Defense Date

2011

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Biochemistry

First Advisor

Sarah Spiegel

Abstract

Mast cells play a critical role in both acute and chronic inflammation and mature in peripheral tissues from bone marrow-derived progenitors that circulate in the blood as immature precursors. Mast cell progenitors are likely to encounter the serum-borne bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P), during migration to target tissues. Mast cells developed from human cord blood-derived progenitors cultured with stem cell factor (SCF) alone express intragranular tryptase (MCT), the phenotype predominant in the lung. S1P accelerated the development of cord blood-derived mast cells (CB-MCs) and strikingly increased the numbers of mast cells expressing chymase. These mast cells have functional FcepsilonRI, and similar to skin mast cells that express both tryptase and chymase (MCTC), also express CD88, the receptor for C5a, and are activated by anaphylatoxin C5a and the secretagogue compound 48/80. S1P induced release of IL-6, a cytokine known to promote development of functionally mature MCTC, from cord blood cultures containing adherent macrophages, and from highly purified macrophages, but not from macrophage-depleted CB-MCs. In contrast, S1P stimulated secretion of the chemokine, monocyte chemoattractant protein 1 (MCP-1/CCL2), from these macrophage-depleted and purified CB-MCs.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

August 2011

Share

COinS