class later became the Virginia nuclear-powered
cruiser (CGN)-38 ship class.

1 972 - AEGIS Fabrication Began

In early 1 972 after a successful Critical Design Re;view (Milestone B), assembly
of the system and segment level testing began. The system being assembled
incorporated most of the systems modified or manufactured for the AEGIS
program. The modified systems had been developed for other programs and
required some modifications in order to be used by the AEGIS program. On the
other hand, new systems were developed specifically for the AEGIS program.
The AEGIS Tactical Executive Program (ATEP) was delivered and loaded in the
ANIUYK-7 computers at program generation centers (PGCs). Four ANIUYK-7
computers were able to communicate at the PGCs. This demonstrated that SPY,
the FCSIWDS, and the CC computer programs, each housed on separate
computers, along with the ATEP, could be integrated to enable inter-computer
communication. The ORTS was integrated with the other elements. These
integrated elements formed the First Engineering Development Model (EDM-l).
The USS Norton Sound was converted to house the A WS for test and
development. The GMLS was installed on the USS Norton Sound. The CNO
authorized a gas turbine-powered (DG) class to be designed specifically for the
AWS.

1 973 - AEGIS Ashore Tests Began

During the first part of 1 972, the integration of missile and launching system
simulators with the rest of the weapon system completed the federation forming a
complete weapon system. This integration occurred at the Land Based Test Site
(LBTS) on the East Coast. In the early spring the AN/SPY - 1 radar began tracking
live targets. Link- I I transmitted AEGIS data to Fleet Combat Direction Systems
Support Activity (FCDSSA), in Dam Neck, Virginia, then to the USS Farragut

operating in the Atlantic Ocean off the New Jersey coast. During the Operational
Readiness Exercise (OPREDEX) 2-74, data on system availability was produced
during simulated combat conditions. After the successful Land Based Test
Completion (Milestone C), the AEGIS first EDM- l equipment items were flown
to Long Beach to be installed in the USS Norton Sound. Sea tests were conducted
with the GMLS to validate launcher/fire-control system interfaces. The Navy and
RCA worked to formulate requirements for the AEGIS Combat System (ACS).
The Secretary of the Navy (SECNAV) directed that both a gas turbine (DG) ship
and a nuclear-powered (DLGN) ship be considered for AEGIS ships.

1 1 3

1 974 - AEGIS Sea Tests Begin

The AN/SPY -1 radar was installed in the USS Norton Sound. The AN/SPY-l
radar started tracking in the Pacific in March, only four months after being moved
from the East Coast. The first live ship firings occurred in May when the A WS
(EDM- l) on the USS Norton Sound automatically detected, transitioned to track,
tracked, engaged, and intercepted drone aircraft targets, physically impacting and
destroying the second target. (Note: Interception occurs when the interceptor
comes within a predetermined distance of the target. Interception does not mean
the interceptor actually impacts the target.) After the successful tests during June,
the AEGIS Executive Council decided that Milestone D had been achieved. In
December the AN/SPY - 1 radar displayed its ability to provide the necessary data
to control, track, and evaluate critical fleet exercises while surveying the entire
exercise. Both the DG and the new DLGN ships under consideration for AEGIS
ships were canceled. The SECDEF and the Defense System Acquisition Review
Council (DSARC) directed that strike cruisers (CSG) be considered for future
AEGIS ships.

1 975 - AEGIS Sea Tests Continued

During 1 975 the A WS Mk 7 (EDM- l) on the USS Norton Sound continued to
intercept or destroy every type of active airborne target tested. During February
the A WS Mk7, on the USS Norton Sound, destroyed a moving target using a
single missile. From the detection of the target to the interception and killing of
the target, this operation only required human intervention to close the firing key.
Milestones E and F were achieved this year. Early in the year the DSARC
considered the USS Long Beach (CGN-9) for future AEGIS ships. Later in the
year the SECDEF directed a gas turbine-powered guided missile destroyer (DDG-
47) and a nuclear-powered strike cruiser (CSGN) to be developed to house the
AEGIS Combat System. Training materials for both instructors and operators
continued to be developed. On-the-job training was begun on the USS Norton

Sound.

