Document Type
Article
Original Publication Date
2010
Journal/Book/Conference Title
Journal of Applied Physics
Volume
108
Issue
6
DOI of Original Publication
10.1063/1.3486463
Date of Submission
October 2015
Abstract
We report on the tuning of permittivity and permeability of a ferroelectric/ferromagnetic bilayer structure which can be used as a microwavephase shifter with two degrees of tuning freedom. The structure was prepared by the growth of a yttrium iron garnet (YIG) layer on a gadolinium gallium garnet substrate by liquid phase epitaxy, the growth of a barium strontium titanate (BST) layer on the YIG layer through pulsed laser deposition, and then the fabrication of a coplanar waveguide on the top of BST through e-beam evaporation and trilayer liftoff techniques. The phase shifters exhibit a differential phase shift of 38°/cm at 6 GHz through permittivity tuning under an applied electric field of ∼75 kV/cm and a static magnetic field of 1700 Oe. By tuning the permeability through the applied magnetic field we increase the differential phase shift to 52°/cm and simultaneously obtain a better match to the zero applied electric field condition, resulting in an improvement in the return loss from 22.4 to 24.9 dB. Additionally, we demonstrate the use of a lead magnesium niobate-lead titanate (PMN-PT) layer to tune the permeability of the YIG layer. This tuning relies on the piezoelectric and magnetostrictive effects of PMN-PT and YIG, respectively. Tuning of the ferromagnetic response through strain and magnetostriction as opposed to applied magnetic field can potentially pave the way for low power consumption, continuously and rapidly tunable, impedance matched phase shifters.
Rights
Leach, J. H., Liu, H., & Avrutin, V., et al. Electrically and magnetically tunable phase shifters based on a barium strontium titanate-yttrium iron garnet layered structure. Journal of Applied Physics, 108, 064106 (2010). Copyright © 2010 American Institute of Physics.
Is Part Of
VCU Electrical and Computer Engineering Publications
Comments
Originally published at http://dx.doi.org/10.1063/1.3486463