Defense Date

2011

Document Type

Thesis

Degree Name

Master of Science

Department

Physics and Applied Physics

First Advisor

MASSIMO BERTINO

Abstract

Immunoglobulin E (IgE)-conjugated gold nanoparticles were produced via in situ conjugation of gold nanoparticles with immunoglobulin E by laser ablation of Au in a liquid solution. The colloidal stability and the size distribution of the resulting bio-nanoconjugates were examined with UV-Visible spectroscopy (UV-Vis), dynamic light scattering (DLS), and transmission electron microscopy (TEM). These techniques showed that the Au nanoparticles in aqueous solutions were highly monodispersed spherical particles with a very narrow size distribution. The particles net diameter using TEM, was found to be D5 =3.8±0.9nm and D10 =4.7±1.3nm while the hydrodynamic diameter obtained with DLS was found to be h5 D =171±12nm , h10 D =164±18nm for 5min and 10min laser ablation time respectively. Enzyme-Linked immunosorbent Assay (ELISA) and flow cytometry measurements of the conjugates confirmed that the gold-bound protein remained biologically active, thus paving the way for the application of these nanoparticles in immuno-diagnostics, particularly in tumor-targeted drug delivery.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

May 2011

Available for download on Thursday, May 13, 2021

Included in

Physics Commons

Share

COinS