1 976 - Sea Tests and Combat System Development Continued

During 1 976 the DDG-47 system studies were performed with a scale model
being built. Training and testing continued both at sea and ashore. Congress
rejected the CSGN and put the previously appropriated money towards putting the
A WS in the CGN-9. This money was later turned back to Congress.

1 14

1 977 - Combat System Development and Ship Design Continued

PMS-400 was established to be the AEGIS Program Office. The AEGIS Program
Office was given the responsibility for AEGIS ships from design, development,
engineering, and acquisition throughout a ship's lifetime. The preliminary design
of the DDG-47 was completed. Congress authorized the first AEGIS destroyer to
be built on a SPRUANCE class destroyer (DD-963) hull. The site of the former
Missile and Surface Radar Division of RCA in Moorestown, NJ, which had been
turned over to the Navy in 1 970, was commissioned as the Combat System
Engineering Development (CSED) EDM-3 site (CSEDS). In addition to
engineering development work for baseline upgrades, the CSED site was intended
to provide training for navy and civilian personnel.

1978 - DDG-47, the First AEGIS Destroyer

Contracts were awarded for the production of both the A WS and for the first
AEGIS warship. The production contract was awarded to RCA by the US Navy
for the first A WS to be put on an AEGIS warship. At this time the plan was for
the first AEGIS warship, designated DDG-47, to be a Guided Missile Destroyer.
Later in the year the US Navy signed a Detail Design and Construction contract
for the DDG-47 with the Ingalls Shipbuilding Division. Plans for a nuclear
cruiser, CGN-42, design was shelved. The AEGIS team at the CSEDS completed
the AEGIS Intermediate Milestone I in the fall.

1 979 - DDG 47 Fabrication Started

Construction was begun on the AEGIS Computer Center (ACC) at the Naval
Surface Weapons Center (NSWC) in Dahlgren, Virginia. The EDM-1 Nertical
Launch System Integration Program was begun. Construction was begun on the
AEGIS Production Test Center (PTC) in Moorestown, NJ. The US Navy
operated the A WS during Operational Test III B. The USS Norton Sound at Long
Beach Naval Shipyard was modified to accept the mechanism being developed for
the vertical launch system (VLS). The fabrication of the DDG-47 was begun with
the cutting of steel at the Ingalls Shipbuilding Division. The designation of DDG-
47 for Guided Missile Destroyer was changed to CG-47 for Guided Cruiser.

1980 through 1989 - The first AEGIS Cruisers and Destroyers Built

1 980 - CG 47 Ticonderoga Integration Began

The first AEGIS equipment was delivered to the PTC for acceptance testing. The
CG-47 was named Ticonderoga, and her keel was laid. Since the CG-47 was the

l i S

first AEGIS class guided cruiser, the CO-47 ship class was name the Ticonderoga
class. The A WS and ACS equipment and computer programs started arriving at
the PTC to prepare for their testing phase. The AN/SPY-I A radar arrays were
accepted. The US Navy awarded the contract for construction of the second
AEGIS warship, CO-48, to Ingalls Shipbuilding Division. Combat system
integration continued at CSEDS. The PTC-installed AN/SPY- IA tracked real
targets. The VLS computer was installed in the USS Norton Sound. The US
Navy signed the contract with RCA to furnish the A WS for the CO-48. Planning
continued to start the volume production of ACS specific items with CO-48
followed by CO-49 and CO-SO. Integration of the hull modules began at the
shipyard.

198) - AEGIS installed in Ticonderoga

The first SM-2 was successfully flown at the White Sands Missile Range in the
Vertical Launching Program. CO-47, USS Ticonderoga, was christened at
Ingalls. After the successful completion of the Acceptance Test for the USS

Ticonderoga's A WS at the PTC, the weapon system was packed, shipped, and
delivered to the USS Ticonderoga. Sea tests ofVLS aboard the USS Norton

Sound were begun. Testing the ACS aboard the USS Ticonderoga was begun.
The keel for CO-48 was laid. The contracts for construction of the third and
fourth AEGIS warships, the CO-49 and CO-SO, were awarded.

