Defense Date

2012

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Biomedical Engineering

First Advisor

Hu Yang

Abstract

Dendrimers are a class of polymers with a highly branched, three-dimensional architecture composed of an initiator core, several interior layers of repeating units and multiple surface groups. They have been recognized as the most versatile compositionally and structurally controlled nanoscale building blocks throughout the fields of engineering, materials science, chemistry, and biology, and they have been widely investigated for drug and gene delivery. Polyamidoamine (PAMAM) dendrimers have inherent properties for gene delivery because of their high buffering capacity, polycationic surface and numerous surface groups for biofunctionlization. This dissertation is organized into four independent sections. The first section investigates a series of polyamidoamine-polyethylene glycol-poly (D,L-lactide) (G3.0- PEG1500-PDLLA, G3.0-PEG6000-PDLLA, and G3.0-PEG12000-PDLLA) for gene delivery. Western Blot, fluorescence microscopy and flow cytometry were used as analysis methods. According to gene transfection studies, G3.0-PEG1500-PDLLA has been shown to be capable of inducing higher gene expression than the parent dendrimer compared to unmodified dendrimer, G3.0-PEG6000-PDLLA and G3.0-PEG12000- PDLLA. The second section aims to evaluate an epidermal growth factor (EGF)-containing PAMAM G4.0 dendrimer vector labeled with quantum dots for targeted imaging and nucleic acid delivery. Targeting efficiency, cell viability, proliferation, and intracellular signal transduction were evaluated. We found that EGF-conjugated dendrimers did not stimulate growth of epidermal growth factor receptor (EGFR)-expressing cells at the selected concentration. Consistent with this, minimal stimulation of post-receptor signaling pathways was observed. These nanoparticles can localize within cells that express the EGFR in a receptor-dependent manner, whereas uptake into cells lacking the receptor was low. Vimentin short hairpin RNA (shVIM) and yellow fluorescent protein (YFP) small interfering RNA (siRNA) were used to test the delivery and transfection efficiency of the constructed targeted vector. Significant knockdown of expression was observed, indicating that this vector is useful for introduction of nucleic acids or drugs into cells by a receptor-targeted mechanism. The third section introduces PEGylated polyamidoamine (PAMAM) dendrimer G4.0 conjugates with a novel bis-aryl hydrazone (BAH) linkage for gene delivery. It was found that the incorporation of BAH linkages into the vector significantly enhanced the buffering capacity of the vector with a high degree of PEGylation. According to gene transfection studies, this new vector has been shown to be capable of both transfecting more cells and inducing higher gene expression than the parent dendrimer. This work demonstrates that the use of the BAH linkage in coupling of PEG to the dendrimer helps maintain or increase the buffering capacity of the functionalized dendrimer and results in enhanced transfection. In the fourth section, we explored PAMAM dendrimer G4.5 as the underlying carrier to construct central nervous system (CNS) therapeutic nanoparticles and tested the buccal mucosa as an alternative absorption site for administration of the dendritic nanoparticles. Opioid peptide DPDPE was chosen as a model CNS drug. It was coupled to PAMAM dendrimer G4.5 with PEG or with PEG and transferrin receptor monoclonal antibody OX26. The therapeutic dendritic nanoparticles labeled with 5-(aminoacetamido) fluorescein (AAF) or fluorescein isothiocyanate (FITC) were studied for transbuccal transport using a vertical Franz diffusion cell system mounted with porcine buccal mucosa. Coadministration of bile salt sodium glycodeoxycholate (NaGDC) or application of mucoadhesive gelatin/PEG semi-interpenetrating network (sIPN) enhanced the permeability of dendritic nanoparticles by multiple folds. These results indicate that transbuccal delivery is a possible route for administration of CNS therapeutic nanoparticles. In summary, enhanced nucleic acids delivery by biofunctionalized PAMAM dendrimers was demonstrated. Transbuccal delivery of CNS therapeutic dendritic nanoparticles was demonstrated. These vectors will be useful in gene and drug delivery and could be extended to covalently conjugate other functional moieties for gene and drug delivery.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

May 2012

Share

COinS