DOI
https://doi.org/10.25772/MSRS-BT51
Defense Date
2012
Document Type
Thesis
Degree Name
Master of Science
Department
Physics and Applied Physics
First Advisor
Michael Reshchikov
Abstract
GaN is a III-V semiconductor that is a promising material used in production of light emitting devices and high power/high frequency electronics. The electronic and optical properties of GaN are subdued by defects that occur during the growth processes of this material. The emitted photoluminescence (PL) from optically excited GaN gives insight into the origins and effects of point defects within the crystal lattice structure of GaN. In this study, PL spectroscopy is used to examine and analyze the point defects that occur in Zn-doped GaN. The blue luminescence band seen in undoped and Zn-doped GaN have identical fine structure and properties. This band is attributed to a ZnGa acceptor. In Zn-doped, the PL intensity quenches abruptly at certain temperatures, which increase with increasing excitation intensity. This behavior is different from the PL quenching in undoped GaN. The PL behavior was simulated with a phenomenological model based on rate equations. A program created with mathematical modeling software, in conjunction with the basic rate equations, was used to explain the unusual behavior of the abrupt thermal quenching observed in Zn-doped GaN.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
May 2012