DOI
https://doi.org/10.25772/GJVN-4M04
Defense Date
2015
Document Type
Thesis
Degree Name
Master of Science
Department
Biomedical Engineering
First Advisor
Jennifer Wayne Ph.D.
Second Advisor
Robert Adelaar MD
Third Advisor
Gerald Miller Ph.D.
Abstract
Several surgically corrective procedures are considered to treat Adult Acquired Flatfoot Deformity (AAFD) patients, relieve pain, and restore function. Procedure selection is based on best practices and surgeon preference. Recent research created patient specific models of Adult Acquired Flatfoot Deformity (AAFD) to explore their predictive capabilities and examine effectiveness of the surgical procedure used to treat the deformity. The models’ behavior was governed solely by patient bodyweight, soft tissue constraints, and joint contact without the assumption of idealized joints. The current work expanded those models to determine if an alternate procedure would be more effective for the individual. These procedures included one hindfoot procedure, the Medializing Calcaneal Osteotomy (MCO), and one of three lateral column procedures: Evans osteotomy, Calcaneocuboid Distraction Arthrodesis (CCDA), Z osteotomy and the combination procedures MCO & Evans osteotomy, MCO & CCDA, and MCO & Z osteotomy all used in combination with a tendon transfer. The combination MCO & Evans and MCO & Z procedures were shown to provide the greatest amount of correction for both forefoot abduction and hindfoot valgus. However, these two procedures significantly increased the joint contact force, specifically at the calcaneocuboid joint, and ground reaction force along the lateral column. With exception to the lateral bands of the plantar fascia and middle spring ligament, the strain present in the plantar fascia, spring, and deltoid ligaments decreased after all procedures. The use of patient specific computational models provided the ability to investigate effects of alternate surgical corrections on restoring biomechanical function in flatfoot patients.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
12-8-2015
Included in
Biomechanical Engineering Commons, Biomechanics and Biotransport Commons, Musculoskeletal System Commons