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Temperate forests are complex ecosystems that sequester carbon (C) in biomass. C 

storage is related to ecosystem-scale forest structure, changing over succession, disturbance, and 

with community composition. We quantified ecosystem biological and physical structure in two 

forest chronosequences varying in disturbance intensity, and three late successional functional 

types to examine how multiple structural expressions relate to ecosystem C cycling. We 

quantified C cycling as wood net primary production (NPP), ecosystem structure as Simpson‟s 

Index, and physical structure as leaf quantity (LAI) and arrangement (rugosity), examining how 

wood NPP-structure relates to light distribution and use-efficiency. Relationships between 

structural attributes of biodiversity, LAI, and rugosity differed. Development of rugosity was 

conserved regardless of disturbance and composition, suggesting optimization of vegetation 

arrangement over succession. LAI and rugosity showed significant positive productivity trends 

over succession, particularly within deciduous broadleaf forests, suggesting these measures of 

structure contain complementary, not redundant, information related to C cycling. 

 

 

Keywords: chronosequence, canopy structure, net primary production, rugosity, lidar, leaf area 

index, ecosystem structure, disturbance, succession, diversity, eastern temperate forest, light use 

efficiency   

  



6 
 

1. Introduction 

Temperate forests are important components of the global carbon (C) cycle, collectively 

sequestering C in soils and biomass at a rate that approximates 9% of the annual C emissions 

from fossil fuel combustion (Pan et al. 2011). At the ecosystem-scale, forest physical and 

biological structure, and C cycling processes are dynamic, shifting with development and 

following disturbance (Pedro et al. 2015). The coupling of ecosystem structure and C cycling 

processes is central to ecological theory (Odum 1969, Gough et al. 2016), a prominent focus of 

empirical research (Reich 2012, Hardiman et al. 2011, Ishii et al. 2004), and represented in 

ecosystem simulation models (Antonarakis 2014). However, investigations of decade to century 

changes in coupled ecosystem structure-C cycling processes are rare because of challenges 

associated with empirically observing and interpreting ecological change over very long 

timescales. Moreover, investigations of ecosystem structure and C cycling over decades or more 

generally focus on structure or function, rather than the coupling the two, owing, in part, to each 

having roots in different ecological subdisciplines of community and ecosystem ecology, 

respectively. However, explicit mechanistic coupling of ecosystem structure-function over long 

timescales is essential to advancing fundamental understanding of long-term drivers of the C 

cycle and improving century-long C cycling simulations (Antonarakis 2014). 

Net primary production (NPP) – the rate of C accrued in plant biomass over time – is 

correlated with several ecosystem structural features that change over decadal to century 

timescales and with disturbance, including physical complexity and leaf arrangement (Hardiman 

et al. 2013, Pretzsch 2014), biological diversity (Danescu et al. 2016; Pedro et al. 2015; Stoy et 

al. 2008), and leaf quantity (Reich 2012). Structural measures summarizing ecosystem-wide 

physical and biological complexity, and leaf quantity may serve as spatially integrative, non-
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redundant proxies for processes dictating how limiting resources, such as light and nitrogen, are 

acquired, allocated, and used to drive canopy C fixation and NPP (Nadkarni et al. 2008; Ishii et 

al. 2004). For example, leaf area index (LAI), a measure of the quantity of photosynthetically 

active tissues, is globally correlated with NPP (Reich 2012). Tree species diversity, a putative 

surrogate of photosynthetic trait variation, has been positively related to NPP and canopy C 

fixation (Danescu et al. 2016, Stoy 2008). More recently, ecosystem physical complexity, 

characterized from the arrangement of canopy leaves, has been correlated with NPP, with leaf 

arrangement, but not quantity, indicating within-canopy resource distribution (Hardiman et al. 

2013). More physically complex and heterogeneous canopies, with a broad array of crown 

architectures and heights, may more fully absorb and use light more efficiently to drive whole-

canopy photosynthesis, leading to increased plant production at the ecosystem scale (Niinemets 

2010). Plasticity in canopy physical structure over time and with disturbance, and among forest 

communities – in particular how vegetation is arranged in space – is not well-understood. Similar 

to theory motivating community “assembly rules” ( Li and Waller 2016), a conserved trajectory 

of stand physical structural development, if observed, might suggest ecosystems arrange 

vegetation in space to optimize resource acquisition and use-efficiency to maximize canopy scale 

C assimilation.  

