Document Type
Article
Original Publication Date
2011
Journal/Book/Conference Title
Physical Review B
Volume
83
Issue
22
DOI of Original Publication
10.1103/PhysRevB.83.224412
Date of Submission
April 2015
Abstract
The temporal evolution of the magnetization vector of a single-domain magnetostrictive nanomagnet, subjected to in-plane stress, is studied by solving the Landau-Lifshitz-Gilbert equation. The stress is ramped up linearly in time, and the switching delay, which is the time it takes for the magnetization to flip, is computed as a function of the ramp rate. For high levels of stress, the delay exhibits a nonmonotonic dependence on the ramp rate, indicating that there is an optimum ramp rate to achieve the shortest delay. For constant ramp rate, the delay initially decreases with increasing stress but then saturates, showing that the trade-off between the delay and the stress (or the energy dissipated in switching) becomes less and less favorable with increasing stress. All of these features are due to a complex interplay between the in-plane and out-of-plane dynamics of the magnetization vector induced by stress.
Rights
Roy, K., Bandyopadhyay, S., and Atulasimha, J. Switching dynamics of a magnetostrictive single-domain nanomagnet subjected to stress. Physical Review B, 83, 224412 (2011). Copyright © 2011 American Physical Society.
Is Part Of
VCU Electrical and Computer Engineering Publications
Comments
Originally published by the American Physical Society at: http://dx.doi.org/10.1103/PhysRevB.83.224412