1 982 - USS Ticonderoga Passed Its Sea Trials

The ACC opened for business. Work was started to replace ANIUYK-7
computers with the ANIUYK-43B computers. Main engine lightoff for the USS

Ticonderoga occurred followed a few months later by the turning for the first time
of her propellers. Later in the same year all sea trials aboard the USS Ticonderoga

were completed successfully in Trial Alpha, Trial Bravo, and Trial Charlie. Then
the captain of the USS Ticonderoga took formal acceptance of the ship from
Ingalls. The AN/SPY- I A radar system aboard the USS Ticonderoga actively
tracked targets and received data from the CSEDS via Link-I I . The first CO-48
radar array was tested then installed at the PTC. The contract for the CO-Sl was
awarded. Ingalls received the contract to build the CO-S2 and the CO-S3. VLS
aboard the USS Norton Sound successfully fired SM-2s that then hit their targets.
Cutting the steel for the CO-49 was started at Ingalls. A manager was named for
the DDO-S l program. The US Navy decided to name the DDO-S l the Arleigh

Burke and to include the AN/SPY- I D radar as well as VLS on it. Plans were made
to implement the ANIUYK-43B computers into the DDO-S l lead ship. The CO-
48 was named the USS Yorktown.

1 1 6

1 983 - USS Ticonderoga Commissioned

The USS Ticonderoga, CG-47, was commissioned as a US Navy ship. The USS
Ticonderoga was the first ACS baseline 1 ship. The USS Ticonderoga used the
AN/SPY- I A radar. At this time the plans were to build 26 ships in the CG-47
ship class. The CG-48, USS Yorktown, was launched at Ingalls and later
christened. VLS was modified to handle the TO MARA WK cruise missile. The
contracts for the CG-54, the CG-55, and the CG-56 were awarded. The CG-49
was named the USS Vincennes, and the CG-50 was named the USS Valley Forge.

1 984 - USS Yorktown Commissioned

The USS Yorktown, CG-48, was commissioned as a US Navy ship. The first VLS
for TOMAHAWK was slated to go into CG-52. The contracts for the CG-57, the
CG-58, and the CG-59 were awarded. The CG-5 1 was named the USS Thomas S.

Gates, the CG-52 was named the USS Bunker Hill, and the CG-53 was named the
USS Mobile Bay.

1 985 - Contract for First AEGIS Destroyer Awarded

The USS Vincennes, CG-49, was commissioned as a US Navy ship. The
contracts for the CG-60, the CG-6 1 , and the CG-62 were awarded. The CG-54
was named the USS Antietam, the CG-55 was named the USS Leyte Gulf, and the
CG-56 was named the USS San Jacinto. The contract for the DDG-5 1 , the
AEGIS destroyer, was awarded.

1 986 - AEGIS Cruisers Continue to be developed

The USS Valley Forge, CG-50, and the USS Bunker Hill, CG-52, were
commissioned as U S Navy ships. The USS Bunker Hill was the first ACS baseline
2 phase 2 ship to be outfitted with VLS. All AEGIS ships since then have been
outfitted with VLS. The contracts for the CG-63, the CG-64, and the CG-65 were
awarded. The CG-57 was named the USS Lake Champlain, the CG-58 was
named the USS Philippine Sea, and the CG-59 was named the USS Princeton.

1 987 - DDG-5 1 Ship Class Named

The USS Thomas S. Gates, CG-5 J ; the USS Mobile Bay, CG-53; the USS

A ntietam, CG-54; and the USS Leyte Gulf, CG-55, were commissioned as US
Navy ships. The contracts for the CG-66, the CG-67, and the CG-68 were
awarded. The CG-60 was named the USS Normandy, the CG-61 was named the
USS Monterey, and the CG-62 was named the USS Chancellorsville. The

1 1 7

contracts for the DDG-S2 and the DDG-S3 were awarded. The DDG-S I was
named the USS Arleigh Burke. Since the DDG-S I was the first AEGIS class
destroyer, the DDG-S I ship class was named the Arleigh Burke class.

1 988 - Contract for Final AEGIS Cruiser Awarded

The USS San Jacinto, CG-S6, and the USS Lake Champlain, CG-S7, were
commissioned as US Navy ships. The USS San Jacinto was the first ACS
baseline 2 phase 3 ship. The contracts for the CG-69, the CG-70, the CG-7 1 , the
CG-72, and the CG-73 were awarded. The CG-73, the 27'h AEGIS cruiser, was
slated as the last guided cruiser in the CG-47 family. The CG-63 was named the
USS Cowpens, the CG-64 was named the USS Gettysburg, and the CG-6S was
named the USS Chosin.