Current understanding of canopy structural change during ecosystem development (Fig. 1) 

and following disturbance is concentrated on leaf quantity and biodiversity, rather than physical 

arrangement and heterogeneity. Following establishment, LAI and biological diversity generally 

progress in similar ways, initially increasing rapidly with forest age and reaching an asymptote 

and sometimes declining during middle successional stages as short-lived trees senescence from 

the canopy (Wang et al. 2014, Goulden et al. 2011). Disturbance severity and frequency affect 
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the successional speed and trajectory of LAI recovery and biological diversity, with higher levels 

and frequencies of disturbance altering LAI and community development trajectories for decades 

or more (Hardiman et al. 2013; Pedro et al. 2015; Pretzsch 2014). Similarly, physical complexity 

increases during early stages of ecosystem development as forests become multi-aged and, 

therefore, more heterogeneously structured; unlike biological complexity and LAI, physical 

complexity may increase into late successional stages as community composition no longer 

diversifies but small-scale dispersed disturbances continue to introduce physical complexity and 

heterogeneity (Hardiman et al. 2013, Gough et al. 2016).  

Here, we examine how different ecosystem structural expressions summarizing vegetation 

quantity, arrangement, and diversity compare with one another and, we evaluate their 

mechanistic coupling with NPP across a range of successional stages, disturbance legacies, and 

late-successional communities. Our study uses as a model system spanning a broad structural 

gradient forests of the Upper Great Lakes region, particularly those that regrew following large-

scale deforestation and burning in the late 19
th

 to early 20
th

 centuries (Gough et al. 2007) and less 

disturbed late-successional forests varying in dominant canopy functional type. We specifically 

take advantage of two well-documented chronosequences at the University of Michigan 

Biological Station (UMBS) with different disturbance legacies – clearcut harvesting with and 

without burning – initiated systematically to mimic regional disturbance events, in addition to 

late successional stands (Farmer 1958, Scheiner & Teeri 1981, White et al. 2004, Gough et al. 

2007). Our analysis builds on prior work at our site and others coupling ecosystem structure with 

C cycling processes (Hardiman 2013, Gough 2010, 2007), expanding on this work by 

investigating how several different expressions of stand structure, hypothesized to capture unique 

functional information, develop and change across multiple axes of time, disturbance, and 
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community structure. Our work endeavors, as well, to serve as an example of how advancing 

mechanistic understanding of decadal to century C cycling processes requires research that 

integrates knowledge stemming from multiple ecological subdisciplines, including community 

and ecosystem ecology, and plant physiology.  

 

2. Materials and Methods 

2.1. Study Site Description 

Our study at the University of Michigan Biological Station (UMBS) in northern lower Michigan, 

USA (45.56° N, -84.71° W) examined structure and C cycling in two forest chronosequences, 

containing four stands each, with different disturbance histories, and three additional late 

successional forest functional types (Liebman et al. in review). Our 11 total forest stands spanned 

~200 years of ecological succession and were within 14 km of one another. The upper Great 

Lakes region, including the stands in both chronosequences, experienced widespread clear-cut 

and fire disturbance during the late 19
th

 and early 20
th

 centuries (Gough et al. 2007). Following 

this region-wide disturbance, stands in a systematically clear-cut harvested forest 

chronosequence (hereafter “Cut Only”) were harvested in 1911, 1952, 1972, and 1987 (Farmer 

1958). A more intensively disturbed chronosequence includes four stands experimentally clear-

cut harvested, with slash retained on site, and burned (hereafter “Cut and Burn”) in 1936, 1954, 

1980, and 1998 (Scheiner & Teeri 1981, White et al. 2004, Gough et al. 2007). Bigtooth Aspen 

(Populus grandidentata) emerged as the dominant tree species following Cut Only and Cut and 

Burn disturbances, consistent with regional patterns of increasing disturbance-related aspen 

dominance a century ago. Three regionally representative late successional forest stands, the 
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eldest initiated prior to 1850, are potential successional „end-member‟ climax communities. A 

mostly coniferous site (hereafter “ENF” for evergreen needleleaf) had an upper canopy 

dominated by Red Pine (Pinus resinosa) and a White Pine (Pinus strobus) understory. A mixed 

coniferous-deciduous site (hereafter “MIX” for mixed) includes Red Pine and White Pine canopy 

dominants with the additional presence of deciduous Bigtooth Aspen and subcanopy Northern 

Red Oak (Quercus rubra) and Red Maple (Acer rubrum). A primarily deciduous site (hereafter 

“DBF” for deciduous broadleaf) has a canopy of American Beech (Fagus grandifolia), Sugar 

Maple (Acer saccharum), Northern Red Oak (Quercus rubra), with lesser representation from 

Eastern Hemlock (Tsuga canadensis). Additional stand characteristics are described in detail in 

Table 1. The site has an average annual air temperature of 5.5°C and precipitation of 817 mm 

(Hardiman et al. 2013). 

This sampling approach was designed to characterize multiple aspects of ecosystem-scale 

structure and function. Because our study includes experimental chronosequences initiated 

decades ago and late successional remnant forests, stand shapes and sizes are not uniform. Each 

stand contained two or three 0.1 ha plots, with one exception noted below, for a total of 29 

sampling plots (Appendix 1), with plots treated as replicates for calculating stand means and 

error. Plots were circular with the exception of the Cut and Burn stand initiated in 1998 which, 

due to size constraints of the treatment area, consisted of two rectangular plots of 0.14 and 0.06 

ha. Current soils and climate are relatively uniform among chronosequence stands and our 

chronosequences were systematically disturbed using the same experimental protocol (Appendix 

1); however, limitations associated with space-for-time substitutions, including differences 

among stands in average atmospheric and climate conditions, necessitate caution when 

interpreting results (Davies and Gray 2015, Walker et al. 2010). Even so, our approach follows 
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that of several prior influential studies employing chronosequences to examine long-term C 

cycling processes (Peichl et al. 2006, Bond-Lamberty et al. 2004, Law et al. 2003).  

