DOI

https://doi.org/10.25772/NK1C-K533

Defense Date

2006

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Biostatistics

First Advisor

Dr. Kellie J. Archer

Second Advisor

Dr. Viswanathan Ramakrishnan

Abstract

Many longitudinal clinical studies suffer from patient dropout. Often the dropout is nonignorable and the missing mechanism needs to be incorporated in the analysis. The methods handling missing data make various assumptions about the missing mechanism, and their utility in practice depends on whether these assumptions apply in a specific application. Ramakrishnan and Wang (2005) proposed a method (MDT) to handle nonignorable missing data, where missing is due to the observations exceeding an unobserved threshold. Assuming that the observations arise from a truncated normal distribution, they suggested an EM algorithm to simplify the estimation.In this dissertation the EM algorithm is implemented for the MDT method when data may include missing at random (MAR) cases. A data set, where the missing data occur due to clinical deterioration and/or improvement is considered for illustration. The missing data are observed at both ends of the truncated normal distribution. A simulation study is conducted to compare the performance of other relevant methods. The factors chosen for the simulation study included, the missing data mechanisms, the forms of response functions, missing at one or two time points, dropout rates, sample sizes and different correlations with AR(1) structure. It was found that the choice of the method for dealing with the missing data is important, especially when a large proportion is missing. The MDT method seems to perform the best when there is reason to believe that the assumption of truncated normal distribution is appropriate.A multiple imputation (MI) procedure under the MDT method to accommodate the uncertainty introduced by imputation is also proposed. The proposed method combines the MDT method with Rubin's (1987) MI method. A procedure to implement the MI method is described.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

June 2008

Included in

Biostatistics Commons

Share

COinS