Defense Date

2009

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Pharmacology & Toxicology

First Advisor

William Dewey

Abstract

ENZYMATIC REGULATION OF OPIOID ANTINOCICEPTION AND TOLERANCE By Lynn C. Hull, Ph.D. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. Virginia Commonwealth University, 2009 Director: William L. Dewey, Ph.D. Department of Pharmacology and Toxicology The involvement of kinases in opioid actions has long been established. The acute actions of opioids, through the Gi/Go G-proteins, cause the inhibition of adenylyl cyclase and therefore a decrease in protein kinase A (PKA) activation. Additionally, acute opioid administration may cause the G-protein to activate the phospholipase C (PLC)-mediated cascade leading to the activation of protein kinase C (PKC). The phosphorylation of the MOR which can lead to both desensitization by uncoupling of the G-protein coupled receptors (GPCRs) from the G-proteins and to internalization by recruitment of β-arrestins has long been identified as a key process in tolerance. Phosphorylation by PKA and PKC leads primarily to uncoupling of the receptor from the G-proteins. Phosphorylation of the receptor by G-protein coupled receptor kinase (GRK) leads to the recruitment of β-arrestins and internalization of the receptor. Many in vitro studies have come to the conclusion that GRK induced internalization plays a more central role in the tolerance to high efficacy opioids and a lesser role in low- and moderate-efficacy opioid tolerance. In fact it has been hypothesized that morphine, a moderate-efficacy opioid, causes no internalization at all, while the desensitization of the receptor via phosphorylation by PKA and PKC plays a more central role in low- and moderate-efficacy opioid tolerance. We sought to test these in vitro findings in an in vivo model of opioid tolerance. Animals were made tolerant to one of a number of opioids of varying efficacy (low-efficacy meperidine, moderate-efficacy morphine and fentanyl, and high-efficacy [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO)) over an 8 hour period and then were administered one of the kinases’ inhibitors. Tolerance reversal was determined by challenging these mice with the same opioids to which they were tolerant. Calcium is known to play an important role in the acute antinociceptive actions of opioids as well as in opioid tolerance. Therefore it is important to determine how opioids are affecting the regulation of intracellular calcium. Our laboratory has previously shown that Calcium Induced Calcium Release (CICR), the ryanodine receptor and intracellular microsomal Ca2+ pools all play a role in opioids’ actions. It is also well known that mammalian ADP-ribosyl cyclase, CD38’s, product cADPR acts on the ryanodine receptor to cause Ca2+ release into the intracellular space. We chemically and genetically altered CD38 and then tested the acute effect of morphine as well as what effect these treatments had on morphine tolerance to determine what role if any, that CD38 may play in the acute actions of morphine antinociception as well as in morphine tolerance. Together, studies focusing on the role of an ADP-ribosyl cyclase, CD38, and 3 separate kinases, PKA, PKC and GRK, in opioids’ actions were performed in order to better understand the roles of these enzymes’ pathways in the actions of opioid-induced antinociception and subsequent development of tolerance. It is hoped that the results herein add useful knowledge to the general understanding of this drug class, and will one day be of use in the development of future analgesics and in the clinical treatment of pain and reduction in tolerance.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

August 2009

Share

COinS