 

2.2 Measures of canopy structure 

Our ecosystem-scale characterization of canopy structure included three independently derived 

measures of structure previously shown to correlate with primary production, and known to 

change over the course of ecosystem development: leaf area index (Reich 2012), rugosity 

(Hardiman et al. 2013, 2011), and tree canopy diversity as Simpson‟s Index (Drake et al. 2011, 

Onaindia et al. 2004).  

 

2.2.1 Leaf area index 

We used hemispherical imaging to derive stand leaf area index (LAI), a commonly used measure 

of leaf (and therefore photosynthetic tissue) surface area and quantity per equivalent ground area. 

Three images were taken at 1.5m height in each plot: one in plot center and two additional 

randomly assigned locations. A north-facing, leveled Nikon D3200 outfitted with a 5.8mm 180° 

circular fisheye lens was used during times of uniform sky color (overcast sky, dawn, or dusk). 

Images were analyzed with Gap Light Analyzer (GLA) (Frazer et al. 1999) for effective LAI 

between zenith angles 0 to 60° to minimize error from nearby canopies outside plots. Automatic 

threshold levels for each image were determined using ImageJ (Schneider et al. 2012). Prior 

analysis at our site established strong correspondence (r
2
 = 0.87) between independently derived 

hemispherical and litter-trap based LAI (Stuart-Haentjens et al. 2015).  
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2.2.2 Rugosity 

We quantified stand physical structural complexity as rugosity, a measure of canopy structural 

heterogeneity derived from ground-based lidar (Hardiman et al. 2013, Hardiman et al. 2011). A 

Portable Canopy Lidar (PCL) system (Hardiman et al. 2011, Parker et al. 2004) generated a 

canopy hit-map along two 40 m transects, one running North to South and another East to West 

through each plot center. A modified lidar sampling protocol was followed for the 1998 origin 

Cut and Burn plots with shortened parallel transects (10m and 20m) running North to South. 

Though the effective sampling area was smaller than that of other stands, physical heterogeneity 

and canopy height were lower in this young stand, suggesting the sampling area was sufficient 

for capturing within-stand variation in complexity (Hardiman et al. 2013). Prior to analysis, lidar 

returns (i.e., hits) were allocated to 1m bins vertically (height within canopy) and horizontally 

(distance along transect) and raw hit data were processed to estimate stand rugosity using 

published MATLAB code (Hardiman et al. 2013). Rugosity expresses physical complexity as the 

variance in the horizontal and vertical distribution of vegetation:  

(eqn. 1)  R = σ(σ[VAI]z)x               

where rugosity (R) is the product of the standard deviations (σ) in horizontal (x) and vertical (z) 

vegetation area indexes (VAI) for each 1 x 1 m bin based on ratio of hits to sky returns.  

 

2.2.3 Diversity Indices 

To assess biological complexity, we calculated stand-scale Simpson‟s Index of Diversity from 

canopy tree data (DBH > 8cm) collected from plot surveys conducted in 2014. This complexity 

metric correlated with NPP at a nearby site (Gough et al. 2010) and others (Onaindia et al. 2004), 
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and describes both species richness and evenness where values closer to 1 indicate highest 

diversity (Morris et al. 2014). 

 

2.3 fPAR Measurements 

We quantified the fraction of photosynthetically active radiation absorbed by the canopy (fPAR) 

to determine whether light capture varied by age, disturbance history, and late successional 

functional forest type, and was related to forest structure and NPP. Instantaneous PAR was 

recorded in seven locations within each plot at 0m and 1m heights, using an AccuPAR LP-80 

Ceptometer (Decagon Devices Inc., Pullman, Washington, USA). Coincident above-canopy PAR 

was inferred from nearby open-field measurements taken within 30 minutes of below-canopy 

PAR measurements, adjusted for solar angle and atmospheric conditions using the APOGEE 

Clear Sky Calculator parameterized with air temperature and relative humidity values measured 

from a nearby (within 10 km) meteorological tower, and unobstructed PAR. All measurements 

were taken between 10:30am and 2:30pm on clear days during late July to early August 2015. 

Mean fPAR was estimated as the ratio of concurrent below- and above-canopy PAR 

measurements. 

