Defense Date

2007

Document Type

Thesis

Degree Name

Master of Science

Department

Biology

First Advisor

Dr. Donald R. Young

Abstract

I quantified seasonal variations in corticular photosynthesis in 1st through 5th order branches of Myrica cerifera L. (Myricaceae) in order to determine whether corticular photosynthesis contributes to whole plant carbon gain by reducing respirational CO2 loss. Maximum % refixation was 110 ± 39 % of CO2 efflux in the dark (Rd) in 1st order branches during winter, minimum was 18 ± 3 % in 5th order branches during summer. Variations in % refixation paralleled changes in photosynthetically active radiation (PAR). As light attenuated with increasing branch order % refixation decreased. Increased PAR in the winter due to a more sparse canopy lead to increases in % refixation. Total chlorophyll content and chlorophyll a:b ratios were consistent with shade acclimation as branch order increased. Corticular photosynthesis may be a mechanism to enhance shrub expansion due to increased whole plant carbon use efficiency (CUE) and water use efficiency (WUE) attributed to refixation.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

June 2008

Included in

Biology Commons

Share

COinS