DOI

https://doi.org/10.25772/CMVJ-C110

Defense Date

2014

Document Type

Thesis

Degree Name

Master of Science

Department

Biochemistry

First Advisor

Paul Ratz

Abstract

Vasoconstrictor tone in the splanchnic circulation redistributes blood flow during hemorrhage and resuscitation. A metabolic sensor, 5’adenosine monophosphate-activated protein kinase (AMPK), has been proposed to relax arteries by inhibiting myosin light chain (MLC) kinase (MLCK) and rho kinase (ROCK) activities. Because AMPK activation might be beneficial in re-establishing splanchnic blood flow during resuscitation, we sought to explore the relative ability of AMPK activators (AICAR, A769662, berberine (BBR) and simvastatin (SIMV)) to relax mesenteric artery (MA) contraction. Our data revealed that these drugs caused vasorelaxation when tissues were stimulated either with KCl (producing primarily a Ca2+ dependent contraction) or phenylephrine (PE; producing a primarily Ca2+ independent contraction). We further investigated the potential mechanisms by which BBR induced mesenteric artery relaxation. We found that BBR did not inhibit MLC phosphorylation, nor did it phosphorylate AMPK, and therefore is likely working through another mechanism to cause vasorelaxation. Notably, PE induced an increase in AMPK phosphorylation and, of all the AMPK activators examined, only AICAR phosphorylated AMPK in rabbit mesenteric artery, which provides a guide for future studies.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

May 2014

Share

COinS