DOI
https://doi.org/10.25772/K719-Q742
Defense Date
2010
Document Type
Thesis
Degree Name
Master of Science
Department
Biomedical Engineering
First Advisor
Jennifer Wayne
Abstract
The wrist is one of the most complex joints in the human body. As such, the wrist joint is difficult to model due to the number of bones involved and its intricate soft tissue interactions. Many studies have attempted modeling the wrist previously; however, the majority of these studies simplify the joint into two-dimensions or idealized mechanical joints to reduce the complexity of the simulation. While these approaches still yield valuable information, the omission of a third-dimension or geometry defined movements limits the models’ usefulness in predicting joint function under non-idealized conditions. Therefore, the goal of this study was to develop a computational model of the wrist joint complex using commercially available software, whereby joint motion and behavior is dictated by highly accurate three-dimensional articular contact, ligamentous constraints, muscle loads, and external perturbations only. As such, a computational model of the human wrist was created using computed tomography (CT) images of a cadaver right upper extremity. Commercially available medical imaging software and three-dimensional computer aided design (CAD) software were used to reconstruct the osteoarticular surfaces and accurately add soft tissue constraints, as well as calculate kinematic motion simulations. The model was able to reproduce physiologic motion including flexion/extension and radial/ulnar deviation. Validation of the model was achieved by comparing predicted results from the model to the results of a published cadaveric experiment that analyzed wrist function under effects of various surgical procedures. The model was used to replicate the exact testing conditions prescribed for the experiment, and the model was able to accurately reproduce the trends and, in many instances, the magnitudes of the range of motion measurements in the study. Furthermore, the model can now be used to predict the magnitudes for the joint contact forces within the wrist as well as the tension developed in ligaments in hopes locating potential areas of concern after these surgical procedures have been conducted, including further development of arthritis in the wrist and ligament breakdown.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
December 2010