


(a) BFS (b) KM (c) SPMV (d) MUM

(e) RAY (f) BT (g) HST (h) LUD

(i) NW (j) PF (k) FFT (l) STE

(m) AES (n) CP (o) LPS (p) NQU

(q) STO (r) BCK (s) NN (t) TPACF

Fig. 7. The ratio of reuse distance distributions for all benchmarks
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Fig. 8. Hit rate trends with the increase of cache capacity

the increase of cache capacity. We calculate the reuse distance and list the ratio of

each distribution. Mostly changed parts are rd0 and rd1, however, the rd2 keeps

unchanged. Some of memory accesses belonging to rd1 convert to rd0 when cache

capacity increases.

In Figure 8, the change of hit rate follows the trend of rd0. BFS and SPMV

benefit slightly from 128KB to 256KB, KM benefits dramatically from 16KB to 64KB

and keeps stable at 128KB, 256KB. For these benchmarks, a large cache capacity helps

to improve the cache performance if there is no other bottleneck in the system.

Contrast to the first category, MUM, RAY, BT, HST, LUD, NW, PF, FFT and

STE distribute a limited interval 5 which is no more than 25% as shown in Figure 6.

The conversions from rd1 to rd0 are relatively small which can be seen from Figure

7(d) to 7(l). Most of them only take the advantage of a cache as large as 64KB then

the rd1 becomes pretty low, most memory accesses either lies in rd0 or rd2 which is

resemble with the third category. Further growth of capacity does not help the cache

performance. The hit rate trends of these nine benchmarks are plotted in Figure 8.

AES, CP, LPS, NQU, STO, BCK, NN and TPACF belong to the third category.

They exhibit stable reuse distance distributions and their memory access patterns

barely change with the increase of cache capacity. In Figure 6, these eight benchmarks
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(a) MUM (b) BCK (c) BT (d) LUD

Fig. 9. Reuse distance distributions of MUM, BCK, BT and LUD with different asso-

ciativities

hardly have memory accesses locate in [128, +∞). But they have either a large part

of memory accesses whose reuse distance is +∞(AES, LPS, NQU) or most reuse

distances are less than 8(CP, STO, BCK, NN, TPACF). The former situation is a

streaming access pattern which exhibits spatial locality only once so that they can not

benefit from current cache design. The latter one displays an expected reuse pattern

which behaves efficiently to exploit all data locality.

In this part, only the benchmarks in first category suffer from the capacity miss,

they benefit from a large cache capacity. However, other benchmarks maintain a sta-

ble cache performance. Most of them issue cache requests in two manners: streaming

access or short reuse distance access. No long reuse distance(rd1 ) can be converted

from miss to hit with the increase of cache capacity. In general, simply increasing the

cache capacity barely help to improve cache performance in GPGPU computing. A

64KB L1 data cache is sufficient for all benchmarks to resolve capacity miss.

4.4 Associativity of L1 data cache

The number of cache lines in a set is associativity. It correlates with the conflict

miss. In Figure 6, MUM, BCK, BT, LUD, NW and FFT distribute relative evenly in

interval 0 to 4. After we measure the experiment results of these six benchmarks in

a set associative cache, all memory accesses will be divided into different cache sets

by the index part of their addresses. The reuse distance of each access could possibly
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(a) NW (b) FFT

Fig. 10. Reuse distance distributions of NW and FFT with different associativities

change depending on if the memory access pattern is balanced. The rd1 in Figure

7 means the cache misses whose reuse distance is greater than the associativity, it

is similar to interval 5([128, +∞)) in Figure 6. The ratio of rd1 over interval 5 in

MUM, BCK, BT and LUD maintain relatively unchanged, the maximum difference

of these two values is approximately 0.036. However, it increases to 3.8× in NW

and 2.43× in FFT. After the set associativity decreases, more accesses are out of the

range to reuse. Eight cache lines can not tolerate the long reuse distances. NW and

FFT suffer from the conflict miss while MUM, BCK, BT and LUD do not, original

interval 0-4 in Figure 6 of these four benchmarks evenly remap to different sets when

it is a set associative cache. Other 14 benchmarks take a big part at the left and

right intervals. Like what we have analyzed in previous part of this section, these

benchmarks exhibit stable behaviors.

Figure 9 and 10 plot the simulation results of the set associative cache. In this

experiment, we simulate these six benchmarks at a 16KB cache with the different

values of associativity. With the growth of set associativity, the number of sets

decreases. MUM, BCK, BT and LUD show the same distribution trend in Figure 9,

they do not really suffer from the conflict miss. However, in Figure 10, the trends of

NW and FFT change with different associativities. The hit rates of these benchmarks
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Fig. 11. Hit rate trends with the increase of associativity

in Figure 11 also follow this distributions. The ratio of rd1 (Figure 10) in NW keep

decreasing with the number of associativity increases, the cache performance also

increases. For FFT(Figure 10), a 32-way set associative cache is sufficient to deliver

a high hit rate, then all parts of the distributions become stable. The hit rate of NW

keeps increasing from 0.02 to 0.24 and FFT jumps from 0.55 to 0.89 when it is a

32-way cache.