 

2.5 Wood net primary production 

To examine the forest primary production-structure relationships across age, disturbance type, 

and late successional forest functional type, we quantified stand annual wood NPP. In 2014, tree 

dendrometer bands were fitted within each plot to 10 to 20 % of trees with diameter at breast 

height (DBH) > 8 cm, including all dominant canopy species. DBH was recorded for each tree 
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with a dendrometer band in 2014 and 2015. Site-specific allometric equations were used to 

estimate wood mass from DBH, and to convert wood mass into kg C mass. NPPw was calculated 

as the kg C mass increment from 2014 to 2015 scaled to a hectare.  

 

2.6 Light use efficiency 

We quantified stand light use efficiency (LUE) to evaluate whether canopy structural measures 

affect how effectively absorbed light is used to drive primary production. LUE was calculated 

for each stand as the amount of net annual wood biomass production (as NPPw) divided by 

absorbed light (as fPAR). This method of calculation has been used previously at our site (Stuart-

Haentjens et al. 2015) and is sensitive to changes in canopy structure (Hardiman 2013). 

 

2.7 Statistical analysis  

Our statistical approach examined whether canopy structural and primary production trajectories 

differed across disturbance history (via model fits over age) and across late successional forest 

functional type, and evaluated correspondence between canopy structural measures, fPAR and 

LUE, and primary production. Recognizing the non-linearity of canopy structural changes over 

time (Hardiman et al. 2013), we tested linear and curvilinear model fits; however, our model 

fitting procedure showed that a 3-parameter curvilinear model fitted to our small sample size (n 

= 4 plots/chronosequence) amounted to overfitting, with adjusted r
2
 values consistently lower 

than that of the linear model. As a result, we present more conservative simple linear models. We 

first separately modeled changes over time in canopy structure and primary production for Cut 

and Burn and Cut Only chronosequences, statistically comparing slopes (α=0.05) to test for 
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different successional trajectories and combining plots from both chronosequences when slopes 

were not significantly different (p>0.05). Slopes were tested for significant difference from 0 at 

α=0.15. ANOVA with post-hoc LSD was used to compare the means of the three late 

successional functional types (ENF, MIX, DBF). Lastly, we conducted linear regression analyses 

incorporating all 11 plots to evaluate how generalizable relationships are between canopy 

structural measures, fPAR and LUE, and primary production across plots varying in age, 

disturbance history, and community composition.  

 

3. Results 

3.1 Canopy structural changes with age, disturbance, and canopy tree composition 

Our results suggest that the successional development of canopy complexity in leaf arrangement, 

as expressed by rugosity, but not biological complexity or leaf quantity, was highly conserved 

regardless of pre-establishment disturbance history and late successional forest functional type. 

Over the course of ecosystem development, the physical complexity of the forest canopy, 

expressed as rugosity, followed a similar upward trajectory regardless of disturbance intensity 

(p=0.0001, adj. R
2
=0.95; Fig. 2A), while leaf quantity as LAI and tree canopy diversity as 

Simpson‟s Index recovered more slowly following higher intensity disturbance prior to 

ecosystem establishment, with different model fits across chronosequence. Higher severity 

disturbance delayed the recovery of LAI and biodiversity. In the Cut and Burn chronosequence, 

LAI increased linearly (p=0.02, adj. R
2
=0.93) and approached the higher values observed in the 

less intensively disturbed Cut Only plots several decades following stand initiation. This pattern 

of LAI over ecosystem development is in stark contrast to that observed in the Cut Only 
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chronosequence, which was stable across the age classes examined. Similarly, Simpson‟s Index 

of Diversity (SI) differed in recovery trajectories over time. SI was significantly lower in young 

Cut and Burn chronosequence plots relative to the Cut Only stands of similar age, suggesting a 

lag in the recovery of tree canopy diversity following more intense disturbance (Fig 2C).  

Though the late successional functional types differed significantly in species diversity and LAI, 

all three stands converged on a strikingly similar stand-scale rugosity, suggesting conservation in 

the arrangement of vegetation across these three different late-successional ecosystems despite 

variation in dominant canopy species and leaf quantity. Canopy tree species diversity expressed 

as Simpsons‟ Index was significantly lower in the ENF late successional forest relative to both 

MIX and DBF, and LAI much higher in DBF (LAI=3.15) than in ENF (LAI=1.58) and MIX 

(LAI=1.77) forests (Fig 2B). Yet, the three stands had a similar mean stand rugosity value of ~26 

m. Variances around this common stand-scale rugosity value were highest in the DBF forest, 

suggesting fine-scale (within-stand) variation in physical structure was greatest in the more 

species diverse, high LAI deciduous forest. 

