DOI
https://doi.org/10.25772/FAGM-GQ04
Defense Date
2015
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Biochemistry and Molecular Biology
First Advisor
Rakesh C Kukreja
Abstract
Cancer continues to be a leading cause death in the United States despite improved treatments. Cancerous lesions form after acquiring oncogenic driver mutations or losing tumor suppressor function in normal cells. Traditional therapies have included use of genotoxic substances that take advantage of the increased growth rate and loss of tumor suppressor function to cause cell death. One such drug is the anthracycline antibiotic doxorubicin (DOX). DOX interchelates into DNA and disrupts transcriptional machinery while also poisoning topoisomerase II. This results in single and double stranded DNA breaks, which if severe enough leads to either necrotic or apoptotic cell death. DOX has been very effective at treating several different cancers and is still widely used today however its clinical use is limited due to cumulative dose dependent cardiotoxicity. Therefore, combination therapy targeting survival pathways is utilized to minimize the cumulative dose of DOX without ameliorating its anti-tumor effects.
We investigated the potential anti-cancer effects of combining the dual PI3K/mTOR inhibitor, BEZ235 (BEZ), with DOX in pancreatic, breast and other cancer cells lines as well as its associated effects on the heart. Our results showed that co-treatment of BEZ with DOX increased apoptosis in a manner that was dependent on inhibition of the AKT survival pathway. Moreover, BEZ co-treatment with DOX had additive effects towards cell viability while it significantly enhanced necrotic cell death compared to either drug alone. Furthermore, we observed that physiological concentrations of BEZ inhibited ABCB1 efflux resulting in increased intracellular accumulation of DOX, which led to increased DNA damage. In addition, BEZ in combination with gemcitabine (Gem) reduced cell proliferation but did not enhance necrosis or apoptosis. Treatment with BEZ and DOX in mice bearing tumor xenographs reduced tumor growth as compared to BEZ, DOX or Gem. Moreover, BEZ reduced DOX toxicity in rat myoblast cells and did not potentiate the effects of DOX in tumor-bearing mice. We propose that combining BEZ with DOX could be a novel therapeutic approach for the treatment of patients with cancer in the hope of improving the prognosis of this deadly disease.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
5-7-2015
Included in
Cardiovascular Diseases Commons, Medical Cell Biology Commons, Medical Molecular Biology Commons, Medical Pharmacology Commons, Neoplasms Commons, Other Chemicals and Drugs Commons