Defense Date

2013

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Mechanical and Nuclear Engineering

First Advisor

Karla Mossi

Second Advisor

Vishnu Sundaresan

Abstract

Biological and bio-inspired systems using ion transport across a membrane for energy conversion has inspired recent developments in smart materials. The active mechanism in bioderived materials is ion transport across an impermeable membrane that converts electrochemical gradients into electrical and mechanical work. In addition to bioderived materials, ion transport phenomenon in electroactive polymers such as ionomeric and conducting polymers produces electromechanical coupling in these materials. Inspired by the similarity in transduction mechanism, this thesis focuses on integrating the ion transport processes in a bioderived material and a conducting polymer for developing novel actuation systems. The integrated membrane has a bilayer lipid membrane (BLM) formed on a conducting polymer, and the proteins reconstituted in the BLM regulate ion transport into the conducting polymer. The properties of the polymer layer in the integrated device are regulated through a control signal applied to the bioderived layer and hence the hybrid membrane resembles an ionic transistor. Due to the bioderived nature of this device, it is referred to as a ‘bioderived ionic transistor’. The research carried out in this thesis will demonstrate the fabrication, characterization and design limitations for fabricating a chemoelectromechanical actuator using the BIT membrane. The BIT membrane has been fabricated using BLM (DPhPC) reconstituted with protein (alamethicin) to gate Na$^+$ transport into conducting polymer membrane (PPy(DBS)). In this membrane, the bioderived layer is fabricated with proteins by vesicle fusion method and conducting polymer is fabricated by electropolymerization. The bioderived layers, the conducting polymer layers and the hybrid membrane are characterized using electrochemical measurements such as cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The fabrication, characterization and design effort presented in this thesis focuses on the integration of ion transport through the bioderived membrane into volumetric expansion and bending actuation. The characterization efforts are supported by empirical and physics-based models to represent the input-output relationship for both PPy(DBS) actuator and bioderived membrane, and design rules for the proposed actuation platforms are specified. The electropolymerized PPy(DBS) actuator is anticipated to be used in a bicameral device with the chambers kept separated by the DPhPC-alamethicin bioderived membrane. The relationship between the gradient potential, ionic current through the gate, ion concentration, ion transport coefficient in the conducting polymer layer, and the induced tip displacement in the polymer has been concluded from experiments and fitted to the actuation system model. This thesis will also address future directions for this research and anticipated applications for this hybrid actuation concept, such as artificial muscle, drug delivery.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

May 2013

Included in

Engineering Commons

Share

COinS