1 989 - Second and Third AEGIS Destroyers Named

The USS Philippine Sea, CG-S8; the USS Princeton, CG-S9; the USS Normandy,
CG-60; and the USS Chancellorsville, CG-62, were commissioned as US Navy
ships. The ass Princeton was the first ACS baseline 3 phase 2 ship as well as the
first ship to use the AN/SPY- I B radar. The CG-66 was named the USS Hue City,
the CG-67 was named the USS Shiloh, and the CG-68 was named the USS Anzio.

The contracts for the DDG-S4, the DDG-SS, the DDG-S6, the DDG-S7, and the
DDG-S8 were awarded. The DDG-S2 was named the USS John Barry, and the
DDG-S3 was named the USS John Paul Jones.

1990 through 1999 - Transitioning Into the Future

1 990 - First AEGIS Destroyer Commissioned

The USS Monterey, CG-6 1 ,was commissioned as a US Navy ship. The USS

Monterey was the first AEGIS Combat System baseline 3A ship. The CG-69 was
named the USS Vicksburg, the CG-70 was named the USS Lake Erie, the CG-7 1
was named the USS Cape St. George, the CG-72 was named the USS Vella Gulf,

and the CG-73 was named the USS Port Royal. The contracts for the DDG-S9,
the DDG-60, the DDG-61 , the DDG-62, and the DDG-63 were awarded.

1 99 1 - AN/SPY - I B(V) Radar Deployed

The USS Cowpens, CG-63; the USS Gettysburg, CG-64; the USS Chosin, CG-6S;
the USS Hue City, CG-66, and USS Arleigh Burke, DDG-S l , were commissioned
as US Navy ships. The USS Cowpens was the first AEGIS Combat System
baseline 3 phase 3 ship while the USS Chosin was the first AEGIS Combat

1 1 8

System baseline 4 phase I ship using the ANIUYK-43 and ANIUYK-44
computers. The USS Chosin was the first ship to use the AN/SPY-I B(V) radar.
The USS Arleigh Burke was the first AEGIS Combat System baseline 4 ship and
also was the first ship to use the AN/SPY- I D radar. The contracts for the DDG-
64, the DDG-65, the DDG-66, and the DDG-67 were awarded. The DDG-54 was
named the USS Curtis Wilbur, the DDG-55 was named the USS Stout, the DDG-
56 was named the USS John S. McCain, the DDG-57 was named the USS
Mitscher, and the DDG-58 was named the USS Laboon.

1 992 - Second and Third AEGIS Destroyers Commissioned

The USS Shiloh, CG-67; the USS Anzio, CG-68; the USS Vicksburg, CG-69; the
USS John Barry, DDG-52; and the USS John Paul Jones, DDG-53, were
commissioned as US Navy ships. The USS Vicksburg was the first AEGIS
Combat System baseline 4 phase 2 ship. The contracts for the DDG-68, the
DDG-69, the DDG-70, the DDG-71 , and the DDG-72 were awarded. The DDG-
59 was named the USS Russell, the DDG-60 was named the USS Paul Hamilton,
the DDG-61 was named the USS Ramage, the DDG-62 was named the USS

Fitzgerald, and the DDG-63 was named the USS Stethem.

1 993 - Three Cruisers Commissioned

The USS Lake Erie, CG-70; the USS Cape Sf. George, CG-71 ; and the USS Vella
Gulf, CG-72, were commissioned as US Navy ships. The contracts for the DDG-
73, the DDG-74, the DDG-75, and the DDG-76 were awarded. The DDG-64 was
named the USS Carney, the DDG-65 was named the USS Ben/old, the DDG-66
was named the USS Gonzalez, and the DDG-67 was named the USS Cole.