4.5 Summary

In this section, we analyze the experiment statistics based on the reuse distance.

We quantify the memory access patterns and demonstrate that cache capacity and

associativity are not the key points to improve the cache performance. The reuse

distances of most memory accesses are either less than 8 or +∞. Streaming accesses

can not take the advantage of current cache design to exploit the data locality.
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CHAPTER 5

CACHE BYPASSING OPTIMIZATION

From the above analysis for all simulations, we illustrate our research on L1 data

cache of GPGPU computing. As a throughput-oriented device, GPU is expected

to deliver a high performance. We have quantified the inefficiency of current cache

design, this drives us to improve the architecture design to increase the hit rate and

reduce the cache contention. According to the classifications in Table 1, we want to

decrease the ratio of rd1 and rd2 in entire work set by bypassing unrelated cache

requests.

5.1 Background introduction

Bypassing is a technique which has been extensively studied at CPU cache, espe-

cially for the last level cache. In modern CPU design, it normally includes three level

caches, one memory access will visit last level cache only if it missed all of previous

requests. It is a very low cache hit rate in last level cache since most cache localities

have already been filtered out by previous level caches. It is a good idea to bypass

last level cache requests to lower level memory hierarchy if there is few cache localities

in order to reduce cache contention[12, 43].

Modern GPUs achieve high throughput by launching thousands of threads, the

range of memory access is normally very wide. According to the warp scheduling

policy, cache requests will burst in short cycles. Based on these reasons, cache is

not as significant as in CPU cores. Less cache capacity can not widely exploit the

locality of massive memory accesses in GPGPU computing, especially GPGPU com-
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puting benchmarks deliver more broad memory address and different memory access

patterns(most memory accesses are compulsory misses).

There are at most 32 and at least 2 memory accesses when a warp is issued.

GPU will merge the adjacent the accesses if they call for sequential addresses, leading

to most memory localities have already filtered out from cache[32]. The scheduling

policies, such as GTO and LRR, not always favor for the locality of current memory

access pattern, this fails to exploit the inter-warp or intra-warp locality[31]. Filtered

locality and improper scheduling policy not only intensify cache contention but also

increase the reuse distance of two same memory accesses. Based on the analysis of

last chapter, memory accesses with long reuse distance dominate cache requests. Our

purpose is to reduce the cache contention and avoid cache pollution. The solution is

to bypass this kind of accesses from cache to lower level memory hierarchy.

The work flow of memory accesses in a bypass enabled cache is as in Figure

5.1. Hit and missed cache requests access cache directly layer by layer, meanwhile,

bypassed requests go into memory, and detour cache to registers when they get data

back.

Fig. 12. The work flow of bypassed memory access in GPUs
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5.2 Motivation

5.2.1 Memory access bypassing

Bypassing can alleviate the cache contention or protect the hot lines in cache[14].

The key point is to pick the right candidates. It is an optimization solution for long

reuse distance accesses. This kind accesses can not get reused in cache before the line

is replaced out, and they are thrashing-prone due to frequent switching in and out. For

instance, BFS, KM, and SPMV in Figure 7, they could benefit from cache bypassing

as they have large part of long reuse distance accesses(rd1 ), a smart cache bypassing

mechanism can filter unnecessary memory accesses, decrease the reuse distance, and

improve cache hit ratio.

However, bypassing hardly helps AES, CP, LPS, NQU, STO, BCK, NN, and

TPACF. They have one common feature that rd1 takes few part of all memory ac-

cesses. Simply bypassing the streaming accesses for these benchmarks can not increase

the number of cache hits, like missed cache requests, bypassed requests also go through

interconnect, leaving the bandwidth still be the bottleneck for the performance.

Figure 13 displays four typical examples of memory access trends. The x axis

indicates at which time of cache request issued, y axis stands for the reuse distance for

corresponding cache request. The value of 10000 in y axis means the reuse distance

is∞. As shown in Figure 13, only BFS could benefit from bypass, since it contains a

large part of long reuse distance memory access around 2000, which is far greater than

the number of cache lines(128). Meanwhile the reuse distance of most memory access

in TPACF is lower than 10, it already performs very well in current cache design. For

AES, all memory accesses are streaming pattern, it does not matter bypass the cache

request or not. The best optimization solution for AES is prefetching since it will

periodically access sequential memory addresses. CP contains two extremes: either
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very short reuse distance like TPACF or ∞ like AES, it also will not benefit from

bypassing.

