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Figure 15. The Effect of Acute Ethanol on Individual DRG Neuron Threshold Potentials 

Following Overnight Incubation in 10 μM Oxycodone. Data represent individual changes in 

threshold potentials before (●) and 10 minutes after () oxycodone exposure. DRG neurons were 

incubated overnight in media treated with 10 μM oxycodone and exposed to a 50-minute 

pretreatment of 20 mM ethanol in the media prior to being moved to the microscope stage. A 

challenge bath solution containing 3 μM oxycodone was perfused over the DRG neurons for a 

10-minute recording period (N = 8, n = 12). Significant increases in threshold potential values 

were observed following the challenge oxycodone exposure, indicating tolerance to oxycodone 

had been reversed by ethanol in these DRG neurons (** P < 0.01, Student’s one-way paired t-

test). 
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Figure 16. Control Experiments: Threshold Potential Values in the Absence of Oxycodone. 

Threshold potential values are displayed in DRG neurons grown overnight in untreated media 

and exposed to no drug treatment (left), a 50-minute pretreatment with 20 mM ethanol (middle), 

or to 100 nM Bis XI via the internal pipette solution (right). Data represent individual changes in 

threshold potentials at time 0 (●) and 10 minutes () following application of external solution 

without any oxycodone treatment. Statistical significance was considered if P < 0.05 following 

analysis by Two-way ANOVA (repeated measures) with Bonferroni’s post-hoc test. No 

significant differences were detected between time 0 and time 10 minutes in these control 

groups, nor were there differences detected between groups.  
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Figure 17. Representative Traces: The Effect of the PKC Inhibitor, Bis XI, on the Response 

to 3 μM Oxycodone in DRG Neurons Incubated Overnight with 10µM Oxycodone. 

Oxycodone tolerance was significantly reversed by 100 nM Bis XI, contained in the internal 

pipette solution, as indicated by the shift in threshold potential values following a 3 μM 

oxycodone challenge.  
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Figure 18. The Effect of the PKC Inhibitor, Bis XI, on Individual DRG Neuron Threshold 

Potentials Following Overnight Incubation in 10 μM Oxycodone. Data represent individual 

changes in threshold potentials before (●) and 10 minutes after () oxycodone exposure. DRG 

neurons were incubated overnight in media treated with 10 μM oxycodone and exposed to 

100nM Bis XI via the internal pipette solution. A challenge bath solution containing 3 μM 

oxycodone was perfused over the DRG neurons for a 10-minute recording period (N = 3, n = 8). 

Significant increases in threshold potential values were observed following the challenge 

oxycodone exposure, indicating tolerance to oxycodone had been reversed by Bis XI in these 

DRG neurons (** P < 0.01, Student’s one-way paired t-test). 
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oxycodone is activating similar mechanisms based on the analogous findings.  Additionally, the 

fact that tolerance was observed in isolated DRGs suggests that reduced antinociceptive 

responses in vivo following repeated oxycodone treatment could be influenced not only by 

tolerant µ-opioid receptors in central neuron populations but also those expressed in peripheral 

neuronal populations.  

Reversal of Tolerance to Oxycodone by Ethanol or a PKC Inhibitor 

Our data showed a robust reversal of oxycodone tolerance by a low-to-moderate concentration of 

ethanol [20 mM] in DRG neurons, suggesting that the mechanisms of ethanol reversal occur via 

intracellular signaling pathways independent of pharmacokinetic influences or neuronal 

signaling networks. Most states enforce a legal driving limit for blood alcohol concentrations to 

0.08% or lower, which corresponds to approximately 17 mM ethanol (Miller, 2013), suggesting 

that the reversal of tolerance does not require consumption of excessive amounts of alcohol or 

extremely high blood alcohol concentrations. This concentration of ethanol was also sufficient to 

reverse morphine tolerance in locus coeruleus neurons (Llorente et al., 2013), indicating that the 

mechanisms underlying the reversal of opioid tolerance are functional in multiple neuronal 

populations.  

