DOI
https://doi.org/10.25772/F8WG-AA11
Defense Date
2011
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Chemistry
First Advisor
Julio Alvarez
Abstract
This work deals with the development of a new label-free detection technique called Pulsed Streaming Potential (PSP). Its novelty relies on the adaptation of a classical electrokinetic phenomenon (streaming potential) into a tool which can evaluate molecular interplay in label-free fashion. Implementation of PSP to microfluidic platforms allowed the label-free sensing of binding events to plastic (modified and unmodified) surfaces. It was demonstrated the use of real time PSP in plastic microfluidic platforms for determination of kinetic parameters of the interaction of proteins and plastic surfaces. Moreover, initial change of PSP after adsorption of proteins showed to be proportional to the bulk concentration of proteins and it was used for quantification of Lysozyme in the nanomolar range. Several approaches were studied to manipulate the surface of microfluidic channels in order to improve selectivity of PSP through reduction of non-specific adsorption. These approaches included the fabrication of composite surface of polyacrilic acid (PAA) and polyethylene glycol acrylate (PEGA) on cyclic olefin copolymer microchannels, as well as adsorption of nanospheres on COC-PEGA channels.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
May 2011