 

3.2 NPPw over successional development and correlation with canopy structure 

Primary production changed with age similarly regardless of disturbance history; however, 

NPPw varied considerably among late successional forest functional types. Wood net primary 

production, NPPw, increased with stand age and followed a similar trajectory in older stands 

regardless of disturbance history even though model fits differed because of slightly offset stand 

age ranges represented in the two chronosquences (Fig. 3). Cut Only chronosequence NPPw 

increased linearly (p=0.06, adj. R
2
=0.82; Fig. 3), with NPPw reaching a maximum of 1812 KgC 
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ha
-1

 yr
-1

 in the oldest century-old stand. Cut and Burn chronosequence stands followed a 

curvilinear rise to a maximum NPPw (p=0.1, adj. R
2
=0.64; Fig. 3) approaching 1570 KgC ha

-1
 

yr
-1

 in the oldest stand. In late successional stands, NPPw of DBF (2513 KgC ha
-1

 yr
-1

) was 

significantly higher than that of MIX (763 KgC ha
-1

 yr
-1

) and ENF (453 KgC ha
-1

 yr
-1

) (Fig 3). 

To examine whether canopy physical and biological structural attributes – shaped by disturbance 

history, succession, and tree species composition or functional type – are generalized predictors 

of NPPw, we modeled primary production for a number of stands as a function of rugosity, LAI, 

and Simpson‟s Index (Fig 4). Wood NPP was strongly correlated with LAI when all stands were 

included in a single linear model (p=0.001, adj. R
2
=0.72; Fig 4B). Rugosity was a poor predictor 

of NPPw when all stands were included in the model, but was strongly correlated with NPPw 

when late successional ENF and MIX forests were excluded (p=0.0006, adj. R
2
=0.81; Fig 4A). 

Simpson‟s Index of Diversity was a poor predictor of NPPw (Fig 4C). 

 

3.3 Light capture and use-efficiency with age, disturbance, and composition (fig 5A-C) 

Stand-scale light capture and light-use efficiencies varied depending on disturbance history and 

late successional functional type. Ground measurements of fPAR did not differ significantly with 

disturbance history or among late successional stands (Fig. 5A). However, at the 1m level above 

the herbaceous layer, successional trajectories of fPAR diverged, with the Cut Only stands 

following a positive linear trend with age (p=0.068, adj. R
2
=0.80; Fig. 5B) and the more 

disturbed Cut and Burn stands exhibiting no significant trend with age. fPAR at 1m was 

significantly higher in the late successional DBF stand than in either MIX or ENF, with light 
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capture in the former approaching 97% of incoming PAR one meter above the forest floor (Fig. 

5A-B).  

Successional changes in stand light-use efficiency (LUE, as NPPw/fPAR0) varied between the 

two chronosequences, though values in older forests were similar (Fig. 5C). Stand LUE varied 

from ~1500-1950 KgC ha
-1

 yr
-1

, with the exception of very low LUE in the youngest, 16-yr-old 

Cut and Burn stand (890 KgC ha
-1

 yr
-1

, Fig. 5C). LUE was markedly different across all three 

late successional forest functional types, with DBF (2568 KgC ha
-1

 yr
-1

) far exceeding both the 

MIX (844 KgC ha
-1

 yr
-1

) and ENF (496 KgC ha
-1

 yr
-1

) stands (Fig. 5C). 

 

3.4 Light resource availability and utility relative to canopy structural complexity as LAI and 

rugosity (fig 6A-D) 

We combined all stands in a final analysis to explore whether fPAR and LUE link leaf 

arrangement and quantity with NPPw across the array of ecosystem structures shaped by 

successional stage, disturbance history, and community composition; we excluded canopy tree 

diversity from our analysis because  it was not significantly correlated with NPPw. With 

increasing stand rugosity and LAI, light absorption as fPAR followed similar positive linear 

trends (Fig. 6; adj. R
2
=0.32, p=0.039; adj. R

2
=0.29, p=0.049). LUE increased linearly with LAI 

(adj. R
2
=0.59, p=0.004; Fig. 6D), whereas rugosity was only significantly correlated with LUE 

(adj. R
2
=0.74, p=0.002; Fig 6C) when MIX and ENF stands were excluded from the regression 

analysis.  
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4. Discussion 

We have shown that our multiple measures of ecosystem biological and physical structure 

diverged during ecosystem development, in response to disturbance, and across late successional 

functional types, with implications for how light is captured, distributed and used to drive NPP. 

Ecosystem physical complexity, expressed as rugosity, exhibited a strikingly conserved 

successional trajectory, increasing with forest age and then plateauing to a common value in late 

successional stands, regardless of disturbance history and late successional canopy composition, 

suggesting a highly constrained trajectory in the assembly of stand-scale physical complexity. 

However, canopy leaf quantity, as LAI, and biological diversity, as Simpson‟s Index, varied 

substantially following stand establishment depending on prior disturbance history and late 

successional functional type. We found that differences among forest stands in wood NPP were 

mediated, in part, by physical structure- and leaf quantity-driven variation in light acquisition 

and use-efficiency. However, canopy physical complexity and, to a lesser extent, LAI were poor 

predictors of light-use efficiency in pine-dominated late-successional ecosystems, indicating that 

the ecosystem structural parameters we examined did not fully capture processes underlying NPP 

across functional types. Nonetheless, across structurally variable deciduous forest stands, leaf 

quantity and arrangement contained important complementary, and not fully redundant, 

mechanistic information tied to primary production.  

