Defense Date

2013

Document Type

Thesis

Degree Name

Master of Science

Department

Mathematical Sciences

First Advisor

David Edwards

Abstract

Two-level factorial experiments are widely used in experimental design because they are simple to construct and interpret while also being efficient. However, full factorial designs for many factors can quickly become inefficient, time consuming, or expensive and therefore fractional factorial designs are sometimes preferable since they provide information on effects of interest and can be performed in fewer experimental runs. The disadvantage of using these designs is that when using fewer experimental runs, information about effects of interest is sometimes lost. Although there are methods for selecting fractional designs so that the number of runs is minimized while the amount of information provided is maximized, sometimes the design must be augmented with a follow-up experiment to resolve ambiguities. Using a fractional factorial design augmented with an optimal follow-up design allows for many factors to be studied using only a small number of additional experimental runs, compared to the full factorial design, without a loss in the amount of information that can be gained about the effects of interest. This thesis looks at discovering regularities in the number of follow-up runs that are needed to estimate all aliased effects in the model of interest for 4-, 5-, 6-, and 7-factor resolution III and IV fractional factorial experiments. From this research it was determined that for all of the resolution IV designs, four or fewer (typically three) augmented runs would estimate all of the aliased effects in the model of interest. In comparison, all of the resolution III designs required seven or eight follow-up runs to estimate all of the aliased effects of interest. It was determined that D-optimal follow-up experiments were significantly better with respect to run size economy versus fold-over and semi-foldover designs for (i) resolution IV designs and (ii) designs with larger run sizes.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

May 2013

Share

COinS