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Discussion 
 
 
Major Findings 

 

 The major finding in this project was that the maximal rate of oxygen 

consumption in rat spinotrapezius muscle measured using phosphorescence 

quenching microscopy was significantly higher in Goto-Kakizaki rats compared to 

Wistar controls: Goto-Kakizaki, Vmax = 215.9 ± 23.0 nl 𝑂2/(𝑐𝑚3*s) and Wistar, Vmax = 

131.9 ± 8.7 nl 𝑂2/(𝑐𝑚3*s)). This finding indicates that, in an animal model for type 2 

diabetes mellitus, a resting striated muscle has an elevated rate of oxygen 

consumption in the upper range of PO2. The PO2 at half maximal rate of consumption 

was not significantly different in Goto-Kakizaki and Wistar rats (Goto-Kakizaki, P50 = 

8.5 ± 1.9 mmHg and Wistar, P50 = 8.0 ± 3.0 mmHg). Additionally, based on these 

results for P50, it is important to note that the PO2 dependence of oxygen consumption 

in rat spinotrapezius muscle does cover a wide range of physiological PO2 values in 

both Wistar and the diseased animal model. Previous studies on the sensing of oxygen 

by isolated cells and mitochondria (Wilson, 1985) have shown that mitochondria 

consume oxygen at a constant rate regardless of oxygen tension until PO2 falls below 

about 1 mmHg. The P50 values calculated in this study and previous studies on the 

spinotrapezius muscle of male Sprague-Dawley rats (Golub, A. S., & Pittman, R. N., 

2003) suggest that the range of sensitivity to PO2 is much wider. Furthermore, the 

range is consistently wide in the spinotrapezius muscles of spontaneously T2DM rats 

and Wistar controls. 
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Oxygen Disappearance Curves 

 

 The oxygen disappearance curves (examples in Figures 2 and 3) collected from 

both the Wistar and G-K rats clearly display the previously observed behavior of the 

spinotrapezius muscle from Sprague-Dawley rats in terms of oxygen consumption 

over time. The 10 seconds of data collected before airbag inflation/tissue 

compression show the baseline PO2. This PO2 value represents the amount of oxygen 

that is maintained in equilibrium in the interstitial fluid by the inflow of oxygenated 

blood through the microcirculation and consumption by the tissue. On average, the G-

K rats had a higher baseline PO2 compared to the Wistar controls. At 10 seconds, 

when the airbag was inflated and blood flow was arrested, that equilibrium was 

disturbed. There was no longer oxygen bound to hemoglobin flowing into the area, so 

the PO2 immediately began to decrease in proportion to the rate of oxygen 

consumption by the muscle. The initial slope of the line is near linear, indicating that 

the rate of consumption is not very dependent on PO2 at those levels. As the oxygen 

tension continues to drop, due to continued consumption without replenishment of 

oxygen from the blood, the line begins to curve downward exponentially until it 

reaches approximately zero mmHg. The point at which the line stops behaving 

linearly marks a critical point at which the tissue consumption rate starts to decrease 

with decreasing PO2 levels. The difference in the time at initial compression to the 

time the curve reaches approximately 0 mmHg represents the total amount of time 
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required for the tissue to consume all the available oxygen in the interstitial space. 

This ranged from 30-45 seconds in both Wistar and G-K rats. 

 

 

VO2 vs. PO2 Plots 

 

 Figures 4 and 5 display the plots of the PO2 dependence of oxygen 

consumption for a Wistar and - rat, respectively. The data were fit with Hill’s equation 

to provide a non-linear fit line and several key parameters. Vmax is used to describe the 

maximum rate of consumption by the given muscle in the tissue region being 

measured. Another useful parameter for describing this relationship is P50, which is 

equal to the PO2 at half - maximal consumption rate. A higher P50 indicates that the 

oxygen consumption rate is dependent on a wider range of PO2 values. On average, 

the G-K rats had a higher, but non-significant, P50, compared to the Wistar rats. 

 

Explanation for Increased Vmax in G-K rats 

 

If the skeletal muscle of diabetic rats consumes oxygen at a higher average 

maximal rate, one explanation could be that there is an “uncoupling” of O2 

consumption and ATP production in the mitochondria that leads to less efficient 

production of ATP and a higher requirement for oxygen. In that case, a given cell 

would need to consume more oxygen in order to produce the same amount of ATP 

required for normal cellular processes. This may lead to a higher maximal rate of 
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oxygen consumption in skeletal muscle at resting conditions. The term “mitochondrial 

uncoupling” can be used to describe any situation in which the electron transport 

chain is not used to produce ATP or create proton gradients (Mookerjee SA, 2010). If a 

situation were to arise in which oxygen was still being consumed through oxidative 

phosphorylation, but the proton gradient was not being created as efficiently and ATP 

was not being produced at the same rate, the cell may have to compensate by 

increasing the rate of respiration. This would make up for the decreased energy 

production and also consume oxygen at a higher rate, leading to a higher Vmax. 