The divergence of biological and physical structure following variable disturbance severities 

and among forest functional types is consistent with theoretical expectations and prior empirical 

observations, with the notable exception of decoupled physical and biological structure in late 

successional stands. In our study, leaf quantity and recovery of biological structure in the more 

severely disturbed Cut and Burn chronosequence lagged behind that of the less severely 
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disturbed Cut Only chronosequence, while leaf arrangement or physical complexity changed 

uniformly over succession regardless of disturbance history. The former is consistent with 

studies showing disturbance history affects trajectories of community assembly and LAI (Frelich 

and Reich 1999, Nakashizuka 2001, Ruprecht et al. 2007, Zhang et al. 2009). At our site, greater 

fire-related losses of nitrogen in the Cut and Burn stand (White et al. 2004, Gough et al. 2007) 

likely stunted leaf production and plant community recovery without altering successional 

changes in leaf arrangement. Contrary to theory linking physical and biological structure (e.g., 

Ishii et al. 2003), late successional functional types converged on a similar mean stand rugosity, 

or physical complexity, despite having substantial differences in community composition and 

even though pine dominated stands had much lower LAI values. From a theoretical standpoint, 

the decoupling of the physical and biological structural complexity at our site is surprising 

because it suggests that the successional trajectory in ecosystem physical structure was 

independent of tree architectural variation presumably afforded by a greater variety of species, 

captured in Simpson‟s Index, and the quantity of plant canopy materials, in LAI, available to 

build physical complexity. While it would be expected for structural metrics and biodiversity to 

be closely coupled (Ishii et al. 2004), other studies find that metrics of physical structural 

diversity tend to outperform species diversity alone in impacting forest function as productivity 

(Danescu 2016). 

 A fixed successional trajectory of physical complexity, coupled within functional type to 

fPAR and LUE, suggests that leaf arrangement, irrespective of biological complexity, may have 

developed to optimize resource capture and use-efficiency to maximize productivity, a purpose 

which is mechanistically similar to the increased resource acquisition potential during 

community assembly. Though findings are mixed, several studies suggest plant communities, 
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including forests, assemble to maximize resource extraction in support of growth (Li and Waller 

2016). However, numerous monospecific crop studies show that variation in physical complexity 

alone can drive substantial differences in light allocation and canopy physiology, LUE, and 

therefore production (Long et al. 2006, Shiratsuchi et al. 2006, Sarlikioti et al. 2011, Gitelson et 

al. 2015). Moreover, forest optimization modeling and theory suggest that physical structure, 

independent of biological diversity, affects LUE and canopy C fixation (Niinemets 2012, Retkute 

et al. 2015, Niinemets 2016). Our findings suggest that, with respect to C cycling processes, 

ecosystem assembly theoretical and empirical studies should consider how physical complexity, 

both alone and with biological complexity, affects resource use. However, that we did not 

observe a relationship between biological diversity and wood NPP does not dismiss community 

structure‟s role in constraining primary production, which may not have emerged as a significant 

predictor of wood NPP at our site because of the low range of biological complexity across 

stands (richness = 4 to 8). Moreover, functional diversity, rather than indexes of biological 

diversity such as Simpson‟s Index, may be superior indicators of C cycling processes as 

observed in studies of species richness and functional diversity in grassland systems (Tilman et 

al. 1997).  

Similar to other studies (e.g., Reich 2012), leaf quantity, as LAI, was tightly coupled with 

wood NPP through its effects on light acquisition and use. Rugosity was an even stronger 

predictor of wood NPP than LAI across the DBF-only successional continuum, but the strength 

of this relationship did not persist when late successional MIX and ENF were included in the 

analysis. These findings are important because they indicate that leaf quantity and arrangement 

both contain relevant, but also not entirely comprehensive, functional information linking canopy 

structure with primary production. LAI is known to be tightly linked with productivity as a 
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representation of the ability of the forest to capture light (Reich 2012), but previous work at our 

site indicates that LAI may reach a saturation point before other attributes of physical structure, 

such as leaf arrangement (Hardiman et al. 2013).  At odds with some, but not all, prior 

observations, biological structure, as SI, was not a significant predictor of NPP (Pedro et al. 

2015, Liang et al. 2016). However, this study is over a gradient of ages at one boreal-temperate 

cusp site and does not consider regional trends in the biodiversity-NPP relationship necessarily. 

These findings argue for a nuanced revision of prior theoretical, modeling, and 

observational work from multiple sub-disciplines in ecology showing that light capture and use-

efficiency are key mechanisms linking ecosystem structure and C cycling function. Ecosystem 

and physiological ecologists have long-held LAI as a superior structural indicator of primary 

production (Asner et al. 2003, Reich 2012) while more recently theorizing and modeling the 

importance of physical arrangement to optimizing resource capture and efficiency (Parker et al. 

