Defense Date

2014

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Microbiology & Immunology

First Advisor

Jason Carlyon

Second Advisor

Jessica Bell

Third Advisor

Richard Marconi

Fourth Advisor

Cynthia Cornelissen

Fifth Advisor

Darrel Peterson

Abstract

Obligate intracellular pathogens must acquire host cell-derived nutrients to facilitate their survival. One such bacterial pathogen, Anaplasma phagocytophilum, replicates within neutrophils and non-phagocytic cells in a bacterial-modified, host cell-derived vacuole. The bacterium exploits host cell vesicular trafficking pathways to route nutrients to its vacuole and utilizes Rab GTPases, guanine nucleotide-dependent, vesicular trafficking regulators, to do so. We previously discovered that the A. phagocytophilum vacuolar membrane is decorated with a specific subset of Rab GTPases - Rab1, Rab4A, Rab10, Rab11, Rab14, Rab22A and Rab35. Rab1 is exclusively found on the endoplasmic reticulum (ER) and thus its localization suggests that the bacterium intercepts the ER. Rab10, which is found on the ER, trans-Golgi and recycling endosomes, localizes to the vacuolar membrane in a guanine nucleotide-independent and bacterial protein synthesis-dependent manner. This suggests that a bacterial-encoded protein is binding to and recruiting Rab10. In this study, we determined that A. phagocytophilum hijacks two very nutrient-rich sources in the secretory pathway - trans-Golgi- and endoplasmic reticulum-derived vesicles. A. phagocytophilum localizes perinuclearly adjacent to the Golgi apparatus during infection. A. phagocytophilum and Anaplasma marginale, an intravacuolar bovine pathogen, also localize near the smooth ER and rough ER in both mammalian and tick host cells. These results are supported by transmission electron microscopy analyses of infected cells. Membrane markers for the rough ER label the peripheries of A. marginale and A. phagocytophilum organisms in both mammalian and tick host cells, which suggests that they are translocated into the pathogen vacuole. Furthermore, membrane markers for trans-Golgi-derived vesicles, including endogenous Rab10, label the periphery of intravacuolar A. phagocytophilum organisms. Markers for the trans-Golgi and the ER co-fractionate with A. phagocytophilum in density gradient centrifugation studies. siRNA knockdown of Rab10 pronouncedly reduces delivery of trans-Golgi markers into the pathogen-occupied vacuole, significantly reduces infection, and impedes bacterial conversion to the bacterium’s dense-cored form. These results suggest that trans-Golgi recruitment is Rab10 dependent and is critical for bacterial development. We identified an outer membrane A. phagocytophilum moonlighting protein, uridine monophosphate kinase that specifically binds GST-Rab10 in affinity chromatography assays and interacts with Rab10 in vivo. We hypothesize that this surface protein is mediating the interaction of the bacteria with intravacuolar trans-Golgi derived vesicles. This interaction could be critical for the delivery of essential nutrients. Taken together, these data suggest that nutritional virulence mechanisms of A. phagocytophilum and A. marginale target the host secretory pathway. Additionally, they suggest a novel mechanism whereby pathogens translocate nutrient rich vesicles into the pathogen vacuole, thus delivering essential nutrients right to their front door.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

12-11-2014

Available for download on Sunday, December 08, 2024

Included in

Bacteriology Commons

Share

COinS