Defense Date

2015

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Chemistry

First Advisor

Hani M El-Kaderi

Abstract

Activated carbons as emerging classes of porous materials have gained tremendous attention because of their versatile applications such as gas storage/separations sorbents, oxygen reduction reaction (ORR) catalysts and supercapacitor electrodes. This diversity originates from fascinating features such as low-cost, lightweight, thermal, chemical and physical stability as well as adjustable textural properties. More interestingly, sole heteroatom or combinations of various elements can be doped into their framework to modify the surface chemistry. Among all dopants, nitrogen as the most frequently used element, induces basicity and charge delocalization into the carbon network and enhances selective adsorption of CO2. Transformation of a task-specific and single source precursor to heteroatom-doped carbon through a one-step activation process is considered a novel and efficient strategy.

With these considerations in mind, we developed multiple series of heteroatom doped porous carbons by using nitrogen containing carbon precursors. Benzimidazole-linked polymers (BILP-5), benzimidazole monomer (BI) and azo-linked polymers (ALP-6) were successfully transformed into heteroatom-doped carbons through chemical activation by potassium hydroxide. Alternative activation by zinc chloride and direct heating was also applied to ALP-6. The controlled activation/carbonization process afforded diverse textural properties, adjustable heteroatom doping levels and remarkable gas sorption properties. Nitrogen isotherms at 77 K revealed that micropores dominate the porous structure of carbons. The highest Brunauer-Emett-Teller (BET) surface area (4171 m2 g-1) and pore volume (2.3 cm3 g-1) were obtained for carbon synthesized by KOH activation of BI at 700 °C. In light of the synergistic effect of basic heteroatoms and fine micropores, all carbons exhibit remarkable gas capture and selectivity. Particularly, BI and BIPL-5 derived carbons feature unprecedented CO2 uptakes of 6.2 mmol g-1 (1 bar) and 2.1 mmol g-1 (0.15 bar) at 298 K, respectively. The ALP-6 derived carbons retained considerable amount of nitrogen dopants (up to 14.4 wt%) after heat treatment owing to the presence of more stable nitrogen-nitrogen bonds compared to nitrogen-carbon bonds in BILP-5 and BI precursors. Subsequently, the highest selectivity of 62 for CO2/N2 and 11 for CO2/CH4 were obtained at 298 K for a carbon prepared by KOH activation of ALP-6 at 500 °C.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

12-11-2015

Available for download on Wednesday, December 09, 2020

Share

COinS