Defense Date

2008

Document Type

Thesis

Degree Name

Master of Science

Department

Physiology

First Advisor

Dr. Andrew Yeudall

Abstract

Head and neck cancer ranks high among the most common cancers world wide. In addition, there is a high recurrence rate, as well as a high prevalence of loco-regional tumor spread. Among many factors contributing to metastasis is vascular endothelial cell growth factor C. VEGF-C is primarily an inducer of new lymph vessel formation, typically during embryogenesis; however, some advanced cancers show a significant increase in VEGF-C expression, suggesting a role in metastasis. In the current study, the effects of VEGF-C expression were tested in HN12 cells, which are highly metastatic and known to express high levels of the chemokine CXCL5. A connection between VEGF-C and CXCL5 expression was made in previous studies. VEGF-C expression was downregulated or upregulated in appropriate target cells, in order to test its effect on proliferation and migration. Downregulation of VEGF-C in HN12 cells resulted in a decrease in proliferation, migration and motility. Conversely, upregulation of VEGF-C in HN4 cells led to an increase in cell proliferation. In addition, downregulation of VEGF-C significantly lowered tumorigenicity in athymic mice. All results suggest VEGF-C is contributing to an increase in proliferation, migration and motility in this HNSCC model system.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

June 2008

Included in

Physiology Commons

Share

COinS