2004, Hardiman et al. 2013). In a separate, but mechanistically similarly grounded, discussion 

among primarily community ecologists regarding the role of biological structure and resource 

use and acquisition, several studies established the connection between biological diversity 

(Pedro et al. 2015, Liang et al. 2016) or community composition (Tilman et al.1997)  and C 

cycling processes at leaf to ecosystem scales. We suggest that these studies, rooted in different 

ecological subdisciplines, assume a similar mechanistic basis for structure-C cycling 

relationships: greater complexity yields higher growth-limiting resource acquisition. The 

conceptualizations of structure as LAI, community composition, biological diversity, or canopy 

structural arrangement are useful and not fully redundant in relation to C cycling function across 

a range of forest stands. 

 



23 
 

5. Conclusions 

Multiple expressions of physical structure are important to predicting C cycling 

processes, and the way structure is conceptualized matters. Our findings suggest that physical 

complexity develops to optimize resource acquisition and use-efficiency, regardless of the 

quantity of building blocks (i.e., leaves) and variability in crown architecture (i.e., reflected in 

biodiversity). Leaf arrangement is a strong correlate of NPP within a functional type (DBF); LAI 

is moderately correlated with NPP across forest functional types; and biodiversity, at our site, 

was not a strong correlate. These differences indicate a need to elucidate the interactions between 

these multiple expressions of ecosystem structure related to NPP, especially across and within 

other forest functional types. Even using a functional type division across our late successional 

plots, we found these categories too broad. The difference between DBF and even MIX forests in 

our stands had different relationships of structure-function and therefore NPP trends. Measures 

of actual functional diversity as it relates to limited resource use would be more useful than 

measures such as Simpson‟s Index, which are often used as a proxy. Both leaf quantity and 

arrangement are functionally meaningful measurements of forest structure because they have 

relevance to some mechanism of light resource capture and use. However, leaf arrangement as 

rugosity works best in the functional type in which it was developed, and may not be as 

applicable to other forest types. There are multiple conceptualizations of structure-function 

relationships, originating in various subdiscipline-specific concepts for productivity, that relate 

physical structure broadly to productivity via increased resource use acquisition and efficiency in 

more heterogeneous or structurally complex systems. These different structure concepts are not 

totally redundant and contain information relevant to C cycling processes. Future work must 

explore the impacts on function as productivity when physical structural traits are decoupled. 
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Appendix 

 

 

 

 

Figure 1. Theoretical successional trajectories of biological and physical development in forests. An 

example deciduous broadleaf forest is shown. Development of biological and physical complexity tends 

to, though may not always, be coupled over the course of succession, with disconnects potentially leading 

to different NPP or resource use abilities. Disturbance events may slow temporal progression towards 

complexity on either axis. 
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Figure 2. Rugosity (A), Leaf Area Index, and Simpson’s Index of Diversity over ecosystem 

development and in late successional forest stands. The Cut Only (circles, dot line) chronosequence 

was clear-cut harvested prior to regrowth and the Cut and Burn (diamonds, dash line) chronosequence 

clear-cut harvested and burned. Solid line indicates plots combined in model. Means ± 95% CI. 
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Figure 3. Annual Net Primary Production (NPPw) over successional age and late successional 

community composition. The Cut Only (circles, dot line) and Cut and Burn (diamonds, dash line) span 

early to mid-successional development. Late succession stands indicated with squares. Means ± 95% CI. 

 

 

 

 

 

 

 

 

 

Figure 4. Physical and biological structure relative to NPPw in all stands. (A) Linear modelling of 

LAI-Rugosity relationship using all DBF plots, excluding pine-dominated ENF and MIX (B) Linear 

modeling of LAI-NPPw using all plots. Means ± 95% CI. 
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Figure 5. Light resource distribution and utilization over ecosystem development and successional 

community composition. Light resources expressed as full canopy fPAR from 0m measures (fPAR0), 

canopy fPAR excluding herbaceous layer from 1m measures (fPAR1), and light use efficiency (LUE). 

The Cut Only chronosequence (circles, dot line) and the Cut and Burn chronosequence differ in stand 

initiating disturbance intensity. Late succession stands vary in community composition. Means ± 95% CI. 
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Figure 6. Light resource distribution and utilization efficiency as related to canopy structural 

measures rugosity and leaf area index (LAI). Light resources expressed as canopy fPAR excluding 

herbaceous layer (fPAR1) and light use efficiency (LUE). (A-B, D) All stand types are combined in linear 

modelling. (C) Linear modelling of LAI-Rugosity relationship using all deciduous broadleaf plots, 

excluding pine-dominated ENF and MIX. 
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Supplementary Appendix 

Table 1. Summary characteristics of 11 forest stands comprising two chronosequences and three 

late successional communities. Stand origin determined based on known establishment dates or tree 

cores. Dominant taxa in parenthesis indicate species of similar abundance but not dominant in crown 

position. POGR=Populus grandidentata, QURU= Quercus rubra, ACRU= Acer rubrum, PIST= Pinus 

strobus, PIRE= Pinus resinosa, BEPA= Betula papyrifera, FAGR= Fagus grandifolia, TSCA= Tsuga 

canadensis  

Stand history Landform Soil Forest cover (trees >8 cm DBH) 

