Defense Date

2015

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Integrative Life Sciences

First Advisor

Cynthia N. Cornelissen, Ph.D.

Second Advisor

Suzanne E. Barbour, Ph.D.

Third Advisor

Jason A. Carlyon, Ph.D.

Fourth Advisor

Todd O. Kitten, Ph.D.

Fifth Advisor

Robert M. Tombes, Ph.D.

Abstract

The obligate human pathogen Neisseria gonorrhoeae successfully overcomes host strategies to limit essential nutrients, termed “nutritional immunity” by expression of TonB-dependent transporters (TdTs): outer membrane receptors that facilitate nutrient transport in an energy-dependent manner. N. gonorrhoeae encodes eight TdTs, five of which facilitate utilization of iron or iron-chelates from host derived proteins including transferrin, lactoferrin and hemoglobin, in addition to siderophores from neighboring bacteria. The transferrin utilization system was previously shown to be critical for establishing infection in human males; demonstrating the possible contributions of TdTs to gonococcal pathogenesis. As such, studies describing the biological function and contribution to pathogenesis of the remaining three uncharacterized TdTs (TdfG, TdfH and TdfJ) are needed. In this study we report that neither TdfG, TdfH nor TdfJ are heme receptors as gonococcal heme utilization occurs passively, independent of energy derived from the TonB system. We also report that TdfH and TdfJ are zinc (Zn) regulated and identify virulence associated regulators that modulate expression of these TdTs, which is in some cases strain-specific. We report that both TdfH and TdfJ contribute to Zn acquisition in N. gonorrhoeae and we characterize TdfH as a calprotectin receptor. Calprotectin, an immune effector protein highly expressed in neutrophils, has antimicrobial activity due to its ability to sequester Zn and Mn. We present evidence that TdfH confers resistance to calprotectin and that TdfH facilitates gonococcal calprotectin binding and Zn accumulation in the presence or absence of calprotectin. Finally, we demonstrate that TdfH expression enhances N. gonorrhoeae NET survival. These studies identify for the first time a novel gonococcal defense strategy to host-mediated nutritional immunity, in which N. gonorrhoeae, via the TdT TdfH, utilizes calprotectin as a Zn source neutralizing its antimicrobial activity. These studies have yielded novel insights into the function and regulation of TdfG, TdfH and TdfJ in N. gonorrhoeae and have laid the framework for future investigation of TdT-mediated Zn acquisition and its role in bacterial pathogenesis.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

7-31-2015

Share

COinS