1 994 - Five Ships Commissioned

The USS Port Royal, CG-73; the USS Curtis Wilbur, DDG-54; the USS Stout,

DDG-55; the USS John S. McCain, DDG-56; and the USS Mitscher, DDG-57,
were commissioned as US Navy ships. The CG-73 was the last AEGIS class
guided cruiser built. The contracts for the DDG-77 and the DDG-78 were
awarded. The DDG-68 was named the USS The Sullivans, the DDG-69 was
named the USS Milius, the DDG-70 was named the USS Hopper, the DDG-71
was named the USS Ross, and the DDG-72 was named the USS Mahan.

1 995 - First Baseline 5 Phase I Ship Commissioned

The USS Laboon, DDG-58; the USS Russell, DDG-59; the USS Paul Hamilton,
DDG-60; the USS Ramage, DDG-6 1 ; the USS Fitzgerald, DDG-62; and the USS

1 1 9

Stethem, DDG-63, were commissioned as US Navy ships. The USS Russell was
the first AEGIS Combat System baseline 5 phase 1 ship. The contracts for the
DDG-79, the DDG-80, the DDG-8 1 , and the DDG-82 were awarded. The DDG-
73 was named the USS Decatur, the DDG-74 was named the USS McFaul, the
DDG-75 was named the USS Donald Cook, and the DDG-76 was named the USS
Higgins.

1 996 - Five Destroyers Commissioned

The USS Carney, DDG-64; the USS Ben/old, DDG-65; the USS Gonzalez, DDG-
66; the USS Cole, DDG-67; and the USS Milius, DDG-69, were commissioned as
US Navy ships. The contracts for the DDG-83 and the DDG-84 were awarded.
The DDG-77 was named the USS o 'Kane, and the DDG-78 was named the USS
Porter.

1 997 - First Baseline 5 Phase 3 Ship Commissioned

The USS The Sullivans, DDG-68; the USS Hopper, DDG-70; and the USS Ross,

DDG-71 , were commissioned as US Navy ships. The USS The Sullivans was the
first AEGIS Combat System baseline 5 phase 3 ship. The contracts for the DDG-
85, the DDG-86, the DDG-87, and the DDG-88 were awarded. The DDG-79 was
named the USS Oscar A ustin, the DDG-80 was named the USS Roosevelt, and the
DDG-8 1 was named the USS Winston Churchill.

1 998 - Two Destroyers Commissioned

The USS Mahan, DDG-72, and the USS Decatur, DDG-73, have been
commissioned as US Navy ships. The US Navy plans to commission the USS

McFaul, DDG-74, and the USS Donald Cook, DDG-75, as Navy ships during this
year.

1 999 - Three Destroyers Scheduled to be Commissioned

In 1 999 the US Navy plans to commission the USS Higgins, DDG-76; the USS

o 'Kane, DDG-77; and the USS Porter, DDG-78, as Navy ships.

The future, 2000 and on

- In 2000 the US Navy plans to commission the USS Oscar A ustin, DDG-79; the
USS Roosevelt, DDG-80; and the USS Winston Churchill, DDG-8 1 , as Navy
ships. The USS Oscar A ustin is scheduled to be the first AEGIS Combat System
baseline 6 phase 1 ship.

120

- In 200 1 the US Navy plans to commission the DDG-82, the DDG-83, the DDG-
84, and the DDG-85 as Navy ships. The DDG-85 is scheduled to be the first
AEGIS Combat System baseline 6 phase 3 ship.

- In 2002 the US Navy plans to commission the DDG-86 and the DDG-87 as
Navy ships.

- In 2003 the US Navy plans to commission the DDG-88 as a Navy ship.

A.2 Computer Industry Highlights

Pre-1960

- In 1 943 the IBM-Harvard Mark I was completed. Also, the first Colossus code­
breaking machine was installed at Bletchley Park.

- In 1 945 ENIAC, the first fully functional electronic calculator went into
operation in November. In addition, IBM became the largest business machine
manufactUrer in the United States.

- In 1 947 Bell Labs invented the point-contact transistor.

- In 1 948 IBM assembled the SSEC electromechanical computer, which ran a
stored program. Additionally, Manchester University's Mark I prototype ran
the rust fully electronic stored program.

- In 1 949 the first full-scale electronic stored-program computer, the ED SAC,
began operating at Cambridge University. Also, the first stored-program
computer in the United States, the BINAC, was tested.