Origin 
Disturbance 

history 
Parent material Topography 

Texture and 
classification 

Stems 
ha-1

 

Mean 
DBH 

Dominant taxa 

1998 
Cut and 

Burn 
outwash deposits 

high-level 
plain 

sandy 
Haplorthod 

725 9.2 POGR (QURU) 

1987 Cut Only 
lake-modified 

outwash deposits 

high-level 
plain 

sandy 
Haplorthod 

1523 10.6 
POGR 

(QURU/ACRU) 

1980 
Cut and 

Burn 
outwash deposits 

high-level 
plain 

sandy 
Haplorthod 

1597 11.4 
POGR 

(QURU/ACRU) 

1972 Cut Only outwash deposits 
high-level 

plain 

sandy 
Haplorthod 

1960 12.5 
POGR 

(QURU/ACRU) 

1954 
Cut and 

Burn 
outwash deposits 

high-level 
plain 

sandy 
Haplorthod 

1355 14.1 
POGR, QURU 

(PIST) 

1952 Cut Only outwash deposits 
high-level 

plain 

sandy 
Haplorthod 

1090 16.6 
QURU 

(PIST/POGR) 

1936 
Cut and 

Burn 
outwash deposits 

high-level 
plain 

sandy 
Haplorthod 

1335 17.1 
POGR  

(PIST, ACRU) 

1911 Cut Only 
lake-modified 

outwash deposits 

high-level 
plain 

sandy 
Haplorthod 

793 21 
POGR 

(QURU/PIST) 

ENF/ 
1885 

Late 
successional 
community 

lake-modified 
outwash deposits 

low-level 
plain 

sandy over 
gravelly 

Haplorthod 

753 28.8 PIRE (PIST/BEPA) 

MIX/ 
1885 

Late 
successional 
community 

lake-modified 
outwash deposits 

high-level 
plain 

sandy 
Haplorthod 

657 26.8 PIRE (POGR/PIST) 

DBF/ 
1850 

Late 
successional 
community 

lake-modified 
outwash deposits 

over till 

gently 
sloping 

moraine 

sandy over 
loamy 

Haplorthod 

433 34 
FAGR, TSCA, 
QURU, ACRU 
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Table 2. Model reporting. Details of best fit linear and curvilinear models (exponential rise to 

maximum). Cut Only and Cut and Burn models were combined if slope and intercept did not differ 

significantly. RUG= rugosity, LAI= leaf area index, SI= Simpson‟s Index, NPP= wood net primary 

production, fPAR= fraction photosynthetically active radiation utilized (top of canopy to 0m or 1m), 

LUE= light use efficiency.  

model plots type equation p-value Adj. r-sq. 

RUG-age Cut and Burn linear y= -0.6960+0.1562x 0.0196 0.9416 

RUG-age Cut Only linear y= 1.3525+0.1503x 0.0084 0.9749 

RUG-age Combined linear y= -0.8116+0.1489x 0.0001 0.9538 

LAI-age Cut and Burn linear y= 1.3219+0.0103x 0.0242 0.9283 

LAI-age Cut Only linear - 0.9510 - 

SI-age Cut and Burn linear y= 0.4805+0.0025x 0.0032 0.9903 

SI-age Cut Only linear y= -0.0353+0.009x 0.0635 0.8157 

NPP-age Cut and Burn curvilinear y= 1614.1947(1-0.0574
x
) 0.10 0.64 

NPP-age Cut Only linear y= 1161.4184+5.9270x 0.06 0.82 

NPP-RUG DBF Combined linear y= 1064.4950+53.5813x 0.0006 0.8125 

NPP-LAI All Combined linear y= -719.7694+1025.0343x 0.001 0.7179 

NPP-SI All Combined linear y= 690.3086+1384.5898x 0.0733 0.2371 

fPAR0-age Cut and Burn linear y= 0.912-0.0007x 0.4657 -0.0717 

fPAR0-age Cut Only linear y= 0.9044+0.0006x 0.1910 0.4817 
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fPAR1-age Cut and Burn  linear - 0.9909 - 

fPAR1-age Cut Only linear y= 0.8541+0.0008x 0.0679 0.8033 

LUE-age Cut and Burn curvilinear - 0.1509 0.5815 

LUE-age Cut Only linear - 0.0606 0.8237 

fPAR1-RUG All Combined linear y= 0.8369+0.0036x 0.0394 0.3242 

fPAR1-LAI All Combined linear y= 0.7338+0.0717x 0.0498 0.2923 

LUE-RUG DBF Combined linear y= 1221.2819+51.4395x 0.0018 0.7391 

LUE-LAI All Combined linear y= -534.7807+995.0904x 0.0037 0.5853 
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