(a) BFS (b) AES

(c) CP (d) TPACF

Fig. 13. Reuse distance trends for BFS, AES, CP, and TPACF

5.2.2 Cache line prefetching

Prefetching could improve the cache performance for AES, HST, NW, PF, and

NQU. Figure 14 shows the memory address difference of AES and HST, x axis also

means cache request at each time, y axis is the memory address difference between

current cache request and previous one, it could be negative if they go back for lower

address. AES, HST periodically access a sequential address, they display a strong

spatial locality, and hardly with temporal locality. The subsequent requests will

utilize the spatial locality and hit in cache if we can prematurely load the continuous

addresses in cache.
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(a) AES (b) HST

Fig. 14. Memory address difference

5.3 Benchmarks

We choose 8 benchmarks from Rodinia[41], Parboil[42], Polybench[44], and Mars[45],

which are four popular GPGPU computing benchmarks have been widely used to test

the performance of parallel computing architecture. All of the eight benchmarks are

listed in Table 4.

Table 4. Benchmarks List for Bypassing

Name Abbr Source

Breadth First Search BFS Rodinia[41]

Kmeans KM Rodinia[41]

Sparse Matrix-Dense Vector Multiplication SPMV Parboil[42]

Matrix Transpose and Vector Multiplication ATAX Polybench[44]

BiCG Sub Kernel of BiCGStab Linear Solver BICG Polybench[44]

Matrix Vector Product and Transpose MVT Polybench[44]

Similarity Score SS Mars[45]

String Match SM Mars[45]

Most of them show an intensive memory access behavior, for example, SS sends
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(a) Miss rates (b) Reuse distance distributions

Fig. 15. Profile for selected 8 benchmarks

almost 3 millions cache requests, however, the cache miss rate is very high. Figure

15(a) shows the miss rate of these selected benchmarks in a 16KB L1 cache. Only

SM is lower than 0.7(0.65). Other benchmarks are at least 0.7(ATAX, BICG, and

MVT), even worse, KM missed 0.9 cache requests. The right most bar gives the

average miss rate of these 8 benchmarks(0.75). These high cache miss rates obviously

hurt the performance. As in 4.2, we profile the reuse distance distributions with

the same cache configuration. In Figure 15(b), all 8 benchmarks have a majority

part in rd1 which can be optimized by bypassing unrelated memory accesses and

decrease the reuse distance of some memory accesses who still access cache. Based

on these observations, we present a Bypass Aware Cache with small trade-off which

could effectively bypass thrashing-prone memory accesses and improve the system

performance.

5.4 Diagram of Bypassing Aware cache

In BA cache, the bypass decisions are made after tag comparison stage. In order

to distinguish the memory accesses with long reuse distance, we add two bits to the

tag part of each cache line: one is reuse bit, another is bypass bit as in Figure 16. The
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reuse bit suggests whether current cache line has been reused before. The bypass bit

suggests the cache request bypassed the cache or not. When a memory request hits

in cache, the reuse bit of corresponding cache line is set to 1, that means this cache

line already reused and it could possible be reused again in near future.

The reuse bit are also employed to make replacement policy fair. It naturally

splits all cache lines into two group, one group is reused lines another group is never

reused lines. We will choose the victim line from these two group alternatively.

Fig. 16. Extra two bits for Bypass Aware cache

When a cache request bypassed cache, BA cache replaces the victim cache line

and update the tag part of corresponding cache line, and set the bypass bit to 1, but

the data part of this line does not corresponds to this cache request since BA cache

only update the tag part, not send the data request. BA cache stores the information

of tag part which helps to make a decision for subsequent cache requests. If a cache

request bypass cache, the reuse bit is 0, that means it is first consideration to be the

victim when cache miss.

5.4.1 Bypassing Aware cache work flow and bypassing decision

With the purpose of bypassing long reuse distance memory accesses, we add

two bits in cache architecture of BA cache. This means the work flow of BA cache

is different with traditional cache. Figure 17 illustrates the entire work flow of BA

cache.
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Fig. 17. BA cache work flow

In the conventional design, after a cache request is issued, we calculate which

cache set current request locates by the value of index part, then compare the tag

part to make a decision for cache hit or miss. If the request hits in cache, it will send

to cache directly and get the data back. If this request misses, a victim cache line is

selected by replacement policy to move space for new request and send the request

to lower level memory to ask for data.

However, for BA cache, it works differently from traditional cache since it will

make the decision to bypass or not. Bypassing decisions are made after tag check

stage. BA cache will also check the tag part first. If the comparison failed, that

means current cache request does not exist in cache, and reuse bit is set to 0. Next,

BA cache will find the victim cache line to be replaced, it is a cache miss if there

is free line to put this request in cache, or bypass this request if all lines are valid.