To our knowledge, the effect of inhibiting PKC or its specific isoforms on oxycodone 

tolerance has not been investigated in DRG neurons. By applying the PKC inhibitor Bis XI in the 

internal pipette solution, we were able to demonstrate that inhibiting PKC in neurons exposed to 

oxycodone overnight led to a rapid reversal of tolerance, due to the continued response to a 3 µM 

oxycodone challenge.  Based on published IC50 calculations, this concentration of Bis XI 

[100nM] selectively inhibits two isoforms: the conventional isoform, PKCα, and the novel 

isoform, PKCε, with a 10-fold selectivity for PKCα over PKCε (Wilkinson et al., 1993). These 
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isoforms have previously been identified as having important roles in maintaining opioid 

tolerance and implicated to have potential interactions with ethanol (Bailey et al., 2006, 2009; 

Smith et al., 2007; Wilkie et al., 2007).  This data highlights the fact that like morphine, 

oxycodone tolerance mechanism(s) at the neuronal level contain a PKC-mediated portion and 

can be reversed by direct and selective inhibition of PKCα and ε isoforms. Furthermore, this data 

suggests that ethanol reversal could also involve a PKC-mediated mechanism. 

Though it has only been reported in animals tolerant to morphine, there exists an 

interesting difference between ethanol and PKC inhibitors when each served as a reversal agent. 

PKC inhibition alone can restore a response to circulating morphine released from a pellet 

without a further opioid challenge administration (Smith et al., 2006), whereas in the case of 

ethanol, reversal of tolerance has only been reported in studies where a subsequent morphine 

challenge injection was administered (Hull et al., 2013; Hill et al., 2016). PKC has been reported 

to have effects on sodium channels directly. It has been shown that inhibiting PKC reduced 

maximal conductance of TTX-resistant sodium channels, possibly due to a reduction in channel 

density (Gold et al., 1998). It could be inferred that inhibition of PKC influences neuronal 

excitability in two ways: 1) modulation of sodium channels directly and 2) reduced 

phosphorylation at the µ-opioid receptor. It is less clear with ethanol whether there are any direct 

influences on sodium channels, and though it has been suggested to play a role in de-

phosphorylation of µ-opioid receptors, the proposed mechanism by which ethanol works to 

accomplish this involves PKC. These differences suggest that although ethanol and PKC 

inhibitors have each been reported to effectively and completely reverse both morphine and 

oxycodone tolerance in mice in vivo and in vitro, the underlying mechanisms may be related, but 

not identical. 
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Our conclusions from these studies indicate that oxycodone similarly reduced dorsal root 

ganglia neuronal excitability with the same potency as reported for morphine, and that prolonged 

exposure led to tolerance at the level of a single neuron. The onset of these acute observations 

occurred within minutes and was opioid receptor dependent. We found that concentrations of 

ethanol, equivalent to moderately intoxicating doses in humans, completely reversed oxycodone 

tolerance. Additionally, we showed that reversal of oxycodone tolerance is in part mediated by 

inhibition of PKC. Collectively these studies provide additional insight into the reversal 

mechanisms of oxycodone tolerance by ethanol, and that this phenomenon is neither limited to 

central neuron populations, nor require external influences such as pharmacokinetic factors or 

intact neuronal networks. 
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Chapter 4 

 General Discussion 

 

Opioids exist in a very delicate balance in today’s society. They serve a necessary 

medicinal role in the alleviation of pain, coughing and diarrhea. However the tolerance, 

dependence and, too often, addiction that is associated with repeated use of these compounds 

creates a major societal problem. Oxycodone is one example of an opioid compound whose 

contributions to society are both beneficial and destructive. There is no doubt that oxycodone has 

provided, and continues to provide, pain relief to those who need it most, yet it is also 

increasingly recognized today just how deeply rooted oxycodone is in the foundation of the 

current opioid epidemic. When opioids such as oxycodone are consumed in tandem with other 

substances, particularly known substances of abuse, a variety of serious health concerns arise. 

One such substance is ethanol. Though legal and socially accepted, it can be detrimental to one’s 

health if misused or combined with certain drugs, especially other depressants. Overall, the 

objective of this dissertation was to investigate the ability of ethanol to reverse tolerance to 

common opiates other than morphine, with a primary interest in oxycodone. The studies 

described here advance our knowledge regarding ethanol’s interaction with acute and chronic 

oxycodone, which had not previously been investigated. In addition, these experiments have 

progressed our understanding of tolerance development to oxycodone at the metabolic and 

cellular levels.  

