Defense Date

2015

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Biostatistics

First Advisor

Donna K. McClish, Ph.D.

Abstract

In the medical literature, there has been an increased interest in evaluating association between exposure and outcomes using nonrandomized observational studies. However, because assignments to exposure are not done randomly in observational studies, comparisons of outcomes between exposed and non-exposed subjects must account for the effect of confounders. Propensity score methods have been widely used to control for confounding, when estimating exposure effect. Previous studies have shown that conditioning on the propensity score results in biased estimation of odds ratio and hazard ratio. However, there is a lack of research into the performance of propensity score methods for estimating the area under the ROC curve (AUC). In this dissertation, we propose AUC as measure of effect when outcomes are continuous. The AUC is interpreted as the probability that a randomly selected non-exposed subject has a better response than a randomly selected exposed subject. The aim of this research is to examine methods to control for confounding when association between exposure and outcomes is quantified by AUC. We look at the performance of the propensity score, including determining the optimal choice of variables for the propensity score model. Choices include covariates related to exposure group, covariates related to outcome, covariates related to both exposure and outcome, and all measured covariates. Additionally, we compare the propensity score approach to that of the conventional regression approach to adjust for AUC. We conduct a series of simulations to assess the performance of the methodology where the choice of the best estimator depends on bias, relative bias, mean squared error, and coverage of 95% confidence intervals. Furthermore, we examine the impact of model misspecification in conventional regression adjustment for AUC by incorrectly modelling the covariates in the data. These modelling errors include omitting covariates, dichotomizing continuous covariates, modelling quadratic covariates as linear, and excluding interactions terms from the model. Finally, a dataset from the shock research unit at the University of Southern California is used to illustrate the estimation of the adjusted AUC using the proposed approaches.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

6-23-2015

Included in

Biostatistics Commons

Share

COinS