Defense Date


Document Type


Degree Name

Master of Science



First Advisor

Andrew Yeudall


Studies have shown that gain-of- function mutant p53, AKT, and NFκB promote invasion and metastasis in tumor cells. Signals transduced by AKT and p53 are integrated via negative feedback between the two pathways. Tumor derived p53 was also indicated to induce NFκB gene expression. Due to the close relationship between p53/AKT and p53/NFκB, we hypothesized that AKT and NFκB can enhance motility in cells expressing mutant p53. Effects on cell motility were determined by scratch assays. CXCL5- chemokine is also known to induce cell motility. We hypothesized that enhanced cell motility by AKT and NFκB is mediated, in part, by CXCL5. CXCL5 expression levels in the presence and absence of inhibitors were determined by qRT-PCR. We also hypothesized that gain-of-function mutant p53 contributes to the activation of AKT. The effect of mutant p53 on AKT phosphorylation was investigated with a Ponasterone A- inducible mutant cell line (H1299/R175H) and vector control. These results indicated that AKT and NFκB enhance motility in cells expressing mutant p53 and this enhanced motility is, in part, mediated by CXCL5. However, AKT phosphorylation was independent of mutant p53.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission


Included in

Physiology Commons