DOI

https://doi.org/10.25772/6DKP-1H28

Defense Date

2011

Document Type

Thesis

Degree Name

Master of Science

Department

Biochemistry

First Advisor

Walter M. Holmes

Abstract

Thermal stability of theG37 tRNA methyltransferase proteins from Thermotoga maritima and Aquifex aeolicus have been compared using Differential Scanning Calorimetry. It was shown that the Thermotoga protein is remarkably stable and is denatured at temperatures in excess of 100 degrees Centigrade. The Aquifex aeolicus protein was less stable, denaturing broadly at temperatures between 55oC and 100oC. In contrast, the mesophilic E. coli protein was completely denatured at 55oC. Enzymatic activity of the proteins was measured at various temperatures. Both the Thermotoga and Aquifex enzymes are active at ambient temperatures, and display a significant decrease in activity when the temperature is raised above 50oC. This may relate to subtle changes in protein structure causing an effect on the tRNA based assay. Both enzymes contain inter subunit disulfide bonds which might contribute to thermal stability. Assays of the enzymes in the presence of high concentrations of Dithiothreitol (DTT) did not significantly reduce activity at higher temperatures, but did stimulate activity at lower temperatures. Site directed mutagenesis of non -conserved protein sequences within Thermotoga maritima were initiated in order to determine what structures might confer heat stability on the protein. Alanine mutagenesis of lysine residues 103,104 led to reduced catalytic activity, but did increased activity at higher temperatures. Aspartate is the most common residue at the relative position 166 in the variable loop of most TrmD genes. It has been shown that in E. coli this is essential for catalytic activity and possibly the residue which carries out N1 deprotonation on residue G37 in tRNA. In Thermotoga glutamate is present at this position. Alanine mutagenesis of this residue did not eliminate activity suggesting another nearby residue may function in this capacity in the Thermotoga TrmD protein.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

August 2011

Share

COinS