Oxycodone is a potent antinociceptive compound in mice, as it is in man. Our acute 

studies produced ED50 values that agree with previously published ED50 values, suggesting we 

have a reproducible model of assessing oxycodone antinociception in mice (Pawar et al., 2007; 
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Minami et al., 2009). With repeated administration, tolerance developed to this effect, where 

higher doses were required to produce antinociception. We also tested the antinociceptive effects 

of hydrocodone. Hydrocodone was similar in potency to morphine, and less potent than 

oxycodone in mice. In humans however, the potency relationship between these two compounds 

depends on the specific effect being measured. Hydrocodone and oxycodone have been shown to 

be equally potent when used as an analgesic in the emergency room (Marco et al., 2005), but 

oxycodone was shown to be more potent at eliciting other opioid effects such as miosis in non-

dependent individuals (Zacny and Gutierrez, 2009). The fact that oxycodone and hydrocodone 

are equally potent in humans, but not in mice, could result from the type of pain stimuli elicited 

(thermal vs. inflammation/broken bones) as well as species differences underlying the 

pharmacokinetic events following administration. Regardless of the acute differences in potency 

detected in our model, tolerance developed to hydrocodone’s antinociceptive effects following 

repeated injections, just as observed with oxycodone. Furthermore, the degree of tolerance 

observed was similar between the two compounds.  

Based on data from post-mortem investigations, it was hypothesized that ethanol may 

reverse certain opiate-induced tolerances, and recent pre-clinical studies have demonstrated that 

ethanol does reverse antinociceptive and respiratory depressive tolerance to morphine (Hull et 

al., 2013; Hill et al., 2016; Withey et al., 2017). The data presented in this dissertation have 

expanded our knowledge about the interaction between ethanol and prescription opiates. Ethanol 

(1 g/kg i.p.) did not significantly alter the acute antinociceptive effects of either oxycodone or 

hydrocodone. This was the first line of evidence to suggest that the interaction between ethanol 

and opioids is not the result of additive effects. The next series of experiments addressed the 

effect of ethanol in animals tolerant to either oxycodone or hydrocodone. In these studies, when 
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ethanol (1 g/kg i.p.) was given thirty minutes prior to a challenge opiate injection, tolerance to 

oxycodone or hydrocodone was reversed. The ED50 values obtained from this treatment group 

closely resembled that of acutely-treated oxycodone mice, and were significantly different from 

mice that received repeated oxycodone and saline (i.e. no ethanol). From these experiments, we 

concluded that ethanol was capable of reversing tolerance to not just morphine, but also 

subcutaneously administered oxycodone and hydrocodone. Furthermore, the same dose of 

ethanol was effective in fully reversing the tolerance to each. This was a critical observation for a 

few reasons. The first implication is that tolerance to opiates that are classified as partial µ-

agonists (such as morphine, oxycodone and hydrocodone), are each susceptible to reversal by 

ethanol. Second, even though these compounds differed in potency acutely, the tolerance that 

developed to each was reversed by the same dose of ethanol. Third, the ethanol dose that 

completely reversed tolerance in these mice is estimated to reflect relatively low-to-moderate 

blood alcohol levels in humans. Thus, the predicted blood ethanol levels necessary to reverse 

opiate tolerance could realistically be reached with only a few drinks in a single sitting. Given 

this reality, individuals who consume hydrocodone or oxycodone repeatedly are at risk for an 

interaction with ethanol if they were to drink. Our data suggest that co-consumption of ethanol 

following chronic exposure to morphine, oxycodone, or hydrocodone is not safe and poses 

significant health risks.  

The behavioral observations we gathered demonstrated that ethanol effectively reversed 

tolerance to the antinociceptive effects of oxycodone and hydrocodone. The following set of 

experiments were designed to uncover potential mechanisms by which ethanol was eliciting its 

effects. While the complete picture is likely complicated, this set of experiments set out to 

address basic pharmacokinetic influences that could be responsible for ethanol’s reversal effect 
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on oxycodone tolerance. These experiments were necessary because oxycodone brain 

concentrations had not been measured in mice, nor had they been measured in animals exposed 

to ethanol simultaneously. Additionally, post-mortem data from heroin or oxycodone-related 

overdose deaths showed the blood opioid concentrations were significantly lower in individuals 

who also consumed ethanol (Darke and Hall, 2003; Thompson et al., 2008). Our first experiment 

aimed to assess what the brain concentrations of oxycodone were following an acute oral 

administration and across time. We found that oxycodone, when given orally, still enters the 

brain quite rapidly, with detectable concentrations present at just 5 minutes post administration. 