- In 1 95 1 Ferranti Mark I, the first commercially manufactured computer, was
installed at Manchester University. Additionally, the United States Census
Bureau received its first UNIVAC. The first real-time, i.e., time-sharing,
computer, Whirlwind, was completed. Also, William Shockley invented the
junction transistor. In addition, Grace Hopper first conceived of an internal
program to be known as a compiler.

- In 1 952 Thomas Watson, Jr. became president of IBM. Additionally, UNIVAC
successfully predicted the outcome of the presidential election.

1 2 1

- In 1 953 IBM delivered its first electronic computer, the 701 , to Los Alamos
National Laboratory. Also, a successful full-scale test of Jay W. Forrester's
magnetic-core memory was conducted at MIT.

- In 1 954 IBM introduced a medium-size computer, the 650. Additionally, Texas
Instruments started making silicon transistors.

- In 1 955 Remington Rand merged with Sperry Corporation to form Sperry Rand.
In addition, Shockley established the Shockley Semiconductor Laboratory
company in Mountain View, California. Bell Telephone introduced the first
computer that used transistors rather than electron tubes.

- In 1 956 a team at IBM headed by John Backus completed the Formula
Translation (FORTRAN) I computer programming language. FORTRAN was
the first higher-level computer language.

- In 1 957 Digital Equipment Corporation was established in Maynard,
Massachusetts. Also Control Data Corporation was established in St. Paul,
Minnesota.

- In 1 958 Jack Kilby at Texas Instruments in Dallas, Texas, built the first
integrated circuit. Additionally, the planar process for making transistors in
silicon was developed by Jean Hoerni at Fairchild Semiconductor, Palo Alto,
California.

- In 1 959 Kurt Lehovec of Sprague Electric Company, North Adams,
Massachusetts, designed an integrated circuit whose components were isolated
with pn junctions. Also, Robert Noyce of Fairchild Semiconductor invented a
planar integrated circuit. This allowed for the mass manufacture of reliable and
efficient integrated circuits. The COBAL and LISP computer programming
languages were developed.

1960 through 1 969

- In 1 960 Digital Equipment Corporation introduced its PDP- I . The ALGOL 60
programming language was developed.

- In 1 96 1 the first computer time-sharing system was developed at the
Massachusetts Institute of Technology (MIT). In addition, the Texas
Instruments company built the first integrated circuit computer.

1 22

- In 1 963 the Digital Equipment Corporation introduced the PDP-8, the first
successful minicomputer. Also, the Bell Punch Company of Britain developed
the first electronic calculators using discrete components.

- In 1 964 IBM introduced its first family of computers, the SystemJ360, to use
ceramic modules with several discrete components on each unit. The BASIC
computer programming language was developed.

- In 1 966 Burroughs incorporated integrated circuit chips into parts of two
medium-sized computers. The first object-oriented programming language,
Simula I, was developed.

- In 1 968 Robert Noyce and Gordon Moore established the Intel company in
Santa Clara, California. Also, Intel introduced the first 1 K random-access
memory (RAM). Additionally, both Control Data and NCR brought out
computers composed entirely of integrated circuits. The computer mouse was
demonstrated at a conference on computers.

1970 through 1 979

- In 1 970 IBM introduced the SystemJ370, which was composed entirely of
integrated circuits. A 256-bit RAM was introduced by Fairchild
Semiconductor. Later in the year Intel introduced a 1 K-bit RAM chip, the 1 1 03.

- In 1 97 1 the 4004 microprocessor was invented at Intel. Additionally, Texas
Instruments introduced mass-produced pocket calculators in the U.S. Niklaus
Wirth developed the Pascal computer programming language.

- In 1 972 Intel introduced the first eight-bit microprocessor, the 8008. Dennis
Ritchie and Kenneth Thompson developed the C programming language while
at ITT Bell Labs. Alain Colmeraurer developed the PROLOG computer
programming language. Alan Kay developed the SMALL TALK computer
programming language, one of the first object-oriented languages. Word
processing was introduced. The Philips Corporation introduced a disk-laser
recording system.

- In 1 973 the ENIAC patent was invalidated. Integrated computers were
becoming commonplace.