Bypass bit is set to 0 when cache miss and set to 1 when cache bypassed. Meanwhile,

the tag part of victim line will update to corresponding part of this request for the
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processing of subsequent cache requests.

If tag check hit, that means the cache line has been referred before(either hit or

bypassed), reuse bit is set to 1 and BA cache continue to check the bypass bit. It is

a pseudo hit if bypass bit is 1, last request bypassed the cache and only the tag part

updated, however data request has not send to lower level memory. BA cache will

ask data from memory and disable the bypass bit. While if the bypass bit is 0, that

means requested data already load into cache, BA cache can get the data directly.

5.4.2 Replacement Policy

When the tag check of a cache request failed, we need find a cache line to be

replaced. Most popular cache replacement policies are Least Recently Used(LRU),

replacing the cache line which has not been accessed the longest time and First In,

First Out(FIFO), replacing the cache line which is the most earliest one get into

cache.

Since all cache lines in a set can be divided into two groups after cache warm up,

one group includes the cache line has revisited before, another one does not. In BA

cache, we employ a relative balanced replacement policy to find the victim. First, we

find the victim from the lines whose reuse bit is 0, when the number of this kind of

lines is less than a threshold, then we change to find the victim from the lines whose

reuse bit is 1 until this number is equal to the threshold.

5.4.3 Hardware Cost

The hardware cost for BA cache is negligible, we add two bits to each cache line.

For a 16KB cache, there are 128 cache lines, the total overhead is 2*128=256 bits.
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5.5 Experiment Results

We implement BA cache in GPGPU-Sim[21] with the same architecture config-

uration with of Table 2. We compare with traditional cache design which fully utilize

L1 cache and simple bypassing which bypass all cache requests. The results is shown

in Figure 18. Simple bypassing can improve the performance for 6 out of 8 bench-

marks with two exceptions: SPMV and SM, whose performance hurts from simple

bypassing. Simply bypassing all memory accesses lay more burden on the intercon-

nect which is a race resources between all cores. It enlarges the negative impact of

the bottleneck. However, BA cache can improve the performance, the improvement

for SPMV is up to 11.06% and for SM, it is up to 77.2%. BA cache can pick the right

bypass candidates as they can not take the advantage of cache.

Fig. 18. Normalized IPC with traditional bypassed cache design and BA cache

For BFS, ATAX, BICG, MVT, and SS, all of them can benefit from both ap-

proaches, however, BA cache always outperform simple bypassing. The miss rate of

these five benchmarks also abide this trend, BA cache not only improves the IPC,

but also drops the miss rate.

37



BA cache improves the IPC for all benchmarks except KM, we have explained

in previous part since the L1 data cache only take few part compared with constant

and texture memory accesses. As shown in Figure 19, although the miss rate of KM

drops around 18.0%, the performance almost keep the same.

Fig. 19. Normalized Cache Miss Rate between BA cache and traditional cache

As a cost efficient cache design, BA cache is easy to implement and effectively

increases the cache performance and decreases the cache miss rate. The average IPC

improvement is more than 20%, the average reduction of cache miss rate is more than

10%.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this work, we analyze the memory access patterns of 20 benchmarks in GPGPU

computing based on reuse distance theory and give the optimization suggestions de-

pending on their features.

First, we calculate the reuse distance distributions in a fully associative cache.

Based on these distributions, we illustrate the impacts of cache capacity, 17 of 20

benchmarks do not suffer from the capacity miss. BFS, KM and SPMV benefit

from the growth of cache capacity, other benchmarks keep almost stable because few

memory accesses are converted from miss to hit. Furthermore, associativity also does

no affect the cache performance for 18 benchmarks, only NW and FFT get profits

from a large associativity. Most cache requests in GPGPU computing are either

streaming accesses or short reuse distance accesses.

After the analysis, we provide some possible techniques to optimize the GPU

cache. In this thesis, we implement a Bypass Aware Cache, which could improve the

performance around 20%. For the benchmarks like AES, HPS, prefetching could help

to improve their IPC, we leave this as our future work.
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Appendix A

ABBREVIATIONS

VCU Virginia Commonwealth University

RVA Richmond Virginia

CPU Central Processing Unit

GPU Graphic Processing Unit

BA cache Bypass Aware cache

GPGPU General-Purpose computing on Graphics Processing Unit

CUDA Compute Unified Device Architecture

OpenCL Open Computing Language

SM Streaming Multiprocessor

SIMD Simple Instruction, Multiple DAta

SP Streaming Processor

SFU Special Function Unit

MSHR Miss Status Holding Register

CTA Cooperative Thread Array

PTX Parallel Thread Execution
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