Peak levels were observed after 20-30 minutes, and oxycodone was no longer detectable in the 

brain after 8 hours. These data were correlated with the timing of antinociceptive effects elicited 

by oxycodone, supporting the hypothesis that the antinociception is likely mediated in part by 

oxycodone’s actions at receptors located supraspinally within the central nervous system.  

Interestingly, mice that were chronically administered oxycodone and were tolerant to 

oxycodone’s antinociceptive effects showed significantly lower brain oxycodone concentrations 

following a challenge administration compared to an acutely-treated mouse. This finding 

provides new evidence that tolerance to oxycodone includes a metabolic component. Whether 

this is a direct effect of the upregulation of CYP enzymes or through changes in the ability for 

oxycodone to enter and remain in the brain has not yet been investigated. Further experiments 

such as measuring mRNA levels of specific CYP enzymes via qPCR could be conducted to 

begin answering these lingering questions.  

Importantly, we found that ethanol did not alter acute or chronic brain oxycodone 

concentrations. The data were particularly convincing for chronic oxycodone, where the brain 

oxycodone concentrations detected in mice given ethanol were nearly identical to those that only 
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received chronic oxycodone. From this observation, we concluded that ethanol reversal of 

oxycodone tolerance is not due to a pharmacokinetic event. This further supported our 

hypothesis that reversal by ethanol is a phenomenon that involves neuronal mechanisms.  

Given that our behavioral studies focused on tolerance to and reversal of the 

antinociceptive properties of oxycodone, we determined the best model to test our hypotheses at 

the cellular level was dorsal root ganglia neurons isolated from adult mice. These ganglia sit 

adjacent to the spinal cord and include neurons such as C and Aδ nociceptive fibers. The neurons 

contain projections from the periphery into the spinal cord itself, with the soma located within 

the ganglion. Because of this morphology, they are often thought of as relay stations between the 

periphery and the central nervous system. Most of the neurons contained within the dorsal root 

ganglia are known to express µ opioid receptors, making them a fitting model for our studies. 

Furthermore, these neurons can be readily used for whole-cell patch clamp electrophysiology 

experiments. 

DRGs have been used as a model to study the effects of morphine on neuronal 

excitability, but similar studies had not been conducted for oxycodone. The experiments 

described in chapter 3 provide the first line of evidence documenting that oxycodone reduced 

neuronal activity directly, and that it was mediated through opioid receptors. We went on to 

develop a model of in vitro tolerance, by incubating neurons in media containing 10µM 

oxycodone overnight. The fact that these neurons exhibited tolerance to oxycodone suggests that 

in vivo tolerance likely involves µ receptors located both within the central nervous system as 

well as peripheral sites, such as the DRGs. There is recent evidence to suggest that 

antinociceptive tolerance may be primarily influenced by peripherally located µ receptors, since 

the peripherally restricted antagonist methylnaltrexone was able to block antinociceptive 
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tolerance to morphine (Corder et al., 2017). From these studies, we have shown that tolerance to 

oxycodone is due in part to lower total brain concentrations, as well as a loss in effective 

signaling through µ opioid receptors located on DRG neurons. Further experiments are needed to 

determine if the reduction in oxycodone’s ability to decrease neuronal excitability is mediated by 

the desensitization or internalization of µ opioid receptors following prolonged oxycodone 

exposure. Collectively, these observed cellular and metabolic changes help explain our 

behavioral observations that repeated oxycodone administration led to antinociceptive tolerance 

to oxycodone’s effects in the whole animal. 

Once we conclusively showed that tolerance developed to oxycodone at the neuronal 

level, it was imperative to test the effect of ethanol in those neurons. Given our findings that 

ethanol did not alter chronic oxycodone brain concentrations, our hypothesis was that ethanol 

reversed tolerance to oxycodone through neuronal mechanisms. We found that 20mM ethanol 

did in fact reverse tolerance to oxycodone within a single neuron. This concentration of ethanol 

was similar to that of the estimated 17mM ethanol concentration that equals the legal driving 

limit in the United States (i.e. 0.08% blood alcohol concentration). This is a critical finding 

because this suggests that at the neuronal level, ethanol reversed oxycodone tolerance at a 

concentration that would be considered at most moderately-intoxicating in humans. Furthermore, 

these data support our behavioral observations that tolerance to oxycodone’s antinociceptive 

effects was reversed by 1 g/kg ethanol, which is estimated to be moderately intoxicating as well. 