- In 1 974 an article describing the construction of a "personal minicomputer," the
Mark-8, appeared in the July issue of Radio-Electronics magazine. Intel
introduced the 8080 microprocessor to replace the 8008. The 8080 was the first

1 23

microprocessor powerful enough to run a minicomputer. Hewlett Packard
introduced the programmable pocket calculator.

- In 1 975 the Altair 8800 computer, based on the Intel 8080 microprocessor, was
introduced in the January issue of Popular Electronics magazine. The Altair,
with 256 bytes of memory, was the first personal computer on the market.
William Gates and Paul Allen wrote a BASIC interpreter for the Altair. The
Department of Defense's (DOD's) High Order Language Working Group
(HOL WG) wrote a requirements document for a high-level language
appropriate for embedded computer systems. This language later was named
Ada.

- In 1 977 the Apple II, with 1 6K RAM, was introduced. Paul Allen and William
Gates founded the Microsoft Corporation.

- In 1 978 Apple introduced the first disk drive for use with personal computers.
DEC introduced a virtual address extension (V AX) computer using 32-bit
words. Intel introduced the 8086, its first 1 6-bit processor.

- In 1 979 Daniel Bricklin and Robert Frankston developed VisiCal, the first
spreadsheet program for the microcomputer. Development on the Ada
computer programming language was started. Motorola introduced the 68000
microprocessor chip. The new high-order programming language, whose
requirements document had been started in 1 975, was officially named Ada for
Ada Byron.

1 980 through 1 989

- In 1 980 Wayne Ratliff developed dBase II, a database software package that
included a programming language.

- In 1 9 8 1 IBM introduced its first PC using the Intel 8088 chip for its central
processor unit. The Intel 8088 was a slightly simplified version of the Intel
8086 chip. Microsoft Corporation developed MS-DOS. IBM adopted MS-DOS
for its PC. The Lotus 1 -2-3 spreadsheet program was developed. Osborne built
the first portable computer.

- In 1 983 the IBM PC-XT was introduced, the first personal computer with a hard
disk drive built into the computer. The Ada-83 programming language standard
was published as ANSIIMIL-STD-1 8 1 5A.

1 24

- In 1 984 IBM developed a one-million bit RAM. The CD-ROM optical disk was
introduced by Philips and SONY to store very large amounts of digital data.

- In 1 985 Microsoft introduced Windows for the IBM PC. Intel introduced the
80386 32-bit microprocessor. C++ 1 .0, developed by Bjarne Stroustrup of
AT&T, was released.

- In 1 986 Compaq introduced the DeskPro computer using the Intel 80386
microprocessor.

- In 1 987 IBM and Nippon Telephone and Telegraph introduced experimental 4-
and 1 6-megabit chips. One-megabit computer memory chips were being
manufactured. IBM introduced its PS/2 group of computers that used a 3 .5
inches disk drive, hard disks, enhanced graphics, and a new operating system
that incorporated the Micro Channel Architecture bus that allowed for much
faster data transfer.

- In 1 988 Motorola introduced its 32-bit 88000 series of Reduced Instruction Set
Computers (RISC) microprocessors. The Extended Industry Standard
Architecture (EISA) was developed for 32-bit microprocessors, e.g., Intel's
80386 and 80486. A decision was made to revise Ada-83 with new features.

1990 through 1995

- In 1 990 Intel introduced the 1486 processor chip that was capable of operating at
a rate of 33 MHz. Motorola introduced the 68040 chip, a version of the 68000
chip. The first Turbo C++ for DOS was released.

- In 1 992 the fust Microsoft C++ for DOS was released.

- In 1 993 Intel started shipping its first Pentium microprocessors.

- In 1 995 the expanded Ada programming language, named Ada-95, was made
available to developers.