 

In related studies, it has been shown that the mitochondria in diabetic rats are 

smaller and fewer in number (Morino K, 2005). This would logically suggest that 

overall consumption of oxygen by mitochondria in a particular cell or tissue would be 

lower than that of a healthy control. In fact, it has been demonstrated that muscle 

oxidative phosphorylation in diabetic rats was impaired (Kelley DE, 2002, Sivitz, 

William I, 2016). This appears contradictory to the results of this study, because 

decreased oxidative phosphorylation should result in less oxygen being consumed by 

the cell and less ATP being produced. 

 

 As described before, the classic view of ATP production involves oxidative 

phosphorylation and anaerobic glycolysis as separate processes that are carried out 

independently based on oxygen availability. In physiologically oxygen-rich 

environments, the cell will choose to produce energy more efficiently through 

oxidative phosphorylation and conversely, using glycolysis with the production of 
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lactate in environments where oxygen is unavailable. This either/or scenario fits well 

with the classic view that mitochondria consume oxygen at a steady rate throughout 

most of the physiological range until PO2 drops below about 1 mmHg. This would 

suggest that oxidative phosphorylation is the sole process producing ATP until PO2 

levels fall to nearly zero.  

The in vivo PQM technique used in this project demonstrates that the 

mitochondria appear to consume oxygen at rates that are dependent on PO2 over a 

much wider physiological range. Since the rate of consumption varies based on 

oxygen tension, it may be the case that oxidative phosphorylation and glycolysis work 

simultaneously at a ratio that is dependent on PO2. In situations where PO2 is 

decreasing, for example, the cell would increasingly shift to using glycolysis to 

produce some of its ATP. Furthermore, when oxygen is abundant, the cell would shift 

to a higher utilization of oxidative phosphorylation. This PO2-dependent ratio of 

oxidative phosphorylation and glycolysis differs from the classic view, but is more 

consistent with the oxygen dependence of respiration described in this project and 

previous similar studies (Golub, 2012). 

The differences in values for half maximal respiration reported in earlier 

studies (Chance B., 1988) and those reported by Golub and Pittman are likely due to 

technical limitations. In the older studies, in-vitro techniques were used that involved 

suspensions of mitochondria or cells to measure oxygen consumption. A variety of 

error sources were likely introduced that led to vastly different results. Those 

potential sources of error were dramatically reduced when the in-vivo technique was 

implemented. 
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Figure 6. This is an illustration of the possible relationship between oxidative 
phosphorylation and glycolysis based on variations in PO2. In this diagram, if PO2 falls, 
the utilization of oxidative phosphorylation proportionally decreases as glycolysis 
increases. 
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Limitations and Future Studies 

 

Although blood glucose concentrations were measured before and after each 

experiment, these animals were not fasted and it was not possible to determine how 

recently they had consumed rat chow. A more controlled eating schedule prior to 

experimentation may provide more consistent blood glucose levels. To monitor blood 

glucose, a single glucose reading was taken with the hand held glucometer. A more 

continuous system to monitor glucose may provide interesting correlations in oxygen 

consumption and glucose levels. 

The rate of blood flow in the muscle was not measured in this project. Since 

blood flow is directly related to oxygen delivery to muscles, measuring this variable 

could improve the understanding of oxygen consumption measurements. 

Additionally, the muscles studied were at rest. Inducing contraction while 

measuring PO2 could help show how consumption rates are affected by an actively 

contracting muscle in healthy and diabetic rats. 

It is relevant to note that a relatively small number of muscles were studied. 

More trials would be beneficial to more strongly validate the results obtained in this 

project and help clarify the observed differences in G-K and Wistar oxygen 

consumption characteristics. 
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The PQM technique used in this study utilized a 1 Hz flash rate, which provided 

a PO2 reading every second. In future studies, the frequency of the laser flash rate 

could be increased to provide improved PO2 resolution of the curves describing the 

PO2 dependence of VO2. This would, of course, require a different correction for the 

magnitude of photo-consumption by the method. More accurate Hill parameters may 

come from an increased flash frequency. Additionally, one could study oxygen 

consumption rate in diseased rats of different ages. The symptoms of the G-K rats 

used in this study progress over time much like the disease progresses in human 

diabetic patients. It would be interesting to compare an older, more “end-stage” 

diabetic rat with higher rates of microvascular complications to a younger rat. Since 

this method for studying the PO2 dependence of oxygen consumption is relatively 

new, it would also be beneficial to determine if other chronic diseases such as 

hypertension or obesity would have an effect on consumption rates. 
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Conclusion 

 

 In conclusion, this project utilized a method of measuring the PO2 of the 

interstitial fluid in spinotrapezius muscles of diabetic and non-diabetic rats. By 

arresting blood flow, the rate of oxygen disappearance due to respiration was 

calculated and differences between diseased and control rats were studied. The 

maximum rate of consumption for G-K rats was significantly higher than that of the 

Wistar control rats. The P50 for both rat sub-strains demonstrated oxygen 

consumption rates that depended on PO2 over a wide physiological range. This 

elevated maximum rate of consumption in spontaneously diabetic rats should be 

investigated further to help better understand the effect of the disease on cellular 

respiration and on functional consequences of a mismatch between oxygen supply 

and demand. 
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Appendix 
 
 
Wistar VO2 vs. PO2 plots 
 
A – PO2 (mmHg) 
 
B- VO2 (nl O2/(cm3*s)) 
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