Collectively this data supports the notion that an opioid-dependent individual could easily put 

themselves at further risk of overdose if they also consume a few alcoholic drinks.  

The reversal of morphine tolerance by ethanol has been hypothesized to involve PKC in 

locus coeruleus neurons (Llorente et al., 2013), which play a role in the regulation of respiration. 
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Additionally, various inhibitors of PKC have reversed tolerance to the antinociceptive effects of 

morphine. To date, the involvement of PKC in oxycodone-induced tolerances has not been 

investigated, nor has PKC been investigated in combination with oxycodone and ethanol. We 

chose to use a selective PKC inhibitor, Bis XI, to determine if the tolerance to oxycodone in 

DRG neurons involved a PKC component. Tolerance to oxycodone was reversed within minutes 

of being exposed to 100nM Bis XI. Since the Bis XI was applied via the internal pipette solution, 

the results strongly indicate that reversal of oxycodone tolerance involves intracellular (i.e. 

neuronal) mechanisms that are PKC-dependent. Further experiments will need to be done to 

determine if ethanol itself is acting as a PKC inhibitor, and whether specific PKC isoforms are 

preferentially inhibited by ethanol. Based on IC50 calculations, the concentration of Bis XI that 

we used [100nM] suggests that the conventional isoform, PKCα, and the novel isoform, PKCε, 

are involved. Our findings agree with prior research where both of these isoforms were 

specifically shown to play a role in tolerance to morphine’s antinociceptive and respiratory 

depressive effects (Newton et al., 2007; Smith et al., 2007; Bailey et al., 2009; Lin et al., 2012). 

Our data suggests that these isoforms are likely involved in the mechanisms underlying tolerance 

to oxycodone, as well as morphine. Interestingly, PKCε and PKCα have both been reported to 

interact with ethanol (Gordon et al., 1997; Olive et al., 2000). Transgenic knockout mouse 

models are available for each of these isoforms and could be used in future experiments to 

determine if one or both isoforms are important for ethanol’s reversal effects of oxycodone 

tolerance.  

It is interesting to note that much of the work investigating “reversal of tolerance” with 

PKC inhibitors was attempting to unmask signaling molecules that were necessary for the 

development of tolerance to morphine. The approach was clever and quite informative given the 
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available selective inhibitors. The goal of these studies however, was not to investigate 

“reversal” itself. In contrast, our studies were designed to study the reversal phenomenon 

induced by ethanol, and to investigate further the potential mechanisms by which ethanol acted. 

It is likely that many signaling molecules, including the PKC isoforms described above, play a 

role in both the development of tolerance and ethanol’s ability to reverse tolerance. However, the 

exact mechanism(s) by which tolerance develops to either morphine or oxycodone may not be 

identical to the exact mechanism(s) by which ethanol reverses that tolerance.  

There could be different mechanisms involved depending on the specific neuronal 

populations that are being studied and the particular opiate effect(s) they mediate. It was 

hypothesized and recently demonstrated that the development of tolerance to the antinociceptive 

effects of opiates occurs at a different rate than that of the respiratory depressive effects, with 

tolerance to antinociception occurring faster (White and Irvine, 1999; Hill et al., 2016). 

Additionally, it is hypothesized that tolerance to euphoria also develops faster than respiratory 

depressive effects, but is only supported by anecdotal evidence thus far, since the pre-clinical 

models of “reward” or euphoria are not well accepted.  Given these discrepancies, it is possible 

that the mechanisms underlying tolerance to each of these effects are not identical.  Furthermore, 

the rate at which the development of tolerance to various opiate effects occurs is significantly 

altered by periods of dependence and abstinence. Individuals who have been dependent on 

opiates and then enter a period of abstinence report that their tolerance to the euphoric and 

antinociceptive effects of opiates returns fairly quickly. Perhaps there is some cellular “memory” 

mechanism by which the receptors rapidly desensitize and reinstate tolerance shortly following 

relapse from abstinence. It has been noted that heroin overdose deaths occurred at a greater rate 

in individuals who relapsed after having been abstinent for a period of time, and who also drank 
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alcohol, suggesting that ethanol may be even more lethal when used in combination with opiates 

in these relapsing individuals (Warner-Smith et al., 2001; Hickman et al., 2008). This has not 

been studied in a pre-clinical model and warrants further investigation.  