Vita

1 25

	AEGIS Data Analysis and Reduction (ADAR) in Support of the AEGIS Weapon System (AWS)
	Downloaded from

	gai_aeg006_R copy
	gai_aeg008_R copy
	gai_aeg010_R copy
	gai_aeg012_R copy
	gai_aeg014_R copy
	gai_aeg016_R copy
	gai_aeg018_R copy
	gai_aeg020_R copy
	gai_aeg022_R copy
	gai_aeg024_R copy
	gai_aeg026_R copy
	gai_aeg028_R copy
	gai_aeg030_R copy
	gai_aeg032_R copy
	gai_aeg034_R copy
	gai_aeg036_R copy
	gai_aeg038_R copy
	gai_aeg040_R copy
	gai_aeg042_R copy
	gai_aeg044_R copy
	gai_aeg046_R copy
	gai_aeg048_R copy
	gai_aeg050_R copy
	gai_aeg052_R copy
	gai_aeg054_R copy
	gai_aeg056_R copy
	gai_aeg058_R copy
	gai_aeg060_R copy
	gai_aeg062_R copy
	gai_aeg064_R copy
	gai_aeg066_R copy
	gai_aeg068_R copy
	gai_aeg070_R copy
	gai_aeg072_R copy
	gai_aeg074_R copy
	gai_aeg076_R copy
	gai_aeg078_R copy
	gai_aeg080_R copy
	gai_aeg082_R copy
	gai_aeg084_R copy
	gai_aeg086_R copy
	gai_aeg088_R copy
	gai_aeg090_R copy
	gai_aeg092_R copy
	gai_aeg094_R copy
	gai_aeg096_R copy
	gai_aeg098_R copy
	gai_aeg100_R copy
	gai_aeg102_R copy
	gai_aeg104_R copy
	gai_aeg106_R copy
	gai_aeg108_R copy
	gai_aeg110_R copy
	gai_aeg112_R copy
	gai_aeg114_R copy
	gai_aeg116_R copy
	gai_aeg118_R copy
	gai_aeg120_R copy
	gai_aeg122_R copy
	gai_aeg124_R copy
	gai_aeg126_R copy
	gai_aeg128_R copy
	gai_aeg130_R copy
	gai_aeg132_R copy
	gai_aeg134_R copy
	gai_aeg136_R copy
	gai_aeg138_R copy
	gai_aeg140_R copy
	gai_aeg142_R copy
	gai_aeg144_R copy
	gai_aeg146_R copy
	gai_aeg148_R copy
	gai_aeg150_R copy
	gai_aeg152_R copy
	gai_aeg154_R copy
	gai_aeg156_R copy
	gai_aeg158_R copy
	gai_aeg160_R copy
	gai_aeg162_R copy
	gai_aeg164_R copy
	gai_aeg166_R copy
	gai_aeg168_R copy
	gai_aeg170_R copy
	gai_aeg172_R copy
	gai_aeg174_R copy
	gai_aeg176_R copy
	gai_aeg178_R copy
	gai_aeg180_R copy
	gai_aeg182_R copy
	gai_aeg184_R copy
	gai_aeg186_R copy
	gai_aeg188_R copy
	gai_aeg190_R copy
	gai_aeg192_R copy
	gai_aeg194_R copy
	gai_aeg196_R copy
	gai_aeg198_R copy
	gai_aeg200_R copy
	gai_aeg202_R copy
	gai_aeg204_R copy
	gai_aeg206_R copy
	gai_aeg208_R copy
	gai_aeg210_R copy
	gai_aeg212_R copy
	gai_aeg214_R copy
	gai_aeg216_R copy
	gai_aeg218_R copy
	gai_aeg220_R copy
	gai_aeg222_R copy
	gai_aeg224_R copy
	gai_aeg226_R copy
	gai_aeg228_R copy
	gai_aeg230_R copy
	gai_aeg232_R copy
	gai_aeg234_R copy
	gai_aeg236_R copy
	gai_aeg238_R copy
	gai_aeg240_R copy
	gai_aeg242_R copy
	gai_aeg244_R copy
	gai_aeg246_R copy
	gai_aeg248_R copy
	gai_aeg250_R copy
	gai_aeg252_R copy
	gai_aeg254_R copy
	gai_aeg256_R copy
	gai_aeg258_R copy
	gai_aeg260_R copy
	gai_aeg262_R copy
	gai_aeg264_R copy
	gai_aeg266_R copy
	gai_aeg268_R copy
	gai_aeg270_R copy
	gai_aeg272_R copy
	gai_aeg274_R copy
	gai_aeg276_R copy
	gai_aeg278_R copy
	gai_aeg280_R copy
	gai_aeg282_R copy
	gai_aeg284_R copy
	gai_aeg286_R copy
	gai_aeg288_R copy

