DOI

https://doi.org/10.25772/9G5V-S441

Defense Date

2016

Document Type

Thesis

Degree Name

Master of Science

Department

Biostatistics

First Advisor

Nak-Kyeong Kim

Abstract

Streptococcus sanguinis is a gram-positive, non-motile bacterium native to human mouths. It is the primary cause of endocarditis and is also responsible for tooth decay. Two-component systems (TCSs) are commonly found in bacteria. In response to environmental signals, TCSs may regulate the expression of virulence factor genes.

Gene co-expression networks are exploratory tools used to analyze system-level gene functionality. A gene co-expression network consists of gene expression profiles represented as nodes and gene connections, which occur if two genes are significantly co-expressed. An adjacency function transforms the similarity matrix containing co-expression similarities into the adjacency matrix containing connection strengths. Gene modules were determined from the connection strengths, and various network connectivity measures were calculated.

S. sanguinis gene expression profile data was loaded for 2272 genes and 14 samples with 3 replicates each. The soft thresholding power β=6 was chosen to maximize R2 while maintaining a high mean number of connections. Nine modules were found. Possible meta-modules were found to be: Module 1: Blue & Green, Module 2: Pink, Module 3: Yellow, Brown & Red, Module 4: Black, Module 5: Magenta & Turquoise. The absolute value of module membership was found to be highly positively correlated with intramodular connectivity. Each of the nine modules were examined. Two methods (intramodular connectivity and TOM-based connectivity followed by network mapping) for identifying candidate hub genes were performed. Most modules provided similar results between the two methods. Similar rankings between the two methods can be considered equivalent and both can be used to detect candidate hub genes. Gene ontology information was unavailable to help select a module of interest. This network analysis would help researchers create new research hypotheses and design experiments for validation of candidate hub genes in biologically important modules.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

8-9-2016

Share

COinS