Collectively, the work from this dissertation has increased our knowledge regarding the 

interaction of ethanol with commonly prescribed opiates. At the level of the whole animal we 

showed that antinociceptive tolerance developed to oxycodone or hydrocodone following 

repeated administration. We then found that the same dose of ethanol (1 g/kg i.p.) that reversed 

morphine antinociceptive tolerance fully reversed tolerance to oxycodone (s.c.) and hydrocodone 

(s.c.) as well. Narrowing our focus to oxycodone, we explored the possibility that ethanol elicited 

its reversal effects via pharmacokinetic interactions.  From those studies, we discovered that 

brain oxycodone concentrations were much lower following chronic administration than after an 

acute administration, and this fact likely contributes to the mechanism of tolerance to oxycodone. 

When we investigated if ethanol altered either acute or chronic oxycodone brain levels, we found 

that ethanol did not have a significant effect, which indicated that the reversal of tolerance by 

ethanol to the antinociceptive effects of oxycodone was not due to pharmacokinetic events. This 

supported our hypothesis that tolerance to oxycodone and reversal by ethanol is mediated by 

neuronal mechanisms.  To show that oxycodone could alter neuronal activity directly, we acutely 

applied oxycodone to isolated DRG neurons, where we observed a reduction in overall 

excitability as measured by whole-cell patch clamp electrophysiology. Following overnight 

incubation with oxycodone, DRG neurons demonstrated tolerance to oxycodone when exposed 

to a bath solution containing a challenge concentration of oxycodone. This tolerance was 

robustly reversed by either a 50 minute pretreatment with 20mM ethanol (which matched our 

whole-animal exposure time), or when exposed to a PKC inhibitor applied via the internal 
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pipette solution. These findings strongly support our hypothesis by providing direct evidence that 

tolerance to oxycodone and reversal by ethanol requires neuronal mechanisms that are mediated 

by intracellular signaling molecules. The interaction between ethanol and inhibitors of PKC 

warrant future experiments in order to elucidate the specific neuronal mechanisms that are 

involved in the reversal of oxycodone tolerance.  
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Appendix A 

 

Oxycodone concentrations in the blood were assessed following acute or chronic administration 

of oxycodone in mice, in the presence and absence of ethanol. Under acute conditions, mice were 

given a gavage of saline or ethanol (2 g/kg, PO) 30 min prior to receiving a single gavage of 

oxycodone (16 mg/kg, PO). Mice were sacrificed 20 min following the acute oxycodone gavage 

and whole blood samples were immediately collected in tubes containing an anticoagulant agent. 

To assess chronic oxycodone blood concentrations, mice were gavaged twice daily with 

oxycodone (64 mg/kg, PO) for four days and on day 5 received a saline or ethanol (2 g/kg, PO) 

gavage 30 min prior to receiving a challenge gavage of oxycodone (16 mg/kg, PO). Mice were 

sacrificed 20 min following the challenge oxycodone gavage and whole blood was immediately 

collected in tubes containing an anticoagulant agent.  
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Pre-extraction preparation was unnecessary for the whole blood specimens, and oxycodone was 

extracted directly from whole blood. A matched matrix five-point calibration curve containing 

oxycodone was prepared at 20-1000 ng/mL for blood. The samples were placed in auto-sampler 

vials for gas chromatography mass spectrometry (GC/MS) analysis. 

Acute oxycodone blood concentrations measured 61.0 ng/ml. In mice that also received ethanol, 

oxycodone blood concentrations measured 83.4 ng/ml. Acute ethanol did not significantly 

increase acute oxycodone blood concentrations (P > 0.05). Following chronic oxycodone 

administration, blood oxycodone concentrations were significantly lower compared to acutely 

treated mice (19.5 ng/ml, P < 0.05, One-way ANOVA, Dunnett’s post hoc). Chronic oxycodone 

treated mice that received ethanol prior to receiving a challenge oxycodone administration also 

showed lower blood oxycodone concentrations compared to acutely-treated mice (31.4 ng/ml), 

though the differences were not significant (P = 0.17).  These data showed that blood oxycodone 

concentrations were significantly lower following chronic oxycodone treatment and that ethanol 

had no effect on either acute or chronic oxycodone blood concentrations. Furthermore these data 

corroborate the findings for oxycodone brain concentrations under these same conditions. 

Together, these data suggest that ethanol reversal of oxycodone tolerance is not due to any 

pharmacokinetic alterations of oxycodone concentrations in either the blood or brain tissue.
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